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Graphical Abstract

Abstract

In recent years, with a widespread of sensors embedded in all kind of

mobile devices, human activity analysis is occurring more often in sev-

eral domains like healthcare monitoring and fitness tracking. This trend

did also enter the equestrian world because monitoring behaviours can

yield important information about the health and welfare of horses.

In this research, a deep learning-based approach for activity detection

of equines is proposed to classify seven activities based on accelerome-

ter data. We propose using Convolutional Neural Networks (CNN) by

which features are extracted automatically by using strong computing

capabilities. Furthermore, we investigate the impact of the sampling

frequency, the time series length and the type of underground on which

the data is gathered on the recognition accuracy and evaluate the model

on three types of experimental datasets that are compiled of labelled ac-

celerometer data gathered from six different subjects performing seven

different activities. Afterwards, a horse-wise cross validation is carried

out to investigate the impact of the subjects themselves on the model

recognition accuracy. Finally, a slightly adjusted model is validated on

different amounts of 50 Hz sensor data.

A 99% accuracy can be reached for detecting seven behaviours of

a seen horse when the sampling rate is 25 Hz and the time interval is

2.1 s. Four behaviours of an unseen horse can be detected with the same

accuracy when the sampling rate is 69 Hz and the time interval is 2.4 s.

Moreover, the accuracy of the model for the three datasets decreased on

average with about 4.75% when the sampling rate was decreased from



200 Hz to 25 Hz and with 5.27% when the time interval was decreased

from 3 s to 0.6 s. In addition, the classification performance of the ac-

tivity ”walk” was not influenced by the type of underground the horse

was performing this movement on and even the model could conclude

from which underground the data was gathered for three out of four

undergrounds with accuracies above 93% at time intervals higher than

1.2 s. This ensures the evaluation of activity patterns in real world

circumstances. The performance and ability of the model to generalise

is validated on 50 Hz data from different horse types, using ten-fold

cross validation, reaching a mean classification accuracy of 97.84% and

96.10% when validated on a lame horse and pony, respectively. More-

over, in this work we show that using data from one sensors is at the

cost of only 0.24% reduction in accuracy (99.42% vs 99.66%).
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1. Introduction

Monitoring behaviour can yield important information about the health

and welfare of horses (van Loon and Van Dierendonck, 2015). Direct

observation of horse behavior is labour-intensive and is mainly based on

intuition derived from previous experiences, which involves subjective

decisions. To solve this kind of issues, different technologies are devel-

oped to detect various parameters such as activity, elevation, heart rate

and so on from which conclusions can be drawn regarding the behaviour

of the horse (Langrock et al., 2012), (Burla et al., 2014), (Bidder et al.,

2014). In particular, wearable accelerometers have been tested for the

determination of gaits by definition of distinct acceleration value ranges

for stand, walk, trot and canter but not yet to detect other behaviours

such as rolling, pawing and flank watching (Burla et al., 2014). In ad-

dition to accelerometers, researchers have suggested the use of various

machine learning tools to classify accelerometer data more accurately.

A disadvantage of the proposed methods is that feature extraction is



still necessary. A convolutional Neural Network (CNN) has the advan-

tage of automatic features extraction by using strong computing capa-

bilities. Deep learning-based classifiers can learn features and achieve

better accuracy. For example, (Zhao et al., 2019) uses the deep CNN

features for ground-based cloud image classification. The results show

that the cloud classification accuracy of CNN improved significantly,

demonstrating the superiority of CNN over hand-engineered features.

Besides high accuracy and good generalisation, one main advantage of

this way of working is that after a deep learning model is designed, it is

trained in an end-to-end fashion, thus completely removing the need of

manual feature engineering (Ignatov, 2018). In recent years, CNNs have

shown excellent performance on classification problems when large-scale

labelled datasets are available (Um et al., 2017). Studies demonstrated

that deep learning models are able to learn and discriminate among hu-

man activities ranging from sitting, walking, climbing upstairs, walking

downstairs and falling, among others but are to the authors’ knowledge

not yet applied for the detection of equine activities (Ravi et al., 2017).

In this work, as a novelty, an experimentally validated CNN is pro-

posed to automatically detect seven distinct activities of equines by

using data from two accelerometers for the first time to the author’s

knowledge. Further novelties include the analysis of sampling rate, time

series length and investigation of the influence of the underground. Also

experimental data for six horses and seven activities wearing two ac-

celerometers has been gathered and annotated.

The rest of the paper is organised as follows. Section 2 deals with

the methodology and the proposed deep learning model. Results of

the experimentally validated model are presented in Section 3. Finally,

conclusions are drawn in Section 4.

2. Materials and method

2.1. Animals and training arena

Measurements were conducted between November 2018 and April 2019

in a horse farm in Zutendaal, Belgium with six adult horses of different

breeds. All details about the subjects can be found in Table 1. This



Subject Breed Height Gender Age State Shoeing
number class at

withers
(cm)

1 Warmblood 172 Mare 7 Healthy Barefoot
2 Warmblood 167 Gelding 11 Healthy Barefoot
3 Warmblood 181 Mare 17 Lame Barefoot
4 Warmblood 168 Mare 19 Healthy Barefoot
5 Friesian 159 Mare 12 Healthy Shoed
6 Pony 116 Gelding 15 Healthy Barefoot

Table 1: Participating horses with breed class, height at withers, gen-
der, age, state and type of shoeing.

variety of horses is suitable for our research since the difference in char-

acteristics will contribute to the generalization of the machine learning

model because accelerometer data patterns will be different for the dif-

ferent subjects. For example, the mean acceleration value per second

during the gaits trot and walk are higher for ponies than for horses

(Burla et al., 2014). Also, lame horses have asymmetrical gait patterns

because they consistently shorten the cranial (forward) phase of stride

(Davidson, 2018). The exercising for data recording is carried out by

the owners or familiar riders at a local training arena with a size of 25

m x 38 m and a track surface of sand mixed with GEOPAT polyflakes.

A minority of the data is gathered on a meadow and a clinker brick

underground.

2.2. Data collection procedure

All six subjects, are wearing two single triaxial Axivity AX3 accelerom-

eters (Axivity Ltd, Newcastle, United Kingdom), one on each front leg,

as depicted in Figure 1. They were exercised in the different gaits walk,

trot and canter for about 15 min each, either ridden or longed. The

gait walk is also measured on a field and hard underground for horse 2.

Horse 2 and 4 performed in addition other activities like rolling, pawing

and flank watching. The orientation of the right accelerometer when

the horse is standing is shown in Figure 1 and the three colored axis

indicate the orientation of the accelerometer axis. This orientation was

respected for all horses since a study (Thompson et al., 2018) revealed

that the highest accuracies for detecting gaits could be reached at this

location using an accelerometer. For successful data capturing the AX3



is securely fastened with the use of VELCRO stick on circles to the ten-

don boot with minimal room for vibration, slip or twist; to preserve that

only the motions of the horse are captured. This is in contrast to many

existing products that focus on easy installation at non-appropriate lo-

cations, at the cost of reduced accuracy. A second accelerometer is

attached in the same way to the left leg. Observations on the activities

(a) Technical illustration (b) Real life attachement

Figure 1: Position and orientation (X, Y, and Z axes) of the right
accelerometer

of the horses were made with video recordings at the same time as data

from the sensors is collected. Table 2 lists the considered activities in

this study with their descriptive definitions and the number of sam-

ples taken. All the data is labelled based on the video recordings using

ELAN since it is difficult to use direct observation in combination with

training of the horse. ELAN is a tool that allows such type of labelling

procedure and is used by animal scientists for the video analysis and

codification of images (Brugman et al., 2004), (Liebal et al., 2013). An-

notations can be made by selecting the length of the segment where the

behaviour is performed and typing the annotation.

2.3. Accelerometer data

Accelerometers fitted to the lateral side of the tendon boot with a size of

23 x 32.5 x 7.6 mm and a weight of 11 g are used, as shown in Figure 1.



Observed Description Samples Subj.
activities
Stand The horse is standing on at least

three legs with no movement to
another place.

92121
(9.61%)

1-6

Walk The horse performs a four beat
gait with its legs following this se-
quence: left hind leg, left front leg,
right hind leg, right front leg, leav-
ing three feet on the ground.

406939
(42.43%)

1-6

Trot The horse performs a two beat
diagonal gait where the diagonal
pairs of legs move

327015
(34.10%)

1-6

forward at the same time with
a moment of suspension between
each beat.

Canter The canter is a three beat gait.
This gait starts with the hind leg
then leads to the front in a rocking
motion. This gait has a period of
suspension after each stride.

110706
(11.54%)

1-6

Roll The horse starts in a lying position
on the side called “lateral recum-
bency” and rotates the body over
its back, alternately from one side
to another, remaining parallel to
the performing surface.

11884
(1.24%)

4

Paw The horse scrapes the ground with
a forelimb.

5948
(0.62%)

4

Flank
watch-
ing

The horse looks at its side or flank. 4462
(0.47%)

2

Table 2: Description of the observed activities with the relative and
absolute number of samples and the subjects performing the activity
(Sutton et al., 2013).

These log data with configurable sampling rates ranging from 12.5 Hz

to 3200 Hz. The data logger is powered by a 150 mAh lithium–polymer

battery, rechargeable via USB connection, which enables measurements

over 30 days at 12.5 Hz and 14 days at 100 Hz. Acceleration is measur-

able on x-, y-, z-axes with a maximum sensitivity of ±16g [g = m/s2].

Setup and configuration of the AX3 sensors for recording is done with

the AX3 OMGUI Configuration and Analysis Tool, which is an open

source application. Data is recorded on an integrated memory with a

capacity of 512 MB. It was transferred to a computer after recording

via USB connection and stored in a Continuous Wave Accelerometer

format.

An attachment convention for device orientation assists in consis-



25 Hz 50 Hz 100 Hz 200 Hz 1600 Hz
Time measured [s] 2752 5492 3006 2560 417
Number of subjects 3 6 3 3 1
Number of behaviours 4 7 4 5 4

Table 3: Total time of movement data, number of subjects and number
of investigad behaviours for each sampling rate of the merged accelerom-
eter data.

tent and comparable datasets being gathered. The orientation of the

accelerometer respected for all horses is depicted in Figure 1 with the

USB port configured to point towards the ground as is suggested by

the AX3 user manual. The AX3 has a built in, real-time clock (RTC)

and calendar which provides the time base for the recorded acceleration

data. These sensor data are sampled at four different sampling rates

i.e., 25 Hz, 50 Hz, 100 Hz and 200 Hz. Each AX3 was set to record

with a range of ± 8g for all the datasets except for one high sampling

rate measurement at 1600 Hz the range is increased to ± 16g since this

measurement was necessary for another research topic. Table 3 gives

an overview of the total time measured, the number of subjects and the

number of investigated behaviours at each sampling rate. Other cap-

tured behaviors such as cross canter, kicking backwards, trot to canter,

etc are removed from the final dataset.

2.4. Machine learning model

A multilayer convolutional network as depicted in Figure 2, is used with

two convolutional layers, which are followed by max-pooling layers, and

two fully connected layers. The output of the last fully-connected layer

is fed to a 7-way softmax layer which produces a distribution over the

seven class labels: stand, walk, trot, canter, roll, paw, flank watching.

The first convolutional layer filters the n×6×1 input acceleration data

with 64 kernels of size 3×1 and stride 1. The L2 regularization technique

is used in this layer with a weight decay coefficient of 0.01 (Mallouh

et al., 2019). After the first convolutional layer a zero-padding is used

such that the output has the same length as the original input. Then

a max-pooling operation is done. The second convolutional layer takes

as input the (pooled) output of the first convolutional layer and filters

it with 16 kernels of size 5 × 2 and stride 1. Both layers contain an



Figure 2: The structure of the CNN with n the number of samples as
input.

activation layer using rectified units (ReLUs) and dropout of 0.55 is

used (Srivastava et al., 2014). The Adam optimizer is used for training

the neural network through back propagation. Training is done for 400

epochs, with an early stopping criterion of halting training when there

is no increase in accuracy during the last 60 epochs (Ronao and Cho,

2016). The training set is used to train the model, while the validation

set is only used to evaluate the model’s performance. Table 4 shows

the experimental setup.

Parameter Value
The size of the input vector n
The number of input channels 6
The number of feature maps 64-16
Filter size 3 × 1 - 5 × 2
Stride 1
Pooling size 2 × 3 - 3 × 1
Activation function ReLu and Softmax
Weight decay 0.01 (L2 regularization)
The probability of dropout 0.55
Maximum epochs 400
Optimization (back propagation) Adam optimizer

Table 4: Experimental setup.

Correct selection of the evaluation criteria is crucial for evaluat-

ing the merits of a model. In this work, the overall model accuracy

and confusion matrices are considered for the model performance as-

sessment. The overall model accuracy is the number of true positive

instances of all behavioural classes divided by the total number of in-

stances in the test set. Here, true positive is the number of instances

where the behaviour was correctly classified by the algorithm using

video-observations as reference. A target accuracy of 99% or higher is



the objective. A paired Wilcoxon signed-rank test is used to obtain the

p-values for determining statistical significance. If the p-value ≤ 0.05,

there is statistical evidence that the reached accuracies are not equal.

A normalized confusion matrix is used to evaluate the designed model

where the diagonal elements represent the percentage for which the

predicted label is equal to the true label, while off-diagonal percentages

are those that are mislabelled by the classifier. The higher the diago-

nal values of the confusion matrix the better, indicating many correct

predictions. The normalized confusion matrices presented in this paper

contain merged training and validation data.

3. Results

Figure 3 illustrates exemplar two second data windows of the four gaits

and the other behaviours, from the left and right accelerometer worn

on the lateral side of the tendon boot.

To train the convolutional neural network, separate training and

validation sets are needed and can be selected in various ways. If all

accelerometer data of one subject is not in the training set, but in the

test set, the subject is ”unseen” in terms of network training. That

means the test results will be a good indication of performance against

completely new subjects. First, a training and validation set are ob-

tained by automatically splitting the training and the validation data

with a fixed ratio of 66/34 so the model is validated on data from a seen

horse referred to as the ’First dataset’. Secondly, the 50 Hz dataset,

which contains all seven considered behaviours, is resampled to 25 Hz,

100 Hz and 200 Hz and merged with the original dataset at that sam-

pling rate referred to as the ’Second dataset’. The model can then be

assessed for any behaviour at each sampling rate. Again automatic split

testing is used to obtain the training and validation set so the model

is again validated on data from a seen horse. Finally, the separation of

the training and validation data is attained manually and as a result

the model is validated on data from an unseen horse referred to as the

’Third dataset’. In this case data from the lame horse is used to vali-

date our model while it is trained on healthy horses, to further asses the



(a) Stand (b) Walk

(c) Trot (d) Canter

(e) Roll (f) Paw

(g) Flank watching

Figure 3: Typical accelerometer patterns of (a) stand, (b) walk, (c)
trot, (d) canter, (e) roll, (f) paw and (g) flank watching in a 2 s win-
dow. The blue, yellow, green lines represent X,Y,Z signals from the
left accelerometer and the red, purple and brown lines represent X,Y,Z
signals from the right accelerometer , respectively.

generalization of the model. Table 5 gives an overview of the train and

test sets, the total time of movement data in seconds for each behavior

and the subjects present in each dataset at each sampling rate.



Set 25 Hz 50 Hz 100 Hz 200 Hz

1

66%
train
34%
test

S 259 450 140 189
W 1251 2292 843 830
T 629 1368 916 671
C 170 398 311 219
R 0 62 0 41
P 0 51 0 0
F 0 80 0 0
Subjects 1-3 1-6 1-3 2-4

2

66%
train
34%
test

S 709 450 590 639
W 3543 2292 3135 3122
T 1997 1368 2284 2039
C 568 398 709 617
R 62 62 62 103
P 51 51 51 51
F 80 80 80 80
Subjects 1-6

3 train

S 209 424 132 176
W 1037 2137 720 646
T 515 1270 816 582
C 144 375 281 208
Subjects 1,2 1,2,4,5,6 1,2 2,4

test

S 50 26 8 13
W 214 155 123 184
T 114 98 100 89
C 26 23 30 11
Subject 3

Table 5: The train and test set, the total time of movement data in
seconds per behavior (S = stand, W = walk, T = trot, C = canter,
R = roll, P = paw, F = flank watching ) and the subjects for each
sampling rate present in the first dataset, second and third dataset.

3.1. Effects of the sampling rate

The first topic of investigation was the effect of the sampling rate on the

classification accuracy. In Figure 4 the mean performance of the CNN

for a time interval ranging from 0.6 s to 3 s with increasing sampling

rate is depicted for the three datasets. The number between the brack-

ets indicates the number of behaviours that are taken into account in

the training and validation of the CNN. For all datasets the accuracy

increases (on average from 94.74% to 98.88%) when the sampling rate

is increased from 25 Hz to 50 Hz (p-value ≤ 0.05 ). From 100 Hz to 200

Hz, the accuracy for two out of three datasets decreases decreases on

average from 99.60% to 99.27% (p-value ≤ 0.05 ). As can be concluded

from this graph, for a sampling rate of 25 Hz, the CNN performs the

best on the second dataset i.e. when all behaviours and all horses are

taken into account since in the first and third dataset the misclassifi-



Figure 4: Mean performance of the convolutional neural network with
increasing sampling rate for three datasets. The number between the
brackets is the number of different activities available in the dataset.

cation of ’canter’ brings down the average accuracy at this sampling

rate. The CNN validated on the data of the lame horse performs the

least in the sampling rate range from 25 Hz to 100 Hz. At a sampling

rate of 200 Hz, the CNN performs best when the training and valida-

tion data are split up by hand and the model trained on all behaviours

performs the least (p-value ≤ 0.05 ). A possible explanation could be

that it is necessary to increase the model complexity at this sampling

rate to reach the same accuracy in predicting seven behaviours as in

predicting four behaviours. As is depicted in Figure 5 an increase in

the number of epochs after which the model is halted is not going to

further increase the model accuracy for the first and second dataset

since one can see that the loss is remaining more or less constant after

40 epochs. The third dataset fits perfect since the training and vali-

dation loss are almost equal. Moreover, the accuracy of the model for

the three datasets decreased on average with about 4.75% when the

sampling rate was decreased from 200 Hz to 25 Hz. This decrease in

the ability of accelerometers to identify locomotion behaviour patterns

when the sampling rate decreases was also remarked when monitoring

cows’ behaviours (Benaissa et al., 2017).

3.2. Effect of the time interval

The second investigated matter was how the time window size influ-

enced model performance for the three datasets. For this purpose we

varied the time series length between 0.6 s and 3 s with a step size of



(a) First dataset (b) Second dataset (c) Third dataset

(d) First dataset (e) Second dataset (f) Third dataset

Figure 5: Accuracy and loss plots of the training set (blue) and val-
idation set (orange) for a 2 s time interval at a sampling rate of 200
Hz.

0.2 s. For each value the mean performance of the CNN for the three

datasets for sampling rates between 25 Hz and 200 Hz are presented

in Figure 6. The mean duration of the behaviours are annotated with

black striped lines except for the flank-watching movement since the

mean duration of this behaviour lies outside the investigated time in-

tervals at 4.866 s. From the videofiles combined with the accelerometer

data, the mean duration of each activity was calculated by taking 10

samples of each horse according to their description in Table 2. It is

important to take the mean duration of each behaviour in consideration

since this could affect the performance of the model.

Figure 6: Mean performance of convolutional neural network with in-
creasing time interval for the three datasets.The black striped lines
indicate the mean duration of each activity.

Figure 6 shows that larger time intervals do not necessarily lead



to better classification results. While an increase in the time interval

from 0.6 s to 1.2 s (a full walk cycle) gains a significant performance

boost of 4.92% on average for all datasets (p-value ≤ 0.05 ), its further

growth introduces only moderate improvements for the third dataset of

1.06% and no improvements for the second dataset (p-value > 0.05 ).

At lower time intervals (n <1.2 s) the gaits which have the biggest share

(97,68%) in the dataset get misclassified more often. The first dataset

is unstable due to the full misclassification of ’canter’ at a sampling rate

of 25 Hz in 8 out of 13 time intervals. In most of this cases ’canter’

is classified as ’trot’ and to a lesser extend as ’walk’ which means that

the model learned the wrong features or generalized not well with the

learned features. As can be noticed the mean accuracy for the third

dataset lies lower than for the first and second dataset due to again a

high misclassification of ’canter’ at a sampling rate of 25 Hz. For the

first and second dataset, the largest contributors to a lower accuracy

are the misclassification of ’canter’, ’roll’, ’paw’ and ’flank-watching’.

Moreover, the accuracy of the model for the three datasets decreased on

average with about 5.27% when the time interval was decreased from 3 s

to 0.6 s. These findings are in agreement with the results of (Ignatov,

2018), where the dependence of human activity recognition accuracy by

convolutional neural networks using accelerometer data and the time

window length was investigated.

3.3. Combination of the time interval and sampling

rate

A third analysis examined on which combination of lowest time interval

and sampling rate the model was best performing. For this purpose

accuracy surface plots as depicted in Figure 7 for the three datasets as

function of the time interval and sampling rate were generated by fitting

a polynomial of degree two through the obtained datapoints indicated

as blue dots. The low predicted accuracies are indicated with the colour

blue and the high ones with the colour red. The combinations that are

the least performing for the three datasets are observed in the region

where both sampling rate and time interval are low.

As can be seen from the contourplots shown in Figure 8 a 100%



accuracy is reached in the red region. As indicated with yellow cross

markers, the combinations that gain an accuracy of 100% at the lowest

sampling rate and the shortest time interval are for the first dataset

observed in the region where the value of the sampling rate ranges

between 64 Hz at a time interval of 2.05 s and 170 Hz at a time interval

of 0.85 s, for the second dataset in the region where the value of the

sampling rate ranges between 36 Hz at a time interval of 2.4 s and

170 Hz at a time interval of 1 s, for the third dataset in the region

where the value of the sampling rate ranges between 90 Hz at a time

interval of 2.3 s and 170 Hz at a time interval of 1 s. The lowest sampling

rate together with the corresponding length of time interval for three

levels of accuracy for the second and third dataset are listed in Table 6.

A 99% accuracy can thus be reached with a sampling rate of 25 Hz and

a time interval 2.1 s for detecting seven activities of a seen horse or the

movement of an unseen horse resembling the data in the training set.

Second dataset (seen horse) Third dataset (unseen horse)
98% 99% 100% 98% 99% 100%

f (Hz) 25 25 36.5 52.5 69 90
n (s) 1.8 2.1 2.4 2.5 2.4 2.3

Table 6: Time interval and sampling rate predictions for a seen horse
and an unseen horse for three levels of accuracy.

3.4. Effects of the underground

A fourth analysis explored how the model accuracy was influenced by

the type of underground the horse was walking on. Model accuracy

for the class walk is studied for four different surfaces: dry sand mixed

with polyflakes, wet sand mixed with polyflakes, meadow and a hard

brick underground. The normalized confusion matrices are depicted in

Figure 9.

As can be seen from the normalized confusion matrices for differ-

ent time intervals, the class walk on a wet underground and on a dry

underground get classified with an accuracy above 98% for every time

interval. The class walk on a hard underground reaches accuracies

higher than 86%. The class walk on a field swings between 15% and

86% classification accuracy. As can be concluded from the results pre-

sented in the normalized confusion matrices, the data gathered from



different undergrounds is significantly different so that the model could

conclude from which underground the data was gathered for three out

of four undergrounds.

Normalized confusion matrices with all activities included are shown

in Figure 10.

As can be concluded from the confusion matrices, at small time

intervals, more misclassification is taking place than at higher time

intervals (n ≥ 1.2 s). At those higher time intervals ’Walk-F’ is per-

forming the worst with accuracies swinging between 1% and 74% since

it gets misclassified as ’Walk-H’. The other ’walk classes’ get classified

with high accuracies between 93% and 100% at higher time intervals.

All the walk movements get classified as walk, independent of the un-

derground, at any time interval. The other movements that are now

included get classified in a few cases as one of the ’walk classes’. To the

best of authors’ knowledge, the influence of the surface on the activity

classification performance of a CNN based on accelerometer data has

not been studied previously and so no comparison with literature could

be made.

3.5. Horse-wise cross validation

Examination of the generalizing capabilities of the model was executed

by inspecting how model accuracy was influenced by the type of val-

idation horse. A ten-fold leave one out cross-validation strategy was

used. Therefore, data collected on five horses was used to train the

system and then the system was tested by classifying the data of the

sixth horse accordingly. The 50 Hz original data set was split manually

into training and test sets, with the CNN performance investigated on

unseen data. Since not all horses practiced every behaviour, only the

four movements i.e. ’stand’, ’walk’, ’trot’ and ’canter’ performed by

each horse are investigated for a time window of 2.5 s. The number

of instances per class for each horse are shown in Table 7. The perfor-

mance of the CNN validated on the six subjects is presented as boxplots

in Figure 11.

As can be concluded from the boxplots, the model validated on

Horses 1-2-4-5 reaches all mean accuracies above or equal to 99.65%,



Classes
S W T C

Horse 1 33 258 99 4
Horse 2 22 157 90 48
Horse 3 7 55 33 7
Horse 4 62 163 121 49
Horse 5 7 129 113 22
Horse 6 19 104 53 16

Table 7: Movement class instances at a 2.5 s time window of the studied
movements for each horse (S = stand, W = walk, T = trot and C =
canter).

while the validation of the model on Horses 3 and 6 is performing the

least. Those results are in line of expectation since Horse 3 is a lame

horse with asymmetrical gait patterns and Horse 6 is a pony with higher

mean acceleration values during the gaits ’walk’ and ’trot’. The overall

mean validation accuracy of the model validated on the lame horse

is 97.84% due to the misclassification mainly of ’trot’ and to a lesser

extend ’canter’. For the pony, the overall mean validation accuracy of

the model is 96.10% and the classes that are least performing are again

’trot’ and ’canter’.

3.6. Effect of the number of sensors

A final analysis examined how model accuracy was influenced by the

number of sensors. Ten-fold cross-validation was used with different

amounts of sensor data. The original 50 Hz data set was split auto-

matically into training and test sets, with CNN performance examined

for a time window of 2.5 s. The second convolutional layer size was

modified from 5 × 2 to 5 × 1 to meet the required variable dimensions

between input, hidden, and output layers. Performance validation for

the CNN using one or two sensors is presented as boxplots in Figure

12.

As can be concluded from the boxplots, the model validated on two

sensors reaches a mean accuracy of 99.66% while with data from one

sensor a mean accuracy of 99.42% is reached (p-value ≤ 0.05 ). This

decline in accuracy is not attributable to the performance of one specific

class.



4. Conclusion

In this study we propose a solution for a horse activity recognition

problem that is based on Convolutional Neural Networks with the use of

accelerometer time series. It has the benefits of using short recognition

intervals of size up to 2.1 s and small sampling rates up to 25 Hz for

reaching accuracies of 99% and requiring no feature engineering.

To evaluate the performance of the considered approach we tested

it on three experimental datasets. The obtained results demonstrate

that the proposed CNN-based model establishes high accuracies at a

lot of time intervals and sampling rates. A reduction in the sampling

rate and time interval length did reduce the overall classification accu-

racy of the model on average with 4.75% and 5.27%, respectively. The

experiment has further emphasized an architecture that can be applied

not only to different subjects, but can be used in different measurement

conditions such as on different types of undergrounds. Also, data from

one accelerometer appears to be sufficient to classify seven behaviours

of six different horses with an overall mean accuracy above 99%.

Our suggested approach demonstrates superior potential in most

cases as shown by the above experimental results, but the main limi-

tations of this study are the number of horses (six in this study) with

data of only one pony present in our dataset and the fact that not ev-

ery horse practices all behaviors.We conjecture that, with more training

data of different breeds, our behavior detector will be more robust to

these different cases.

Future work will include capturing and analyzing more behaviours

which horses are performing during training or related to horses expe-

riencing an episode of colic like: kicking the abdomen, stretching and

attempting to lie down. Also, further investigation needs to be done

concerning the eating and drinking behaviour since this could give ex-

tra information about the well-being of the horse. In addition, activity

measurements could be performed to conclude if a horse is agitated

or depressed. Further study at lower sampling rates and a reduction

in the number of accelerometer axis is needed since this could reduce

computational cost, storage load and energy use and therefore available

datasets can be resampled and re-analyzed. Also, we need further study



for the analysis of the features extracted automatically by the convent

and compare them with the well-known hand-crafted features. Fur-

ther study on the characteristics of the used CNN and utilizing larger

datasets should be conducted.
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(a) First dataset

(b) Second dataset

(c) Third dataset

Figure 7: Accuracy surface plot as function of the sampling rate and
the length of the time interval for three datasets.



(a) First dataset

(b) Second dataset

(c) Third dataset

Figure 8: Accuracy contour plot as function of the sampling rate and
the length of the time interval for three datasets.



(a) n = 0.6 s

(b) n = 1.2 s

(c) n = 2.4 s

Figure 9: Normalized confusion matrix for training and test set of the
behaviour ’walk’ at a sampling rate of 50 Hz for different time intervals
and four types of underground (H= hard, W = wet, F= field and D =
dry).



(a) n = 0.6 s

(b) n = 1.2 s

(c) n = 2.4 s

Figure 10: Normalized confusion matrix for training and test set at a
sampling rate of 50 Hz for different time intervals and four types of
underground (H= hard, W = wet, F= field and D = dry) including all
activities.



Figure 11: Performance of the convolutional neural network validated
for six horses with three types of breed classes horse (Horse 1-4),
Friesian horse (Horse 5) and Pony (Horse 6), given as boxplots with
mean (solid green line), medians (dashed orange line), interquartile,
absolute ranges and outliers.

Figure 12: Performance of the convolutional neural network validated
on one and two sensors, given as boxplots with mean (solid green line),
medians (dashed orange line), interquartile, absolute ranges and out-
liers.
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