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ABSTRACT. S. Rottey and G. Van de Voorde characterized regular pseudo-ovals of
PG(3n− 1, q), q = 2h, h > 1 and n prime. Here an alternative proof is given and
slightly stronger results are obtained.

1. INTRODUCTION

Pseudo-ovals and pseudo-hyperovals were introduced in [10]; see also [12]. These
objects play a key role in the theory of translation generalized quadrangles [6, 12].
Pseudo-hyperovals only exist in even characteristic. A characterization of regular
pseudo-ovals in odd characteristic was given in [2]; see also [12]. In [8] a charac-
terization of regular pseudo-ovals and regular pseudo-hyperovals in PG(3n− 1, q),
q even, q 6= 2 and n prime, is obtained. Here a shorter proof is given and slightly
stronger results are obtained.

2. OVALS AND HYPEROVALS

A k-arc in PG(2, q) is a set of k points, k ≥ 3, no three of which are collinear. Any
non-singular conic of PG(2, q) is a (q + 1)-arc. If K is any k-arc of PG(2, q), then
k ≤ q + 2. For q odd k ≤ q + 1 and for q even a (q + 1)-arc extends to a (q + 2)-arc;
see [3]. A (q+1)-arc is an oval; a (q+2)-arc, q even, is a complete oval or hyperoval.

A famous theorem of B. Segre [9] tells us that for q odd every oval of PG(2, q) is a
non-singular conic. For q even, there are many ovals that are not conics [3]; also,
there are many hyperovals that do not contain a conic [3].

3. GENERALIZED OVALS AND HYPEROVALS

Arcs, ovals and hyperovals can be generalized by replacing their points with m-
dimensional subspaces to obtain generalized k-arcs, generalized ovals and general-
ized hyperovals. These have strong connections to generalized quadrangles, projec-
tive planes, circle geometries, flocks and other structures. See [6, 12, 10, 11, 2, 7].
Below, some basic definitions and results are formulated; for an extensive study,
many applications and open problems, see [12].

A generalized k-arc of PG(3n − 1, q), n ≥ 1, is a set of k (n − 1)-dimensional
subspaces of PG(3n − 1, q) every three of which generate PG(3n − 1, q). If q is
odd then k ≤ qn + 1, if q is even then k ≤ qn + 2. Every generalized (qn + 1)-arc of
PG(3n− 1, q), q even, can be extended to a generalized (qn + 2)-arc.
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If O is a generalized (qn + 1)-arc in PG(3n − 1, q), then it is a pseudo-oval or
generalized oval or [n − 1]-oval of PG(3n − 1, q). For n = 1, a [0]-oval is just an
oval of PG(2, q). If O is a generalized (qn + 2)-arc in PG(3n− 1, q), q even, then it
is a pseudo-hyperoval or generalized hyperoval or [n−1]-hyperoval of PG(3n−1, q).
For n = 1, a [0]-hyperoval is just a hyperoval of PG(2, q).

If O = {π0, π1, · · · , πqn} is a pseudo-oval of PG(3n − 1, q), then πi is contained
in exactly one (2n − 1)-dimensional subspace τi of PG(3n − 1, q) which has no
point in common with (π0 ∪ π1 ∪ · · · ∪ πqn)\πi, with i = 0, 1, · · · , qn; the space τi
is the tangent space of O at πi. For q even the qn + 1 tangent spaces of O contain a
common (n − 1)-dimensional space πqn+1, the nucleus of O; also, O ∪ {πqn+1} is a
pseudo-hyperoval of PG(3n− 1, q). For q odd, the tangent spaces of a pseudo-oval
O are the elements of a pseudo-oval O∗ in the dual space of PG(3n− 1, q).

4. REGULAR PSEUDO-OVALS AND PSEUDO-HYPEROVALS

In the extension PG(3n−1, qn) of PG(3n−1, q), consider n planes ξi, i = 1, 2, · · · , n,
that are conjugate in the extension Fqn of Fq and which span PG(3n− 1, qn). This
means that they form an orbit of the Galois group corresponding to this extension
and span PG(3n− 1, qn).

In ξ1 consider an oval O1 = {x(1)0 , x
(1)
1 , · · · , x(1)qn }. Further, let x(1)i , x

(2)
i , · · · , x(n)i ,

with i = 0, 1, · · · , qn, be conjugate in Fqn over Fq. The points x(1)i , x
(2)
i , · · · , x(n)i

define an (n − 1)-dimensional subspace πi over Fq for i = 0, 1, · · · , qn. Then,
O = {π0, π1, · · · , πqn} is a generalized oval of PG(3n − 1, q). These objects are
the regular or elementary pseudo-ovals. If O1 is replaced by a hyperoval, and so q is
even, then the corresponding O is a regular or elementary pseudo-hyperoval.

All known pseudo-ovals and pseudo-hyperovals are regular.

5. CHARACTERIZATIONS

Let O = {π0, π1, · · · , πqn} be a pseudo-oval in PG(3n−1, q). The tangent space of O
at πi will be denoted by τi, with i = 0, 1, · · · , qn. Choose πi, i ∈ {0, 1, · · · , qn}, and
let PG(2n−1, q) ⊆ PG(3n−1, q) be skew to πi. Further, let τi∩PG(2n−1, q) = ηi
and 〈πi, πj〉 ∩ PG(2n − 1, q) = ηj , with j 6= i. Then {η0, η1, · · · , ηqn} = ∆i is an
(n− 1)-spread of PG(2n− 1, q).

Now, let q be even and let π be the nucleus of O. Let PG(2n−1, q) ⊆ PG(3n−1, q)
be skew to π. If ζj = PG(2n − 1, q) ∩ 〈π, πj〉, then {ζ0, ζ1, · · · , ζqn} = ∆ is an
(n− 1)-spread of PG(2n− 1, q).

Next, let q be odd. Choose τi, with i ∈ {0, 1, · · · , qn}. If τi ∩ τj = δj , with j 6= i,
then {δ0, δ1, · · · , δi−1, πi, δi+1, · · · , δqn} = ∆?

i is an (n− 1)-spread of τi.

Finally, let q be even and let O = {π0, π1, · · · , πqn+1} be a pseudo-hyperoval in
PG(3n − 1, q). Choose πi, with i ∈ {0, 1, · · · , qn + 1}, and let PG(2n − 1, q) ⊆
PG(3n − 1, q) be skew to πi. Let 〈πi, πj〉 ∩ PG(2n − 1, q) = ηj , with j 6= i. Then
{η0, η1, · · · , ηi−1, ηi+1, · · · , ηqn+1} = ∆i is an (n− 1)- spread of PG(2n− 1, q).

Theorem 5.1 (Casse, Thas and Wild [2]). Consider a pseudo-oval O with q odd.
Then at least one of the (n− 1)-spreads ∆0,∆1, · · · ,∆qn ,∆

?
0,∆

?
1, · · · ,∆?

qn is regular
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if and only if they all are regular if and only if the pseudo-oval O is regular. In such a
case O is essentially a conic over Fqn .

Theorem 5.2 (Rottey and Van de Voorde [8]). Consider a pseudo-oval O in PG(3n−
1, q) with q = 2h, h > 1, n prime. Then O is regular if and only if all (n− 1)-spreads
∆0,∆1, · · · ,∆qn are regular.

6. ALTERNATIVE PROOF AND IMPROVEMENTS

Theorem 6.1. Consider a pseudo-hyperoval O in PG(3n−1, q), q = 2h, h > 1 and n
prime. Then O is regular if and only if all (n−1)-spreads ∆i, with i = 0, 1, · · · , qn+1,
are regular.

Proof. If O is regular, then clearly all (n−1)-spreads ∆i, with i = 0, 1, · · · , qn + 1,
are regular.

Conversely, assume that the (n − 1)-spreads ∆0,∆1, · · · ,∆qn+1 are regular. Let
O = {π0, π1, · · · , πqn+1} and let Ô = {β0, β1, · · · , βqn+1} be the dual of O, with βi
being the dual of πi.

Choose βi, i ∈ {0, 1, · · · , qn + 1}, and let βi ∩ βj = αij , j 6= i. Then

(1) {αi0, αi1, · · · , αi,i−1, αi,i+1, · · · , αi,qn+1} = Γi

is an (n− 1)-spread of βi.

Now consider βi, βj ,Γi,Γj , αij , j 6= i. In Γj we next consider a (n − 1)-regulus γj
containing αij . The (n − 1)-regulus γj is a set of maximal spaces of a Segre vari-
ety S1;n−1; see Section 4.5 in [4]. The (n − 1)-regulus γj and the (n − 1)-spread
Γi of βi generate a regular (n − 1)-spread Σ(γj ,Γi) of PG(3n − 1, q). This can
be seen as follows. The elements of Γi intersect n lines U1, U2, · · · , Un which are
conjugate in Fqn over Fq, that is, they form an orbit of the Galois group corre-
sponding to this extension. Let αij ∩ Ul = {ul}, with l = 1, 2, · · · , n. Now consider
the transversals T1, T2, · · · , Tn of the elements of γj , with Tl containing ul. The n
planes TlUl = θl intersect all elements of γj and Γi. The (n − 1)-dimensional sub-
spaces of PG(3n − 1, q) intersecting θ1, θ2, · · · , θn are the elements of the regular
(n − 1)-spread Σ(γj ,Γi). The elements of this spread correspond to the points of
a plane PG(2, qn), with its lines corresponding to the (2n− 1)-dimensional spaces
containing at least two (and then qn + 1) elements of the spread. Hence the q + 2

elements of Ô containing an element of γj , say βi = βi1 , βi2 , · · · , βiq+1 , βiq+2 = βj ,
correspond to lines of PG(2, qn). Dualizing, the elements πi1 , πi2 , · · · , πiq+2 corre-
spond to points of PG(2, qn).

Now consider βi2 and γj , and repeat the argument. Then there arise n planes
θ′l intersecting all elements of γj and Γi2 . The (n − 1)-dimensional subspaces of
PG(3n − 1, q) intersecting θ′1, θ

′
2, · · · , θ′n are the elements of the regular (n − 1)-

spread Σ(γj ,Γi2). The elements of this spread correspond to the points of a plane
PG′(2, qn), and the lines of this plane correspond to the (2n−1)-dimensional spaces
containing qn + 1 elements of the spread. Hence βi1 , βi2 , · · · , βiq+2

correspond to
lines of PG′(2, qn). Dualizing, the elements πi1 .πi2 , · · · , πiq+2 correspond to points
of PG′(2, qn).

First, assume that {θ1, θ2, · · · , θn} ∩ {θ′1, θ′2, · · · , θ′n} = ∅. Consider πi1 , πi2 , πi3 , πi4 .
The planes of PG(3n − 1, qn) intersecting these four spaces constitute a set M of
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maximal spaces of a Segre variety S2;n−1 [1]. The planes θ1, θ2, · · · , θn, θ′1, θ′2, · · · , θ′n
are elements of M. It follows that (θ1 ∪ θ2 ∪ · · · ∪ θn) ∩ (θ′1 ∪ θ′2 ∪ · · · ∪ θ′n) = ∅.
Consider any (n − 1)-dimensional subspace π ∈ {πi5 , πi6 , · · · , πiq+2} of PG(3n −
1, q). We will show that π is a maximal subspace of S2;n−1. Let θi ∩ πj = {tij}, θ′i ∩
πj = {t′ij}, i = 1, 2, · · · , n, j = i1, i2, · · · , iq+2. If tij1tij2 ∩ tij3tij4 = {vi}, t′ij1t

′
ij2
∩

t′ij3t
′
ij4

= {v′i}, with j1, j2, j3, j4 distinct, then v1, v2, · · · , vn are conjugate and sim-
ilarly v′1, v

′
2, · · · , v′n are conjugate. Hence 〈v1, v2, · · · , vn〉 = 〈v′1, v′2, · · · , v′n〉 defines

a (n− 1)-dimensional space over Fq which intersects θ1, θ2, · · · , θ′n (over Fqn). The
points tij , with j = i1, i2, · · · , iq+2, generate a subplane of θi, and the points
t′ij , with j = i1, i2, · · · , iq+2, generate a subplane of θ′i, with i = 1, 2, · · · , n. Let
q = 2h and let F2v be the subfield of Fqn = F2hn over which these subplanes are
defined; so v|hn. Then v < hn as otherwise the spreads of PG(3n−1, q) defined by
θ1, θ2, · · · , θn and θ′1, θ

′
2, · · · , θ′n coincide, clearly not possible. The (n − 1)-regulus

γj implies that the subplanes contain a line over Fq, so h|v. As n is prime we have
v = h, so 2v = q. Hence the 2n subplanes are defined over Fq. It follows that
the q + 2 elements πi1 , πi2 , · · · , πiq+2 are maximal subspaces of the Segre variety
S2;n−1. Hence π is a maximal subspace of S2;n−1. It follows that π1, π2, · · · , πq+2

are maximal subspaces of S2;n−1.

Now consider a PG(2, q) which intersects πi1 , πi2 , πi3 , πi4 . The (n−1)-dimensional
spaces πi1 , πi2 , · · · , πiq+2

are maximal spaces of S2;n−1 which intersect PG(2, q);
they are maximal spaces of the Segre variety S2;n−1∩PG(3n−1, q) of PG(3n−1, q).

Consider πi1 and also a PG(2n− 1, q) skew to πi1 . If we project πi2 , πi3 , · · · , πiq+2

from πi1 onto PG(2n− 1, q), then by the foregoing paragraph the q+ 1 projections
constitute a (n−1)-regulus of PG(2n−1, q). Similarly, if we project from πis , s any
element of {1, 2, · · · , q + 2}. Equivalently, if s ∈ {1, 2, · · · , q + 2} then the spaces
βis ∩ βit , with t = 1, 2, · · · , s− 1, s+ 1, · · · , q + 2, form a (n− 1)-regulus of βis .

Now assume that the condition {θ1, θ2, · · · , θn} ∩ {θ′1, θ′2, · · · , θ′n} = ∅ is satisfied
for any choice of βi, βj , γj , βi2 . In such a case every (n − 1)-regulus contained in a
spread Γs defines a Segre variety S2;n−1 over Fq. Let us define the following design
D. Points of D are the elements of Ô, a block of D is a set of q + 2 elements of Ô,
containing at least one space of a (n− 1)-regulus contained in some regular spread
Γs, and incidence is containment. Then D is a 4−(qn+2, q+2, 1) design. By Kantor
[5] this implies that q = 2, a contradiction.

Consequently, we may assume that for at least one quadruple βi, βj , γj , βi2 we have

(2) {θ1, θ2, · · · , θn} = {θ′1, θ′2, · · · , θ′n}.

In such a case the qn + 2 elements of Ô correspond to lines of the plane PG(2, qn).
It follows that O is regular. �

Theorem 6.2. Consider a pseudo-oval O in PG(3n−1, q), with q = 2h, h > 1 and n
prime. Then O is regular if and only if all (n−1)-spreads ∆0,∆1, · · · ,∆qn are regular.

Proof. If O is regular, then clearly all (n−1)-spreads ∆0,∆1, · · · ,∆qn are regular.

Conversely, assume that the (n − 1)-spreads ∆0,∆1, · · · ,∆qn are regular. Let O =

{π0, π1, · · · , πqn}, let πqn+1 be the nucleus of O, let Ō = O ∪ {πqn+1}, let Ô be the
dual of O, let ˆ̄O be the dual of Ō, and let βi be the dual of πi.
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Choose βi, i ∈ {0, 1, · · · , qn + 1}, and let βi ∩ βj = αij , j 6= i. Then

(3) {αi0, αi1, · · · , αi,i−1, αi,i+1, · · · , αi,qn+1} = Γi

is an (n− 1)-spread of βi.

Now consider βi, βj ,Γi,Γj , αij , with j 6= i and i, j ∈ {0, 1, · · · , qn}. In Γj we next
consider a (n− 1)-regulus γj containing αij and αj,qn+1. The (n− 1)-regulus γj is
a set of maximal spaces of a Segre variety S1;n−1. The (n − 1)-regulus γj and the
(n−1)-spread Γi of βi generate a regular (n−1)-spread Σ(γj ,Γi) of PG(3n−1, q).
Such as in the proof of Theorem 6.1 we introduce the elements Ul, ul, Tl, θl, l =

1, 2, · · · , n, and the plane PG(2, qn). The q+2 elements of ˆ̄O containing an element
of γj , say βi = βi1 , βi2 , · · · , βiq , βj = βiq+1 , βqn+1, correspond to lines of PG(2, qn).
Dualizing, the elements πi1 , πi2 , · · · , πiq+1 , πqn+1 correspond to points of PG(2, qn).

Now consider βi2 and γj , and repeat the argument. Then there arise n planes θ′l
of PG(3n − 1, qn) intersecting all elements of γj and Γi2 , and a (n − 1)-spread
Σ(γj ,Γi2) of PG(3n − 1, q). The elements of this spread correspond to the points
of a plane PG′(2, qn). The spaces βi1 , βi2 , · · · , βiq+1

, βqn+1 correspond to lines of
PG′(2, qn). Dualizing, the elements πi1 , πi2 , · · · , πiq+1 , πqn+1 correspond to points
of PG′(2, qn).

First, assume that {θ1, θ2, · · · , θn} ∩ {θ′1, θ′2, · · · , θ′n} = ∅. Consider πi1 , πi2 , πi3 , πi4 .
The planes of PG(3n − 1, qn) intersecting these four spaces constitute a set M of
maximal spaces of a Segre variety S2;n−1. The planes θ1, θ2, · · · , θn, θ′1, θ′2, · · · , θ′n
are elements of M. It follows that (θ1 ∪ θ2 ∪ · · · ∪ θn) ∩ (θ′1 ∪ θ′2 ∪ · · · ∪ θ′n) = ∅. Let
π ∈ {πi5 , πi6 , · · · , πiq+1 , πqn+1}. As in the proof of Theorem 6.1 one shows that π is
a maximal subspace of S2;n−1. It follows that πi1 , πi2 , · · · , πiq+1 , πqn+1 are maximal
subspaces of S2;n−1.

Next consider a PG(2, q) which intersects πi1 , πi2 , πi3 , πi4 . The (n−1)-dimensional
spaces πi1 , πi2 , · · · , πiq+1 , πqn+1 are maximal spaces of S2;n−1 which intersect the
plane PG(2, q); they are maximal spaces of the Segre variety S2;n−1 ∩ PG(3n −
1, q) of PG(3n − 1, q). As in the proof of Theorem 6.1 it follows that the spaces
βqn+1 ∩ βit , with t = 1, 2, · · · , q + 1, form a (n− 1)-regulus of βqn+1.

Now assume that the condition {θ1, θ2, · · · , θn} ∩ {θ′1, θ′2, · · · , θ′n} = ∅ is satisfied
for any choice of βi, βj , γj , βi2 , j 6= i and i, j ∈ {0, 1, · · · , qn}. Let α1, α2, α3 be
distinct elements of Γqn+1. Then βi, βj , γj , βi2 can be chosen in such a way that
α1 ∈ βi, α2 ∈ βj , α2 ∈ γj , βi2 ∩ βj ∈ γj with α3 ∈ βi2 . Hence the (n − 1)-regulus
in βqn+1 defined by α1, α2, α3 is subset of Γqn+1. From [4], Theorem 4.123, now
follows that the (n − 1)-spread Γqn+1 of βqn+1 is regular. By Theorem 6.1 the
pseudo-hyperoval Ō is regular, and so O is regular. But in such a case the condition
{θ1, θ2, · · · , θn} ∩ {θ′1, θ′2, · · · , θ′n} = ∅ is never satisfied, a contradiction.

Consequently, we may assume that for at least one quadruple βi, βj , γj , βi2 we have
{θ1, θ2, · · · , θn} = {θ′1, θ′2, · · · , θ′n}. In such a case the qn + 2 elements of ˆ̄O cor-
respond to lines of the plane PG(2, qn). It follows that Ō, and hence also O, is
regular. �

Theorem 6.3. Consider a pseudo-hyperoval O in PG(3n−1, q), q = 2h, h > 1 and n
prime. Then O is regular if and only if at least qn−1 elements of {∆0,∆1, · · · ,∆qn+1}
are regular.
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Proof. If O is regular, then clearly all (n−1)-spreads ∆i, with i = 0, 1, · · · , qn + 1,
are regular.

Conversely, assume that ρ, with ρ ≥ qn − 1, elements of {∆0,∆1, · · · ,∆qn+1} are
regular.

If ρ = qn + 2, then O is regular by Theorem 6.1; if ρ = qn + 1, then O is regular by
Theorem 6.2.

Now assume that ρ = qn and that ∆2,∆3, · · · ,∆qn+1 are regular. We have to prove
that ∆0 is regular. We use the arguments in the proof of Theorem 6.2. If one of
the elements α1, α2, α3, say α1, in the proof of Theorem 6.2 is β0 ∩ β1, then let γj
contain βj ∩ βi, βj ∩ β0, βj ∩ β1 and let βi2 6= β1, with i, j ∈ {2, 3, · · · , qn + 1}. Now
see the proof of the preceding theorem.

Finally, assume that ρ = qn − 1 and that ∆3,∆4, · · · ,∆qn+1 are regular. We have
to prove that ∆0 is regular. We use the arguments in the proof of Theorem 6.2.
If exactly one of the elements α1, α2, α3, say α1, in the proof of Theorem 6.2 is
β0 ∩ β1 or β0 ∩ β2, then proceed as in the preceding paragraph with βi2 6= β1, β2.
Now assume that two of the elements α1, α2, α3, say α1 and α2, are β0 ∩ β1 and
β0∩β2. Now consider all (n−1)-reguli in ∆0 containing α1 and α3, and assume, by
way of contradiction, that no one of these (n − 1)-reguli contains α2. The number
of these (n − 1)-reguli is qn−2

q−1 , and so q = 2, a contradiction. It follows that the
(n − 1)-regulus in β0 defined by α1, α2, α3 is contained in ∆0. Now we proceed as
in the proof of Theorem 6.2. �

7. FINAL REMARKS

7.1. The cases q = 2 and n not prime
For q = 2 or n not prime other arguments have to be developed.

7.2. Improvement of Theorem 6.3
Let D = (P,B,∈) be an incidence structure satisfying the following conditions.

(i) |P | = qn + 1, q even, q 6= 2;
(ii) the elements of B are subsets of size q + 1 of P and every three distinct

elements of P are contained in at most one element of B;
(iii) Q is a subset of size δ of P such that any triple of elements in P with at

most one element in Q, is contained in exactly one element of B.

Assumption : Any such D is a 3 − (qn + 1, q + 1, 1) design whenever δ ≤ δ0 with
δ0 ≤ q − 2.

Theorem 7.1. Consider a pseudo-hyperoval O in PG(3n − 1, q), q = 2h, h > 1
and n prime. Then O is regular if and only if at least qn + 1 − δ0 elements of
{∆0,∆1, · · · ,∆qn+1} are regular.

Proof. Similar to the proof of Theorem 6.3. �

7.3. Acknowledgement
We thank S. Rottey and G. Van de Voorde for several helpful discussions.



REGULAR PSEUDO-HYPEROVALS AND REGULAR PSEUDO-OVALS IN EVEN CHARACTERISTIC 7

REFERENCES

[1] W. Burau. Mehrdimensionale Projective und Höhere Geometrie, VEB Deutscher Verlag der Wis-
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