REGULAR PSEUDO-HYPEROVALS AND REGULAR PSEUDO-OVALS IN EVEN
CHARACTERISTIC

J. A. THAS

ABSTRACT. S. Rottey and G. Van de Voorde characterized regular pseudo-ovals of
PG(3n —1,q), ¢ = 2", h > 1 and n prime. Here an alternative proof is given and
slightly stronger results are obtained.

1. INTRODUCTION

Pseudo-ovals and pseudo-hyperovals were introduced in [10]; see also [12]. These
objects play a key role in the theory of translation generalized quadrangles [6, 12].
Pseudo-hyperovals only exist in even characteristic. A characterization of regular
pseudo-ovals in odd characteristic was given in [2]; see also [12]. In [8] a charac-
terization of regular pseudo-ovals and regular pseudo-hyperovals in PG(3n —1, q),
g even, ¢ # 2 and n prime, is obtained. Here a shorter proof is given and slightly
stronger results are obtained.

2. OVALS AND HYPEROVALS

A k-arc in PG(2, q) is a set of k points, & > 3, no three of which are collinear. Any
non-singular conic of PG(2,¢) is a (¢ + 1)-arc. If X is any k-arc of PG(2, ¢), then
k< q+2.Forqodd k < g+ 1 and for q even a (¢ + 1)-arc extends to a (¢ + 2)-arc;
see [3]. A (¢+1)-arcis an oval; a (q+ 2)-arc, ¢ even, is a complete oval or hyperoval.

A famous theorem of B. Segre [9] tells us that for ¢ odd every oval of PG(2,¢) is a
non-singular conic. For ¢ even, there are many ovals that are not conics [3]; also,
there are many hyperovals that do not contain a conic [3].

3. GENERALIZED OVALS AND HYPEROVALS

Arcs, ovals and hyperovals can be generalized by replacing their points with m-
dimensional subspaces to obtain generalized k-arcs, generalized ovals and general-
ized hyperovals. These have strong connections to generalized quadrangles, projec-
tive planes, circle geometries, flocks and other structures. See [6, 12, 10, 11, 2, 7].
Below, some basic definitions and results are formulated; for an extensive study,
many applications and open problems, see [12].

A generalized k-arc of PG(3n — 1,q), n > 1, is a set of k (n — 1)-dimensional
subspaces of PG(3n — 1,q) every three of which generate PG(3n — 1,q). If ¢ is
odd then k < ¢" + 1, if ¢ is even then k < ¢™ + 2. Every generalized (¢"™ + 1)-arc of
PG(3n —1,q), ¢ even, can be extended to a generalized (¢™ + 2)-arc.
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If O is a generalized (¢" + 1)-arc in PG(3n — 1,q), then it is a pseudo-oval or
generalized oval or [n — 1]-oval of PG(3n — 1,q). For n = 1, a [0]-oval is just an
oval of PG(2, ¢). If O is a generalized (¢" + 2)-arc in PG(3n — 1, ¢), ¢ even, then it
is a pseudo-hyperoval or generalized hyperoval or [n— 1]-hyperoval of PG(3n—1, q).
For n = 1, a [0]-hyperoval is just a hyperoval of PG(2, q).

If O = {my,m, -+ ,mgn} is a pseudo-oval of PG(3n — 1,¢), then =; is contained
in exactly one (2n — 1)-dimensional subspace 7; of PG(3n — 1,¢) which has no
point in common with (mg Um U -+ Umgn)\m;, with ¢ = 0,1,--- ,¢"; the space 7;

is the tangent space of O at ;. For ¢ even the ¢™ + 1 tangent spaces of O contain a
common (n — 1)-dimensional space 7 =11, the nucleus of O; also, O U {mgn41} is a
pseudo-hyperoval of PG(3n — 1, ¢). For ¢ odd, the tangent spaces of a pseudo-oval
O are the elements of a pseudo-oval O* in the dual space of PG(3n — 1, ¢).

4. REGULAR PSEUDO-OVALS AND PSEUDO-HYPEROVALS

In the extension PG(3n—1, ¢") of PG(3n—1, q), consider n planes &;,i = 1,2,--- ,n,
that are conjugate in the extension F,~ of F, and which span PG(3n — 1,¢"). This
means that they form an orbit of the Galois group corresponding to this extension
and span PG(3n — 1,¢").

In & consider an oval O; = {zél),x(ll),--- ,xé})}. Further, let xgl),x§2),~~ ,mgn),
with ¢ = 0,1,---,¢", be conjugate in F» over F,. The points x,gl), xz@, e ,mgn)
define an (n — 1)-dimensional subspace m; over F, for i = 0,1,---,¢". Then,
O = {mp, 71, - ,myn} is a generalized oval of PG(3n — 1,¢). These objects are

the regular or elementary pseudo-ovals. If O is replaced by a hyperoval, and so q is
even, then the corresponding O is a regular or elementary pseudo-hyperoval.

All known pseudo-ovals and pseudo-hyperovals are regular.

5. CHARACTERIZATIONS

Let O = {mp, w1, - ,myn } be a pseudo-oval in PG(3n—1, ¢). The tangent space of O
at m; will be denoted by 7;, withi =0,1,--- ,¢". Choose 7;, ¢ € {0,1,---,¢"}, and
let PG(2n—1,q) C PG(3n—1, q) be skew to ;. Further, let 7, "PG(2n—1,9) = n;
and (m;,m;) NPG(2n —1,q) = n;, with j # i. Then {no,m,--- ,nyn} = A; is an
(n — 1)-spread of PG(2n — 1, q).

Now, let ¢ be even and let 7 be the nucleus of 0. Let PG(2n—1,q) C PG(3n—1,¢q)
be skew to 7. If (; = PG(2n — 1,¢q) N (7, m;), then {(o, (1, -+ ,{n} = Ais an
(n — 1)-spread of PG(2n — 1, q).

Next, let ¢ be odd. Choose 7;, with i € {0,1,--- ,¢"}. If , N 1; = 4;, with j # 4,
then {do, 91, ,di—1, i, 0it1, -+ ,d¢n } = A} is an (n — 1)-spread of 7.

Finally, let ¢ be even and let O = {mg, 71, -+ ,mgny1} be a pseudo-hyperoval in
PG(3n —1,q). Choose m;, with i € {0,1,---,¢™ + 1}, and let PG(2n — 1,q) C
PG(3n — 1,q) be skew to m;. Let (m;,7;) NPG(2n — 1,q) = n;, with j # i. Then
{Mo, M, s M1, Mig1, -+, Mgnt1} = A is an (n — 1)- spread of PG(2n — 1, q).

Theorem 5.1 (Casse, Thas and Wild [2]). Consider a pseudo-oval O with ¢ odd.
Then at least one of the (n — 1)-spreads Ag, Ay, - -+, Agn, Ag, AT, - -+, AL, is regular
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if and only if they all are regular if and only if the pseudo-oval O is regular. In such a
case O is essentially a conic over Fyn.

Theorem 5.2 (Rottey and Van de Voorde [8]). Consider a pseudo-oval O in PG (3n—
1,q) with ¢ = 2", h > 1, n prime. Then O is regular if and only if all (n — 1)-spreads
Ao, Ay, -+, Agn are regular.

6. ALTERNATIVE PROOF AND IMPROVEMENTS

Theorem 6.1. Consider a pseudo-hyperoval O in PG(3n—1,q), ¢ =2" h > landn
prime. Then O is regular if and only if all (n—1)-spreads A;, withi =0,1,--- ,¢"+1,
are regular.

Proof.  If O is regular, then clearly all (n — 1)-spreads A,;, withi =0,1,--- ,¢" +1,
are regular.

Conversely, assume that the (n — 1)-spreads Ay, Ay,---,Agnyq are regular. Let
O = {mo,m1, -+ ,7gni1} and let O = {By, B, -+ , Bgn41} be the dual of O, with 3;
being the dual of ;.

Choose 3;,i € {0,1,--- ,¢" + 1}, and let 8, N 3; = oy, j # i. Then

1 {io, ity s O im1, Qi g1y s Qi gnyr ) =1y

isan (n — 1)-spread of 5.

Now consider f;, 3;,T,T'j, ;5,7 # i. In I'; we next consider a (n — 1)-regulus ~;
containing «;;. The (n — 1)-regulus ~; is a set of maximal spaces of a Segre vari-
ety 81.,—1; see Section 4.5 in [4]. The (n — 1)-regulus ~; and the (n — 1)-spread
T'; of 5, generate a regular (n — 1)-spread X(v;,I';) of PG(3n — 1,q). This can
be seen as follows. The elements of I'; intersect n lines Uy, Us, - - - , U, which are
conjugate in F,» over F,, that is, they form an orbit of the Galois group corre-
sponding to this extension. Let o;; N U; = {w;}, with i =1,2,--- ,n. Now consider
the transversals T3, 15, - - - ,T;, of the elements of -y;, with 7; containing ;. The n
planes T;U; = 6; intersect all elements of v; and I';. The (n — 1)-dimensional sub-
spaces of PG(3n — 1, gq) intersecting 61,602, -- - , 6,, are the elements of the regular
(n — 1)-spread 3(v;,I";). The elements of this spread correspond to the points of
a plane PG(2, ¢™), with its lines corresponding to the (2n — 1)-dimensional spaces
containing at least two (and then g™ + 1) elements of the spread. Hence the ¢ + 2
elements of © containing an element of v;, say 8; = Bi,, Biy, s Bigirs Bigro = Bi>
correspond to lines of PG(2, ¢"). Dualizing, the elements 7;,, m;,, - - - corre-
spond to points of PG(2, ¢").

) Tigt2

Now consider §;, and +v;, and repeat the argument. Then there arise n planes
¢, intersecting all elements of v; and I';,. The (n — 1)-dimensional subspaces of
PG(3n — 1,q) intersecting 0/, 0%, -- , 0] are the elements of the regular (n — 1)-
spread X(v,,T';,). The elements of this spread correspond to the points of a plane
PG'(2,¢"), and the lines of this plane correspond to the (2n—1)-dimensional spaces

containing ¢" + 1 elements of the spread. Hence f;,, 8;,,--- , Bi,,, correspond to
lines of PG’(2,¢"). Dualizing, the elements =, .7;,, - - - ,7;,,, correspond to points
of PG'(2,¢").

First, assume that {61, 60s,---,0,} N {61,605, ,0,,} = 0. Consider ;,, m;,, mi,, T, -

The planes of PG(3n — 1, ¢") intersecting these four spaces constitute a set M of
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maximal spaces of a Segre variety 8,.,,—1 [1]. The planes 61,65, -- ,0,,601,65,---,6.,
are elements of M. It follows that (6, U U---U@,)N (U, U---UE) = 0.
Consider any (n — 1)-dimensional subspace 7= € {m;,, s, - ,7,,,} of PG(3n —

1, ). We will show that 7 is a maximal subspace of 8,.,_1. Let 0; N 7w; = {t;;},0; N
T = {tgj}J’ =1,2,--+,n,j =d1,i2, - ,igt2- If tijilijo Ntijstij, = {Ui}’ t/ijlt;jz n
tijsti;, = tvi}, with j1, j2, s, ja distinet, then vy, v, - , v, are conjugate and sim-
ilarly v{,v5, -+ , v}, are conjugate. Hence (v1, vz, - ,v,) = (v}, 04, -+ ,v] ) defines
a (n — 1)-dimensional space over F, which intersects 61,65, - - - , 8., (over Fy»). The
points ¢;;, with j = 41,42, - ,is42, generate a subplane of #;, and the points
tij, with j = 4,49, -+ ,ig42, generate a subplane of 0;, with i = 1,2,--- ,n. Let
q = 2" and let Fy. be the subfield of F,» = Fyn. over which these subplanes are
defined; so v|hn. Then v < hn as otherwise the spreads of PG(3n —1, ¢) defined by
01,05,--- ,0, and 0},65,--- 0 coincide, clearly not possible. The (n — 1)-regulus
~; implies that the subplanes contain a line over Fy, so h|v. As n is prime we have
v = h, so 2¥ = ¢. Hence the 2n subplanes are defined over [F,. It follows that
the ¢ + 2 elements m;,, m;,,--- ,m;,,, are maximal subspaces of the Segre variety
82,n—1. Hence 7 is a maximal subspace of 83.,,_1. It follows that 7y, 72, -+, mg42

are maximal subspaces of 83.,,_1.

Now consider a PG(2, ¢) which intersects ;, , m;,, 75, 7, . The (n —1)-dimensional
spaces 7, T;,," - ,T,,, are maximal spaces of 8., 1 which intersect PG(2, q);
they are maximal spaces of the Segre variety Ss.,,_1NPG(3n—1, ¢) of PG(3n—1, q).

Consider 7;, and also a PG(2n — 1,q) skew to m;,. If we project ;,, 75, -+ , T,
from 7;, onto PG(2n — 1, q), then by the foregoing paragraph the ¢ + 1 projections
constitute a (n— 1)-regulus of PG(2n— 1, ¢). Similarly, if we project from 7;_, s any
element of {1,2,---,¢q + 2}. Equivalently, if s € {1,2,--- ,¢q + 2} then the spaces
Bi.NBi,witht =1,2,--+ s —1,s+1,--- ,¢q+ 2, form a (n — 1)-regulus of ;..

Now assume that the condition {61,602, ,60,} N {0,05,---,0,} = 0 is satisfied
for any choice of j;, 5;,7;, B:,. In such a case every (n — 1)-regulus contained in a
spread I'; defines a Segre variety Ss,,_1 over F,. Let us define the following design
D. Points of D are the elements of O, a block of D is a set of q + 2 elements of 0,
containing at least one space of a (n — 1)-regulus contained in some regular spread
I's, and incidence is containment. Then D is a 4 — (¢ +2,¢+2, 1) design. By Kantor
[5] this implies that ¢ = 2, a contradiction.

Consequently, we may assume that for at least one quadruple g;, 8;,;, 5:, we have

(2) {91;027 7871}:{&/170,27 ,9;1}
In such a case the ¢" + 2 elements of O correspond to lines of the plane PG(2, ¢").
It follows that O is regular. |

Theorem 6.2. Consider a pseudo-oval O in PG(3n —1,q), with ¢ = 2" h > 1 and n
prime. Then O is regular if and only if all (n—1)-spreads Ao, Ay, - - - , Agn are regular.

Proof. If O is regular, then clearly all (n — 1)-spreads A, Aq, - - - , Ay are regular.
Conversely, assume that the (n — 1)-spreads Ag, Ay, -+, Agn are regular. Let O =
{mo, 1, ,mgn}, let wyn 41 be the nucleus of O, let O = O U {myny1}, let O be the
dual of O, let O be the dual of O, and let 3; be the dual of ;.
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Choose f;,i € {0,1,--- ,¢" + 1}, and let §; N 3; = ;j,j # i. Then

3 {ovo, iny -+ s i1, Qi1 Qi gni =1

is an (n — 1)-spread of ;.

Now consider ;, 8;,T;,T'j, v, with j # ¢and 4,5 € {0,1,--- ,¢"}. InT'; we next
consider a (n — 1)-regulus -y; containing «;; and a; 4ny1. The (n — 1)-regulus v, is
a set of maximal spaces of a Segre variety 81,,—1. The (n — 1)-regulus ~; and the

(n—1)-spread I'; of 5; generate a regular (n—1)-spread X(v;,I";) of PG(3n—1, q).
Such as in the proof of Theorem 6.1 we introduce the elements U, u;, T}, 6;,1 =

1,2,--- ,n, and the plane PG(2, ¢"). The g+ 2 elements of 0 containing an element
of v, say Bi = Bi,, Biy, -+, Biy» Bj = Biyi1» Bgnt1, correspond to lines of PG(2, ¢™).
Dualizing, the elements 7; , m;,,- - , 7, ,, Tgn 41 correspond to points of PG(2, ¢").

Now consider 3;, and v;, and repeat the argument. Then there arise n planes 6,
of PG(3n — 1,¢") intersecting all elements of v; and I';,, and a (n — 1)-spread
¥ (v;,Ti,) of PG(3n — 1,q). The elements of this spread correspond to the points
of a plane PG'(2,¢"). The spaces 3;,, Bi,," - s Bigir> Bgny1 correspond to lines of
PG'(2,¢"). Dualizing, the elements 7;,, 7;,, - s Tigsr» Tgn41 cOITEspond to points
of PG'(2,¢").

First, assume that {61, 6,,--- ,0,} N {61,605, ---,0.,} = 0. Consider m;,, m;,, mi,, Wi, -
The planes of PG(3n — 1, ¢") intersecting these four spaces constitute a set M of
maximal spaces of a Segre variety 8,.,_1. The planes 6:,60,,---,6,,01,05,---,6.,
are elements of M. It follows that (6; Uf; U---UB,)N (A UBLU---UEG) = 0. Let
T € {Tig, Tigs s Tiy 1> Tqn+1}- As in the proof of Theorem 6.1 one shows that 7 is
a maximal subspace of 8y, ;. It follows that 7;, , 7;,,- -+ , 7, ,, Tgn 41 are maximal

subspaces of 85.,,_1.

Next consider a PG(2, ¢) which intersects ;,, 7;,, mi,, 7, . The (n —1)-dimensional
spaces m;,, mi,, - , T, ,, Tgn+1 are maximal spaces of 8,1 which intersect the
plane PG(2, ¢); they are maximal spaces of the Segre variety Sa.,—1 N PG(3n —
1,q) of PG(3n — 1,q). As in the proof of Theorem 6.1 it follows that the spaces
Bgr+1 N By, witht =1,2,--- ¢+ 1, forma (n — 1)-regulus of Byn41.

Now assume that the condition {61,602, ,60,} N {0],05,---,0,} = 0 is satisfied
for any choice of 8;,8;,7;,0i,, j # t and i,j € {0,1,--- ,¢"}. Let au, 2,3 be
distinct elements of I'g» 1. Then 3;, 3;,7;,5i, can be chosen in such a way that
ay € Bi a0 € B, a2 € 5, 6i, N B; € v; with ag € B;,. Hence the (n — 1)-regulus
in fB4n41 defined by oy, g, a3 is subset of I'yni 1. From [4], Theorem 4.123, now
follows that the (n — 1)-spread I'yn4q of Syny1 is regular. By Theorem 6.1 the
pseudo-hyperoval O is regular, and so O is regular. But in such a case the condition
{01,05,---,0,} N {07,05,---,6,,} =0 is never satisfied, a contradiction.

Consequently, we may assume that for at least one quadruple g;, 8;,;, 5:, we have

{61,62,--- ,0,} = {61,05,---,0,}. In such a case the ¢" + 2 elements of O cor-
respond to lines of the plane PG(2,¢"). It follows that O, and hence also O, is
regular. |

Theorem 6.3. Consider a pseudo-hyperoval O in PG(3n—1,q), ¢ =2",h > land n
prime. Then O is regular if and only if at least ¢ —1 elements of {Ag, A1, -+, Agni1}
are regular.
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Proof. If O is regular, then clearly all (n — 1)-spreads A,;, withi =0,1,--- ,¢" +1,
are regular.

Conversely, assume that p, with p > ¢ — 1, elements of {Ag, Ay, -+ ,Agnyq} are
regular.

If p = ¢" + 2, then O is regular by Theorem 6.1; if p = ¢™ + 1, then O is regular by
Theorem 6.2.

Now assume that p = ¢" and that A, Ag,--- , A niq are regular. We have to prove
that Ay is regular. We use the arguments in the proof of Theorem 6.2. If one of
the elements a1, as, a3, say a1, in the proof of Theorem 6.2 is 5y N (1, then let ~y;
contain 8, N B, B; N Bo, B; N B1 and let 3;, # By, with4,j € {2,3,---,¢" +1}. Now
see the proof of the preceding theorem.

Finally, assume that p = ¢ — 1 and that A3, Ay, -+, Aynqq are regular. We have
to prove that A is regular. We use the arguments in the proof of Theorem 6.2.
If exactly one of the elements a1, as, a3, say «ai, in the proof of Theorem 6.2 is
Bo N By or By N Po, then proceed as in the preceding paragraph with 8;, # (1, Ba.
Now assume that two of the elements a1, as, a3, say «; and asq, are 5y N B, and
BoNpBa. Now consider all (n —1)-reguli in A containing «; and a3, and assume, by
way of contradiction, that no one of these (n — 1)-reguli contains a,. The number
of these (n — 1)-reguli is qq"_—12’ and so ¢ = 2, a contradiction. It follows that the
(n — 1)-regulus in Sy defined by oy, as, a3 is contained in Ag. Now we proceed as
in the proof of Theorem 6.2. |

7. FINAL REMARKS

7.1. The cases ¢ = 2 and n not prime
For ¢ = 2 or n not prime other arguments have to be developed.

7.2. Improvement of Theorem 6.3
Let D = (P, B, €) be an incidence structure satisfying the following conditions.

() [P|=q"+1,qeven, g #2;
(ii) the elements of B are subsets of size ¢ + 1 of P and every three distinct
elements of P are contained in at most one element of B;
(iii) Q is a subset of size 0 of P such that any triple of elements in P with at
most one element in @, is contained in exactly one element of B.

Assumption : Any such Disa 3 — (¢" + 1,¢ + 1,1) design whenever ¢ < §y with
dp < q— 2.

Theorem 7.1. Consider a pseudo-hyperoval O in PG(3n — 1,q), ¢ = 2", h > 1
and n prime. Then O is regular if and only if at least q" + 1 — &g elements of
{Ao, A1, , Ayniq} are regular

Proof.  Similar to the proof of Theorem 6.3. |
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