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Abstract

Time-relaxed sports timetables utilize more time slots than minimally needed to schedule all the games. We consider the decision
problem whether a time-relaxed single round-robin tournament can be scheduled given a game-off-day pattern (GOP) or home-
away pattern (HAP) set. Bao proposes necessary conditions for the HAP and GOP set feasibility and asks whether these conditions
are sufficient. We answer this question negatively, analyze and propose necessary conditions, and show that the time-relaxed HAP
and GOP set feasibility problems are NP-complete.
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1. Introduction

This paper focuses on so-called time-relaxed single round-
robin tournaments. In a single round-robin tournament (1RR),
each team meets each other team exactly once. In contrast
to time-constrained timetables, time-relaxed timetables uti-
lize more time slots than minimally needed to schedule all
the games. Despite the large amount of contributions for
sports timetabling (see Van Bulck et al. [1] for an overview)
only a small minority of these studies deal with time-relaxed
timetabling (e.g., Schönberger et al. [2], Van Bulck et al.
[3], Van Bulck and Goossens [4]). This is somewhat surpris-
ing since most non-professional competitions and several well
known professional competitions (e.g., the National Basketball
Association league, see Bao [5]) are in fact time-relaxed.

Formally, a 1RR consists of a set of teams T , |T | = n, and a
set of time slots S . A 1RR is time constrained if |S | = n − 1
for n even or |S | = n for n odd, otherwise it is time-relaxed.
A feasible timetable assigns games (i, j), i.e. a home game of
team i against team j, to time slots such that either game (i, j)
or game ( j, i) is planned, and each team plays at most one game
per time slot.

A popular method to construct sports timetables is the first-
break-then-schedule approach that breaks down the timetabling
process into two sub-problems (see Nemhauser and Trick [6]).
The first sub-problem is to determine for each team its home-
away pattern (HAP). The HAP of team i is a function hi : S →
{H, A,O} such that hi(s) = H if i plays a home game, hi(s) = A
if i plays an away game, and hi(s) = O if i has an off day (also
called bye) on time slot s. Given a HAP for each team, the sec-
ond sub-problem determines which opponent each team faces
for each of the time slots. Clearly, the assignment of opponents
must be compatible with the HAPs before they can merge into a
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timetable: for each pair of opponents, the corresponding home-
away patterns need to give one team the home advantage, and
designate an away game for the other team. Moreover, if a team
does not play against any opponent, it must have an off day in
its pattern.

A collection of n HAPs is known as a HAP set. The HAP set
feasibility problem departs from a HAP set and asks whether
there exists a compatible assignment of opponents. If the an-
swer is ‘yes’, the pattern set is feasible. Note that with respect
to feasibility, the order of the patterns or their assignment to
teams does not matter and hence will be ignored in this paper.

Numerous researchers have stressed the importance of char-
acterizing the feasibility of HAP sets. Nemhauser and Trick
state that ‘it would be interesting to have a characterization of
feasible pattern sets or to show that no compact characterization
exists by showing, for instance, that the question of determin-
ing if a set is feasible is NP-complete [6, p. 8]’. Easton states
that ‘if there were a known set of necessary and sufficient con-
ditions for feasible pattern sets, this would favorably affect the
ratio of feasible to infeasible pattern sets, the number of pattern
sets generated, and quite possibly the run time of the pattern set
generation algorithm [7, p. 1143]’. More recently, the HAP set
feasibility problem was presented in the ‘open problem session’
of MAPSP 2017 [8].

A team has a break when it plays two consecutive home
games or two consecutive away games in a row. For time-
constrained HAP sets having an even number of teams and the
minimum number of breaks, Miyashiro et al. [9] conjecture that
the HAP set feasibility problem can be solved in polynomial
time. A stronger conjecture is made by Briskorn [10], who con-
jectures that the time-constrained HAP set feasibility problem
can be solved in polynomial time when the number of teams is
even. To date, these two conjectures are open. Goossens and
Spieksma [11] generalize the concept of breaks by defining a
break as two home games (or two away games) in a given pair
of arbitrary time slots. They show that it is NP-complete to
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Table 1: Complexity status of MinCost for different costs structures. New
results are indicated in bold.

Time-constrained Time-relaxed

Binary costs NP-hard, < APX [7, 14] NP-hard, < APX (trivial)
Symmetric costs NP-hard [7] NP-hard (trivial)

GOP set feasibility P (trivial) NP-hard (Sec. 2)
HAP set feasibility n even: P Conjecture [10] NP-hard (Sec. 3)

decide whether a break-free HAP set exists.
The concept of HAPs is also used on the level of multiple

leagues where interdependencies arise from teams in different
leagues belonging to the same club. When each league contains
the same even number of teams, Davari et al. [12] present a
polynomial-time algorithm to assign each team to a HAP such
that the total capacity violations over the clubs are minimized.

Similar to the first-break-then-schedule approach, Bao [5]
proposes to break down the timetabling process into three sub-
problems. The first sub-problem is to determine the game-off-
day patterns (GOP). The GOP of team i is a function gi : S →
{G,O} such that gi(s) = G if i plays a game and gi(s) = O if i
has an off day on time slot s. The second and third sub-problem
are respectively to determine the HAP set and the opponents.
Changing the order in which the different sub-problems are
solved results in different decomposition schemes. However,
note that the GOPs are fully defined once the HAP set or the
assignment of opponents is known.

A GOP set consists of n not necessarily unique GOPs (i.e.,
the GOP set is a multiset). The GOP set feasibility problem
departs from a GOP set and asks whether there exists a compat-
ible assignment of opponents. Based on the necessary condi-
tions for HAP set feasibility, Bao [5] provides three necessary
conditions for GOP set feasibility and conjectures one of them
to be sufficient (see Section 2.2).

The GOP set feasibility problem is related to the ‘tournament
scheduling problem with pre-fixed absences’ (see Schauz [13]).
In this problem, we are given a set of teams, a set of ordered
time slots, and an equal number of pre-fixed absences per team
(if a team is absent, it must have an off day). The problem is
then to determine the minimal number of time slots such that
the tournament can be scheduled.

Several sports timetabling problems define a profit or cost
ci, j,s for scheduling game (i, j) on time slot s. As an example,
ci, j,s can represent estimated ticket sales. In the minimum cost
single round-robin tournament problem (MinCost), the problem
is to construct a 1RR such that the sum of costs associated with
the scheduled games is minimum.

Depending on the cost structure, we consider four special
cases of MinCost (see Table 1). In the binary MinCost prob-
lem, the costs are restricted to {0, 1}. In the symmetric MinCost
problem ci, j,s = c j,i,s for all teams i ∈ T, j ∈ T \ {i} and time
slots s ∈ S . Easton [7] proves that it is NP-complete to de-
cide whether a time-constrained timetable exists when the op-
ponents of some teams are fixed in given slots. This problem
can be reduced to binary and symmetric MinCost by setting
ci, j,s = c j,i,s = 0 and ci,k,s = ck,i,s = c j,k,s = ck, j,s = 1 for all
k ∈ T \ {i, j} whenever team i has to play team j, regardless

of the home-away status, on time slot s. Hence, the binary and
symmetric MinCost problems are both NP-hard.

Briskorn et al. [14] give an alternative reduction from the pla-
nar three-index assignment problem (P3AP) to binary MinCost.
Moreover, they show that no constant-factor approximation al-
gorithm exists for binary MinCost, unless P = NP.

Since time-constrained timetabling is a special case of time-
relaxed timetabling, the NP-hardness results for the time-
constrained case with binary and symmetric costs trivially hold
for the time-relaxed case as well.

We can also model the GOP set feasibility problem using
costs by setting ci, j,s = c j,i,s = 0 if team i and j have a G in
their game-off-day pattern on time slot s, and to 1 otherwise.
In this case, the costs are symmetric and ci,k,s = ck,i,s = 1 for
all k ∈ T if the GOP of i has an off day on time slot s. In
time-constrained scheduling, the GOP set feasibility problem
is trivially solvable. Indeed, if the number of teams is even, a
GOP set is feasible if and only if no pattern contains an off day;
if the number of teams is odd, a GOP set is feasible if and only
if every pattern contains exactly one off day and no two patterns
have their off day on the same time slot.

Finally, we can model the HAP set feasibility problem us-
ing costs by setting ci, j,s = 0 if i’s pattern contains an ‘H’ and
j’s pattern contains an ‘A’ on time slot s, and ci, j,s = 1 other-
wise. Alternatively, we can model the time-constrained HAP
set feasibility problem with n even such that ci, j,s = ci,s for all
teams i and j and time slots s. Indeed, note that each team plays
once in every time slot of a time-constrained 1RR with n even.
Hence, teams play away if they do not play home. Therefore,
we can ignore the ‘A’s in the pattern by setting ci, j,s = 0 for all
j ∈ T if i ∈ T has an ‘H’ on time slot s ∈ S , and ci, j,s = 1
otherwise. The complexity status of this special case of Min-
Cost is unknown as the reduction given in [14] uses a different
cost structure. Moreover, it seems not straightforward to adapt
the proof since any P3AP instance with ci, j,s = ci,s has constant
objective value

∑
i∈T

∑
s∈S ci,s and is therefore trivially solvable

(see Burkard et al. [15, p. 314]).
The contributions and remainder of this paper are as follows.

First, Section 2 shows that the time-relaxed GOP set feasibility
problem is NP-complete. Unless P = NP, we can therefore
reject the conjecture by Bao [5]. Nevertheless, we show that
the problem can be solved in polynomial time when each team
has at most one off day, and we conjecture the problem to be
polynomially solvable when the number of off days per team is
either two or three. Section 3 proves that the time-relaxed HAP
set feasibility problem is NP-complete. Moreover, Section 3
proves the conjecture of Briskorn [10] for up to eight teams in
a time-constrained setting, and provides an example showing
that the conjecture does not hold for time-relaxed HAP sets.
An overview of the complexity results is given in Table 1.

2. The game-off-day pattern set feasibility problem

In order to verify whether a GOP set is feasible, Bao [5] pro-
poses Integer Programming (IP) formulation (1)-(4). In this for-
mulation, xi, j,s is a binary variable that equals 1 if and only if
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team i and j, i < j, compete on time slot s. The objective func-
tion maximizes the number of scheduled games. Constraints (1)
restrict each pair of teams to meet at most once, whereas con-
straints (2) restrict each team to play at most one game per time
slot. Finally, constraints (3) model the given GOP set, and con-
straints (4) are the binary constraints. A given GOP set is fea-
sible if and only if zg =

(
n
2

)
. We refer to formulation (1)-(4) as

IP-GOP.

max zg =
∑

i, j∈T :i< j

∑
s∈S

xi, j,s

s.t.
∑
s∈S

xi, j,s ≤ 1 ∀i, j ∈ T : i < j (1)∑
j∈T :i< j

xi, j,s +
∑

j∈T :i> j

x j,i,s ≤ 1 ∀i ∈ T, s ∈ S (2)

xi, j,s = 0 ∀i, j ∈ T : i < j,∀s ∈ S :

gi(s) = O ∨ g j(s) = O (3)

xi, j,s ∈ {0, 1} ∀i, j ∈ T : i < j, s ∈ S (4)

As solving IP-GOP can be time-consuming, the question
arises whether infeasible GOP sets can be detected more effi-
ciently.

2.1. Complexity status of the GOP set feasibility problem

Theorem 1 shows that the time-relaxed GOP set feasibility
problem is NP-complete when each team has at least n off

days.

Theorem 1. The time-relaxed GOP set feasibility problem is
NP-complete, even if |S | = 2n − 1.

Proof. We prove the theorem by presenting a reduction from
constructing a time-constrained 1RR with fixed opponents (C-
1RR).
C-1RR. Instance: Set U of teams with |U | even, set P of time
slots with |P| = |U | − 1, and a set A of fixed opponent assign-
ments consisting of pairs ({u, v}, p) meaning that team u ∈ U
has to play a game, regardless of the home-away status, against
team v ∈ U \ {u} on time slot p ∈ P.
Question: Is there a (time-constrained) timetable such that
(u, v) or (v, u) is scheduled on time slot p whenever ({u, v}, p) ∈
A? Easton [7] proves that C-1RR is NP-complete, even if A
contains on average only two fixed opponents per team (i.e.,
|A| = |U |; recall that each entry in A requires two teams).

We now construct an instance of GOP from any instance of
C-1RR. To begin, we set T = U and add a set of time slots
S = S 1∪S 2 with S 1 = P and for each pair ({u, v}, p) ∈ A a time
slot s{u,v} ∈ S 2. Finally, we construct the game-off-day pattern
set as follows. For each time slot s ∈ S 1 we indicate that team
u ∈ U plays a game whenever it has no fixed opponent in s, and
that u has an off day otherwise. In addition, for each time slot
s{u,v} ∈ S 2, we indicate that team u and v play a game, whereas
all other teams have an off day. In summary, the corresponding
instance of GOP is completely specified by:

T = U,

S = P ∪ S 2 ⇒ |S | = |U | − 1 + |U | = 2n − 1,

gi(s) =


G if (@ j ∈ T \ {i} : ({i, j}, s) ∈ A)∀i ∈ T, s ∈ S 1,

O if (∃ j ∈ T \ {i} : ({i, j}, s) ∈ A)∀i ∈ T, s ∈ S 1,

G if (i = u ∨ i = v)∀i ∈ T, s{u,v} ∈ S 2,

O if (i , u ∧ i , v)∀i ∈ T, s{u,v} ∈ S 2.

We now show that the C-1RR instance admits a feasible solu-
tion if and only if the GOP instance admits a feasible solution.
When given a feasible C-1RR solution, we construct a feasible
timetable for the GOP instance as follows. We schedule game
(i, j) on time slot s if and only if game (i, j) is scheduled on
time slot s in the C-1RR solution and if the game between i and
j is not fixed, i.e., ({i, j}, s) < A∀s ∈ P. If the game between
i and j is fixed, we schedule game (i, j) on time slot s{i, j} in
the solution of the GOP instance. By construction s{i, j} ∈ S 2
always exists, which makes that all games are scheduled. In a
time-constrained timetable with an even number of teams, each
team plays exactly one game per time slot. This makes that
the patterns of teams in S 1 are respected since our construc-
tion method does not schedule any game for a team on time slot
s ∈ S 1 if this team has a fixed opponent on s (i.e., the team must
have an off day on s). Instead, we use the dedicated time slot in
S 2 to schedule this game, which makes that the patterns in S 2
are also respected.

Conversely assume that we are given a feasible solution to
the GOP instance. Then, we create a feasible solution for the C-
1RR instance by first copying all game assignment in S 1. From
the feasibility of the GOP solution it follows that this will result
in at most one game per team. To deal with the fixed opponents,
we note that time slot s{i, j} ∈ S 2 must contain a game between
team i and team j since these are the only teams that do not
have off days in their pattern on s{i, j}. Contrarily, the pattern of
both teams contains an off day on the fixed time slot on which
they have to meet each other. Without generating any conflict,
we can therefore schedule either game (i, j) or ( j, i) on time slot
s whenever ({i, j}, s) ∈ A.

2.2. Necessary conditions for GOP set feasibility

Unless P = NP and provided that each team has at least
n off days, Theorem 1 implies that no necessary and sufficient
condition exists that can be checked in polynomial time. In this
section, we explore whether efficient conditions exist when the
number of off days per team is less than n.

Consider first the relation between a 1RR with one off day
per team and a symmetric Latin square L, i.e. an n × n array
filled with symbols {1, . . . , n} in such a way that each symbol
occurs once in every row and column and such that Li, j = L j,i.

Lemma 1. Every symmetric Latin square generates a 1RR with
one off day per team which is unique up to the home advantage
of the games, and every 1RR with one off day per team gener-
ates a unique symmetric Latin square.

Proof. Given a symmetric Latin square L with symbol Li, j con-
tained in the cell of the i-th row and j-th column, we construct
a 1RR as follows. First, we assign an off day to team i ∈ T
on symbol Li,i. For each i, j ∈ {1, . . . , n} with i < j, we then
schedule either game (i, j) or ( j, i) on symbol Li, j = L j,i. This
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makes that all games are scheduled and that each team has ex-
actly one off day. Since each symbol occurs at most once in ev-
ery row and column, each team plays at most once per time slot.
Moreover, it follows from the construction that the timetable is
unique up to the home advantage of the games.

Given a 1RR with one off day per team, we generate a unique
symmetric Latin square as follows. Let si be the unique time
slot on which i ∈ T has its off day. We then construct the princi-
pal diagonal by assigning si to Li,i for each i ∈ T . Furthermore,
for each pair of teams i, j ∈ T with i < j, we assign the time
slot on which i plays against j to cell Li, j and L j,i. This makes
that the Latin square is symmetric and that all cells are filled.
Moreover, since each team plays at most one game per time slot
and has one off day, each element occurs exactly once per row
and column.

Condition 1 (Bao [5]). The number of ‘G’s is even on each time
slot. Equivalently, the number of ‘O’s is even (odd) whenever n
is even (odd) on each time slot.

Since each game involves two teams, Condition 1 is clearly
necessary. Its simplicity notwithstanding, Condition 1 is also
sufficient when each team has at most one off day.

Lemma 2. When each team has one off day, the GOP set is
feasible if and only if Condition 1 holds.

Proof. It follows from Lemma 1 that a GOP with one off day
per team is feasible if and only if we can construct a symmetric
Latin square in which the elements on the diagonal correspond
with the off days of the teams. Chang [16] proves that a sym-
metric n × n Latin square with a prescribed diagonal exists if
and only if the diagonal contains each symbol exactly once for
odd n, and an even number of times (possibly 0) for even n.

In a bipartite 1RR, the set of teams T can be partitioned
into two equally sized groups T1 and T2 such that teams never
play against teams in their own group, and once against each
team from the other group. A time-constrained bipartite 1RR is
therefore equivalent to a Latin square L in which Li, j contains
the time slot on which team i ∈ T1 plays against j ∈ T2. Inter-
estingly, a 1RR between n = 2m teams can be seen as a 1RR
between the first m teams, a 1RR between the last m teams, and
a bipartite 1RR between the first and the last m teams. Further-
more, we observe that permuting the columns (time slots) of a
pattern set does not change the feasibility of a GOP set. We
make use of these observations to prove the following theorem.

Theorem 2. A timetable compatible with a GOP set in which
each team has one off day can be constructed in O(n2) time if
and only if the GOP set satisfies Condition 1.

Proof. The construction is trivial when the number of teams is
odd. In order to prove the theorem when the number of teams
is even, we transform a proof by induction for the existence
of a symmetric Latin square with a prescribed diagonal (see
Chang [16]) into a recursive algorithm that is able to construct
a timetable when given a set of n = 2m teams, a set of n time
slots, and a GOP set that satisfies Condition 1.

T /S 1 2 3 4 5 6

1 G O G G G G
2 G O G G G G
3 G G O G G G
4 G G O G G G
5 G G G G O G
6 G G G G O G

T /S 2 3 5 6

1 O G G G
t O G G G
3 G O G G
4 G O G G

T /S 2 3

1 O G
t O G

T /S 2 3

3 G O
4 G O

Bipartite 1RR

S 5 6

1-3 1-4
t-4 t-3

S 2 3 5 6

3-4 1-t 1-3 1-4
t-4 t-3

Merge Merge

Recursion 1.1 Recursion 1.2

T /S 2 3 5 6

2 O G G G
t O G G G
5 G G O G
6 G G O G

T /S 2 5

2 O G
t O G

T /S 2 5

5 G O
6 G O

Bipartite 1RR

S 3 6

2-5 2-6
t-6 t-5

S 2 3 5 6

5-6 2-5 2-t 2-6
t-6 t-5

Merge Merge

Recursion 2.1 Recursion 2.2

Bipartite 1RR

S 1 4 6

1-2 1-5 1-6
4-5 4-6 4-2
3-6 3-2 3-5

S 1 2 3 4 5 6

1-2 3-4 1-6 1-5 4-2 3-5
4-5 5-6 2-5 4-6 1-3 1-4
3-6 3-2 2-6

Merge Merge

Recursion 1 Recursion 2

Figure 1: Illustration of the recursive algorithm for n = 6. Recursion 1-2:
splitting into GOP sets with n = 4 using dummy team t, s′ = 2, s′′ = 6,
a2 = a3 = b2 = b5 = 2, and a5 = b3 = 0. Recursion 1.1-2.2: a timetable
for a GOP set with n = 2 is trivially constructed. First level of merging: a
timetable with 4 teams and π1 = (1 4 3), π2 = (6 2 5). Second level of merging:
rescheduling a bipartite 1RR in which the i-th team in π1 plays against the i-th
team in π2 during time slot s′′ results in a 1RR compatible with the initial GOP
set.

Basis. If n = 2, we construct a timetable by scheduling the
single game on the time slot without off days. If the given GOP
set contains 2m teams with m > 1, we recursively construct the
timetable as follows. First, let ds represent the number of teams
that have an off day on time slot s and denote with S + the subset
of time slots for which ds > 0. Depending on whether m is odd
or even, we consider two different recursive calls.

Recursion m even. When m is even, we define even numbers
as and bs for each s ∈ S +, such that ds = as + bs and m =∑

s∈S + as =
∑

s∈S + bs. If ds is a multiple of 4, we set as = bs =

ds/2. Otherwise, we alternately set as = ds/2 − 1 and bs =

ds/2 + 1 or as = ds/2 + 1 and bs = ds/2 − 1. We observe that
it follows from the construction that

∑
s∈S + as =

∑
s∈S + bs since
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there must be an even number of time slots for which ds is not
a multiple of 4. Indeed, the assumption that n and m are even
implies that m =

∑
s∈S + as must be a multiple of 4. Next, we

partition the time slots into two equally sized subsets S 1 and S 2
such that S + ⊆ S 1 and we set as = bs = 0 for all s ∈ S 1 \ S +

(Condition 1 guarantees that |S +| ≤ m).
We now partition T into two equally sized subsets T1 and T2

such that the number of teams in T1 (resp. T2) with an off day
on time slot s is equal to as (resp. bs), ∀s ∈ S 1. This is always
possible since each team has exactly one off day.

In order to generate a (partial) timetable compatible with the
associated GOP set for the teams in T1 (resp. T2) during the
time slots in S 1 we make a recursive call. Finally, we construct
in O(m2) time a Latin square representing a time-constrained
bipartite 1RR between the teams in T1 and the teams in T2 dur-
ing the time slots in S 2. This makes that all games of the 1RR
are timetabled, that the original GOP set is respected, and that
no team plays more than one game per time slot.

Recursion m odd. When m is odd, there must be at least one
ds, say ds′ , such that ds′ = 4p − 2. If we set as′ = bs′ = 2p, we
can use the approach described above to find even numbers as

and bs such that ds = as +bs for each s ∈ S + \{s′}, and such that
m + 1 =

∑
s∈S + as =

∑
s∈S + bs. Next, we partition the time slots

into two equally sized subsets S 1 and S 2 such that S + ⊆ S 1 and
we set as = bs = 0 for all s ∈ S 1 \ S +.

Denote with t an additional dummy team which has its off

day on time slot s′. We then partition T into two equally sized
subsets T1 and T2 such that the number of teams in T1 ∪ {t}
(resp. T2 ∪ {t}) with an off day on time slot s ∈ S 1 equals as

(resp. bs). The inclusion of t makes that T1 ∪ {t} and T2 ∪ {t}
contain an even number of teams but requires that we include
one more time slot: denote with s′′ an arbitrary time slot in S 2.

In order to generate a (partial) timetable compatible with the
associated GOP set for the teams in T1∪{t} (resp. T2∪{t}) during
the time slots in S 1 ∪ {s′′} we can now make a recursive call.
Denote with π1 (resp. π2) the sequence in which t plays against
the teams in T1 (resp. T2). After removing all games involving t,
we then get a timetable in which the i-th team in π1 and π2 does
not play any game on the i-th time slot in (S 1 \ {s′}) ∪ {s′′}. We
now generate a time-constrained bipartite 1RR between T1 and
T2 during the time slots in S 2 such that the i-th team in π1 plays
against the i-th team in π2 on time slot s′′. After rescheduling
the game between the i-th team in π1 and the i-th team in π2
on the i-th time slot in S 1 \ {s′} ∪ {s′′}, we get a timetable that
respects the GOP set, in which all games are scheduled, and
in which no team plays more than one game per time slot. An
overview of the construction is given in Figure 1.

Running time. Let T (n) denote the running time of the recur-
sive algorithm on a problem of size n. The base case T (2)
is easy and requires constant time. The recursive case oc-
curs when n > 2 and generates two sub-problems each of
size n/2 and thus contributes by 2T (n/2). The construction
of the bipartite tournament between the teams in T1 and T2
can be done by constructing a Latin square of order n/2 and
requires O

(
(n/2)2

)
time. Combining the running times, we

Table 2: Example of an infeasible GOP set for n = 4 and two off days per team,
satisfying Condition 1 but violating Condition 2.

T /S 1 2 3 4 5

1 G G G O O
2 G G G O O
3 G O O G G
4 G O O G G

get T (n) = 2T (n/2) + O
(
(n/2)2

)
. It follows from the master

theorem for recurrence relations (see Cormen et al. [17, third
case]) that the running time is dominated by the merging part:
T (n) = O

(
(n/2)2

)
.

Table 2 shows that Condition 1 is no longer sufficient when
there are two off days per team: team 1 and team 2 are the only
two teams that have a ‘G’ in their pattern on time slot 2 and
3. Hence, the GOP set is infeasible as team 1 and 2 can play
at most one game against each other in a 1RR. We therefore
propose Condition 2, which expresses for each pair of teams
that there can be at most one time slot on which the two teams
exclusively have a ‘G’ in their pattern.

Condition 2. For each i, j ∈ T : i , j, there is at most one
time slot s ∈ S on which gi(s) = g j(s) = G and gk(s) = O for
k ∈ T \ {i, j}.

Lemma 3. The combination of Conditions 1 and 2 is necessary
and sufficient when each team has two off days and there are
exactly two off days on each but one time slot.

Proof. The necessity of Conditions 1 and 2 was argued above.
If each team has two off days, we observe that a 1RR cor-
responds to a symmetric quasi-Latin square (SQLS) in which
the diagonal elements contain two symbols and all the off-
diagonal elements contain one symbol. Under the conditions
of the lemma, the GOP set feasibility problem is equivalent to
determining whether an SQLS can be completed when all el-
ements on the principal diagonal are filled such that each but
one symbol appears twice on the diagonal. Bryant and Rodger
[18, Lemma 2.8] prove that an SQLS of this form can always
be completed, unless the number of rows is odd or the number
of rows equals 4 and the diagonal contains two pairs with the
same symbols. When the number of teams is odd, Condition 1
is violated as there are n time slots with two off days. When
there are four teams and two teams are the only ones to have off

days on two time slots, Condition 2 will be violated. For the set-
ting described in this lemma, Conditions 1 and 2 are therefore
necessary and sufficient.

To stimulate further research, we formulate Conjecture 1.

Conjecture 1. When each team has exactly two off days, the
combination of Conditions 1 and 2 is a sufficient condition.

In order to verify Conjecture 1 for given n, we use a con-
straint programming solver (CPLEX CP Optimizer) to enumer-
ate all GOP sets satisfying Condition 1 and check whether ei-
ther Condition 2 is violated or zg =

(
n
2

)
(IP-GOP solved with
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Table 3: Example of an infeasible GOP set for n = 6 and three off days per
team, satisfying Conditions 1 and 2 but violating Condition 3 (z̄g = 13).

T /S 1 2 3 4 5 6 7 8

1 O O G G G G O G
2 O O G G G O G G
3 G G G G G O O O
4 G G O O G G G O
5 G G O G O G G O
6 G G G O O G G O

Table 4: Example of an infeasible GOP set for n = 4 and one off day per team,
violating Condition 1 but satisfying Condition 3 (z̄g = 6). In the LP-relaxation,
we have x1,3,1 = x2,3,1 = x1,4,1 = x2,4,1 = x1,2,2 = x1,3,2 = x2,3,2 = x1,2,3 =

x1,4,3 = x2,4,3 = 0.5 and x3,4,4 = 1.

T /S 1 2 3 4

1 G G G O
2 G G G O
3 G G O G
4 G O G G

CPLEX). Following this procedure, we are able to confirm va-
lidity of Conjecture 1 for n ≤ 10. For n > 10, the number
of GOP sets becomes too large to enumerate and check in a
reasonable amount of time. Instead, we use the constraint pro-
gramming solver in combination with a multistart search strat-
egy to generate and check 10,000 GOP sets for each value
n ∈ {11, 12, . . . , 20}. For each of the 100,000 additionally con-
sidered GOP sets, Conjecture 1 could not be rejected.

When there are three or more off days per team, Table 3
shows that the combination of Conditions 1 and 2 is not suf-
ficient.

Bao [5] derives Condition 3 based on the Linear Program-
ming (LP) relaxation of IP-GOP.

Condition 3 (Bao [5]). Denote with z̄g the objective value of
the LP-relaxation of IP-GOP, then z̄g =

(
n
2

)
.

Since zg ≤ z̄g and since a given GOP set is feasible if and
only if zg =

(
n
2

)
, Condition 3 is a necessary condition that can

be computed in polynomial time. Bao [5] conjectures that Con-
dition 3 is also sufficient.

Conjecture 2 (Bao [5, p.57]). Condition 3 is sufficient for GOP
set feasibility.

It follows from Theorem 1 that Conjecture 2 cannot hold,
unless P = NP. Table 4 confirms the former as Condition 3
does not detect a violation of Condition 1 which is a necessary
condition.

Denote with cG(T ′, s) the number of ‘G’s in the GOPs of
a subset of teams T ′ ⊆ T on time slot s ∈ S . In order to
guarantee that violations of Condition 1 are detected, we add
constraints (5).

∑
i, j∈T :i< j

xi, j,s ≤
cG(T, s) − 1

2
∀s ∈ S : cG(T, s) mod 2 = 1 (5)

We propose a weaker version of Conjecture 2.

Table 5: Example of an infeasible GOP set for n = 6 and four off days per team,
satisfying Conditions 1 to 4 (z̄g = 15). In the LP-relaxation, we have x1,2,1 =

x1,6,1 = x2,5,1 = x5,6,1 = x3,4,2 = x3,6,2 = x4,5,2 = x5,6,2 = x1,2,3 = x1,3,3 =

x2,4,3 = x3,4,3 = x2,3,4 = x2,4,4 = x3,6,4 = x4,6,4 = x1,5,5 = x1,6,5 = x4,5,5 =

x4,6,5 = x1,3,6 = x1,5,6 = x2,3,6 = x2,5,6 = 0.5 and x1,4,7 = x2,6,8 = x3,5,9 = 1.

T /S 1 2 3 4 5 6 7 8 9

1 G O G O G G G O O
2 G O G G O G O G O
3 O G G G O G O O G
4 O G G G G O G O O
5 G G O O G G O O G
6 G G O G G O O G O

Conjecture 3. When each team has exactly three off days, the
combination of Condition 3 strengthened with constraints (5) is
a sufficient condition.

By enumerating all possible GOP sets with constraint pro-
gramming (CPLEX CP Optimizer), to permutations of the or-
der of the time slots, and by checking whether Condition 3
strengthened with constraints (5) detects infeasibility, we an-
swer Conjecture 3 affirmatively for n ≤ 8. For n > 8, the num-
ber of GOP sets becomes too large to enumerate and check in
a reasonable amount of time. Instead, we use the constraint
programming solver in combination with a multistart search
strategy to generate and check 10,000 GOP sets for each value
n ∈ {9, 10, . . . , 20}. For each of the 120,000 additionally con-
sidered GOP sets, Conjecture 3 could not be rejected.

Clearly, the number of games between teams in T ′ on s is at
most b cG(T ′,s)

2 c. Hence, Condition 4 is a necessary condition that
requires to check O(2n) number of constraints.

Condition 4 (Bao [5]).
∑

s∈S

⌊
cG(T ′,s)

2

⌋
≥

(
|T ′ |
2

)
for each T ′ ⊆ T.

One can wonder whether the combination of Conditions 1
to 4 is sufficient when there are four off days per team. Table 5
shows this is not the case. Note that Table 5 also proves that
Conjecture 2 does not hold for pattern sets that satisfy Condi-
tion 1.

3. The home-away pattern set feasibility problem

In order to verify whether a HAP set is feasible, Briskorn [10]
proposes the following IP formulation, referred to as IP-HAP.

max zh =
∑

i, j∈T :i< j

∑
s∈S

xi, j,s

s.t. (1), (2), (4)

xi, j,s = 0 ∀i, j ∈ T : i < j,∀s ∈ S : hi(s) = O

∨ h j(s) = O ∨ hi(s) = h j(s) (6)

The model is similar to formulation IP-GOP, with the differ-
ence that constraints (6) enforce the given HAP set. A HAP set
is therefore feasible if and only if zh =

(
n
2

)
. Again, the question

arises whether more efficient conditions exist to detect infeasi-
ble HAP sets.
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3.1. Complexity status of the HAP set feasibility problem

Let us first consider the time-relaxed bipartite HAP set fea-
sibility problem (RBHAP) which asks whether a time-relaxed
bipartite 1RR timetable compatible with a given pattern set ex-
ists. Lemma 4 states that RBHAP isNP-complete. We use this
result to prove Theorem 3 which states that the time-relaxed
HAP set feasibility problem (RHAP) is NP-complete.

Lemma 4. The time-relaxed bipartite HAP set feasibility prob-
lem (RBHAP) is NP-complete.

Proof. We prove the theorem by presenting a reduction from
completing sparsely-filled Latin squares (CLS) to RBHAP. Eas-
ton and Parker [19] prove that CLS is NP-complete, even if
only 3m cells are filled in any m × m Latin square.
CLS. Instance: A partial Latin square P, that is an m × m ar-
ray filled with 3m symbols from ψ = {1, . . . ,m} in such a way
that each symbol occurs at most once in every row and column.
Question: Is it possible to fill the empty cells in P so that every
symbol occurs exactly once in every row and column?

For any instance of CLS, we create a set of m row teams
T1 and m column teams T2 representing each row and column
in P. In addition, we partition the set of time slots into two
subsets S = S 1 ∪ S 2. The first set contains a time slot for each
symbol in CLS (S 1 = ψ), the second set contains a time slot si, j

for each filled cell Pi, j. The home-away pattern of a row team
i ∈ T1 (column-team j ∈ T2) is such that this team has an off

day during time slots in S 1 corresponding to symbols that are
already present in row i (column j) of P. Moreover, team k ∈ T
has an off day during all time slots si, j ∈ S 2 with k , i and k , j.
In all other time slots, teams in T1 have an ‘H’ in their pattern,
whereas teams in T2 have an ‘A’ in their pattern. We note that
this transformation can be realized in polynomial time since the
number of fixed cells is 3m, resulting in |S 1| + |S 2| = 4m time
slots.

Now, we show that the CLS instance is feasible if and only
if the corresponding RBHAP instance is feasible. Suppose first
we have a feasible solution for the CLS instance, that is a Latin
square L that fills every empty cell of P. Then, we can con-
struct a feasible timetable for the RBHAP instance by schedul-
ing game (i, j), i ∈ T1, j ∈ T2 on time slot Li, j whenever Pi, j

is empty, or on time slot si, j ∈ S 2 when Pi, j is filled. This
makes that all games are scheduled. In addition, each team
plays at most one game per time slot in S 1 since each symbol
in a Latin square occurs at most once in every row and column.
The O’s in the home-away patterns on time slots in S 1 are also
respected since we did not schedule any game involving team
i ∈ T1 ( j ∈ T2) on time slots corresponding to filled symbols
in row i (column j) of P. Similarly, the ‘H’s and ‘A’s in the
home-away patterns on time slots in S 1 are respected since L
completes P, and the home-away status of games is such that
teams in T1 (T2) always play home (away).

Conversely, assume that we have a feasible timetable for
the RBHAP instance. Then, exactly one game between teams
i ∈ T1 and j ∈ T2 must be scheduled in S 1 whenever cell Pi, j is
empty. Indeed, it follows from the construction of the instance
that the patterns of team i and j never simultaneously contain

an ‘H’ and an ‘A’ during time slots in S 2. Therefore, we can al-
ways set the value of an empty cell Pi, j to the time slot on which
i plays against j. This results in a feasible Latin square complet-
ing P since teams have an off day during time slots that already
occur in the corresponding row or column of P and teams in the
RBHAP instance can play at most once per time slot.

Theorem 3. The time-relaxed HAP feasibility problem (RHAP)
is NP-complete.

Proof. We prove the theorem by presenting a reduction from
RBHAP. Recall, in RBHAP we are given a set of teams T ′ =

T ′1 ∪ T ′2 with |T ′1| = |T ′2|, a set of time slots S ′, and a home-
away pattern h′i for each team i ∈ T ′. RBHAP is proven to be
NP-complete in Lemma 4.

We construct an instance of RHAP from any instance of RB-
HAP as follows. First, we set T = T ′1∪T ′2 and S = S 1∪S 2∪S 3,
with S 1 = S ′ and |S 2| = |S 3| = |T ′1| − 1 if |T ′1| is even and
|S 2| = |S 3| = |T ′1| otherwise. We then construct the HAP of
a team in S 1 by copying the HAP of the corresponding team
in the input of the RBHAP instance. Next, we use the circle
method (see de Werra [20]) to construct a (time-constrained)
1RR between the teams in T ′1; the home-away status can be
chosen arbitrarily. For teams in T ′1, the HAP for time slots in
S 2 corresponds to the home advantage of the games it plays in
the above constructed 1RR; teams in T ′2 always have an off day
during time slots in S 2. To construct the HAPs in S 3, we repeat
this procedure but invert the role of teams in T ′1 and T ′2.

We now show that the RBHAP instance is feasible if and
only if the RHAP instance is feasible. When given a feasible
solution for the RBHAP instance, we construct a timetable for
the RHAP instance as follows. First, we copy all game to time
slot assignments in S 1. This schedules all games involving a
team in T ′1 and a team in T ′2, while respecting the HAPs since
the patterns are the same in S 1. It follows from the feasibility
of the RBHAP solution that each team plays at most one game
during time slots in S 1. Next, we schedule all games involving
two teams in T ′1 in S 2 by copying the game assignments from
the 1RR we constructed to determine the HAPs in S 2. Teams
in T ′2 always have an off day in S 2. Obviously, this makes that
teams play at most one game per time slot in S 2 and that all
home-away patterns are respected in S 2. We repeat this pro-
cedure to schedule all games between the teams in T ′2 on time
slots in S 3. This makes that all games are scheduled, and hence
the RHAP solution is feasible.

Conversely, assume that we are given a feasible solution for
the RHAP instance. Then, it must be that all games involving
a team in T ′1 and a team in T ′2 are scheduled in S 1 since teams
in T ′1 always have an off day in S 3 and teams in T ′2 always have
an off day in S 2. Since the HAPs in S 1 are equal in the two
instances, we can thus copy all game to time slot assignments in
S 1. It follows from the feasibility of the RHAP solution that all
games are scheduled and that each team plays at most one game
per time slot, and hence the RBHAP solution is feasible.

3.2. Necessary conditions for HAP set feasibility
Theorem 3 states that the time-relaxed HAP set feasibility

problem isNP-complete. In this section, we analyze some nec-
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essary conditions.
If we denote with cH(T ′, s) and cA(T ′, s) the number of ‘H’s

and ‘A’s in the patterns of a subset T ′ ⊆ T of teams on time
slot s, then the number of games between teams in T ′ on s is
at most min (cH(T ′, s), cA(T ′, s)). Hence, for the answer to be
‘yes’, Condition 5 is a necessary condition for both the time-
constrained and time-relaxed HAP set feasibility problem.

Condition 5 (Miyashiro et al. [9]). For each T ′ ⊆ T, we have∑
s∈S min (cH(T ′, s), cA(T ′, s)) ≥

(
|T ′ |
2

)
.

For time-constrained patterns with an even number of teams
and the minimal number of breaks (i.e., successions of two ‘H’s
or ‘A’s in the pattern of a team), Miyashiro et al. [9] show that
Condition 5 can be verified in polynomial time and conjec-
ture Condition 5 to be sufficient. However, sufficiency is not
proven and, therefore, complexity of the HAP set feasibility
problem is open so far for arbitrary HAP sets as well as for
time-constrained HAP sets having minimum number of breaks.

Briskorn [10] derives Condition 6 based on the LP-relaxation
of IP-HAP.

Condition 6 (Briskorn [10]). Denote with z̄ the objective value
of the LP-relaxation of IP-HAP, then z̄h =

(
n
2

)
.

Since zh ≤ z̄h ≤
(

n
2

)
and since a given HAP set is feasible

if and only if zh =
(

n
2

)
, Condition 6 is a necessary condition for

both time-constrained and time-relaxed HAP set feasibility, and
can be checked in polynomial time.

When the number of teams is even and the timetable is time-
constrained, Briskorn [10] proves that Condition 6 is strictly
stronger than Condition 5. Moreover, Briskorn [10] conjectures
that Condition 6 is sufficient and asks whether zh always coin-
cides with z̄h. Horbach [21] answers the latter question nega-
tively by providing an example of a HAP set for which zh , z̄h.
However, as the example concerns an infeasible HAP set, the
sufficiency conjecture of Briskorn [10] is, after more than 10
years, still open.

Kashiwabara [22] rewrites the conjecture of Briskorn [10] in
terms of perfect matchings, and uses a computer-assisted proof
to confirm Briskorn’s conjecture for 6 teams. Moreover, Kashi-
wabara [22, Conjecture 21] generalizes Briskorn’s conjecture
to the time-constrained bipartite HAP set feasibility problem;
unless P = NP, it follows from Lemma 4 that the generalized
conjecture does not hold for the time-relaxed setting.

We use a constraint programming solver (CPLEX CP Op-
timizer) to enumerate all time-constrained HAP sets and we
check whether Condition 6 is violated whenever zh <

(
n
2

)
(IP-HAP solved with CPLEX). Following this procedure, we
are able to confirm sufficiency of Condition 6 for the time-
constrained setting with n ≤ 8 and n even.

Bao [5] later used Condition 6 to verify the feasibility of
time-relaxed HAP sets but could not find any example show-
ing that the condition is not sufficient.

Observation 1. Whereas sufficiency of Condition 6 is con-
jectured for time-constrained HAP set feasibility with an even
number of teams (see Briskorn [10]), Table 6 shows that Con-
dition 6 is not sufficient for time-relaxed HAP set feasibility.

Table 6: Example of an infeasible HAP set for n = 6, satisfying Condition 6
(z̄h = 15). In the LP-relaxation, we have x1,2,1 = x1,4,1 = x2,3,1 = x4,5,1 =

x5,6,1 = x6,3,1 = x1,4,2 = x3,6,2 = x4,2,2 = x5,2,2 = x5,3,2 = x6,1,2 = x1,3,3 =

x1,6,3 = x2,5,3 = x3,2,3 = x4,5,3 = x4,6,3 = x2,1,4 = x3,1,4 = x4,2,4 = x4,6,4 =

x5,3,4 = x5,6,4 = 0.5 and x1,5,5 = x2,6,5 = x3,4,6 = 1.

T /S 1 2 3 4 5 6

1 A H H H A O
2 H H H A H O
3 A H A A O H
4 H A H H O A
5 A A A H H O
6 H A A A A O
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