
Learning Robots to Grasp by Demonstration

Elias De Conincka,∗, Tim Verbelena, Pieter Van Mollea, Pieter Simoensa, Bart
Dhoedta

aIDLab, Department of Information Technology at Ghent University - imec,
Technologiepark-Zwijnaarde 126, B-9052 Ghent, Belgium

Abstract

In recent years, we have witnessed the proliferation of so-called collaborative

robots or cobots, that are designed to work safely along with human opera-

tors. These cobots typically use the “program from demonstration” paradigm

to record and replay trajectories, rather than the traditional source-code based

programming approach. While this requires less knowledge from the operator,

the basic functionality of a cobot is limited to simply replay the sequence of

actions as they were recorded.

In this paper, we present a system that mitigates this restriction and learns

to grasp an arbitrary object from visual input using demonstrated examples.

While other learning-based approaches for robotic grasping require collecting a

large amount of examples, either manually or automatically harvested in a real

or simulated world, our approach learns to grasp from a single demonstration

with the ability to improve on accuracy using additional input samples.

We demonstrate grasping of various objects with the Franka Panda collab-

orative robot. We show that the system is able to grasp various objects from

demonstration, regardless their position and rotation in less than 5 minutes of

training time on a NVIDIA Titan X GPU, achieving over 90% average success

rate.

Keywords: Artificial Neural Networks, Machine Learning, Collaborative

∗Corresponding author
Email addresses: elias.deconinck@ugent.be (Elias De Coninck),

tim.verbelen@ugent.be (Tim Verbelen), pieter.vanmolle@ugent.be (Pieter Van Molle),
pieter.simoens@ugent.be (Pieter Simoens), bart.dhoedt@ugent.be (Bart Dhoedt)

Preprint submitted to Robotics and Autonomous Systems February 17, 2020



Robotics, Industrial Internet of Things

1. Introduction

The term “Industry 4.0” or “Smart Industry” has become a well-known con-

cept for the next industrial revolution, where manufacturing environments will

benefit from smart systems using Industrial Internet of Things (IIoT) sensors

and robotics to trigger actions and control actuators [1]. One of the key drivers

of the Industry 4.0, are the so-called industrial collaborative robots or cobots [2],

which have become more productive, flexible, versatile, safer and reliable over

the years. The idea behind cobots is to increase the collaboration and efficiency

between robots and humans by removing the requirement for safety enclosures

allowing the integration of these robots into human work spaces. Examples of

such cobots available on the market are the Kuka LBR series [3], the Univer-

sal Robots UR series [4] and the Franka Panda [5]. These cobots are used in

a variety of applications, e.g, production line loading and unloading, product

assembly, and machine tending [6].

As manufacturing moves towards high-mix low-volume production cycles

controlled by factory Cyber-physical systems (CPSs), the environment and ac-

tuators should be easily programmable for changing factory floor configurations.

Agile manufacturing requires the ability to quickly adapt to (new) customer re-

quests keeping the cost and quality in check [7, 8]. The unique feature of collab-

orative robots is the way they can be programmed by recording demonstrations,

where the operator manipulates the robot to move to certain poses, which are

then replayed as a program. In manufacturing this technique is often called

“learning from demonstration”, which in machine learning literature points at

training a generalized policy from demonstrations [9]. Therefore, we will use

the term “program from demonstration” instead, as it better reflects the record

and replay feature of cobots.

The downside of “program from demonstration” is its inability to adapt to

changes in the work space. The replay feature executes actions exactly as they

2



were recorded. Hence, when grasping an object any perturbation in the object’s

position or orientation compared to the demonstration jeopardizes success. In a

flexible assembly line it is hard and expensive to perfectly align objects relative

to the robot. A solution to this problem would be to learn a generalized policy

from a vision and/or depth sensor in the environment to adapt robot actions

based on recognized objects with its position and orientation [10]. However,

training a generalized, robust and accurate model requires a huge amount of

computation time. These models are typically trained on large datasets of

labeled examples, which are not always readily available. An other problem

of such generalized policies, while they can grasp unseen objects, is that the

grasp location can vary for the same kind of objects resulting in a much harder

assembly task.

In this paper we propose a system which combines the advantages of cogni-

tive computing, collaborative robots, IIoT and interactions with human oper-

ators. The system offers a standard “program from demonstration” workflow,

but also captures all available IIoT sensor information (i.e. a wrist-mounted

camera) in addition to the robot pose for each recorded action. Our system

focuses specifically on pick-and-place tasks. During replay we can leverage the

recorded sensor information, and use deep learning techniques to instantiate

a closed-loop controller for the Reach-to-Grasp (RTG) action, that enables to

pick the object from the demonstration at any location in the work space. The

policy can be further optimized by showing additional demonstrations.

The remainder of this paper is structured as follows. In the next section

we discuss the related work in scope of learning from demonstration and grasp-

ing objects using machine learning. In Section 3 we give an overview of the

main architectural components of the system and some implementation details.

Section 4 goes deeper into our approach to learn from a single demonstration

using vision sensors and the approach that is evaluated in the experiments in

Section 5.

3



2. Related work

Robot manipulation for object grasping has been extensively studied, but is

still an open challenge in research [11]. Here, we discuss prior research efforts

in grasp detection and learning from demonstration that are most relevant to

our approach.

2.1. Grasp detection and planning

In grasp detection research the focus lies on finding the correct position and

orientation to make robust and accurate grasps for a given object. In [12, 13,

14, 15] models are trained on readily available labeled datasets, with printable

3D-objects [16, 17], 2D-images [18] or real life benchmark objects [19, 20]. While

this tends to create good grasping points for known objects, it is challenging

and time consuming to create or to extend to new objects: each dataset sample

needs to be labeled with the position, orientation and in most cases even the

height and width of the grasp location.

A second approach uses Reinforcement Learning (RL), where the models

are trained by trial and error [21, 22]. In a real world setup many robots are

used to gather grasping attempt samples, and the setup needs to run for a long

time [23, 24, 25] as RL requires huge amounts of samples to arrive at stable and

robust policies. Instead of sampling on real robots, which is time consuming and

expensive, a simulated physics environment can generate trials to learn a model,

but in this case an extra step is required to transfer results from the simulation

environment to the real world [26]. However, these RL techniques have some

caveats: they are typically sample inefficient and require a good reward signal

to model the desired behaviour.

Vision-based deep learning techniques for grasp detection [15, 17, 24, 27, 28]

share their main idea, i.e. training a large Convolutional Neural Network (CNN)

to classify and rank multiple probable grasp poses sampled from a single image

or point cloud, by using a sliding window with a fixed offset to position and

rotation. After calculation a robot executes the best ranked grasp candidate.

4



This approach only works in a static environment where the camera is precisely

calibrated and the robot manipulation is planned based on this selected grasp

pose candidate. These approaches require multiple forward passes through the

network to detect the best candidate, which is computationally expensive mak-

ing them unfeasible to use as closed-loop controllers. To improve the execution

time the number of grasp candidates can be limited [27] or a discrete set can

be calculated in parallel [24, 29], resulting in a trade-off between execution time

and potential grasp accuracy.

Similar to our approach, Morrison et al. [13] and Varley et al. [30] use a small

CNN to output an energy heat map revealing how well every location in the

image would act as a grasp location, giving the ability to perform closed-loop

control. While there focus lies on learning a generalized policy, trained on a large

dataset, to grasp unseen objects, our approach learns a more accurate robust

grasp from a single sample without generalizing over multiple objects. In this

work we train to grasp an object in the exact same position and orientation in

order to make assembly line tasks possible. In contrast [30] learns a generalized

policy from a dataset with known 3D meshes which results in varying grasps

of the same object. We refer to [10, 31, 32] for a more in depth survey on

data-driven grasping techniques.

2.2. Learning from demonstrations

Bootstrapping robotic grasping by giving demonstrations is an other key

research area to make robust grasps possible. Tegin et al. [33] present a frame-

work which is able to use human demonstration experience in combination with

perceptional cues of objects to create a more stable approach vector to grasp

objects. Learning from demonstration is often combined with other learning

algorithms like RL [34] or guided policy search [35], but these algorithms re-

quire multiple demonstrations to train their policies. In [36] a large recurrent

neural network is trained end-to-end from raw image input for multiple tasks

simultaneously, increasing the success rate and robustness of each task while

decreasing the training time for newly added tasks. Although the many recent

5



advancements in learning from demonstration research, there is still a huge gap

with cobot programming as implemented in industry [37].

This paper extends previous work [38], where we showcased how we can learn

a neural network to train a closed-loop controller for perpendicular grasping of

toy blocks from a single demonstration. We extend this work by also taking

varying rotations into account, as well as allowing to tilt the gripper during

demonstration resulting in grasps which were not possible before (Figure 1).

With some objects a vertical grasp was not feasible and the ability to tilt the

gripper during demonstration allows to grasp these objects from the side. More-

over, we evaluate on a more extensive set of objects. Furthermore, we integrate

this algorithm in a “program from demonstration” system that closely matches

(a) (b)

(c) (d)

Figure 1: A RTG action demonstration consists of a hover position phover (a) and a grasp

target position ptarget (b). The demonstrated grasp does not need to be perpendicular to the

workspace, as the gripper can be tilted when grasping an object. After training, the object is

searched in the workspace (c) and grasped as demonstrated (d), relative to the position after

searching.

6



the current operator workflow.

3. A flexible system to program from demonstration

Collaborative robotics can typically be programmed “from demonstration”,

by simply guiding the end-effector, manually or with a teacher pendant, and

recording the robot pose each step. Typically an operator would record an action

in a sequence of multiple steps: initial hover pose, action location and resulting

location, but the step sequence can be extended to decrease the possibility of

collisions between steps. We propose a system that in addition to the robot

pose, also records information from any sensors in the environment. This data

can then be leveraged to train smarter control policies using machine learning

techniques. For example, a wrist mounted camera can be used to identify the

object to grasp, instead of merely the position to grasp. This section elaborates

on the high level architecture and implementation to create a flexible system.

Demonstrator

Learner

Joint

Cartesian

Controllers

Smart

Dataset

A
bstrac tion La yer

User Interface

Figure 2: Architectural overview of the system. Demonstrator collects states of the envi-

ronment and stores this information in the Dataset. Datasets are used by the Learner to

learn a policy. Multiple Controllers are available to execute robotic movements, e.g. a Smart

Controller using a trained policy.

7



3.1. Architecture overview

Figure 2 gives a high level overview of the system, which provides the fol-

lowing features:

• Record demonstrations as a sequence of steps, collecting the robot’s state,

as well as any other sensory input available.

• Replay demonstration steps with different control algorithms, that can be

switched at runtime.

• Make all recorded information available as datasets to execute machine

learning algorithms.

• Visual feedback during the demonstration and replay.

3.2. Demonstrator

The Demonstrator is responsible for recording demonstrations, offered by

the operator, which can be replayed by controllers (see Section 3.4). Each

demonstration consists of a sequence of steps, containing the robot arm’s state,

step action type and any extra sensor values available. The recorded state is a

combination of the gripper’s pose (position and orientation) and the arm’s joint

states. Each step also contains one of three generic action types: move, pick and

place. During the demonstration the operator specifies which action is taken

for the current step. During replay, all steps are executed by the controllers to

move the robotic arm from one pose to the next, with pick and place actions

opening or closing the gripper, respectively.

In addition, external sensors can be connected to the system to add extra

information to each step, e.g. a camera. The sensors values are collected and

can be used to visualize steps in a front-end or used by other components of the

system, e.g. the Learner component.

3.3. Datasets

To learn a policy through machine learning, a Dataset component is required

to provide data samples and their corresponding labels. The Learner component

8



queries the Dataset samples in batches, stored in memory or on disk, to train a

model for the task at hand. The Dataset component is responsible to generate

input-label pairs, from raw demonstration data, that can be used to train a

machine learning model by the Learner. Data augmentation can be used to

crop and rotate samples, or for further augmenting images by applying random

changes to brightness, contrast and saturation.

3.4. Controllers

The Controller components are responsible for the interaction with the

robotic arm to execute each step of a demonstration. The ‘move’ actions are by

default executed by the Joint or Cartesian Controller, which takes over control

until the desired position and orientation is reached, to replay steps as they

were recorded. These two controllers differ in the way they execute the re-

quested pose. For the Joint controller interpolates between two steps in joint

space, while the Cartesian controller moves the end effector in a straight line in

Cartesian space.

In addition, the system can be extended with Smart Controllers. These can

override the default behavior for certain steps, and can query the current robot

state and sensor information and output a custom control action. This allows

for more complex control policies, for example to avoid collisions with objects

that are sensed in the environment, or use a neural network to learn to grasp

objects based on their visual appearance, as we will describe in 4.

3.5. Learner

Given a Dataset, the Learner performs the actual pollicy training. The

learning is initiated and configured by the Demonstrator, that provides a con-

figuration dictionary with hyper parameters such as the learning rate, batch

size, loss function, etc., and the network’s structure. The training continues in

the background until the stop criterion is met (i.e. number of iterations) and

the neural network’s final weights are stored for each step separately.

9



When the Demonstrator requests to execute a step controlled with a Smart

Controller, the corresponding network model is loaded with its last updated

weights. This enables the operator to already test the learned behaviour while

the Learner is still training.

3.6. User interface

The system provides a user interface where the operator can create, load,

edit and replay demonstrations. Each demonstration is saved to disk with the

corresponding steps and sensor values.

Figure 3 shows the interface (left) in combination with the operator’s per-

formed actions (right). During the demonstration a live camera feed is streamed

with a blue rectangular box in the center of the feed, which gives a visual aid

Figure 3: The user interface provides the operator a method to record, replay and review

given demonstrations. Demonstrations can have any number of steps with each step being

one of the supported action types: move, pick or place. The example shows the user interface

in combination with the operator’s actions on the robotic arm for grasping a wire-clipper and

placing it in the green bin.

10



for the operator where to focus. This is used in our smart grasping controller

presented in 4. To record a step, the operator can click on the ‘move’,‘pick’ or

‘place’ menu items, or use one of the keyboard shortcuts.

Figure 3 shows a typical pick-and-place workflow. First, the operator records

a ‘move’ step, guiding the end-effector to a position somewhat above the object

he/she wants to grasp, resulting in the hover pose phover. Next, the operator

moves the cobot’s end-effector to the pose ptarget where the object is grasped,

saving this step as a ‘pick’ action which closes the gripper. Finally, the operator

guides the cobot in one or more steps to the green container, ending with a

‘place’ action releasing the gripper and dropping the object.

For each recorded step, the user interface shows the recorded end-effector

pose combined with any sensor information, in this case an image captured

from an in-hand mounted camera. After recording, all demonstration steps

can be replayed again, or one can trigger (and edit) each step individually for

debugging purposes.

3.7. Implementation details

Our system is implemented using OSGi [39], a modular service-oriented

framework in Java. Each component is written as an OSGi bundle and ex-

poses its services through well defined APIs. We build on our previous work on

a Thing Abstraction Layer (TAL) [40], which supports a wide range of Internet

of Things (IoT) sensors and actuators including our robot environment through

Robot Operating System (ROS) [41]. For training, managing and building neu-

ral networks we use DIANNE [42], a modular deep learning framework with

native bindings to Torch7. By building on the OSGi-based technology stack, we

are able to distribute the components on the available infrastructure [43], for

example deploying real-time components, e.g. the controllers, on an edge device

close to the robot, while offloading the Learner to a remote GPU cloud server.

11



4. Learning a smart grasp controller

Of course the system presented in Section 3 is most valuable when one adds

Smart Controllers. The basic functionality of programming pick-and-place op-

erations by demonstration is merely recording the position where to grasp, not

the object to grasp. When we have a camera sensor mounted on the robot

end-effector, we can use the visual feedback to pick the object whenever it is in

view. To learn the visual appearance of the object to grasp, we use a neural

network model. Although neural networks typically require a huge amount of

data to train on, we mitigate this by taking the following assumptions:

• The workspace where the robot is positioned during replay is the same as

during the demonstrations. Resulting in the same robotic arm reach and

visual features.

• The object to grasp during replay is visually the same as during the demon-

stration.

• The position of the object to grasp is in view of the camera at the demon-

strated phover pose and is within reach of the gripper.

• The object to grasp has unique visual features in the cropped center image

of phover pose.

The first three requirements are defined in order to train a small neural

network, which is not expected to generalize over multiple objects and scenes,

allowing to control the robot in real-time. The last requirement makes sure we

can detect the object and train a neural network only on this one demonstra-

tion. In the remainder of this section we will first describe how we generate a

dataset from our demonstration, next how we train a neural network for spot-

ting the object to grasp, and finally how we implement a closed-loop controller

for executing the grasp.

12



(a) (b) (c)

Figure 4: From the demonstration camera frame, we generate random positive (a) and negative

(b) samples by cropping, rotating and adapting brightness and contrast. By including other

objects in the same frame, additional negative samples with objects to ignore are generated

(c).

4.1. Generation of grasping dataset

For each pick step in the demonstration, a dataset is generated based on the

camera frame captured at phover. During the demonstration, the operator has

to make sure the object to grasp is focused at the center of the camera frame, as

this will contain the features the controller searches for at run-time. As shown

in Section 3, the user interface provides visual feedback on what is currently in

focus. From this frame we generate both “positive” and “negative” samples. A

“positive” sample is a center crop of 128 × 128 of the image randomly rotated

around its center. A “negative” sample is a randomly picked cropping outside

this center region rotated around its center. Each sample is labeled with a

positive or negative label with the values 1 and 0, respectively, and the applied

rotation angle.

Furthermore, we augment the dataset by applying random perturbations on

brightness and contrast [44]. In addition, we also add center crops from other

demonstrations as negative samples for the current demonstration, which will

make the neural network more robust. An example dataset is shown in Figure 4.

An other approach is shown in Figure 4 (c) where multiple objects are positioned

in the same scene to create negative samples for all objects outside the center

13



crop. During the demonstration the operator needs to make sure the target

object does not overlap or is to close to other objects as this would than be

included as a positive sample.

4.2. Neural network architecture

We use a convolutional neural network architecture as shown in Figure 5. It

consists of 4 convolutional layers followed by an average pooling layer to down-

sample the feature planes and two fully connected layers. The network has three

output values, each with its own activation function to limit to a valid range.

The first value represents the Grasp Quality Q and has a sigmoid activation

to limit the range to [0, 1]. This Grasp Quality output is trained using the

“positive” or “negative” label of the dataset. The other two values encode the

rotation angle Φ, represented by the cosine O1 and sine O2 components of the

rotation angle on a unit circle. We clamp the original rotation angle Φ range to

[−π
4 ,

π
4 ] and multiply this by 2 to increase the accuracy around 0. Because we

limit the angle to [−π
4 ,

π
4 ] we can limit the range of the first output component

cos(2Φ) to [0, 1] with a sigmoid function, while for the second component sin(2Φ)

the hyperbolic tangent activation is used to limit its values to [−1, 1]. This angle

representation is chosen to increase the accuracy for smaller angles [13], and to

8x29x29

16x5x5
16x13x13

16x1x1conv 
5x5 
stride 2

conv 
5x5 
stride 2

conv 
5x5 
stride 2

conv 
5x5 
stride 2

avg 
pool

conv 
1x1

16x1x1
conv 
1x1

3x128x128

O
1
: cos(2Φ))

O
2
: sin(2Φ))

Q: Grasp Energy

Figure 5: The GraspNet neural network model to support learning from a single demonstration

with a dataset sample of a black marker. The model accepts 128 × 128 cropped images or

larger as input and forwards it through 4 convolutional layers with 8, 8, 16 and 16 filters of size

5 × 5 and a stride of 2. An average pooling layer to down-sample the feature plane followed

by two fully connected layers implemented as 1 × 1. The outputs represent a per region label

revealing the estimated grasp quality and the angle, in two vector components of a unit circle.

14



create fluent and continuous distributions, which tends to be easier to learn for

neural networks [45].

4.3. Real-time smart grasp controller

The real-time smart closed-loop grasp controller replaces the standard Carte-

sian or Joint controller for steps with the ‘pick’ action. When the demon-

stration reaches the phover pose, the system streams full resolution images

(3 (RGB) × 480 (height) × 640 (width)) to the controller. As our GraspNet is

trained on 128× 128 images, we basically evaluate the neural network on every

128 × 128 crop of the camera image as a sliding window. By implementing the

fully connected layers as 1 × 1 convolutions, we can execute this in a single

forward pass, resulting in a 3 × 23 × 33 output.

The first output plane represents a grasp energy heat map labelling how well

each region would act as a grasp location, while the other two output planes give

the corresponding estimated angle representation. We find the (x, y) position

that yields the maximum energy, and calculate the corresponding angle Φ:

Φ =
1

2
arctan

O2

O1
(1)

From this output we calculate a translation velocity vector v in the XY-plane.

The direction of the velocity is given by the direction of highest activation. The

velocity itself is proportional to the distance of this location w.r.t. the center

of the image, the further the distance from the center the higher the outputted

velocity, followed by additionally applying a bezier function to smoothen the

approach towards the center. Similarly, we calculate an angular velocity around

the Z-axis, based on the rotation angle Φ. These values are then applied to the

robot’s end-effector and the next camera frame is processed.

Figure 6 shows an example of the closed-loop controller capturing an image

from the wrist-mounted camera, forwarding it through the GraspNet model and

resulting in an grasp energy heat map and an estimated rotation angle. Darker

regions in the energy heat map represent better grasp locations.

15



0.0

0.2

0.4

0.6

0.8

1.0

CNN
Model

O
1
 = cos(2Φ) = 0.84Φ) = 0.84) = 0.84

O
2
 = sin(2Φ) = 0.84Φ) = 0.84) = -0.43

Φ) = 0.84 = -13.64°

Camera Image
3 x 640 x 480

Grasp Energy Heat Map Q
33 x 2Φ) = 0.843

v

v

Φ) = 0.84

O
0
 = energy = 0.94

Example output for 
red sliding window

Figure 6: Example of the smart grasp controller picking a wire clipper from a bunch of objects.

The trained network outputs an energy heat map, upscaled and overlayed on the input image.

Darker regions show higher activation points. The red square represents one sliding window

(128x128) resulting in the red pixel of the grasp energy heat map. The vector v represents

the velocity direction the controller has to take starting from the center of the image and the

vector Φ represents the angle velocity. For the region with the highest activation the cosine

and sine value is used to calculate the rotation angle.

The closer the end-effector comes to the grasp object and the better the

orientation angle matches, the slower the end-effector moves, until all velocity

values drop below a configured threshold. Finally the controller executes the

relative grasp movement as demonstrated from phover to ptarget. This enables

the controller to perform the demonstrated grasp from any position and orienta-

tion. An additional benefit of our approach is that the system does not require

any camera calibration with respect to the robot arm.

5. Experiments

We evaluate our demonstration framework on pick and place experiments

conducted on seven household objects: coffee mug, duck tape roll, tape dis-

penser, screwdriver, stapler, whiteboard marker and wire clipper. For each

object we provided a single demonstration to pick up the object. We evaluate

16



both the neural network accuracy on the dataset as well as the success rate

on real-world grasps. We also evaluate the real-time performance of the grasp

controller.

5.1. Hardware

Our experimental setup, shown in Figure 6 consists of the Franka Emika

Panda cobot [5] with 7 degrees of freedom, with a Realsense D435 RGB-D cam-

era mounted on the end-effector. The camera is configured at a frame-rate of

30fps with a resolution of 640 × 480. A Jetson TX2, a development board

with an embedded GPU, is used to control the cobot. This includes process-

ing the camera frames and performing inference of a trained neural network

during grasping. The Jetson is able to forward and process the RGB frames

in ±18.38ms on average, which is fast enough to operate at the 30Hz of the

camera. Training the neural networks is performed on a separate server running

Ubuntu 16.04 with an Intel(R) Core(TM) i5-2400 CPU running at 3.10GHz and

a NVIDIA Titan X graphics card. On our hardware it takes less than 5 minutes

to train the Graspnet network. The deployment setup for our experiments is

shown in Figure 7.

Titan X - Server

Dataset

Learner

Jetson TX2

Controllers

Demonstrator

Abstraction Layer

Figure 7: The experiments deployment scheme where the Dataset and Learner is deployed on

server grade hardware with a dedicated GPU (Titan X), while the Controllers, Demonstrator

and Abstraction Layer components are deployed on a embedded GPU system (Jetson TX2)

to control the robotic arm directly and stream the camera through the network at inference

time.

17



Figure 8: Test objects for the experiments consisting of some household items.

5.2. Test objects

In the experiments we use common household objects, e.g. screwdriver, duct

tape, coffee mug (Figure 8). These objects vary in size, shape and difficulty to

grasp, while still being feasible for the parallel gripper to grasp. The gripper is

able to lift objects with a maximum width of 80mm and up to 3kg in weight.

Our objects are a subset of the ACRV Picking Benchmark (APB) [20] and the

Yale-CMU-Berkeley (YCB) Object Set [19]. In the experiments the objects

are grasped without tilting the end-effector, however this would not alter the

accuracy of the system as the object is searched in the phover position.

5.3. Demonstration flow and learning

For each object we record a single demonstration following the workflow

presented in Section 3.6. We select a different hover height pose based on the

object to grasp, in order to have enough distinct features in the center crop of

the image. In general, for larger objects we applied a higher hover pose, giving

a larger field of view of the camera.

For each demonstration, we generate a dataset and train a neural network

as defined in Section 4. Each neural network is trained for 1000 iterations by

minimizing the mean squared error loss using the Adam optimizer [46] with a

learning rate of 0.001 and a batch size of 128. For each mini-batch we generate

new samples from the demonstration’s Dataset.

18



Original Test image

position cos sin angle
ground truth 1.0 0.96 -0.29 -17.04
predicted 0.92 0.93 -0.27 -21.89

(a)

Original Test image

position cos sin angle
ground truth 1.0 0.8 0.6 37.06
predicted 0.96 0.77 0.62 39.33

(b)

Original Test image

position cos sin angle
ground truth 1.0 0.71 -0.71 -45.0
predicted 1.0 0.74 -0.82 -42.43

(c)

Original Test image

position cos sin angle
ground truth 0.0 1.0 0.0 0.0
predicted 0.0 0.02 -0.47 -88.78

(d)

Figure 9: Four samples of the dataset’s original image accompanied by a test image randomly

sampled from a generated test set. For each sample we show the ground truth labels, predicted

labels and the calculated angle Φ from Eq. (1) in degrees. Samples (a), (b) and (c) are positive

and (d) is a negative sample. For sample (d) only the position is correctly predicted because

the loss is not backpropagated for the cosine and sine errors as these values are irrelevant.

5.4. Results

We first evaluate the estimated grasp success rate and rotation accuracy

based on a separately held-out generated test set with samples of size 128×128.

The estimated grasp success accuracy is calculated by comparing the grasp

label with the predicted value rounded to the nearest integer, while the rotation

accuracy is compared by rounding to a single digit (tenth of a radian). On

average, we get a grasp accuracy of 99% and a rotation accuracy of 80% with

Table 1: Grasp success rate of seven household objects.

household objects success rate (%)

coffee mug 100

duct tape roll 100

screwdriver 90

stapler 90

tape dispenser 95

whiteboard marker 95

wire clipper 70

average 91.34

19



an average error of only 0.09 radians. Figure 9 shows the results for four

samples from the original dataset accompanied by a test set sample comparing

the ground truth to the predicted values.

Next we evaluate the grasp performance on the real cobot. For each object

we performed 20 grasps by randomly placing each object within view of the

camera and executing the recorded demonstration. In order to keep within the

limits of the physical robot we limited the object rotation between ±160 degrees.

The grasp is successful from the moment it was placed on the recorded location

of the demonstration. The grasp success rate for each object can be found in

Table 1. For all objects combined we achieved an average success rate of 91.34%

and it took on average 5 seconds to search for the object and execute a grasp.

Figure 10 shows the velocity outputs and the highest and center heat map

energy value of the closed-loop controller over time while moving towards the

object. We place the object in view of the camera at timestep 10. The closer

the object is to the center of the camera frame the slower the end-effector moves

until it eventually reaches zero and performs the grasp. The angular velocity can

alter between zero and a small velocity because the movement has not stopped

in the XY-plane.

Timestep

E
nd

-e
ffe

ct
or

 v
el

oc
ity

P
re

di
ct

ed
 g

ra
sp

 e
ne

rg
y

-0,1

0

0,1

0,2

0,3

0,4

0,5

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50

vx vy va Q max Q center

Figure 10: The translational and angular velocity over time, as well as the highest and center

grasp energy in view. We place the object in view of the camera at timestep 10. The closer

the end-effector gets to the object to grasp the slower it moves.

20



Figure 11: The end-effector’s correct grip position on the left and failed attempt on the right

for graspping the wire clipper.

The failure cases are mostly due to the limited spatial resolution of the acti-

vation map (currently 33 × 23). This resulted in the robot touching the object

with one of its fingers instead of positioning the object between its fingers. Es-

pecially in the case of the wire clipper, which we pick on one of its handles,

the gripper often hits the other handle as shown on Figure 11. We could po-

tentially improve the performance, e.g. by increasing the camera resolution or

removing the strides in the CNN architecture, resulting in a higher activation

map resolution, at the cost of more compute power.

6. Conclusion and future work

In this paper, we proposed a flexible system which extends the default “pro-

gram from demonstration” feature of collaborative robots with deep learning

techniques to adapt to environments with moving objects. In particular, in or-

der to facilitate pick-and-place tasks, we extend the system with a smart grasp

controller that uses a CNN that outputs an energy heat map where each region

represents how well the region would act as a grasp location and estimates the

rotation angle, from a single frame captured by a wrist-mounted camera. This

makes the system robust to grasping the object at any location and orienta-

tion within view of the camera, and achieves near 100% success rate for various

household objects. To accommodate for the physical limitations of the robotic

arm we limited the rotation of objects in the range [−160, 160] degrees, an other

21



approach would forward a mirrored image through the network and select the

rotation within its limits followed by a mirrored grasp when applicable.

We believe that combining advances in artificial intelligence with cobot pro-

gramming and control is crucial to achieve a truly collaborative environment

where cobots and humans can work together. This work is a first step in that

direction, focused on learning to pick objects, while keeping an intuitive and

easy-to-use operator interface. To further improve our grasping method we

could use our method as a baseline policy to fine tune using reinforcement

learning techniques, i.e. detecting grasp success and using this as a reward sig-

nal. Also, we could query the operator for additional demonstrations in case of

failed grasps, following an active learning approach.

To extend the current approach to allow for more complex and precise grasps

we need to extend the demonstrator to be able to record high DOF grippers

instead of the simple two finger style gripper. This would require additional

steps during the demonstration. In order to fine tune for more precise grasps

we would replace multiple steps of the demonstration sequence with multiple

trained networks updating its gripper’s XY-plane position and orientation in

each step accordingly.

In Section 4 we made an assumption that the workspace or scene is kept

the same during demonstration and execution. This limitation is pretty strict

but can be removed by including images from other scenes as negative samples.

An other possibility is to further augment the images to adapt textures and/or

colors of objects and the scene but this requires further research. For the case

study in Section 4 we selected RGB images as input for the network and left

out the depth channel. This decision was made because initial experiments

pointed out that augmenting the depth channel to create realistic samples from

a single image is challenging and it resulted in worse grasp success rate and lower

performance. Further research is required to design a better depth augmentation

step in order to deal with occlusions in the depth image.

As future work we would also like to extend the system with smart con-

trollers, i.e. for workspace monitoring and collision detection and prevention.

22



Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation with the

donation of GPUs used for this research. This research received funding from the

Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie

(AI) Vlaanderen” programme.

References

References

[1] H. Kagermann, J. Helbig, A. Hellinger, W. Wahlster, Recommendations

for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the

Future of German Manufacturing Industry; Final Report of the Industrie

4.0 Working Group, Forschungsunion, 2013.

[2] S. Haddadin, A. Albu-Schaffer, A. De Luca, G. Hirzinger, Collision detec-

tion and reaction: A contribution to safe physical human-robot interac-

tion, in: 2008 IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2008, pp. 3356–3363. doi:10.1109/IROS.2008.4650764.

[3] Kuka AG, accessed February 19, 2019. [link].

URL http://www.kuka.com/

[4] Universal robots, accessed February 19, 2019. [link].

URL http://www.universal-robots.com/

[5] Franka EMIKA, accessed February 19, 2019. [link].

URL http://www.franka.de/

[6] R. Bloss, Collaborative robots are rapidly providing major improvements

in productivity, safety, programing ease, portability and cost while address-

ing many new applications, Industrial Robot: the international journal of

robotics research and application 43 (5) (2016) 463–468. arXiv:https://

doi.org/10.1108/IR-05-2016-0148, doi:10.1108/IR-05-2016-0148.

23

https://doi.org/10.1109/IROS.2008.4650764
http://www.kuka.com/
http://www.kuka.com/
http://www.universal-robots.com/
http://www.universal-robots.com/
http://www.franka.de/
http://www.franka.de/
http://arxiv.org/abs/https://doi.org/10.1108/IR-05-2016-0148
http://arxiv.org/abs/https://doi.org/10.1108/IR-05-2016-0148
https://doi.org/10.1108/IR-05-2016-0148


[7] M. Hermann, T. Pentek, B. Otto, Design principles for industrie 4.0 sce-

narios: a literature review, Technische Universität Dortmund, Dortmund

(2015).

[8] H. Sharifi, Z. Zhang, Agile manufacturing in practice-application of a

methodology, International Journal of Operations & Production Manage-

ment 21 (5/6) (2001) 772–794.

[9] S. Schaal, Learning from demonstration, in: Advances in neural informa-

tion processing systems, 1997, pp. 1040–1046.

[10] J. Bohg, A. Morales, T. Asfour, D. Kragic, Data-driven grasp synthesis–

a survey, IEEE Transactions on Robotics 30 (2) (2014) 289–309. doi:

10.1109/TRO.2013.2289018.

[11] V. . Nguyen, Constructing force-closure grasps, in: Proceedings. 1986 IEEE

International Conference on Robotics and Automation, Vol. 3, 1986, pp.

1368–1373. doi:10.1109/ROBOT.1986.1087483.

[12] J. Redmon, A. Angelova, Real-time grasp detection using convolutional

neural networks, in: 2015 IEEE International Conference on Robotics

and Automation (ICRA), 2015, pp. 1316–1322. doi:10.1109/ICRA.2015.

7139361.

[13] D. Morrison, P. Corke, J. Leitner, Closing the loop for robotic grasping:

A real-time, generative grasp synthesis approach, CoRR abs/1804.05172

(2018). arXiv:1804.05172.

URL http://arxiv.org/abs/1804.05172

[14] D. Morrison, P. Corke, J. Leitner, Multi-view picking: Next-best-view

reaching for improved grasping in clutter, CoRR abs/1809.08564 (2018).

arXiv:1809.08564.

URL http://arxiv.org/abs/1809.08564

[15] U. Asif, J. Tang, S. Harrer, Graspnet: An efficient convolutional neural net-

work for real-time grasp detection for low-powered devices, in: Proceedings

24

https://doi.org/10.1109/TRO.2013.2289018
https://doi.org/10.1109/TRO.2013.2289018
https://doi.org/10.1109/ROBOT.1986.1087483
https://doi.org/10.1109/ICRA.2015.7139361
https://doi.org/10.1109/ICRA.2015.7139361
http://arxiv.org/abs/1804.05172
http://arxiv.org/abs/1804.05172
http://arxiv.org/abs/1804.05172
http://arxiv.org/abs/1804.05172
http://arxiv.org/abs/1809.08564
http://arxiv.org/abs/1809.08564
http://arxiv.org/abs/1809.08564
http://arxiv.org/abs/1809.08564
https://doi.org/10.24963/ijcai.2018/677
https://doi.org/10.24963/ijcai.2018/677


of the Twenty-Seventh International Joint Conference on Artificial Intelli-

gence, IJCAI-18, International Joint Conferences on Artificial Intelligence

Organization, 2018, pp. 4875–4882. doi:10.24963/ijcai.2018/677.

URL https://doi.org/10.24963/ijcai.2018/677

[16] C. Goldfeder, M. Ciocarlie, , P. K. Allen, The columbia grasp database, in:

2009 IEEE International Conference on Robotics and Automation, 2009,

pp. 1710–1716. doi:10.1109/ROBOT.2009.5152709.

[17] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, K. Y.

Goldberg, Dex-net 2.0: Deep learning to plan robust grasps with synthetic

point clouds and analytic grasp metrics, CoRR abs/1703.09312 (2017).

[18] A. Saxena, J. Driemeyer, A. Y. Ng, Robotic grasping of novel objects

using vision, The International Journal of Robotics Research 27 (2)

(2008) 157–173. arXiv:https://doi.org/10.1177/0278364907087172,

doi:10.1177/0278364907087172.

URL https://doi.org/10.1177/0278364907087172

[19] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, A. M. Dollar,

Benchmarking in manipulation research: Using the yale-cmu-berkeley ob-

ject and model set, IEEE Robotics Automation Magazine 22 (3) (2015)

36–52. doi:10.1109/MRA.2015.2448951.

[20] J. Leitner, A. W. Tow, N. Sünderhauf, J. E. Dean, J. W. Durham,

M. Cooper, M. Eich, C. Lehnert, R. Mangels, C. McCool, P. T. Ku-

jala, L. Nicholson, T. Pham, J. Sergeant, L. Wu, F. Zhang, B. Up-

croft, P. Corke, The acrv picking benchmark: A robotic shelf picking

benchmark to foster reproducible research, in: 2017 IEEE International

Conference on Robotics and Automation (ICRA), 2017, pp. 4705–4712.

doi:10.1109/ICRA.2017.7989545.

[21] S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep reinforcement learning for

robotic manipulation with asynchronous off-policy updates, in: 2017 IEEE

25

https://doi.org/10.24963/ijcai.2018/677
https://doi.org/10.24963/ijcai.2018/677
https://doi.org/10.1109/ROBOT.2009.5152709
https://doi.org/10.1177/0278364907087172
https://doi.org/10.1177/0278364907087172
http://arxiv.org/abs/https://doi.org/10.1177/0278364907087172
https://doi.org/10.1177/0278364907087172
https://doi.org/10.1177/0278364907087172
https://doi.org/10.1109/MRA.2015.2448951
https://doi.org/10.1109/ICRA.2017.7989545


International Conference on Robotics and Automation (ICRA), 2017, pp.

3389–3396. doi:10.1109/ICRA.2017.7989385.

[22] J. Peters, S. Schaal, Reinforcement learning of motor skills with policy

gradients, Neural Networks 21 (4) (2008) 682 – 697, robotics and Neuro-

science. doi:https://doi.org/10.1016/j.neunet.2008.02.003.

URL http://www.sciencedirect.com/science/article/pii/

S0893608008000701

[23] S. Levine, P. Pastor, A. Krizhevsky, D. Quillen, Learning hand-eye coor-

dination for robotic grasping with large-scale data collection, in: ISER,

2016.

[24] L. Pinto, A. Gupta, Supersizing self-supervision: Learning to grasp from

50k tries and 700 robot hours, 2016 IEEE International Conference on

Robotics and Automation (ICRA) (2016) 3406–3413.

[25] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,

D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, S. Levine, Scal-

able deep reinforcement learning for vision-based robotic manipulation, in:

CoRL, 2018.

[26] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel, Domain

randomization for transferring deep neural networks from simulation to the

real world, 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) (2017) 23–30.

[27] I. Lenz, H. Lee, A. Saxena, Deep learning for detecting robotic grasps, in:

Robotics: Science and Systems, 2013.

[28] S. Kumra, C. Kanan, Robotic grasp detection using deep convolutional

neural networks, 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (2017) 769–776.

26

https://doi.org/10.1109/ICRA.2017.7989385
http://www.sciencedirect.com/science/article/pii/S0893608008000701
http://www.sciencedirect.com/science/article/pii/S0893608008000701
https://doi.org/https://doi.org/10.1016/j.neunet.2008.02.003
http://www.sciencedirect.com/science/article/pii/S0893608008000701
http://www.sciencedirect.com/science/article/pii/S0893608008000701


[29] E. Johns, S. Leutenegger, A. J. Davison, Deep learning a grasp function

for grasping under gripper pose uncertainty, 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (2016) 4461–4468.

[30] J. Varley, J. Weisz, J. Weiss, P. Allen, Generating multi-fingered robotic

grasps via deep learning, in: 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2015, pp. 4415–4420. doi:10.

1109/IROS.2015.7354004.

[31] A. Sahbani, S. El-Khoury, P. Bidaud, An overview of 3d object grasp syn-

thesis algorithms, Robotics and Autonomous Systems 60 (2012) 326–336.

[32] S. D. Roy, S. Chaudhury, S. Banerjee, Active recognition through next view

planning: a survey, Pattern Recognition 37 (2004) 429–446.

[33] J. Tegin, S. Ekvall, D. Kragic, J. Wikander, B. Iliev, Demonstration-based

learning and control for automatic grasping, Intelligent Service Robotics 2

(2009) 23–30.

[34] P. Pastor, H. Hoffmann, T. Asfour, S. Schaal, Learning and generalization

of motor skills by learning from demonstration, in: 2009 IEEE International

Conference on Robotics and Automation, 2009, pp. 763–768. doi:10.1109/

ROBOT.2009.5152385.

[35] S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep

visuomotor policies, J. Mach. Learn. Res. 17 (1) (2016) 1334–1373.

URL http://dl.acm.org/citation.cfm?id=2946645.2946684

[36] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, S. Levine, Vision-based

multi-task manipulation for inexpensive robots using end-to-end learning

from demonstration, in: 2018 IEEE International Conference on Robotics

and Automation (ICRA), IEEE, 2018, pp. 3758–3765.

[37] S. El Zaatari, M. Marei, W. Li, Z. Usman, Cobot programming for collab-

orative industrial tasks: An overview, Robotics and Autonomous Systems

(2019).

27

https://doi.org/10.1109/IROS.2015.7354004
https://doi.org/10.1109/IROS.2015.7354004
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1109/ROBOT.2009.5152385
http://dl.acm.org/citation.cfm?id=2946645.2946684
http://dl.acm.org/citation.cfm?id=2946645.2946684
http://dl.acm.org/citation.cfm?id=2946645.2946684


[38] P. V. Molle, T. Verbelen, E. D. Coninck, C. D. Boom, P. Simoens,

B. Dhoedt, Learning to grasp from a single demonstration, CoRR

abs/1806.03486 (2018). arXiv:1806.03486.

URL http://arxiv.org/abs/1806.03486

[39] OSGi Alliance, Osgi service platform, release 3, IOS Press, Inc., 2003.

[40] E. D. Coninck, S. Bohez, S. Leroux, T. Verbelen, B. Vankeirsbilck,

B. Dhoedt, P. Simoens, Middleware platform for distributed applications

incorporating robots, sensors and the cloud, in: 2016 5th IEEE Interna-

tional Conference on Cloud Networking (Cloudnet), 2016, pp. 218–223.

doi:10.1109/CloudNet.2016.23.

[41] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, A. Y. Ng, ROS: an open-source Robot Operating System,

in: ICRA Workshop on Open Source Software, 2009.

[42] E. D. Coninck, S. Bohez, S. Leroux, T. Verbelen, B. Vankeirsbilck,

P. Simoens, B. Dhoedt, Dianne: a modular framework for designing,

training and deploying deep neural networks on heterogeneous distributed

infrastructure, Journal of Systems and Software 141 (2018) 52 – 65.

doi:https://doi.org/10.1016/j.jss.2018.03.032.

URL http://www.sciencedirect.com/science/article/pii/

S0164121218300487

[43] T. Verbelen, P. Simoens, F. D. Turck, B. Dhoedt, Aiolos: Middleware for

improving mobile application performance through cyber foraging, Journal

of Systems and Software 85 (11) (2012) 2629 – 2639. doi:10.1016/j.jss.

2012.06.011.

[44] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil

in the details: Delving deep into convolutional nets, in: Proceedings of

the British Machine Vision Conference, BMVA Press, 2014. doi:http:

//dx.doi.org/10.5244/C.28.6.

28

http://arxiv.org/abs/1806.03486
http://arxiv.org/abs/1806.03486
http://arxiv.org/abs/1806.03486
https://doi.org/10.1109/CloudNet.2016.23
http://www.sciencedirect.com/science/article/pii/S0164121218300487
http://www.sciencedirect.com/science/article/pii/S0164121218300487
http://www.sciencedirect.com/science/article/pii/S0164121218300487
https://doi.org/https://doi.org/10.1016/j.jss.2018.03.032
http://www.sciencedirect.com/science/article/pii/S0164121218300487
http://www.sciencedirect.com/science/article/pii/S0164121218300487
https://doi.org/10.1016/j.jss.2012.06.011
https://doi.org/10.1016/j.jss.2012.06.011
https://doi.org/http://dx.doi.org/10.5244/C.28.6
https://doi.org/http://dx.doi.org/10.5244/C.28.6


[45] K. Hara, R. Vemulapalli, R. Chellappa, Designing deep convolutional

neural networks for continuous object orientation estimation, CoRR

abs/1702.01499 (2017). arXiv:1702.01499.

URL http://arxiv.org/abs/1702.01499

[46] D. Kingma, J. Ba, Adam: A method for stochastic optimization, Interna-

tional Conference on Learning Representations (12 2014).

29

http://arxiv.org/abs/1702.01499
http://arxiv.org/abs/1702.01499
http://arxiv.org/abs/1702.01499
http://arxiv.org/abs/1702.01499

	Introduction
	Related work
	Grasp detection and planning
	Learning from demonstrations

	A flexible system to program from demonstration
	Architecture overview
	Demonstrator
	Datasets
	Controllers
	Learner
	User interface
	Implementation details

	Learning a smart grasp controller
	Generation of grasping dataset
	Neural network architecture
	Real-time smart grasp controller

	Experiments
	Hardware
	Test objects
	Demonstration flow and learning
	Results

	Conclusion and future work

