
Noname manuscript No.
(will be inserted by the editor)

A Workload-driven Approach for View Selection in
Large Dimensional Datasets

Leandro Ordonez-Ante · Gregory Van
Seghbroeck · Tim Wauters · Bruno
Volckaert · Filip De Turck

Received: date / Accepted: date

Abstract The information explosion the world has witnessed in the last two
decades has forced businesses to adopt a data-driven culture for them to be
competitive. These data-driven businesses have access to countless sources of
information, and face the challenge of making sense of overwhelming amounts
of data in a efficient and reliable manner, which implies the execution of read-
intensive operations. In the context of this challenge, a framework for the
dynamic read-optimization of large dimensional datasets has been designed,
and on top of it a workload-driven mechanism for automatic materialized view
selection and creation has been developed. This paper presents an extensive
description of this mechanism, along with a proof-of-concept implementation
of it and its corresponding performance evaluation. Results show that the
proposed mechanism is able to derive a limited but comprehensive set of views
leading to a drop in query latency ranging from 80% to 99.99% at the expense
of 13% of the disk space used by the base dataset. This way, the devised
mechanism enables speeding up query execution by building materialized views
that match the actual demand of query workloads.

Keywords Data models · information models · Data mining and (big) data
analysis · Dimensional data modeling

1 Introduction

Providing instant access to data is still an open problem. A significant part
of the value proposition of nowadays data-driven organizations relies on their

L. Ordonez-Ante · G. Van Seghbroeck · T. Wauters · B. Volckaert · F. D. Turck
Department of Information Technology, Ghent University - imec, IDLab
Technologiepark Zwijnaarde 126
B-9052 Gent, Belgium
Tel.: +32 9 33 14940
E-mail: {Leandro.OrdonezAnte, Gregory.VanSeghbroeck, Tim.Wauters, Bruno.Volckaert,
Filip.DeTurck}@UGent.be

2 L. Ordonez-Ante et al.

ability to gain prompt and actionable insight from business data, which poses
stringent requirements on the response time of enterprise applications to sup-
port interactive querying and data visualization. To meet such requirements,
currently available data technology offers a variety of solutions that ranges
from high-level software architectural patterns such as the Lambda and Kappa
architectures proposed by [1] and [2] respectively, to off-the-shelf/open-source
solutions including in-memory computing platforms like Apache Ignite [3] and
SQL-on-Hadoop frameworks such as Apache Impala and Apache Drill [4]. How-
ever, experimental evidence shows [5,6] that said solutions either fail to provide
instantaneous query answering, or effectively achieve such interactive func-
tioning but at the expense of flexibility by relying on hard-coded information
views.

Existing enterprise information applications typically separate analytic work-
load processing (supported by Online Analytical Processing systems—OLAP)
from the day-to-day Online Transaction Processing (OLTP). A key difference
between these two types of workloads lies in the data models and structures
they operate on: OLTP systems work on top of highly normalized data models,
while OLAP workloads run against denormalized schemas featuring precom-
puted views derived from transactional business data. Results of a previous ex-
perimental study [7] evidence that using such read-optimized structures alone
is not enough for analytical processing applications to meet strict response
time requirements, even for small datasets.

Thanks to the wide variety of storage technologies available nowadays,
more attention has been drawn towards polystore systems, also known as poly-
glot persistence systems. A well-thought-out polyglot persistence system is able
to optimally use multiple storage technologies for managing the various types
of data (with different write/access patterns) that an application requires to
handle. This way, data requiring rapid access (e.g. analytics and reporting
data) may be loaded into a columnar store, while frequently-written data (e.g.
user activity logs) can lay on a key-value database. In this sense, [8] propose
leveraging on polyglot persistence to boost the performance of legacy applica-
tions by means of a dynamic transformation process intended for translating
data and queries between diverse data storage technologies.

Based on the work of Vanhove et al., a framework that serves as conceptual
foundation for the mechanism this paper reports on is presented in [7]. The
intuition behind that framework was to progressively optimize the schema of
a base dataset by applying a sequence of data transformation operations (e.g.
view materialization, table partitioning, field indexing), in response to spe-
cific query usage patterns. The experimentation conducted in that early stage
evidenced that when it comes to dimensionally modeled datasets, building
materialized views is the method with the most significant impact on query
performance, reducing response time by several orders of magnitude, followed
by table partitioning.

In this sense, this paper introduces an automatic view selection mechanism
based on syntactic analysis of the queries running against dimensionally mod-
eled datasets. The remainder of this paper is structured as follows: Section 2

A Workload-driven Approach for View Selection in Large Dimensional Datasets 3

addresses the related work. Section 3 introduces the dynamic data transfor-
mation framework that underlies the view selection approach proposed herein.
Section 4 focuses on the main contribution of this work and elaborates on the
syntactic analysis conducted on the query statements. Section 5 describes the
implementation of the proposed approach, while Section 6 discusses the ex-
perimental setup and results. Finally conclusions and pointers towards future
work are provided in Section 7.

2 Related Work

Dimensional data modeling is one of the foundational techniques of modern
data warehousing [9]. It has been extensively applied to a wide range of do-
mains involving data analysis and decision support, due to its inherent ability
to structure data for quick access and summary [10,11,12]. View materializa-
tion is a common methodology used on top of these dimensional data schemes
for speeding up query execution. The associated overhead of implementing
this methodology involves computational resources for creating and maintain-
ing the views, and additional storage capacity for persisting them. In this
sense, finding the sweet spot between the benefits and costs of this method is
regarded by the research community as the view selection problem.

Extensive research has been conducted around the materialized view se-
lection problem, as evidenced in several systematic reviews on the topic by
[13], [14], and [15] to mention some of them. The approaches surveyed in these
works consist in general of two main steps:

1. Find a set of candidate views for materialization based on metrics such
as query execution frequency, query access costs, and base-relation update
frequencies.

2. Create a set of views selected out of the set of candidate views under
certain resource constraints such as view maintenance costs and storage
space limitations.

The review elaborated by [14] groups existing approaches in three main
categories: (i) heuristic approaches, (ii) randomized algorithmic approaches,
and (iii) data mining approaches.

Heuristic approaches uses multidimensional lattice representations [16,17],
AND-OR graphs [18], or Multiple View Processing Plan (MVPP) graphs [19,
20] for selecting views for materialization. Issues regarding the exponential
growth of the lattice structure when the number of dimensions increases, and
the expensive process of graph generation for large and complex query work-
loads, greatly impact the scalability of these approaches and their actual im-
plementation in consequence [21,14].

The solution space of the view selection problem grows exponentially with
the number of dimensions of the data, turning this into a NP-Hard problem.
Randomized algorithmic approaches [22,23,24,25,26,27,28] emerged as an at-
tempt to provide approximate optimal solutions to this problem, by using

4 L. Ordonez-Ante et al.

techniques such as simulated annealing (SA), evolutionary algorithms (EA)
and particle swarm optimization (PSO). However, since these approaches use
multidimensional lattice representations, MVPP and AND-OR graphs as input
data structures, they suffer the same scalability issues earlier seen in heuristic
approaches [14].

On the other hand, data mining approaches are mainly workload-driven:
candidate materialized views are selected and created based on the syntac-
tic analysis of query sets representative of data warehouse usage [21,29,30].
Data-mining based solutions work with much simpler input data structures
called representative attribute matrices, generated out of query workloads.
These structures then configure a clustering context out of which candidate
view definitions are derived. Aouiche et al. [21,29] propose the KEROUAC
method, which addresses view selection as the combinatorial problem of find-
ing the optimal partition of a set of objects (i.e. queries), according to a met-
ric of clustering quality called New Condorcet criterion (NCC) [31,32]. In
KEROUAC clustering is conducted through an iterative procedure similar to
the one employed for building univariate decision trees which typically run in
O(dMNlogN) time [33] —with N being the number of objects, M the number
of attributes, and d the number of nodes (i.e. clusters) in the tree—, and addi-
tionally involves the computation of the NCC metric on every iteration of the
clustering process, which adds to the overall complexity of the method. Other
similar data mining approaches for view selection, including the one from [30],
involve identifying frequent accessed information by browsing across several
intermediate and/or historical results, which is deemed to be a very costly
and unscalable process [14].

In this sense, this paper delves further into the approach introduced by
Ordonez et al. [7], particularly by elaborating on an automatic mechanism
for materialized view selection and creation. The mechanism presented in the
following sections relies also on syntactic analysis of query workloads issued
against a dimensionally modeled data collection. This mechanism uses a rep-
resentative attribute matrix as input data structure, assembled as a collection
of feature vectors encoding all the clauses of each individual query in the work-
load at hand. With this input, a strategy for selecting a limited set of candidate
materializable views is implemented, comprising the use of hierarchical clus-
tering along with a custom query distance function, and the estimation of a
materializable score on the resulting clustering configuration.

It is noteworthy that the approach in [7] was concerned with defining a
data transformation framework on a conceptual level, while the mechanism
discussed herein addresses an actual realization of such framework, tackling
the problem of materialized view selection on large data collections. Likewise,
the approach introduced by Vanhove et al. [8] —that served as inspiration for
the framework proposed in [7]— is not particularly concerned with reducing
query latency, but with enabling live data migration between different data
storage technologies, irrespective of the query-workload. In this sense, the con-
tribution of the proposed mechanism lies in three key features: (i) a vector
representation that encodes not only the query-attribute usage, but also the

A Workload-driven Approach for View Selection in Large Dimensional Datasets 5

basic structure of analytical queries, enabling a more precise and also regular
representation of the query set, (ii) a measure of query distance tightly suited
to the structure of the formulated feature vector representation providing a
more accurate method for estimating query relatedness, instead of plain Ham-
ming distance used in existing approaches, and (iii) a scalable procedure for
candidate view generation that relies on a measure of cluster consistency, which
in turn uses the above-mentioned query dissimilarity metric to unambiguously
identify materializable groups of related queries.

3 Dynamic Read-Optimization Framework

3.1 Iterative data transformation

The view selection mechanism this paper presents is framed within the dy-
namic transformation framework introduced in a previous work [7], which aims
at incrementally optimize the schema of a dimensionally modeled dataset to
speed up query execution. Figure 1 presents an overview of the architecture
of the mentioned framework, which operates by running an iterative process
described in detail in [7].

Fig. 1 Dynamic data transformation for read-optimization: architecture overview

During the first iteration of such process queries are handled by a base
dataset complying a star dimensional schema (Dsrc), as their performance
information is collected by the query performance monitor. This information
is then used by the schema optimization module to classify incoming queries
according to the read-optimization method they benefit the most, and to pre-
scribe a schema migration specification defining a number of actions to be

6 L. Ordonez-Ante et al.

applied to a snapshot of Dsrc, to ultimately generate a read-optimized version
of said dataset (Dtrg in Fig. 1).

In subsequent iterations, the just generated Dtrg becomes the new Dsrc

and the process described for the first iteration is applied, except that this
time incoming queries first have to undergo a translation procedure (speed
layer in Fig. 1) that adjusts the query statements to the new read-optimized
schema. This way client applications can issue queries to Dtrg as if they were
querying the original Dsrc.

3.2 Materialized view selection

The framework proposed in [7] contemplates two categories of methods for
read-optimization: (1) redundant structures: view materialization and index-
ing, and (2) non-redundant structures: table partitioning (horizontal and ver-
tical). Redundant structures involve an overhead in both storage and compu-
tation, while methods from the second category imply reshaping the dataset
schema, and rearranging the original information without incurring in any stor-
age overhead. However, non-redundant structure methods are mostly intended
for aiding the maintenance of large datasets (e.g. loading and removing vast
amounts of data), rather than improving query performance by themselves.

These methods are not competing nor mutually exclusive. Conversely, ap-
proaches such as the one presented by [34] promote the combination of redun-
dant and non-redundant structures to attain a better performance for a given
query workload. This paper deals specifically with the design and realization
of a mechanism for materialized view selection, as a first step towards the im-
plementation of the data transformation framework depicted earlier (See Fig.
1). Before addressing an overview of the proposed approach, the view selection
problem is defined next.

Definition 1 View selection problem. Based on the definition by [35]: Let
R be the set of base relations, S the available storage space, Q a workload
on R, L the function for estimating the cost of query processing. The view
selection problem is to find the set of views V (view configuration) over R
whose total size is at most S and that minimizes L(R,V,Q)

In the context of the view selection approach proposed herein, some as-
sumptions are made for the system to identify and materialize candidate views:

1. The source data collection (Dsrc) is temporary immutable. This implies
dealing with insert and update operations is out of the scope of the mech-
anism presented herein.

2. The query processor provides statistical information regarding Dsrc, such
as the size (row count) of each of the base tables composing the schema of
the dataset, as well as the cardinality of the attributes that make up the
these relations.

A Workload-driven Approach for View Selection in Large Dimensional Datasets 7

3. Latency is favored over view storage cost. This means that the decision on
materializing candidate views is driven not by storage restrictions, but by
the gain in query latency.

In terms of the definition 1, given a dimensionally modeled dataset R, and
a workloadQ, the view selection mechanism starts by translating the queries in
Q into feature vectors. In contrast to similar query representation techniques
[21], the method proposed in this work accounts not only for query-attribute
usage, but also for query structure by defining a number of regions/segments
representative of each of the clauses of a Select-Project-Join (SPJ) query, i.e.
aggregate operation, projection, join predicates and range predicates. This
way, the devised query representation provides a more precise specification of
the query statements in Q. A detailed description of this query representation
is provided in section 4.1.

The collection of feature vectors of Q configures a clustering context C.
This context is then fed to the read optimizer component (see Fig. 1) which
implements a clustering algorithm able to identify groups of related queries
based on a similarity score computed via a custom query distance function,
described in detail in Section 4.2.

Upon running the clustering job, the resulting clustering configuration K
comprises several groups of queries the algorithm deems to be similar. The
idea behind building this clustering configuration is to be able to deduce view
definitions covering the queries arranged under each cluster. This way, every
cluster ci ∈ K would have an associated view Vi ∈ V (V: set of candidate
views), enabled to answer the queries in ci. Of course it is not feasible to
materialize the full set of views in V. Consider for instance the (unlikely but
possible) case in whichQ is a collection of orthogonal queries. In such situation,
there would be as many clusters in K as queries in Q, and in consequence one
candidate view per query to be materialized, which storage-wise is not efficient
at all. Now considering a more practical case, the clustering algorithm might
come up with spurious clusters, i.e. groups of queries that are actually not
that related. To identify those spurious clusters and setting them apart from
those clusters that are worth materializing, a materializable score is defined,
taking into account a measure of cluster consistency and the cluster size |ci|.
Further details on this score and the clustering procedure are provided later
in section 4.3.

Based on the results of the materializable score computed on the clustering
configuration K, a subset of the candidate views in V, Vmat, is prescribed to
be materialized by defining a schema migration specification, which is issued
and executed against the source dataset (Dsrc). With the materialized views
in place, the translation of the new data-retrieval queries is performed in the
speed layer (See Fig. 1). Clearly, such translation procedure involves a certain
overhead, however, according to the experimental results reported by [8], the
average translation time does not exceed 100 milliseconds, which is negligible
when contrasted with the query execution time on the original data collection.
Finally, the translated queries run against the matching materialized views,

8 L. Ordonez-Ante et al.

being answered in a fraction of the time it would take to process the original
queries on the base dataset.

4 Syntactic analysis of query statements for view selection

Since the devised view selection mechanism aims at lowering the response time
of data access operations, only Select-Project-Join (SPJ) queries are consid-
ered in this analysis, particularly those containing aggregates. Aggregate-SPJ
queries are one of the foundational constructs of OLAP operations. They al-
low for summarization returning result sets based on multiple rows grouped
together under certain criteria (column projection and range predicates). In
general, these aggregate queries are computationally expensive since they re-
quire scanning several records in the data collection, hence the use of materi-
alized views for speeding up these queries.

In this research the widely-known Star Schema Benchmark (SSB) [36] was
adopted as a baseline schema and dataset. The SSB, defines a collection of base
relations along with a set of queries typically used in data warehousing. Figure
2 shows the entity-relationship model of SSB, featuring Lineorder as the table
of facts, and Customer, DWDate, Part, and Supplier being the dimensions
describing the facts.

Fig. 2 The Star Schema Benchmark (SSB) data model

All statements in the SSB query set conform to the structure in listing 1.

A Workload-driven Approach for View Selection in Large Dimensional Datasets 9

Listing 1 SSB query structure

SELECT select_list

FROM table_expression

[WHERE search_conditions]

[[GROUP BY column_list]

[ORDER BY column_list]]

The syntactic analysis this work thrives on, starts by mining the informa-
tion contained in the select list and search conditions clauses, encoding
these values in a feature vector representation that enables further query pro-
cessing.

4.1 Query representation

The procedure for obtaining a text-mining-friendly representation of the queries
takes each one of the SELECT statements from a workload Q and extracts the
aggregate (aggq) and projection (projq) elements, and join (joinq) and range
(rngeq) predicates, resulting in the following tuple:

q = (aggrq, projq, joinq, rngeq) (1)

The tuple above is the high-level vector representation of the queries from
Q. Consider for example the following SELECT statement:

SELECT SUM(lo_revenue), d_year , p_category

FROM lineorder , dwdate , part

WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND d_year > 2010

GROUP BY d_year , p_category

For the query above:

aggrq = [SUM, lo revenue]
projq = [d year, p category]
joinq = [d datekey, p partkey]
rngeq = [d year]

Each element of the above high-level vector representation gets mapped to a
vector using a binary encoding function, as described below.

Definition 2 Binary mapping function . Let R be a relation defined as a
set of m attributes (a1, a2, ..., am) —with am being the primary key of R—,
and given r an arbitrary set of attributes, the binary mapping of r according
to R, denoted by bmR(r), is defined as follows:

bmR(r) = {bi} , 1 ≤ i ≤ m

bi =

{
1, if ai ∈ r

0, otherwise

(2)

10 L. Ordonez-Ante et al.

Using the mapping function above, the vector representation of each one of
the query elements in Eq.1 (designated henceforth as segments), for a dimen-
sional schema comprising one fact table and N dimension tables, is defined as
follows:

aggrq = [aggOpCode, bmFact(aggrq)]
projq = [bmFact(projq), bmDim1(projq), bmDim2(projq), ..., bmDimN(projq)]
joinq = [bmFact(joinq), bmDim1(joinq), bmDim2(joinq), ..., bmDimN(joinq)]
rngeq = [bmFact(rngeq), bmDim1(rngeq), bmDim2(rngeq), ..., bmDimN(rngeq)]

where aggOpCode designates the aggregate operation using one-hot encoding,
namely, COUNT: 00001, SUM: 00010, AVG: 00100, MAX: 01000, MIN: 10000.

A complete feature vector q representing a query q ∈ Q is set by putting
together the above-mentioned segments, that is:

q = [aggrq,projq, joinq, rngeq]

Accordingly, considering the SELECT statement in the example —issued
against the SSB (see Fig. 2)— a complete feature vector instance is shown be-
low (with Dim1=Customer, Dim2=DWDate, Dim3=Part, and Dim4=Supplier):

q = [[10, 1000] , [0, 0, 10000, 1000, 0] , [101000, 0, 1, 1, 0] , [0, 0, 10000, 0, 0]]

4.2 Query dissimilarity estimation

The collection of feature vectors representing the queries from Q are arranged
as a representative attribute matrix, configuring a clustering context C. To be
able to identify groupings of related queries in such context, a measure of dis-
similarity between observations (vectors) and sets of observations is required.
In this sense, a distance function is defined in which similarity between two
queries is determined to be proportional to the number of attributes they
share in a per-segment (aggregation, projection, join and range predicates)
and per-relation (fact and dimensions) basis.

Definition 3 Segment Distance. Let xp and xq be two segments of length
N belonging to two distinct query vectors p and q from the clustering context
C. Distance between xp and xq (denoted as sgmtDst(xp,xq)) is defined as:

sgmtDst(xp,xq) =
1

N ′

N∑
i

J(xpi
,xqi

) 3 (xpi
,xqi

) 6= (0, 0) (3)

where,

– J(xpi
,xqi

) is the Jaccard-Needham distance estimated between the i -th
elements of xp and xq,

– N ′ is the number of pairs from xp and xq such that (xpi
,xqi

) 6= (0, 0)

A Workload-driven Approach for View Selection in Large Dimensional Datasets 11

This way, segment distance is defined as the average Jaccard-Needham dis-
similarity computed between pairs of segment elements corresponding to those
dimensions with at least one attribute being queried (i.e. xpi

6= 0 ∨ xqi
6= 0).

The Jaccard-Needham distance is a widely-used method for estimating dis-
similarity between sets and binary sequences. Unlike similar measurements
such as the Simple Matching coefficient and the Rogers-Tanimoto distance,
Jaccard-Needham does not count negative co-ocurrences (or mutual absences),
which means that null attribute pairs (0, 0) are not rated as matches in
the distance estimation. This, in addition to the symmetry of the measure
(J(a, b) = J(b, a)) and its straightforward computation, makes the Jaccard-
Needham distance a suitable method for estimating the dissimilarity between
the query segments.

Definition 4 Query Distance. Let p and q be two vectors representing
queries from the clustering context C. Distance between p and q (denoted as
qDst(p,q)) is defined as:

qDst(p,q) = waggr ∗ sgmtDst(aggrp,aggrq) + wproj ∗ sgmtDst(projp,projq)

+wjoin ∗ sgmtDst(joinp, joinq) + wrnge ∗ sgmtDst(rngep, rngeq)

(4)

where waggr, wproj , wjoin and wrnge are arbitrary weights that add up to one
(1.0), and condition the influence of each vector segment on the overall dissim-
iliarity measurement. These weights were estimated when tuning the clustering
method the proposed view selection mechanism relies on, by binding their val-
ues to the performance of the obtained configuration of clusters estimated in
terms of the F-score and the Fowlkes-Mallows index (FMI).

4.3 Query clustering and View materialization

The view selection approach documented herein relies on hierarchical cluster-
ing [37] for deriving groupings of similar queries. In contrast to other well-
known clustering methods such as K-Means or K-medoids, hierarchical clus-
tering analysis does not require to provide the number of clusters upfront.
Instead, it generates a hierarchical representation of the entire clustering con-
text in which observations and groups of observations are stacked together
from lower to higher levels, according to a distance measure based on the
pairwise dissimilarities among the observations. This way, the individual ob-
servations lie at the lowest level of the hierarchy as singleton clusters, while
at the top level there is only one cluster holding all the observations. As an
illustrative example, consider the dendrogram in Fig. 3 representing the clus-
tering configuration obtained by applying hierarchical clustering on a workload
comprising 50 queries.

There are two basic ways to perform hierarchical clustering: through an
agglomerative procedure (i.e. starting at the bottom and recursively merging

12 L. Ordonez-Ante et al.

30113747 3 332721362543 4 46 5 193942 0 23 1 31 8 2235454912241626284110293817 2 14153448 7 20 9 13 6 44183240

Query index

0.0

0.2

0.4

0.6

0.8

Q
u
e
ry
 d
is
ta
n
ce
 (
q
D
is
t)

0.887

SSB Queries Dendrogram

Fig. 3 Dendrogram resulting from applying hierarchical clustering analysis on a 50-query
workload. Each different color indicates a group of similar queries.

pairs of similar clusters into a single cluster, while moving up the hierarchy),
or by a divisive procedure (i.e. starting at the top of the hierarchy with all
observations in one cluster, and recursively partitioning it while moving down
the hierarchy). Agglomerative clustering is far more extensively used than
its divisive counterpart, hence most of the hierarchical clustering algorithms
available fall into this category of methods. In divisive procedures, all the
possible partitions of the clustering context are considered in the first step.
Since the number of combinations for a collection of N observations is 2N−1−
1, it is impractical to exhaustively implement these methods and heuristic
approximations are used instead [38]. This is why agglomerative clustering was
favored over divisive clustering, for analyzing the vectors in the representative
attribute matrix of Q.

In order to apply hierarchical agglomerative clustering analysis on a clus-
tering context C (representative attribute matrix of Q), it is required to specify
a dissimilarity metric for measuring the distance between pairs of query vec-
tors, and a linkage criterion which estimates the dissimilarity among groups
of queries as a function of the pairwise distance computed between queries
belonging to those groups. Selection of the specific technique to use as linkage
criterion was made on the basis of the characteristics of the proposed fea-
ture vector representation, and results of preliminary parameter tuning tests
(mentioned at the end of section 4.2). In consequence—given that the query
vectors derived from Q do not lie on the Euclidean space—methods such as
centroid, median, and Ward’s linkage [39] were ruled out. Then, single link-
age, complete linkage and Weighted Pair Group Method with Arithmetic Mean
(WPGMA) were considered, resulting in the selection of WPGMA, since the
former two methods tended to underestimate (single linkage) or overestimate
(complete linkage) the dissimilarity between query groupings, according to the
mentioned tests. In this way, along with WPGMA, the function defined in the
previous section, qDst, serves as dissimilarity metric in this case. Under this
set-up, the clustering procedure (detailed in algorithm 1) starts by assigning

A Workload-driven Approach for View Selection in Large Dimensional Datasets 13

each query to its own cluster. Then, the pairwise dissimilarity matrix between
such singleton clusters, D, is computed and an empty matrix (L) specifying
the resulting dendrogram is initialized. From D, the two most similar (nearest)
clusters are merged into one, and appended to L along with the distance be-
tween them (see line 6 in algorithm 1). Then, the pairwise dissimilarity matrix
gets updated using the WPGMA method for computing the distance between
the newly formed cluster and the rest of the currently existing clusters (eq. 5):

D[(a ∪ b),x] =
qDst(a,x) + qDst(b,x)

2
,

(a,b and x being clusters)
(5)

This procedure is then repeated until there is only one cluster left. Finally,
both the clustering configuration (K) and the dendrogram matrix (L) are
returned.

Algorithm 1 WPGMA clustering procedure
1: K ← C; C = {q0,q1, . . . ,qN} . Initializing clusters (singleton clusters)
2: D← qDst(qi,qj) for all qi,qj ∈ K, i 6= j . Pairwise dissimilarity matrix
3: L← [] . Output matrix
4: while |K| > 1 do
5: (a,b)← argmin(D) . Get the nearest clusters
6: append [a,b,D [a,b]] to L
7: remove a and b from K
8: create new cluster k← a ∪ b . Merge a and b into one cluster

9: update D: D [k,x] = D [x,k] =
qDst(a,x)+qDst(b,x)

2
for all x ∈ K

10: K ← K ∪ k
11: end while
12: return K,L . L: WPGMA dendrogram: ((N − 1)× 3)-matrix

The rationale behind building this clustering configuration is to deduce
view definitions containing the queries grouped under each cluster, so that for
each cluster ci ∈ K there exists a view Vi ∈ V able to answer the queries in
ci. However, as stated earlier, to avoid further processing of clusters grouping
queries that are not closely related (i.e. spurious clusters), a score was defined
indicating to what extent it is worth to materialize the view derived from a
particular cluster.

Definition 5 Materializable cluster. A cluster c from a clustering config-
uration K is said to be materializable if the following conditions are met:

1. Queries in c are highly similar to each other.
2. Queries in c are clearly separated (highly dissimilar) from queries in other

clusters.
3. c covers as many queries as possible. In other words, |c| is large enough in

proportion to the size of the workload (|Q|)

14 L. Ordonez-Ante et al.

For a cluster to meet the first two conditions it should be consistent, while
the third condition prevents singleton and small clusters from being further
processed. Based on the above definition, the materializable score of a cluster
(mat(c) in eq. 6) is computed as the product of two sigmoid functions: one
on the per-cluster silhouette score (S) [40]—defined below in eq. 7—and the
other on the per-cluster proportions (P).

mat(c) =
(1

1 + e−k(S(c)−s0)

)(1

1 + e−k(P (c)−p0)

)
(6)

with:

S(c) =
1

|c|
∑
qi∈c

b(qi)− a(qi)

max {a(qi), b(qi)}
, P (c) =

|c|
|Q| (7)

where,

– k is a factor that controls the steepness of both of the sigmoid functions,
– s0 and p0 are the midpoints of the silhouette and cluster-proportion sig-

moids respectively,
– a(qi) is the average distance between qi and all queries within the same

cluster,
– b(qi) lowest average distance of qi to all queries in any other clusters.

By setting a fixed threshold on this score (S ≥ 0.5 by default) it is possi-
ble to unambiguously set the spurious clusters apart from those whose corre-
sponding views are worth materializing. The next step is deriving view defi-
nitions covering the queries arranged under each of the materializable clusters
(Kmat ⊆ K), this is to say:

∀ci ∈ Kmat,∃Vi|∀q ∈ ci,q ⊆ Vi

Algorithm 2 below details the procedure conducted to derive the views Vi

meeting this containment condition on each of the materializable clusters. In
this procedure, the SPJ-query clauses (aggregate, projection, join predicates,
and group-by) of the resulting views are defined in terms of the union of the
corresponding attributes from each query in the cluster.

Algorithm 2 Procedure for deriving view definitions
1: Let c be a cluster in Kmat

2: V ← [aggrV , projV , joinV , groupByV] . Output view definition
3: for each query q in c do
4: aggrV ← aggrV ∪ aggrq
5: projV ← projV ∪ projq ∪ rngeq
6: joinV ← joinV ∪ joinq

7: groupByV ← groupByV ∪ projq ∪ rngeq
8: end for
9: return V

A Workload-driven Approach for View Selection in Large Dimensional Datasets 15

It is worth noting that view definitions are generated without range pred-
icates. Instead, the attributes used in this query clause are pushed to the
projection and group-by clauses of the view definition. In this way, the result-
ing materialized views are able to answer not only the queries grouped under
each cluster, but also unseen queries with arbitrary range predicates on the
attributes listed in the projection clause of the view definition1. Additionally,
thanks to the iterative nature of the underlying data transformation frame-
work, further optimization of the derived views is possible. Later in this paper
(Section 6.3) a view maintenance strategy is discussed which leverages on the
continuous data transformation process described back in section 3.

To recap, this section developed a thorough description of the syntactic
analysis of query workloads that makes up the view selection mechanism pro-
posed here. It started by specifying the procedure for obtaining a structured
representation of the queries in the form of a feature vector and a representa-
tive attribute matrix. Then, a custom query dissimilarity function was defined,
tailored specifically to the structure and values of said feature vectors. Finally,
a query clustering algorithm based on the pairwise dissimilarities between the
analyzed queries was addressed, detailing as well the procedure for deriving
materialized view definitions out of the obtained clustering configuration.

5 Proof-of-concept Implementation: Star Schema Benchmark
(SSB) and workload generation

Fig. 4 Proof-of-concept implementation of the proposed view selection mechanism.

A bottom-up approach was adopted to test the principles, assumptions and
procedures governing the view selection mechanism detailed in the previous
sections. In this way, starting from a set of predefined view definitions, the
effectiveness of the proposed mechanism is estimated in terms of its ability

1 Although this only applies for queries with distributive aggregate functions, i.e. SUM,
COUNT, MIN, and MAX.

16 L. Ordonez-Ante et al.

for identifying the same set of views and reconstructing their definitions, upon
analyzing a query workload generated from query templates fitting the original
set of views (see Figure 4).

As stated back in section 4, this research leverages on the Star Schema
Benchmark (SSB) as baseline schema and dataset, and therefore both the
predefined views and query templates, as well as the query generator module
were designed and built so they conform to the data model the SSB embodies.

The SSB comprises a dimensional data model (four dimensions, one fact
table), an extensible dataset (size depending on a scaling factor—SF), and a
set of queries typical for data warehouse applications arranged in four cate-
gories/families designated as Query Flights (a detailed definition of the SSB
is available online [36]).

Thirteen Select-Project-Join query statements in total compose the full
query set of the SSB. For the proof-of-concept that is being described, three
view definitions were derived based on the original SSB query set, and from
each view definition, four query templates were prepared. Additionally, one
template for each one of the 13 canonical SSB queries were also composed.
With this set of 25 templates as input, a module that generates random in-
stances of runnable queries enabled the creation of query workloads of arbitrary
size. Listings below present the definitions of each one of the mentioned views.

Listing 2 Definition of View A

SELECT sum(lo_revenue), p_brand1 , c_region ,

s_region , d_year

FROM lineorder , customer , dwdate , part , supplier

WHERE lo_custkey = c_custkey

AND lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

GROUP BY p_brand1 , c_region , s_region , d_year

ORDER BY p_brand1 , c_region , s_region , d_year

Listing 3 Definition of View B

SELECT sum(lo_ordtotalprice), p_category , c_city ,

s_city , d_yearmonthnum

FROM lineorder , customer , dwdate , part , supplier

WHERE lo_custkey = c_custkey

AND lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

GROUP BY p_category , c_city , s_city , d_yearmonthnum

ORDER BY p_category , c_city , s_city , d_yearmonthnum

Listing 4 Definition of View C

SELECT sum(lo_supplycost - lo_tax), c_region , p_mfgr ,

s_region , c_nation , d_year

FROM lineorder , customer , dwdate , part , supplier

A Workload-driven Approach for View Selection in Large Dimensional Datasets 17

WHERE lo_custkey = c_custkey

AND lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

GROUP BY c_region , p_mfgr , s_region , c_nation , d_year

ORDER BY c_region , p_mfgr , s_region , c_nation , d_year

6 Experimental Evaluation

6.1 Experimental setup

Figure 5 depicts the arrangement of components and technologies used for con-
ducting the experimental evaluation of the proposed view selection approach.
This evaluation comprised three main stages:

Fig. 5 Experiment set-up

(1) Running the view selection implementation on a 400-query workload to the
point that it materializes views A, B, and C (defined earlier in section 5),
while keeping track of the runtime involved in the procedures of query clus-
tering, view scoring (using the materializable score defined in section 4.3),
view definition, view registering and view creation (i.e. materialization).

(2) Once the views are materialized, run a second 400-query workload against
both the base SSB dataset and the materialized views. In doing the lat-
ter, queries first pass through a translation component that gathers the
details of the available materialized views from the view registry (stored in
a MongoBD2 document database), and adapts the incoming query state-
ments accordingly.

2 Available at mongodb.com

https://www.mongodb.com/download-center

18 L. Ordonez-Ante et al.

(3) Running the two previous stages on workloads of different sizes and query
distributions.

For all the stages, the performance information collected from running
the tests were aggregated and visualized using Jupyter notebook3. During this
evaluation, workloads of multiple sizes were run against two different dimen-
sions of the SSB dataset: 48 million rows (SF = 8), and 192 million rows
(SF = 32). These datasets were stored into PostgreSQL4 databases deployed
on two VMWare R© virtual machines with the following specifications: Intel R©
Xeon R© E5645 @2.40GHz CPU, 20GB RAM, 500GB hard disk.

6.2 Results

6.2.1 View selection overhead

Running the view selection implementation on a validation workload (400
queries) and a SSB dataset with SF = 32 took around 4200 seconds in total
(i.e. 1 hour and 10 minutes). While this might be deemed as a considerable
amount of time, it is worth mentioning that the actual analysis of the workload
takes just a small fraction of it. As mentioned before, the view selection process
involves the execution of a sequence of steps: (1) query clustering, (2) view (or
cluster) scoring, (3) view definition, (4) view registering and (5) view creation.
Out of these only the first four steps have to do with the syntactical analysis of
query sets described throughout this paper, while the last one (view creation)
refers to the actual materialization of the derived views in the data store.

10−2 10−1 100 101 102 103
Time (s)

View scoring

View definition

View registering

Clustering

View creation

St
ep Stage

1st Stage
2nd Stage

Fig. 6 Materialized view selection runtime per stage (SSB SF = 32, |Q| = 400)

Figure 6 portrays the substantial difference between these execution times
by defining two stages: the first one aggregates the initial four steps, and the
second one comprises the view creation step only. Note how the steps from
stage one amounts to less than 10 seconds, adding up to just the 0.23% of the

3 Available at jupyter.org
4 PostgreSQL v9.5.8 working with the default configuration (postgresql.org)

http://jupyter.org/
https://www.postgresql.org/

A Workload-driven Approach for View Selection in Large Dimensional Datasets 19

total execution time, while the remaining 99.77% is the time it takes for the
data store (PostgresSQL in this case) to build and persist the resulting views.

While in classical data-mining methods for view selection query sets are
mapped into a query vs attribute matrix (where statements are represented as
flat binary sequences), the method proposed in this work accounts not only for
query-attribute usage, but also for the basic structure of analytical queries (see
query segments in section 4.1). The KEROUAC method by Aouiche et al.[21,
29] discussed back in section 2, adopts this classical approach and additionally
relies on a clustering technique that can be regarded as divisive clustering, in
the sense that it proceeds by first placing the whole collection of queries into
a single cluster, and then iteratively partitioning it until convergence to a sta-
ble clustering configuration is achieved. Given that the mechanism proposed
herein adopts a agglomerative clustering technique, it was considered relevant
to contrast the performance of both methods. To this end, authors of KER-
OUAC were contacted to provide missing information required to replicate
their approach. As a result, Figure 7 shows the variation of the overhead time
of the proposed method w.r.t. the workload size, and compares it to that from
KEROUAC. While the approach proposed herein features a quadratic rate of
growth—since the implementation of the WPGMA method used in the clus-
tering analysis relies on the nearest-neighbors chain algorithm which is known
to run in O(N2) time [39]—it still outperforms similar methods running under
the same conditions, as evidenced in Figure 7.

200 400 600 800 1000
Queries

0

20

40

60

80

100

120

140

Ov
er
he
ad
 ti
m
e
(s
)

Approach
WPGMA+QuerySegments
KEROUAC

Fig. 7 View selection overhead vs Workload size.

When it comes to storage cost, view size varies depending on the cardinality
of the fields used in the group-by clause of their definition [21], and whether
or not there are hierarchical relations between such attributes (e.g. the one
between c region, c nation and c city). Figure 8a shows the amount of
records per materialized view, in contrast to the number of rows in the SSB

20 L. Ordonez-Ante et al.

base schema. While the amount of records of views A (175.000) and C (4.375)
is fairly negligible in comparison with the base schema (192.000.754 records),
view B amounts to almost half the size of the base dataset. Nonetheless, in
terms of disk space usage the proportion between views and base schema is
more favorable, as evidenced in Figure 8b. This way, while the amount of
records stored into the three derived views add up to 50% of the number of
rows in the base schema, the disk space used by said views is only 13% the
size of the base data collection.

Fig. 8 Materialized views size: (a) millions of records. (b) disk space. — (SSB SF = 32).

6.2.2 View selection performance

With the selected views already materialized, a 400-query workload was run
against the base SSB dataset (SF = 32) to get a query latency baseline.
Out of those 400 queries, 300 were covered by the three available materialized
views (100 queries per view), and the remaining ones were canonical SSB-
based queries. Once the latency baseline was built, the same workload was
issued this time with the query translation module in place, so that incoming
queries matching any of the definitions of the available materialized views get
rewritten and issued against them. Figure 9 illustrates the contrast between
the baseline query latency (baseline time) and the latency when queries
run against the materialized views (runtime). For queries that benefit from
views A and C the gain in query latency is remarkably substantial, going from
hundreds of seconds in the baseline to sub-second runtime in the views. On
the other hand, queries running on the view B present an important—though
less striking—reduction in latency. In this case, the size of this view, which in
terms of number of records is comparable to the base dataset, prevents queries
from running under interactive latency constraints.

A Workload-driven Approach for View Selection in Large Dimensional Datasets 21

baseline_time runtime

10−3

10−2

10−1

100

101

102

Qu
er
y
ru
nt
im

e
(s
)

View A

baseline_time runtime

View B

baseline_time runtime

View C

Fig. 9 Query runtime per view: Baseline runtime vs. View runtime (SSB SF = 32, |Q| =
400)

Table 1 summarizes the results obtained from running the above test, in-
cluding the reduction in latency achieved through each one of the views, rela-
tive to the average baseline query runtime.

Table 1 Query latency reduction per view (SSB SF = 32, |Q| = 400)

Baseline time
(s)

Translation
time (s)

View runtime
(s)

% Latency
reduction

View A 251.04±2.85 (3.54±0.11)×10−3 (36.89±0.49)×10−3 99.98
View B 253.53±3.53 (10.7±0.45)×10−3 51.83±3.22 79.55
View C 256.98±4.51 (5.18±0.45)×10−3 (2.86±0.21)×10−3 99.99

6.2.3 Response to workload size

The purpose of this last evaluation was estimating the influence of the view
selection mechanism in the workload execution time (hereafter WET), using
query sets of multiple sizes and different query distributions. As with the previ-
ous tests, each workload was first run against the base SSB dataset (SF = 8),
this time measuring the execution time for the full workload instead of the
average query runtime. Afterwards, each workload was fed to the view selec-
tion implementation, measuring again the WET, as well as the view selection
overhead. Three query distributions were considered for the workloads in this
evaluation: (1) half the queries in the workload are covered by the materialized
views, (2) 75% of the queries in the workload are covered by the materialized
views, and (3) all the queries in the workload are covered by the available ma-
terialized views. Figure 10 presents the results obtained for different workload
sizes and query distributions.

Results displayed in Figure 10 evidence a consistent decrease in the WET as
the amount of queries covered by the materialized views grows: for the 50%-
view-covered workloads the WET was consistently reduced by about 40%,
while the 75%-view-covered and the full-view-covered workloads took 57%
and 75% less time to run respectively. As the results from the previous tests

22 L. Ordonez-Ante et al.

0

2500

5000

7500

10000

12500

15000

17500

20000

0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
 (

s)

Workload size

WET base schema

WET 50% view coverage

WET 75% view coverage

WET 100% view coverage

View selection overhead

Fig. 10 Workload execution time (WET) vs. Workload size (SSB SF = 8)

indicated, the drop in the WET is closely tied to the size of the materialized
views. Under the configuration used for this test, the aggregated size of the
materialized views add up to 85% of the number of records of the base dataset
and 46% of the disk space this last one uses. This way, in order to further reduce
the workload execution time in cases like this, a better compromise between
view’s query coverage and view size has to be achieved. The next section
elaborates on this constraint and outlines a practical strategy to address it,
leveraging on the iterative nature of the dynamic transformation framework
upon which the proposed view selection mechanism was conceived.

6.3 Discussion

The syntactic analysis lying at the core of the mechanism described in this pa-
per, proved an effective method for identifying groups of related queries and
deriving a limited but comprehensive set of materialized views out of them.
The experimental evaluation conducted on a proof-of-concept implementation
of the devised approach reported that, despite the appreciable overhead, the
time it takes for the procedure to run is nearly linear on the number of queries
in the workload. Moreover, most of the overhead in time is due to the materi-
alization of the selected views in the underlying storage technology, while the
time spent in the actual analysis of the workload is relatively negligible.

On the other hand, when examining the effect of using the resulting ma-
terialized views on the query latency and workload execution time, there is
an evident and substantial improvement considering a drop in query latency
ranging from 80% to 99.99%, and a decrease in the WET of 40% to 75%
depending on the view coverage of the workload. However, there are cases
where maximizing the query coverage of the derived views might lead to a
prohibitively large storage overhead critically impacting the relative benefit of
using materialized views. By leveraging on the iterativity inherent to the dy-
namic data transformation framework introduced at the beginning of section

A Workload-driven Approach for View Selection in Large Dimensional Datasets 23

3, it is possible to cope with the stated limitation, considering the following
extra steps:

First iteration, before materializing a selected view:

1. Estimate the maximum size of the view as the product of the cardinalities
of the attributes listed under the group-by clause of its definition.

2. When the estimated size is comparable to the amount of records of the
fact table, partition the view on the attribute with the less cardinality, this
way ending up with a set of size-bounded child views.

Subsequent iterations:

1. In the query translation component, anytime an incoming query matches
a partitioned view rewrite it into several sub-queries targeting each one a
different partition. Then, run such sub-queries concurrently and aggregate
their result sets.

2. Identify hot regions in the available materialized views (i.e. sets of tuples
that get queried the most) leveraging on the continuous monitoring of the
incoming queries.

3. Use horizontal partitioning on the views to set apart the hot regions from
the remaining tuples.

4. Keep track of the hit ratio5 of each materialized view and its corresponding
partitions to eventually dispose of those views/partitions that seldom get
queried.

The above procedures configure a practical maintenance strategy that al-
lows to address the storage overhead constraints and maximize the benefit
of the materialized views the view selection mechanism comes up with. This
strategy is currently under development and its integration to the mechanism
proposed in this paper has been deferred to future work.

7 Conclusions and Future Work

Organizations nowadays face a daunting challenge when trying to make sense
of the massive and ever-growing amount of data generated in their day-to-day
operation. Being able to conduct ad-hoc querying and get visual insights from
such data in an efficient and timely manner is key for business to support
their decisions. In this regard, this paper describes an approach for automat-
ically generating materialized views to speed up data retrieval on dimension-
ally modeled datasets. The proposed approach has been conceived as part
of a framework for dynamic data transformation intended to generate read-
optimized data schemas, and relies on syntactic analysis of query workloads

5 Ratio of the number of queries answered by the view/partition to the total number of
queries in a certain period of time

24 L. Ordonez-Ante et al.

issued against the data collection. The developed method provides a way to es-
timate how similar two queries are, and put together clusters of related queries
based on said estimation. Then, the method is able to tell out of those clusters
which ones are worth materializing—based on consistency and query coverage
criteria—and derive a view definition for each materializable cluster, based on
the queries they group.

The experimental evaluation conducted on a proof-of-concept implemen-
tation was focused on measuring the overhead the proposed view selection
method entails and contrasting it to the relative benefit it brings in return.
Results show that in general such processing overhead pays off in query la-
tency, leading to a drop ranging from 80% to 99.99% at the expense of 13% of
the disk space used by the base dataset for persisting the derived materialized
views. The evaluation also reported a few open challenges of the proposed
approach when it comes to finding an adequate level of query coverage, so
that the storage overhead due to the views does not compromise the ben-
efit of using them. To deal with the declared limitation a preliminary view
maintenance strategy was outlined, resorting to the iterative optimization of
the available views by using horizontal partitioning and keeping track of their
usage patterns over time.

In consequence, upcoming work on this research will extend the current
view selection mechanism with the view maintenance strategy described ear-
lier and evaluate its impact on query performance. Additionally, the dynamic
data transformation framework—that lays the foundations for the approach
proposed in this paper—will be further developed to relax the assumption of
temporary immutability of the base dataset, and also incorporate polyglot per-
sistence (i.e. intelligently scatter data over multiple data store technologies).

Acknowledgements

This work was supported by the Research Foundation Flanders (FWO) un-
der Grant number G059615N - ”Service oriented management of a virtualised
future internet”.

References

1. Marz, N., Warren, J.: Big Data: Principles and best practices of scalable realtime data
systems. Manning Publications Co. (2015)

2. Fernandez, R.C., Pietzuch, P.R., Kreps, J., Narkhede, N., Rao, J., Koshy, J., Lin, D.,
Riccomini, C., Wang, G.: Liquid: Unifying nearline and offline big data integration. In:
CIDR 2015. (2015)

3. Anthony, B., Boudnik, K., Adams, C., Shao, B., Lee, C., Sasaki, K.: In-memory com-
puting in hadoop stack. In: Professional Hadoop R©, pp. 161–182. Wiley Online Library
(2016)

4. Pal, S.: Sql-on-big-data challenges & solutions. In: SQL on Big Data: Technology,
Architecture, and Innovation, pp. 17–33. Apress, Berkeley, CA (2016). DOI 10.1007/
978-1-4842-2247-8 2

A Workload-driven Approach for View Selection in Large Dimensional Datasets 25

5. AMPLab-UC-Berkeley: Amplab big data benchmark (2014). URL https://amplab.

cs.berkeley.edu/benchmark/. Https://amplab.cs.berkeley.edu/benchmark/. Last ac-
cessed: 2017-04-18

6. Ordonez-Ante, L., Vanhove, T., Van Seghbroeck, G., Wauters, T., De Turck, F.: Inter-
active querying and data visualization for abuse detection in social network sites. In:
ICITST 2016, pp. 104–109. IEEE (2016)

7. Ordonez-Ante, L., Vanhove, T., Van Seghbroeck, G., Wauters, T., Volckaert, B.,
De Turck, F.: Dynamic data transformation for low latency querying in big data sys-
tems. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2480–2489
(2017). DOI 10.1109/BigData.2017.8258206

8. Vanhove, T., Sebrechts, M., Van Seghbroeck, G., Wauters, T., Volckaert, B., De Turck,
F.: Data transformation as a means towards dynamic data storage and polyglot per-
sistence. International Journal of Network Management 27(4), e1976 (2017). DOI
10.1002/nem.1976

9. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimen-
sional Modeling, 3rd edn. Wiley Publishing (2013)

10. Park, D., Yu, J., Park, J.S., Kim, M.S.: Netcube: a comprehensive network traffic anal-
ysis model based on multidimensional olap data cube. International Journal of Network
Management 23(2), 101–118 (2013)

11. Ali, O., Crvenkovski, P., Johnson, H.: Using a business intelligence data analytics
solution in healthcare. In: 2016 IEEE 7th Annual Information Technology, Elec-
tronics and Mobile Communication Conference (IEMCON), pp. 1–6 (2016). DOI
10.1109/IEMCON.2016.7746328

12. Scriney, M., O’Connor, M.F., Roantree, M.: Generating cubes from smart city web data.
In: Proceedings of the Australasian Computer Science Week Multiconference, ACSW
’17, pp. 49:1–49:8. ACM, New York, NY, USA (2017). DOI 10.1145/3014812.3014863

13. Nalini, T., Kumaravel, A., Rangarajan, K.: A comparative study analysis of materialized
view for selection cost. World Applied Sciences Journal (WASJ) 20(4), 496–501 (2012)

14. Goswami, R., Bhattacharyya, D.K., Dutta, M., Kalita, J.K.: Approaches and issues in
view selection for materialising in data warehouse. International Journal of Business
Information Systems 21(1), 17–47 (2016). DOI 10.1504/IJBIS.2016.073379

15. Gosain, A., Sachdeva, K.: A systematic review on materialized view selection. In: S.C.
Satapathy, V. Bhateja, S.K. Udgata, P.K. Pattnaik (eds.) Proceedings of the 5th Inter-
national Conference on Frontiers in Intelligent Computing: Theory and Applications,
pp. 663–671. Springer Singapore, Singapore (2017)

16. Nadeau, T.P., Teorey, T.J.: Achieving scalability in olap materialized view selection. In:
Proceedings of the 5th ACM International Workshop on Data Warehousing and OLAP,
DOLAP ’02, pp. 28–34. ACM, New York, NY, USA (2002). DOI 10.1145/583890.583895

17. Serna-Encinas, M.T., Hoyo-Montano, J.A.: Algorithm for selection of materialized
views: based on a costs model. In: International Conference on Current Trends in
Computer Science, 2007. ENC 2007., pp. 18–24. IEEE (2007)

18. Gupta, H., Mumick, I.S.: Selection of views to materialize in a data warehouse. IEEE
Transactions on Knowledge and Data Engineering 17(1), 24–43 (2005)

19. Phuboon-ob, J., Auepanwiriyakul, R.: Two-phase optimization for selecting materialized
views in a data warehouse. International Journal of Computer, Electrical, Automation,
Control and Information Engineering 1(1), 119–123 (2007). URL http://waset.org/

Publications?p=1

20. Azgomi, H., Sohrabi, M.K.: A game theory based framework for materialized view
selection in data warehouses. Engineering Applications of Artificial Intelligence 71,
125–137 (2018). DOI https://doi.org/10.1016/j.engappai.2018.02.018. URL http://

www.sciencedirect.com/science/article/pii/S0952197618300472

21. Aouiche, K., Jouve, P.E., Darmont, J.: Clustering-based materialized view selection
in data warehouses. In: Advances in Databases and Information Systems, pp. 81–95.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

22. Derakhshan, R., Stantic, B., Korn, O., Dehne, F.: Parallel simulated annealing for mate-
rialized view selection in data warehousing environments. In: International Conference
on Algorithms and Architectures for Parallel Processing, pp. 121–132. Springer (2008)

https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
http://waset.org/Publications?p=1
http://waset.org/Publications?p=1
http://www.sciencedirect.com/science/article/pii/S0952197618300472
http://www.sciencedirect.com/science/article/pii/S0952197618300472

26 L. Ordonez-Ante et al.

23. Sun, X., Wang, Z.: An efficient materialized views selection algorithm based on pso. In:
Intelligent Systems and Applications, 2009. ISA 2009. International Workshop on, pp.
1–4. IEEE (2009)

24. Zhang, Q., Sun, X., Wang, Z.: An efficient ma-based materialized views selection al-
gorithm. In: Control, Automation and Systems Engineering, 2009. CASE 2009. IITA
International Conference on, pp. 315–318. IEEE (2009)

25. Goswami, R., Bhattacharyya, D., Dutta, M.: Materialized view selection using evolu-
tionary algorithm for speeding up big data query processing. Journal of Intelligent
Information Systems 49(3), 407–433 (2017)

26. Gosain, A., Sachdeva, K.: Materialized view selection using backtracking search op-
timization algorithm. In: Intelligent Engineering Informatics, pp. 241–251. Springer
(2018)

27. Kumar, T.V., Kumar, A.: Materialized view selection using set based particle swarm
optimization. Int. J. Cogn. Inform. Nat. Intell. 12(3), 18–39 (2018). DOI 10.4018/
IJCINI.2018070102. URL https://doi.org/10.4018/IJCINI.2018070102

28. Prakash, J., Kumar, T.V.: A multi-objective approach for materialized view selection.
International Journal of Operations Research and Information Systems (IJORIS) 10(2),
1–19 (2019)

29. Aouiche, K., Darmont, J.: Data mining-based materialized view and index selection in
data warehouses. Journal of Intelligent Information Systems 33(1), 65–93 (2009)

30. Kumar, T.V.V., Singh, A., Dubey, G.: Mining queries for constructing materialized
views in a data warehouse. In: D.C. Wyld, J. Zizka, D. Nagamalai (eds.) Advances in
Computer Science, Engineering & Applications, pp. 149–159. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2012)

31. Jouve, P., Nicoloyannis, N.: Kerouac: an algorithm for clustering categorical data sets
with practical advantages. In: International Workshop on Data Mining for Actionable
Knowledge (DMAK’2003, in conjunction with PAKDD03), vol. 70 (2003)

32. Jouve, P.E.: Apprentissage non supervisé et extraction de connaissances à partir de
données. Ph.D. thesis, Université Lumière-Lyon 2 (2003)

33. Yıldız, O.T., Dikmen, O.: Parallel univariate decision trees. Pattern Recognition Letters
28(7), 825–832 (2007)

34. Du, J., Glavic, B., Tan, W., Miller, R.J.: Deepsea: Progressive workload-aware parti-
tioning of materialized views in scalable data analytics. In: International Conference on
Extending Database Technology 2017, pp. 198–209. OpenProceedings.org (2017)

35. Chirkova, R., Halevy, A.Y., Suciu, D.: A formal perspective on the view selection prob-
lem. In: 27th International Conference on Very Large Data Bases, vol. 1, pp. 59–68
(2001)

36. O’Neil, P.E., O’Neil, E.J., Chen, X.: The star schema benchmark
(ssb) (2009). URL https://www.cs.umb.edu/~poneil/StarSchemaB.PDF.
Https://www.cs.umb.edu/˜poneil/StarSchemaB.PDF. Last accessed: 2018-11-28

37. Friedman, J., Hastie, T., Tibshirani, R.: Clustering analysis. In: The elements of statis-
tical learning: Data mining, inference and prediction, chap. 14, pp. 501–520. Springer
series in statistics, New York (2009)

38. Sharma, A., López, Y., Tsunoda, T.: Divisive hierarchical maximum likelihood cluster-
ing. BMC bioinformatics 18(16), 546 (2017)

39. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. Computing Re-
search Repository (CoRR) abs/1109.2378 (2011). URL http://arxiv.org/abs/1109.

2378

40. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics 20(1), 53–65 (1987)

Leandro Ordonez-Ante received the M.Sc. degree in Telematics Engineering
from the University of Cauca, Colombia in 2014. He is currently pursuing a
Ph.D. in Computer Sciences within the Internet Technology and Data Science
Lab (IDLab) Research Group at Ghent University - imec, Belgium. His current
research deals with optimal methods for data storing and retrieval in large
distributed data collections for supporting interactive applications.

https://doi.org/10.4018/IJCINI.2018070102
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://arxiv.org/abs/1109.2378
http://arxiv.org/abs/1109.2378

A Workload-driven Approach for View Selection in Large Dimensional Datasets 27

Gregory Van Seghbroeck graduated at Ghent University in 2005. After work-
ing as an IT consultant, he joined the Department of Information Technology
(INTEC) at Ghent University. In January 2007, he received a PhD grant from
IWT to work on theoretical aspects of advanced validation mechanism for dis-
tributed interaction protocols and service choreographies. In 2011 he received
his Ph.D. in Computer Science Engineering and continued to work at Ghent
University as a post-doctoral fellow.

Tim Wauters received the M.Sc. and Ph.D.degrees in electro-technical engi-
neering from Ghent University in 2001 and 2007, respectively. He has been
working as a Postdoctoral Fellow of the F.W.O.-V. with the Department of
Information Technology (INTEC), Ghent University and also as Senior Re-
searcher with imec. His main research interests focus on network and service
architectures for multimedia delivery services. His work has been published in
about 80 scientific publications.

Bruno Volckaert received the Ph.D. degree from Ghent University in 2006.
He is currently a Professor of software engineering with the Department of
Information Technology (INTEC), Ghent University and also a Senior Re-
searcher with imec. He has worked on over 35 national and international re-
search projects. He is author or coauthor of more than 90 articles published
in international journals and conference proceedings.

Filip De Turck leads the Network and Service Management Research Group,
Department of Information Technology, Ghent University–imec, Belgium. He
(co) authored over 450 peer reviewed articles. His research interests include
network and service management and the design of efficient virtualized net-
works. He serves as the Chair for the IEEE Technical Committee on Network
Operations and Management (CNOM) and a TPC for many network and ser-
vice management conferences.

	Introduction
	Related Work
	Dynamic Read-Optimization Framework
	Syntactic analysis of query statements for view selection
	Proof-of-concept Implementation: Star Schema Benchmark (SSB) and workload generation
	Experimental Evaluation
	Conclusions and Future Work

