

1 **Resistance risk assessment of the novel complex II inhibitor pyflubumide in the polyphagous pest**

2 ***Tetranychus urticae***

3 Seyedeh Masoumeh Fotoukkiaii¹, Catherine Mermans², Nicky Wybouw² and Thomas Van Leeuwen²

4

5 ¹ Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem
6 Dynamics, University of Amsterdam, Amsterdam, the Netherlands

7 ² Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering,
8 Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

9

10 Corresponding author:

11 Thomas Van Leeuwen

12 Laboratory of Agrozoology

13 Department of Plants and Crops

14 Faculty of Bioscience Engineering

15 Ghent University

16 Coupure Links 653, B-9000 Ghent, Belgium

17 Phone: +3292646143

18 Email: thomas.vanleeuwen@ugent.be

19

20 **Abstract**

21 Pyflubumide is a novel selective carboxanilide acaricide that inhibits mitochondrial complex II of

22 mainly spider species such as *Tetranychus urticae*. We explored the baseline toxicity and potential cross-

23 resistance risk of pyflubumide in a reference panel of *T. urticae* strains resistant to various acaricides

24 with different modes of action. A cyenopyrafen resistant strain (JPR) was identified as the only strain

25 with low-to-moderate level of cross-resistance to pyflubumide ($LC_{50} = 49.07$ mg/L). In a resistance risk

26 assessment approach, JPR was subsequently selected which lead to two highly resistant strains JPR-R1

27 ($LC_{50} = 1437.48$ mg/L) and JPR-R2 ($LC_{50} = 1893.67$ mg/L). Interestingly, compared to adult females,

28 resistance was much less pronounced in adult males and eggs of the two JPR-R strains. In order to

29 elucidate resistance mechanisms, we first sequenced complex II subunits in susceptible and resistant

30 strains, but target-site insensitivity could not be detected. In contrast, synergism/ antagonism

31 experiments strongly suggested that cytochrome P450 monooxygenases are involved in pyflubumide
32 resistance. We therefore conducted genome-wide gene expression experiments to investigate
33 constitutive and induced expression patterns and documented the overexpression of five cytochrome
34 P450 and four CCE genes in JPR-Rs after pyflubumide exposure. Together, we provide a thorough
35 resistance risk assessment of a novel complex II inhibitor, and provide first evidence for metabolic
36 resistance mediated by cytochrome P450s in *T. urticae*.

37 **Keywords**

38 Pyflubumide, selection, Complex II, Cytochrome P450, Cross-resistance, Cyenopyrafen

39 **Key message**

40 • This study provides a thorough resistance risk assessment of the novel mitochondrial complex
41 II inhibitor pyflubumide in *Tetranychus urticae*.

42 • We identified a low-to-moderate level of cross-resistance to pyflubumide in the cyenopyrafen
43 resistant strain JPR.

44 • Under pyflubumide selection pressure, JPR rapidly evolved high level resistance, but only in
45 females.

46 • Target-site insensitivity could not be detected in the resistant strains.

47 • Synergism/antagonism experiments followed by genome-wide gene expression experiments
48 strongly suggest that cytochrome P450 monooxygenases are involved in pyflubumide
49 resistance.

50

51 **Author Contribution**

52 SMF, NW and TVL conceived and designed research. SMF, CM conducted experiments. SMF, TVL
53 and NW analyzed data and wrote the manuscript. All authors read and approved the manuscript.

54 **Introduction**

55 The two-spotted spider mite, *Tetranychus urticae* Koch (Arthropoda: Chelicerata: Acariformes) is an
56 important cosmopolitan agricultural pest that causes significant yield losses in the absence of a proper
57 pest and resistance management strategy (Jeppson et al. 1975; Van Leeuwen et al. 2015). The application
58 of acaricides still remains the most frequently used method to keep *T. urticae* populations below
59 economic thresholds for many crops. However, the fast development of resistance in the species, in part
60 due to biological characteristics such as a short life cycle, high reproductive potential, arrhenotokous
61 reproduction, together with a broad host plant range, reduces the efficacy of the application of acaricides
62 (Dermauw et al. 2013; Van Leeuwen et al. 2010; Wybouw et al. 2019). It is therefore important to
63 continue to develop acaricides with new modes of action and limited cross-resistance to other
64 commercially available compounds to secure proper resistance management in *T. urticae* (Nauen et al.
65 2012; Van Leeuwen, Thomas et al. 2015; Fotoukkiaii et al. 2019). The carboxanilide pyflubumide is a
66 recently developed acaricide by Nihon Nohyaku Co. Ltd with excellent activity against phytophagous
67 mites of the genus *Tetranychus* and *Panonychus* (both belong to the Tetranychidae family) (Nakano et
68 al. 2015). Pyflubumide is structurally similar to the carboxamide fungicides that inhibit succinate-
69 dehydrogenase. Pyflubumide, together with the beta-ketonitriles cyenopyrafen and cyflumetofen, are
70 the first commercially developed acaricides that act as complex II inhibitors in the mitochondrial
71 electron transport chain (Furuya et al. 2017; Van Leeuwen et al. 2015). Similar to the beta-ketonitriles,
72 pyflubumide is a pro-acaricide that is converted to a more potent de-acylated metabolite (Nakano et al.
73 2015). Although the metabolites of pyflubumide and cyenopyrafen are reported to both strongly inhibit
74 complex II, different binding modes have been suggested with the target-site (Furuya et al. 2015;
75 Nakano et al. 2015). Cross-resistance to conventional acaricides in Japanese field collected resistant
76 populations was not detected for pyflubumide (Furuya et al. 2015). The specificity of pyflubumide and
77 its compatibility with non-target arthropods such as pollinators and natural enemies make it an ideal
78 candidate for integrated pest management (IPM) programs (Furuya et al. 2017; Van Leeuwen et al.
79 2015).

80 In this study, the baseline activity and potential cross-resistance risk of pyflubumide was explored by
81 analyzing its toxicity in a reference panel of *T. urticae* strains resistant to various acaricides with

82 different modes of action. The base line toxicity on adult females, males, and eggs of resistant and
83 susceptible mites was also assessed. Our survey identified a strain resistant to cyenopyrafen (JPR) as
84 the only strain with a low-to-moderate level of cross-resistance to pyflubumide. We subsequently
85 selected JPR for higher levels of pyflubumide resistance and finally obtained two highly resistant strains.
86 To gain further insight into the molecular mechanisms that underpin pyflubumide resistance, we
87 screened for potential target-site resistance mutations, conducted synergism/antagonism experiments,
88 and analyzed transcriptomic changes under various conditions between susceptible and resistant strains.
89

90 **Materials and methods**

91 **Survey of pyflubumide resistance**

92 A reference panel of fifteen acaricide-susceptible and -resistant *T. urticae* strains (Table 1) were
93 screened for resistance to pyflubumide in toxicity bioassays on adult female mites as described below.
94 All strains were maintained on potted bean plants *Phaseolus vulgaris* L. cv. “Speedy” at $25 \pm 1^\circ\text{C}$, 60%
95 RH, and 16:8 h (L:D) photoperiod. Commercial formulations (20% SC, Danikong) of pyflubumide was
96 kindly provided by Ralf Nauen. All other chemicals and synergists were analytical grade and purchased
97 from Sigma-Aldrich.

98 *Selection for pyflubumide resistance*

99 To assess the risk of the development of pyflubumide resistance in *T. urticae*, JPR was reared with
100 pyflubumide selection pressure under two different laboratory regimes, as described below. The two
101 derived strains are referred to as JPR-R1 and JPR-R2.

102 1) Plate selection regime

103 Approximately 2000 adult female JPR mites were placed on four detached bean leaves in separate Petri
104 dishes (about 500 females per leaf). Mites were sprayed with 1 ml of 100 mg/L pyflubumide (~ LC90
105 of JPR) using a Potter spray tower resulting in 2 mg aqueous deposit per cm^2 . After 48 h, females that
106 appeared unaffected were transferred to untreated bean plants and allowed to propagate for
107 approximately three generations. The dose-response relationship of pyflubumide toxicity was assessed
108 in this generation, hereafter called SEL1. A second round of selection was undertaken with 1000 mg/L

109 pyflubumide using the same approach, resulting in generation SEL2. From generation SEL2 onwards,
110 the population was grown on bean plants sprayed until run off with 100 mg/L. The resulting resistant
111 strain was named JPR-R1.

112 2) On plant selection regime

113 Approximately 2000 adult female JPR mites were transferred to potted bean plants that were sprayed
114 with a hand-hold spraying device with 100 mg/L pyflubumide until run-off. Before spraying, plant buds
115 were removed and only the primary leaves were kept on the potted bean plants. After seven days, all
116 apparent unaffected mites (from all stages and both sexes) were collected and transferred to untreated
117 bean plants for propagation. The strain was named JPR-R2 and maintained on potted bean plants with a
118 constant selection pressure of 100 mg/L of pyflubumide until analysis.

119 **Toxicity bioassays**

120 Bioassays were performed on eggs, adult females and males. To obtain eggs of a synchronized age for
121 egg bioassays, 50-60 adult females were placed on the upper side of 9 cm² bean leaf discs and allowed
122 to oviposit for 4 h. After removing adult mites, the number of eggs were counted per petri dish. After
123 24 h, the eggs were sprayed with 1 mL of spray fluid at 1 bar pressure in the Potter spray tower, resulting
124 in 2 mg aquous deposit per cm². Four replicates of five-eight concentrations of pyflubumide and a
125 control (deionized water) were tested. Mortality was scored after 5 days. Percentage of mortality was
126 calculated by dividing the number of hatched larvae to the number of eggs.

127 Female and male bioassays were conducted using a standardized method previously described by (Van
128 Leeuwen et al. 2006). Briefly, we tested five-eight concentrations in four replicates. For each replicate
129 20-30 adults were transferred to 9 cm² bean leaf discs on wet cotton wool. Leaf discs were sprayed as
130 outlined above, and mortality was scored after 24 h.

131 LC₅₀-values and the 95% confidence limits were calculated from probit regressions using the POLO-
132 Plus software (LeOra Software, 2006).

133 **Sequencing of SQR subunits**

134 DNA extraction of the JPR and JPR-R populations was performed as described by Van Leeuwen (2008)
135 (Van Leeuwen et al. 2008). Briefly, approximately 200 adult females were collected and homogenized

136 in 800 μ L SDS buffer (200mM Tris-HCl, 400 mM NaCl, 10 mM EDTA, 2% SDS at pH = 8.3) followed
137 by a phenol-chloroform extraction. The four subunits of JPR-R2 and JPR strains were sequenced using
138 the primer pairs listed in supplemental file 1. PCR reactions were conducted in 50 μ L of reaction mixture
139 containing 2 mM of MgCl₂, 0.2 μ M of each primer, 0.2 mM of deoxynucleotide triphosphate (dNTP)
140 mix (Invitrogen, Merelbeke, Belgium), 5 μ L of 10 \times PCR-buffer (Invitrogen) and 1U of Taq DNA
141 polymerase (Invitrogen), under the following conditions: 2 min at 95 °C, 35 cycles of 15 s at 95 °C, 30
142 s at 55 °C and 30 s at 72 °C, and a final extension of 2 min at 72 °C. After purification using E.Z.N.A.
143 Cycle-Pure kit (Omega Bio-tek, Norcross, GA, USA), PCR products were sequenced at LGC Genomics
144 (Germany). All SQR subunits of JPR-R2 and JPR were screened for nucleotide variants using those of
145 the London strain as reference.

146 **Synergism/antagonism and barbital experiments**

147 Synergism/antagonism experiments were performed according to the methods described by Van
148 Pottelberge et al. (2009). Briefly, 1,000 mg/L of piperonyl butoxide (PBO), 500 mg/L of S,S,S-tributyl
149 phosphorotriethioate (DEF) and 2,000 mg/L of diethylmaleate (DEM) were used as the final
150 concentrations in the experiments. The synergists/antagonists were first dissolved in N, N dimethyl
151 formamide and emulsifier W (3:1), and then diluted to the respective concentrations
152 using deionized water. Mites were sprayed with 1 ml of the synergist/antagonist solution as described
153 above. Exactly 24 h after synergist treatment, mites were used in pyflubumide bioassays. Mortality was
154 recorded after 24 h and synergism ratios (SR) were determined by dividing the LC₅₀ of pyflubumide
155 alone by the LC₅₀ obtained after synergist pre-treatment.

156 For barbital assays, the methods described by (Van Pottelberge et al. 2008) were followed. In short, the
157 barbital solution was made by dissolving barbital powder in deionized water. Each replicate (20-30 adult
158 females) was sprayed with 1 ml of 10,000 mg/L barbital solution as described above. After 4 h, mites
159 were sprayed with five-eight concentrations of pyflubumide and a control each with four replicates. The
160 synergism/antagonism ratio was determined by dividing the LC₅₀ of treated population by the LC₅₀ of
161 non-treated population.

162 **Timing of symptomology**

163 To determine the timing of symptomology, we used 100 mg/L pyflubumide which is a concentration
164 that did not lead to physiological symptoms in JPR-R1 and JPR-R2 strains. About 30 adult female mites
165 from strains JPR, JPR-R1, and JPR-R2 were transferred to the upper side of 9 cm² bean leaf discs in ten
166 replicates. All 30 petri dishes were sprayed with 100 mg/L of pyflubumide using the Potter spray tower
167 as described above. Four replicates were sprayed with deionized water as a control. All plates were
168 checked every 1.5 h, starting 1h into the photophase, until the18 h timepoint, with a final observation at
169 24 h. Dead mites and mites that proved unable to walk the length of their body or displayed
170 uncoordinated behavior (spastic movement) after a gentle touch by a tiny brush were recorded as
171 affected. Significant differences in the percentage of affected mites across time points were determined
172 using a General Linear Model (GLM) followed by Tukey's HSD tests ($\alpha = 0.05$). Statistical analysis was
173 conducted within the R framework [R Core Team (2014), version 3.1.2] (Team 2018).The experiment
174 was conducted at 23-25 °C, 60% RH, and 18/6h (L/D) photoperiod with the photophase started at 6:00
175 AM.

176 **Experimental set-ups for the transcriptomic analyses of pyflubumide resistance**

177 Three transcriptomic experiments were performed that differed in the way *T. urticae* strains were
178 exposed to pyflubumide. First, four RNA samples were collected from JPO (the ancestral strain of JPR)
179 (Sugimoto and Osakabe 2014), JPR, JPR-R1, and JPR-R2 that were maintained for one generation on
180 non-sprayed plants. Next, four samples were collected from JPR and JPR-R1 that were either exposed
181 to pyflubumide or deionized water for 9 h. Here, approximately 500 adult female mites were placed on
182 detached leaf discs on wet cotton wool and were sprayed with 1 ml of pyflubumide solution (100 mg/L)
183 or deionized water at 1 bar pressure in a Potter spray tower resulting in 2 mg aqueous deposit per cm².
184 Last, four RNA samples were collected from JPR-R1 and JPR-R2 that were either sprayed with
185 pyflubumide (100 mg/L) or deionized water 24 h before collection, using the same methodology as for
186 the 9h time point.

187 **RNA extraction and transcriptomic analyses of pyflubumide resistance**

188 Per sample, RNA was extracted from a bulk of 120-150 adult females using a RNeasy minikit (Qiagen),
189 treated with DNase (Turbo, Ambion), and labelled using the Low Input Quick Amplification Kit

190 (Agilent Technologies). RNA samples were dyed with cyanine-3 or cyanine-5. Cyanine-labeled RNA
191 was hybridized in the respective mixes (cyanine-5 and cyanine-3) to a custom Agilent GE microarray
192 (Gene Expression Omnibus (GEO) Platform GPL16890). After washing using the Gene Expression
193 Wash Buffer kit (Agilent Technologies), microarray slides were scanned with an Agilent Microarray
194 High-Resolution Scanner. The raw intensity values are accessible at the GEO website (GSE138192) and
195 were used for statistical analysis in limma (Smyth Gordon 2004). Background correction was performed
196 using the ‘normexp’ method (with an offset of 50) (Ritchie et al. 2007). Within- and between-array
197 normalization was applied using the global loess and Aquantile methods, respectively. Data quality was
198 assessed at every step using arrayQualityMetrics (Kauffmann et al. 2008). Using the probe annotation
199 identified in (Snoeck et al. 2018), a linear model was fitted to the processed data, incorporating intraspot
200 correlations (Smyth and Altman 2013). Significant differential gene-expression was identified by
201 empirical Bayesian statistics with cut-offs of Benjamini-Hochberg corrected *p*-values and log₂FC at 0.05
202 and 1, respectively. A Principal Component Analysis (PCA) was performed on relative transcription
203 levels using the prcomp function within the R environment (Team 2018). An optimal number of clusters
204 for *k*-means clustering was assessed using the gap statistic (global max, seed number set at 54321, cluster
205 number ranging from 2 to 10) (Tibshirani et al. 2001). Using JPO as a common reference, the relative
206 gene-expression levels of genes that were significantly differentially expressed in any comparison were
207 used as input and clustered using the centered Pearson’s correlation as distance metric.

208 **Results**

209 **Pyflubumide cross-resistance screen and selection**

210 The toxicity of pyflubumide in a number of laboratory and field-collected *T. urticae* strains is shown in
211 Table 1. All strains displayed similar LC₅₀ values (2-7 mg/ L), with the exception of JPR, that exhibited
212 an LC₅₀ value of 49 (37.62 - 65.63) mg/ L.

213 To assess the risk of resistance development, JPR was selected for pyflubumide resistance using two
214 different selection regimes. After selection with 100 mg/L on plates, the resulting population SEL1
215 displayed an LC₅₀ value of 247.78 (190.58 - 303.23) mg/L. A second selection with 1,000 mg/L resulted
216 in population SEL2 with LC₅₀ of 824.96 (693.47 to 966.43) mg/L. The population was further

217 maintained on sprayed plants with 100 mg/L and the LC₅₀ of the final population, JPR-R1, was 1,437.48
218 (1,221.26 – 1,666.77) mg/L (Fig. 1).

219 In an alternative approach, the strain JPR was independently selected for pyflubumide resistance on
220 potted plants, and resulted in the JPR-R2 strain, with an LC₅₀ value of 1,893.67 (1,641.63 – 2,156.25)
221 mg/ L.

222 **Toxicity of pyflubumide on females, males, and eggs of susceptible and resistant mites**

223 The LC₅₀ values of pyflubumide on females, males and eggs of Wasatch, JPR, JPR-R1 and JPR-R2
224 strains are reported in Table 2. Pyflubumide was toxic to all tested stages of Wasatch, but males were
225 about 10-fold more susceptible, while eggs were clearly less susceptible (Table 2). While resistance
226 levels were high in adults in both JPR-R strains, eggs showed a marked higher susceptibility (54.10 and
227 98.19 mg/ L) to pyflubumide, and resistance levels were also lower in males. In contrast, resistance
228 levels in parental JPR were low in adults (49 mg/L) and higher in eggs (318 mg/L), a pattern that was
229 apparently not maintained, nor fortified by selection for pyflubumide resistance.

230 **Sequencing of the succinate: ubiquinone oxidoreductase subunits**

231 Only synonymous SNPs were identified in *tetur01g15710* (*SdhB*), *tetur30g00210* (*SdhC*) and
232 *tetur20g00790* (*SdhD*). In *tetur08g03210* (*SdhA*), we found a substitution V209I between the London
233 sequence (V209) and both JPR (I209) and JPR-R2 (I209). Coding sequences generated in this study are
234 accessible at the NCBI repository (XXXX).

235 **Synergism and antagonism assays**

236 The effect of synergists PBO, DEF and DEM on pyflubumide toxicity are presented in Table 3.
237 Synergism/antagonism assays were performed on susceptible LS-VL, JPR, JPR-R1 and JPR-R2.
238 Pyflubumide toxicity was synergized two-fold by PBO in JPR and much higher in JPR-R1 and JPR-R2
239 with remarkable SRs of 15- and 20-fold, respectively. DEF antagonized pyflubumide toxicity in all
240 strains, however, the antagonism was about 10-fold higher in JPR. The synergistic effects with DEM
241 was higher in JPR-R1 and JPR-R2 compared with JPR (Table 3). The results of phenobarbital effect on
242 toxicity of pyflubumide are presented in Table 4. Barbital treatment decreased the toxicity of
243 pyflubumide more in JPR-R1 and JPR-R2, as compared with JPR (Table 4).

244 **Constitutive transcriptomic changes associated with selection for pyflubumide resistance**

245 To characterize potential constitutive, or environmentally independent, transcriptomic changes
246 associated with selection for pyflubumide resistance, the transcriptomes were sampled of JPO, JPR,
247 JPR-R1, and JPR-R2, all maintained for one generation without selection pressure on non-sprayed bean
248 plants. A PCA shows that the transcriptomic profile of JPO was highly divergent from JPR and JPR-
249 R1-2 and that a low percentage of the total data variation underlined the differences between JPR and
250 JPR-R1-2 (Fig. 2A). Using JPR as the parental reference, a small number of genes were significantly
251 differentially transcribed in JPR-R1 and JPR-R2 (47 and 37, respectively) (Fig. 2B and Supplemental
252 file 2). Of these, only 14 genes were consistently differentially expressed in both JPR-R1 and JPR-R2.
253 Three genes (*tetur13g01730*, *tetur14g03160*, and *tetur14g01700*) were consistently up-regulated upon
254 pyflubumide selection, but none coded for enzymes that are known to be associated with xenobiotic
255 metabolism (hypothetical proteins and a protein with an ‘Immunoglobulin E-set’ domain (IPR014756),
256 respectively) (Fig. 2B and Supplemental file 2). One of the genes with a lower transcription level in
257 JPR-R1 and JPR-R2, *tetur03g00830*, coded for the cytochrome P450 CYP392A12 (Fig. 2B). No
258 carboxyl/cholinesterase (CCE) genes were down-regulated in these two comparisons. We hypothesized
259 that the transcriptomic signature of pyflubumide resistance might have been masked in these
260 comparisons because it was already present in the ancestral, cross-resistant JPR strain. Therefore, as a
261 next step, we used the original and susceptible JPO strain (the parent of JPR) as a reference to look at
262 transcriptomic changes. Compared to JPO, 454 genes were differentially expressed in JPR, whereas 362
263 and 368 differentially expressed genes (DEGs) were detected in JPR-R1 and JPR-R2, respectively
264 (Supplemental Tables). Selecting JPR from JPO was associated with the up-regulation of 16 cytochrome
265 P450 genes, with *CYP392D2*, *CYP392D6*, and *CYP392A12* having a \log_2FC higher than four. Two CCE
266 genes (*tetur17g00360* and *tetur30g01290*) were down-regulated in JPR compared to JPO, whereas six
267 CCE genes showed a significant up-regulation. In both JPR-R1 and JPR-R2, 13 cytochrome P450s were
268 up-regulated compared to JPO, of which 11 genes already showed significant up-regulation in JPR
269 (*CYP392D2*, *CYP392D6*, and *CYP392E8* had the highest average transcriptional increase
270 (Supplementary Tables)). JPR-R1 and JPR-R2 each had one unique up-regulated cytochrome P450
271 (*tetur03g05040* and *tetur06g02620*, respectively (both are not full-length in the reference London

272 genome (Grbić et al. 2011))). *Tetur03g05010* was the only cytochrome P450 (*CYP392D4*) that was up-
273 regulated in JPR-R1-2, but not in JPR (average \log_2 FC of 1.02). Only JPR-R1 had a down-regulated
274 CCE gene that was not already down-regulated in JPR; *tetur01g10800* with a \log_2 FC of -1.08. To gain
275 more insight into the transcriptional evolution of these and other genes, all 560 DEGs were grouped
276 using *k*-means clustering, and three distinct transcriptional patterns became apparent (Fig. 2C and
277 Supplemental Tables). The 513 DEGs of cluster 1 and 2 showed a stable down- and up-regulation,
278 respectively, across JPR, JPR-R1, and JPR-R2. The 47 DEGs of cluster 3 showed a high relative
279 transcription level in JPR-R1-2, but not in JPR. Notably, *CYP392D4* was placed in this group of DEGs.

280 **Symptomology timing**

281 In order to gain insights in the time of toxicity in relation to potential plastic transcriptional changes,
282 mites were exposed to pyflubumide and cumulative percentages of mortality and symptoms were
283 followed during 24 h after spraying with a sub-lethal dose of pyflubumide in JPR and JPR-R1-2 (Fig.
284 3). The highest level of pyflubumide-induced toxicity symptoms was observed nine hours after spraying
285 in both JPR-R1 ($df = 2$; $F = 7.90$; $P = 0.0019$) and JPR-R2 ($df = 2$; $F = 12.63$; $P < 0.0001$). The symptom
286 level at this time point was significantly different from that of the previous time points, i.e., 7.5 h
287 (Tukey's post hoc test, $P < 0.001$ for both JPR-R1 and JPR-R2) and the next time point at 10.5 h
288 (Tukey's post hoc test, $P = 0.038$ and $P = 0.037$ for JPR-R1 and JPR-R2, respectively). After 9 h the
289 symptoms declined in JPR-R1-2, whereas JPR showed an increase in the level of symptoms (Fig. 3).

290 **Plastic transcriptomic responses to pyflubumide exposure**

291 As only limited constitutive gene expression differences were observed between JPR and JPR-R1-2, the
292 plastic, environmentally dependent, transcriptomic changes were also characterized to shed more light
293 on the molecular basis of pyflubumide resistance. Based on the symptomology bioassays, we first
294 investigated the transcriptomic responses of JPR and JPR-R1 after nine hours of exposure to a sub-lethal
295 dose of pyflubumide (100 mg/L). Here, no DEGs were detected in JPR-R1 upon pyflubumide exposure,
296 whereas a single DEG (*tetur04g04350*, \log_2 FC of 1.17) was observed in JPR. Next, we focused on the
297 plastic responses of JPR-R1-2 upon 24 h of exposure to the same sub-lethal dose of pyflubumide, versus
298 water-sprayed controls. As reflected in the PCA (alongside the PC1 axis, Fig. 4A), large transcriptomic

299 changes were observed here, clearly separating water-sprayed from pyflubumide-sprayed populations.
300 Using water-sprayed populations as respective references, JPR-R1 had 294 DEGs, whereas JPR-R2
301 exhibited 118 DEGs (Fig. 4B). Over 92% of the transcriptional response of JPR-R2 was also present in
302 the response of JPR-R1, and the shared DEGs (n=109) exhibited a positive relationship in their plastic
303 transcriptional response (Fig. 4B). Eight cytochrome P450s were part of this positively correlated
304 response, of which five showed up-regulation after exposure to pyflubumide (Fig. 4B). Four CCE genes
305 were up-regulated when the resistant strains were exposed to pyflubumide (Supplementary Tables).

306 **Discussion**

307 The development of new acaricides with new modes of action and limited cross-resistance to other
308 conventional compounds remains crucial for efficient resistance management of phytophagous mite
309 pests like *T. urticae* (Nauen et al. 2012). Pyflubumide is a newly developed complex II inhibitor and the
310 first acaricide with a carboxanilide structure (Furuya et al. 2017). In this study, the compound proved to
311 be very active on a collection of strains with varying levels of resistance to commercially available
312 compounds. However, we uncovered decreased susceptibility in a Japanese strain named JPR, which
313 was selected out of JPO with cyenopyrafen (Sugimoto and Osakabe 2014). The decreased pyflubumide
314 susceptibility was only found in JPR, and not its parent JPO, suggesting that selection for cyenopyrafen
315 resistance resulted in decreased susceptibility for pyflubumide (Table 1), a typical case of moderate
316 cross-resistance. As cyenopyrafen and pyflubumide both belong to complex II inhibitors acaricides and
317 their active metabolites act on the same enzyme (Nakano et al. 2015), cross-resistance is not surprising,
318 although pyflubumide and cyenopyrafen belong to different chemical families, and might have slight
319 different binding modes (Nakano et al. 2015). In addition, cross-resistance between cyenopyrafen and
320 cyflumetofen, both beta-ketonitriles, has been demonstrated in JPR (Khalighi et al. 2016).

321 Before studying the mechanisms of (cross)-resistance, we attempted to further fix pyflubumide
322 resistance in JPR using two different laboratory selection regimes, and obtained two highly resistant
323 strains, JPR-R1 and JPR-R2. Pyflubumide resistance evolved very quickly (Fig. 1), indicating that under
324 field conditions pyflubumide efficacy would be at risk after prior selection with cyenopyrafen.

325 In the susceptible Wasatch strain, males were much more susceptible to pyflubumide than females, while
326 in contrast, eggs were much less susceptible. Variation in pesticide susceptibility between sexes and
327 developmental stages of pest species can be related to morphological differences (e.g. body size or egg
328 shell thickness) and/or metabolic differences (e.g. differential expression of detoxifying enzymes). A
329 smaller male and egg size in *T. urticae* can provide a higher exposure to acaricides through higher
330 surface-to-volume ratios, although sexual size dimorphism is not always related to variation in pesticide
331 tolerance (Daly and Fitt 1990; Rathman et al. 1992). When assessing stage-specific effects of
332 pyflubumide resistance, we discovered that unlike adult females, males and eggs of the two JPR-R
333 strains were still highly susceptible to pyflubumide, so resistance was strongly female biased. This
334 pattern was however not observed for JPR where eggs retained most of the resistance levels (Table 2).
335 As resistance levels were maintained in eggs versus adults in JPR, but not in JPR-R, this would suggest
336 that at least additional mechanisms were selected. Stage specific effects in resistance has been previously
337 reported in spider mites; spirodiclofen resistance is high in adult *T. urticae* females but absent in eggs
338 (Van Pottelberge, Van Leeuwen, Khajehali et al. 2009). Sex-linked pesticide resistance has been
339 observed in haplodiploid species such as spider mites where unfertilized haploid eggs develop into males
340 and fertilization leads to diploid females (Carrière 2003). One of the underlying mechanisms might be
341 a dosage-effect of the resistance alleles in haploid males (Carrière 2003). This mechanism is similar to
342 sex-linked pesticide resistance in diplodiploid species in which the sex-linked allele is not always
343 present, or expressed in a specific gender (Baker et al. 1994; Marín et al. 2000; Rao and Padmaja 1992).
344 Of practical importance, the effectiveness of resistance management strategies is higher when such sex-
345 linked pesticide resistance patterns are taken into account as the susceptibility of males (and
346 developmental stages such as eggs) might slow down the resistance development process by reducing
347 the overall population growth.

348 Pyflubumide is structurally similar to the carboxamide fungicides that act as a complex II inhibitors
349 (SDHI), and a similar mode of action has been documented (Furuya et al. 2017). Resistance to SDHI
350 fungicides has been reported to be conferred by specific point mutations in complex II subunits (SDHB,
351 -C, and -D) in many fungal plant pathogens (Avenot and Michailides 2010; Oliver 2014; Sierotzki and

352 Scalliet 2013). Because of the apparently frequent target-site resistance development in fungi, and the
353 observed cross-resistance between pyflubumide, cyenopyrafen and cyflumetofen (all acting on complex
354 II), we first searched for target-site resistance by sequencing all subunits (SDHA, until -D) that make up
355 complex II. However, we did not find any target-site resistance mutation in subunits SDHB, SDHC and
356 SDHD, previously implicated in QoI resistance in fungi (Avenot and Michailides 2010; Hahn 2014;
357 Sierotzki and Scalliet 2013). The V209I variant in SDHA in JPR and JPR-R2 was not positioned in a
358 conserved region and very likely not associated with resistance, as the ubiquinone-binding pocket where
359 pyflubumide interacts is structurally defined by the interface between the SDHB, -C, and -D subunits
360 (Sierotzki and Scalliet 2013), and is likely the reason why mutations in SDHA have not been uncovered
361 in fungi yet. This is in line with a previous study that did not find target-site resistance in the
362 cyenopyrafen resistant strain JPR (Khalighi et al. 2016) and points toward an alternative mechanism of
363 (cross)-resistance.

364 Synergism experiments strongly suggested that cytochrome P450 monooxygenases and glutathione S-
365 transferases are involved in pyflubumide detoxification in female resistant mites in the two JPR-R strains
366 (Table 3). To a lesser extent, this is also true for JPR (2-fold PBO synergism). A strong antagonism of
367 toxicity was found after treatment with DEF, which confirms pyflubumide is a pro-acaricide that
368 requires hydrolytic activation (Khajehali et al. 2009; Nakano et al. 2015; Van Leeuwen et al. 2006).
369 Interestingly, antagonism is much higher in JPR compared to both the susceptible LS-VL and resistant
370 JPR-R strains, again pointing towards different mechanisms between parental and selected strains.
371 Pretreatment with barbital dramatically lowered the resistance levels of JPR-R1-2 and JPR, whereas it
372 slightly increased pyflubumide resistance in the susceptible strain LS-VL. This suggests that the
373 detoxifying enzymes, most likely cytochrome P450s, were more suppressed than induced by barbital in
374 the resistant strains. Collectively, it seems likely that the differences in pyflubumide susceptibility of
375 eggs and males of the resistant strains might be due to a different detoxification potential. Higher levels
376 of resistance in the JPR-R strains correlate with higher synergism ratio for PBO and DEM.
377 Therefore, we performed a genome wide gene-expression analysis between parental (JPR) and selected
378 resistant lines JPR-R. Transcriptome analysis did not show any notable differences between strains in

379 the absence of acaricide pressure (Fig. 2A-B). In contrast, when JPO was used as the reference, over
380 500 genes were differentially transcribed in JPR and JPR-R1-2 with the majority of the DEGs exhibiting
381 stable transcript levels (Fig. 2C). Cluster analysis revealed a small group of DEGs that show an increased
382 expression in JPR-R1-2, compared to JPO (Fig. 2C, cluster 3). The cytochrome P450 CYP392D4 is
383 clustered in this group, and it belongs to the CYP392 family that underwent a spider mite-specific
384 expansion (Grbić et al. 2011) and of which many members have been implicated in resistance in *T.*
385 *urticae* (Demaeght et al. 2013a; Riga, M. et al. 2014; Van Leeuwen and Dermauw 2016). Together,
386 these results suggest that the constitutive transcriptomic signature of pyflubumide resistance was already
387 present in JPR and did not significantly change when selecting for higher resistance levels in JPR-R1-2
388 (Fig. 2A). We therefore tested the hypothesis whether the high pyflubumide resistance of JPR-R1-2
389 could be caused by a heritable increased plasticity (induction by pyflubumide). In our observations of
390 the symptomology timing, the highest level of JPR-R responses to pyflubumide was observed 9 h after
391 exposure to the acaricide. Afterwards, the symptoms declined, which suggests that the detoxifying
392 mechanisms were activated after this time. We indeed found that five cytochrome P450s and four CCE
393 genes were up-regulated when JPP-R1-2 were exposed to pyflubumide for 24 h, compared to water-
394 sprayed JPR-R1-2 mites. Here, the up-regulation of cytochrome P450s further supports our hypothesis
395 that pyflubumide resistance is metabolic.

396 Together, our results show that although many resistant *T. urticae* strains were susceptible to
397 pyflubumide, there could be a risk of rapid development of pyflubumide resistance in the areas that have
398 been exposed to cyenopyrafen and probably other complex II inhibitors. We gathered evidence that
399 indicates that cytochrome P450 enzymes are likely involved in pyflubumide resistance. However, gene-
400 expression patterns have shown to be complex and failed to clearly identify which cytochrome P450(s)
401 might be involved. Future work should focus on trying to get functional data on pyflubumide
402 metabolizing enzymes and characterize resistance with alternative hypothesis-free approaches such as
403 QTL mapping (Kurlovs et al. 2019).

404 **Acknowledgments**

405 This work was partially funded by the University of Amsterdam (IBED), and it was supported by the
406 Research Foundation - Flanders (FWO) [grant G009312N and grant G053815N] and the Research
407 Council (ERC) under the European Union's Horizon 2020 research and innovation program [grant
408 772026-POLYADAPT and 773902–SUPERPEST]. N.W. was supported by a Research Foundation -
409 Flanders (FWO) post-doctoral fellowship (12T9818N).

410 **References**

411 Asahara M, Uesugi R, Osakabe M (2008) Linkage between one of the polygenic hexythiazox resistance
412 genes and an etoxazole resistance gene in the two spotted spider mite (Acari: Tetranychidae). *J Econ*
413 *Entomol* 101:1704-1710

414 Avenot HF, Michailides TJ (2010) Progress in understanding molecular mechanisms and evolution of
415 resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi 29:643-
416 651

417 Baker BS, Gorman M, Marin I (1994) Dosage compensation in *Drosophila*. *Annu Rev Genet* 28:491-
418 521

419 Carrière Y (2003) Haplodiploidy, sex, and the evolution of pesticide resistance. *J Econ Entomol*
420 96:1626-1640

421 Daly JG, Fitt GP (1990) Monitoring for pyrethroid resistance in relation to body weight in adult
422 *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae). *J Econ Entomol* 83:705-709

423 Demaeght P, Dermauw W, Tsakireli D, Khajehali J, Nauen R, Tirry L, Vontas J, Lümmen P, Van
424 Leeuwen T (2013a) Molecular analysis of resistance to acaricidal spirocyclic tetrone acids in
425 *Tetranychus urticae*: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. *Insect*
426 *Biochem Mol Biol* 43:544-554

427 Demaeght P, Dermauw W, Tsakireli D, Khajehali J, Nauen R, Tirry L, Vontas J, Lümmen P, Van
428 Leeuwen T (2013b) Molecular analysis of resistance to acaricidal spirocyclic tetrone acids in
429 *Tetranychus urticae*: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. *Insect*
430 *Biochem Mol Biol* 43:544-554

431 Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbic M, Clark RM, Feyereisen R, Van
432 Leeuwen T (2013) A link between host plant adaptation and pesticide resistance in the polyphagous
433 spider mite *Tetranychus urticae*. *Proc Natl Acad Sci U S A* 110:E113-22

434 Fotoukkiaii SM, Tan Z, Xue W, Wybouw N, Van Leeuwen T (2019) Identification and characterization
435 of new mutations in mitochondrial cytochrome b that confer resistance to bifenazate and acequinocyl in
436 the spider mite *Tetranychus urticae*. *Pest Manag Sci* <https://doi.org/10.1002/ps.5628>

437 Furuya T, Machiya K, Fujioka S, Nakano M, Inagaki K (2017) Development of a novel acaricide,
438 pyflubumide. *J PESTIC SCI* 42:132-136

439 Furuya T, Suwa A, Nakano M, Fujioka S, Yasokawa N, Machiya K (2015) Synthesis and biological
440 activity of a novel acaricide, pyflubumide. *J PESTIC SCI* D14-087

441 Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Ngoc
442 PCT, Ortego F (2011) The genome of *Tetranychus urticae* reveals herbivorous pest adaptations. *Nature*
443 479:487

444 Hahn M (2014) The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case
445 study 7:133-141

446 Jeppson L, Keifer H, Baker E (1975) Mites injurious to economic plants. (University of California Press:
447 Los Angeles)

448 Kauffmann A, Gentleman R, Huber W (2008) arrayQualityMetrics—a bioconductor package for quality
449 assessment of microarray data. *Bioinformatics* 25:415-416

450 Khajehali J, Van Nieuwenhuyse P, Demaeght P, Tirry L, Van Leeuwen T (2011) Acaricide resistance
451 and resistance mechanisms in *Tetranychus urticae* populations from rose greenhouses in the
452 Netherlands. *Pest Manag Sci* 67:1424-1433

453 Khajehali J, Van Leeuwen T, Tirry L (2009) Susceptibility of an organophosphate resistant strain of the
454 two-spotted spider mite (*Tetranychus urticae*) to mixtures of bifenazate with organophosphate and
455 carbamate insecticides 49:185-192

456 Khalighi M, Dermauw W, Wybouw N, Bajda S, Osakabe M, Tirry L, Van Leeuwen T (2016) Molecular
457 analysis of cyenopyrafen resistance in the two-spotted spider mite *Tetranychus urticae*. *Pest Manag Sci*
458 72:103-112

459 Khalighi M, Tirry L, Van Leeuwen T (2014) Cross-resistance risk of the novel complex II inhibitors
460 cyenopyrafen and cyflumetofen in resistant strains of the two-spotted spider mite *Tetranychus urticae*.
461 *Pest Manag Sci* 70:365-368

462 Kurlovs AH, Snoeck S, Kosterlitz O, Van Leeuwen T, Clark RM (2019) Trait mapping in diverse
463 arthropods by bulked segregant analysis

464 Marín I, Siegal ML, Baker BS (2000) The evolution of dosage-compensation mechanisms. *Bioessays*
465 22:1106-1114

466 Nakano M, Yasokawa N, Suwa A, Fujioka S, Furuya T, Sakata K (2015) Mode of action of novel
467 acaricide pyflubumide: Effects on the mitochondrial respiratory chain. *J PESTIC SCI* 40:19-24

468 Nauen R, Elbert A, McCaffery A, Slater R, Sparks TC (2012) IRAC: insecticide resistance, and mode
469 of action classification of insecticides 1:935-955

470 Oliver RP (2014) A reassessment of the risk of rust fungi developing resistance to fungicides. *Pest
471 Manag Sci* 70:1641-1645

472 Rao S, Padmaja M (1992) Mammalian-type dosage compensation mechanism in an insect—*Gryllotalpa*
473 *fossor* (Scudder)—Orthoptera. *J Biosci* 17:253-273

474 Rathman R, Johnson M, Rosenheim J, Tabashnik B, Purcell M (1992) Sexual differences in insecticide
475 susceptibility and synergism with piperonyl butoxide in the leafminer parasitoid *Diglypus begini*
476 (Hymenoptera: Eulophidae). *J Econ Entomol* 85:15-20

477 Riga M, Tsakireli D, Ilias A, Morou E, Myridakis A, Stephanou E, Nauen R, Dermauw W, Van Leeuwen
478 T, Paine M (2014) Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high
479 levels of acaricide resistance in *Tetranychus urticae*. Insect Biochem Mol Biol 46:43-53

480 Riga M, Bajda S, Themistokleous C, Papadaki S, Palzewicz M, Dermauw W, Vontas J, Van Leeuwen
481 T (2017) The relative contribution of target-site mutations in complex acaricide resistant phenotypes as
482 assessed by marker assisted backcrossing in *Tetranychus urticae*. Scientific reports 7:9202

483 Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A
484 comparison of background correction methods for two-colour microarrays. Bioinformatics 23:2700-
485 2707

486 Sierotzki H, Scalliet G (2013) A review of current knowledge of resistance aspects for the next-
487 generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103:880-887

488 Smyth Gordon K (2004) Linear Models and Empirical Bayes Methods for Assessing Differential
489 Expression in Microarray Experiments 3:1

490 Smyth GK, Altman NS (2013) Separate-channel analysis of two-channel microarrays: recovering inter-
491 spot information. BMC Bioinformatics 14:165

492 Snoeck S, Wybouw N, Van Leeuwen T, Dermauw W (2018) Transcriptomic Plasticity in the Arthropod
493 Generalist *Tetranychus urticae* Upon Long-Term Acclimation to Different Host Plants. G3 (Bethesda)
494 8:3865-3879

495 Stumpf N, Nauen R (2001) Cross-resistance, inheritance, and biochemistry of mitochondrial electron
496 transport inhibitor-acaricide resistance in *Tetranychus urticae* (Acari: Tetranychidae). J Econ Entomol
497 94:1577-1583

498 Sugimoto N, Osakabe M (2014) Cross-resistance between cyenopyrafen and pyridaben in the
499 twospotted spider mite *Tetranychus urticae* (Acari: Tetranychidae). Pest Manag Sci 70:1090-1096

500 Team RC (2018) R Foundation for Statistical Computing; Vienna, Austria: 2014:2013

501 Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap
502 statistic 63:411-423

503 Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I
504 (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian
505 inheritance in action. Proc Natl Acad Sci U S A 105:5980-5985

506 Van Leeuwen T, Dermauw W (2016) The molecular evolution of xenobiotic metabolism and resistance
507 in chelicerate mites. Annu Rev Entomol 61:475-498

508 Van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W (2015) The economic importance of
509 acaricides in the control of phytophagous mites and an update on recent acaricide mode of action
510 research. Pestic Biochem Physiol 121:12-21

511 Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance
512 mechanisms in the two-spotted spider mite *Tetranychus urticae* and other important Acari: a review.
513 Insect Biochem Mol Biol 40:563-572

514 Van Leeuwen T, Tirry L, Nauen R (2006) Complete maternal inheritance of bifenazate resistance in
515 *Tetranychus urticae* Koch (Acari: Tetranychidae) and its implications in mode of action considerations.
516 Insect Biochem Mol Biol 36:869-877

517 Van Leeuwen T, Van Pottelberge S, Tirry L (2005) Comparative acaricide susceptibility and detoxifying
518 enzyme activities in field-collected resistant and susceptible strains of *Tetranychus urticae* 61:499-507

519 Van Leeuwen T, Demaeght P, Osborne EJ, Dermauw W, Gohlke S, Nauen R, Grbic M, Tirry L,
520 Merzendorfer H, Clark RM (2012) Population bulk segregant mapping uncovers resistance mutations
521 and the mode of action of a chitin synthesis inhibitor in arthropods. Proc Natl Acad Sci U S A 109:4407-
522 4412

523 Van Nieuwenhuyse P, Van Leeuwen T, Khajehali J, Vanholme B, Tirry L (2009) Mutations in the
524 mitochondrial cytochrome b of *Tetranychus urticae* Koch (Acari: Tetranychidae) confer cross-
525 resistance between bifenazate and acequinocyl Pest Manag Sci 65:404-412

526 Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L (2009) Genetic and biochemical analysis of a
527 laboratory-selected spirodiclofen-resistant strain of *Tetranychus urticae* Koch (Acari: Tetranychidae)
528 Pest Manag Sci 65:358-366

529 Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L (2009) Resistance mechanisms to mitochondrial
530 electron transport inhibitors in a field-collected strain of *Tetranychus urticae* Koch (Acari:
531 Tetranychidae). Bull Entomol Res 99:23-31

532 Van Pottelberge S, Van Leeuwen T, Van Amermaet K, Tirry L (2008) Induction of cytochrome P450
533 monooxygenase activity in the two-spotted spider mite *Tetranychus urticae* and its influence on
534 acaricide toxicity. Pestic Biochem Physiol 91:128-133

535 Wybouw N, Kosterlitz O, Kurlovs AH, Bajda S, Greenhalgh R, Snoeck S, Bui H, Bryon A, Dermauw
536 W, Van Leeuwen T, Clark RM (2019) Long-Term Population Studies Uncover the Genome Structure
537 and Genetic Basis of Xenobiotic and Host Plant Adaptation in the Herbivore *Tetranychus urticae*.
538 Genetics 211:1409-1427

539

540 **Tables**541 **Table 1** The toxicity of pyflubumide (LC₅₀ and slope) in a acaricide resistance reference panel of *T.*542 *urticae*

Strain	Resistant to	Reference	LC ₅₀ (mg/L) (95% CI) ^a	RR*
LONDON	Susceptible	(Khajehali et al. 2011)	2.55 (2.46 - 2.63)	1
WASATCH	Susceptible	(Riga et al. 2017)	3.08 (2.76 - 3.36)	1.21
JPO	Unknown	(Sugimoto and Osakabe 2014, Khalighi et al. 2016)	3.09 (2.87 - 3.28)	1.21
JPS	unknown	(Asahara et al. 2008, Khalighi et al. 2016)	5.08 (4.88 - 5.28)	1.99
LS-VL	Susceptible	(Van Leeuwen et al. 2005)	3.27 (3.04 - 3.43)	1.28
BR-VL	Bifenazate	(Van Leeuwen et al. 2008)	1.83 (1.63 - 2.02)	0.72
ETOXR	Etoxazole	(Van Leeuwen et al. 2012)	2.70 (2.52 - 2.86)	1.06
TU008R	Cyflumetofen	(Khalighi et al. 2014)	3.18 (2.95 - 3.40)	1.25
AKITA	METIs	(Stumpf and Nauen 2001)	4.20 (3.95 - 4.42)	1.65
SR-VP	Spirodiclofen	(Demaeght et al. 2013b; Van Pottelberge et al. 2009)	4.30 (4.12 - 4.48)	1.69
MAR-AB	Multi	(Dermauw et al. 2013)	5.86 (5.31 - 6.35)	2.30
HOL3	Bifenazate	(Van Nieuwenhuyse et al. 2009)	6.01 (5.58 - 6.43)	2.36
MR-VL	Multi	(Van Leeuwen et al. 2005)	6.39 (5.80 - 6.85)	2.51
MR-VP	Multi	(Dermauw et al. 2013; Van Pottelberge et al. 2009)	7.59 (6.80 - 8.24)	2.98
JPR	Cyenopyrafen	(Khalighi et al. 2016)	49.07 (37.62 - 65.63)	19.24

*Resistance ratio, LC₅₀ of resistant strain/LC₅₀ of susceptible strain^aThe lethal concentration required to kill 50% of the population

543

544 **Table 2** The toxicity of pyflubumide (LC₅₀ and slope) in different life stages of susceptible and
 545 resistance *T. urticae* mites

		WASATCH	JP-R	JP-RR1	JP-RR2
	LC50 (mg/ L) ^a	3.08	49.07	1437.48	1893.67
Female	(95% CI) ^b	(2.76 - 3.36)	(37.62 - 65.63)	(1221.26 - 1666.77)	(1641.63 - 2156.25)
	Slope ± SE ^c	8.69 ± 0.86	2.15 ± 0.21	2.08 ± 0.20	2.20 ± 0.21
	RR*	-	15.93	466.71	614.83
	LC50 (mg/ L) ^a	0.44	2.98	8.13	5.72
Male	(95% CI) ^b	(0.40 ± 0.48)	(2.73 ± 3.19)	(7.41 ± 8.79)	(4.97 ± 6.34)
	Slope ± SE ^c	4.83 ± 0.5	5.03 ± 0.42	4.55± 0.41	3.59 ± 0.42
	RR*	-	6.77	18.48	13
	LC50 (mg/ L) ^a	23.6	318.20	98.19	54.10
Egg	(95% CI) ^b	(19.93 ± 27.60)	(258.37 ± 381.99)	(78.71 ± 118.97)	(40.07 ± 68.91)
	Slope ± SE ^c	2.03 ± 0.14	1.60 ± 0.15	1.61 ± 0.12	1.42 ± 0.11
	RR*	-	13.48	4.16	2.29

^aThe lethal concentration required to kill 50% of the population

^bConfidence interval to 95% of the LC estimates

^cStandard error

*Resistance ratio, LC₅₀ of resistant strain/LC₅₀ of susceptible strain

547 **Table 3** The effect of synergist/ antagonist PBO, DEF, DEM and barbital on pyflubumide toxicity in
 548 susceptible and resistant strains of *T. urticae*

		LS-VL	JP-R	JP-RR1	JP-RR2
Acaricide alone	LC ₅₀ (mg/ L) ^a	3.27	49.07	1437.48	1893.67
	(95%CI) ^b	(3.10 - 3.41)	(37.62 - 65.63)	(1221.26 - 1666.77)	(1641.63 - 2156.25)
	Slope \pm SE ^c	11.11 \pm 0.92	2.15 \pm 0.21	2.08 \pm 0.20	2.20 \pm 0.21
PBO	LC ₅₀ (mg/ L) ^a	2.74	22.82	92.79	69.21
	(95%CI) ^b	(2.59 - 2.85)	(19.31 - 26.71)	(81.01 - 104.85)	(55.66 - 84.41)
	Slope \pm SE ^c	10.40 \pm 1.10	1.99 \pm 0.17	2.62 \pm 0.19	1.69 \pm 0.14
	SR ^d	1.2	2.15	15.49	20.4
DEF	LC ₅₀ (mg/ L) ^a	7.38	2176.16	3843.95	5028.17
	(95%CI) ^b	(6.86 - 7.79)	(1834.28 - 2498.45)	(3285.81 - 4524.38)	(4245.05 - 6011.25)
	Slope \pm SE ^c	7.55 \pm 0.86	2.23 \pm 0.22	2.08 \pm 0.24	1.89 \pm 0.24
	SR ^d	0.44	0.02	0.37	0.38
DEM	LC ₅₀ (mg/ L) ^a	2.36	21.90	152.30	73.73
	(95%CI) ^b	(2.26 - 2.46)	(16.00 - 28.92)	(130.05 - 176.97)	(58.33 - 91.05)
	Slope \pm SE ^c	6.95 \pm 0.58	1.08 \pm 0.15	1.59 \pm 0.11	1.56 \pm 0.10
	SR ^d	1.38	2.24	9.44	25.68
Barbital	LC ₅₀ (mg/ L) ^a	5.50	8.93	17.56	32.61
	(95%CI) ^b	(4.90 - 5.99)	(6.88 - 11.26)	(14.39 - 20.94)	(27.98 - 37.56)
	Slope \pm SE ^c	4.54 \pm 0.57	1.77 \pm 0.15	2.14 \pm 0.18	2.31 \pm 0.17
	BAR Ratio ^f	1.68	0.18	0.01	0.02

^aThe lethal concentration required to kill 50% of the population

^bConfidence interval to 95% of the LC estimates

^cStandard error

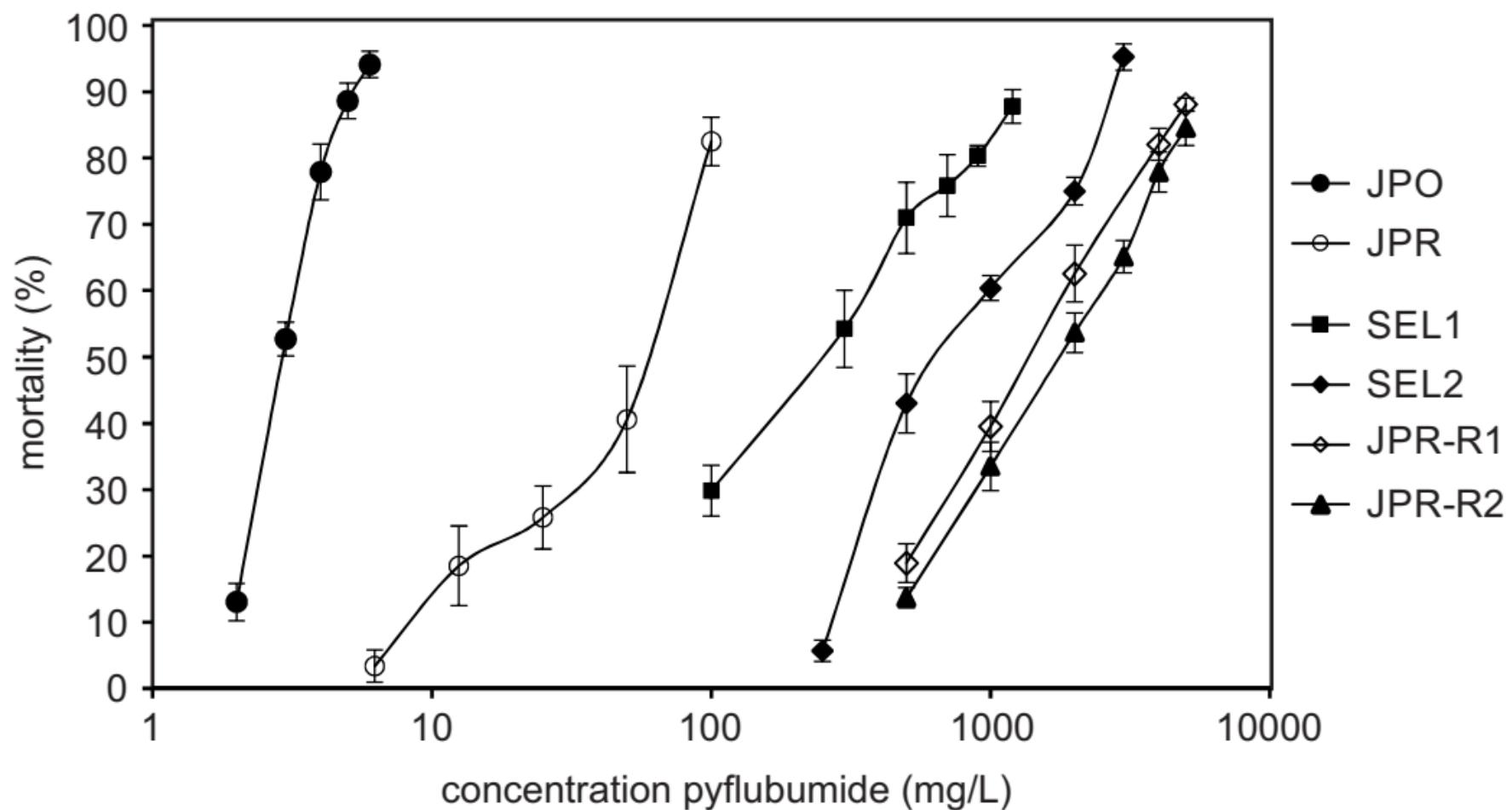
^dSynergism ratio, LC₅₀ of acaricide alone/LC₅₀ obtained after synergist pretreatment

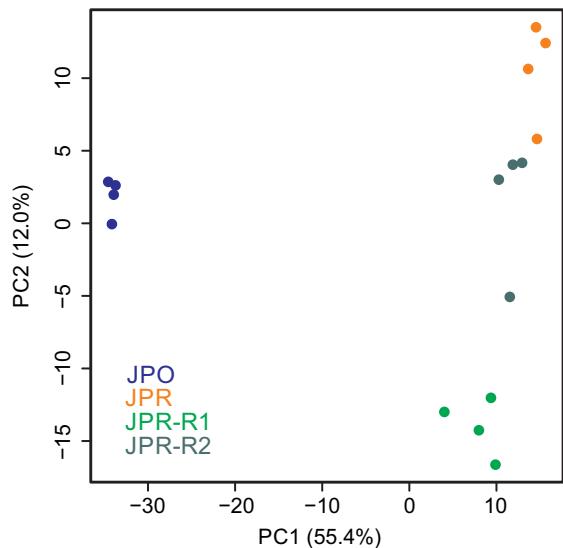
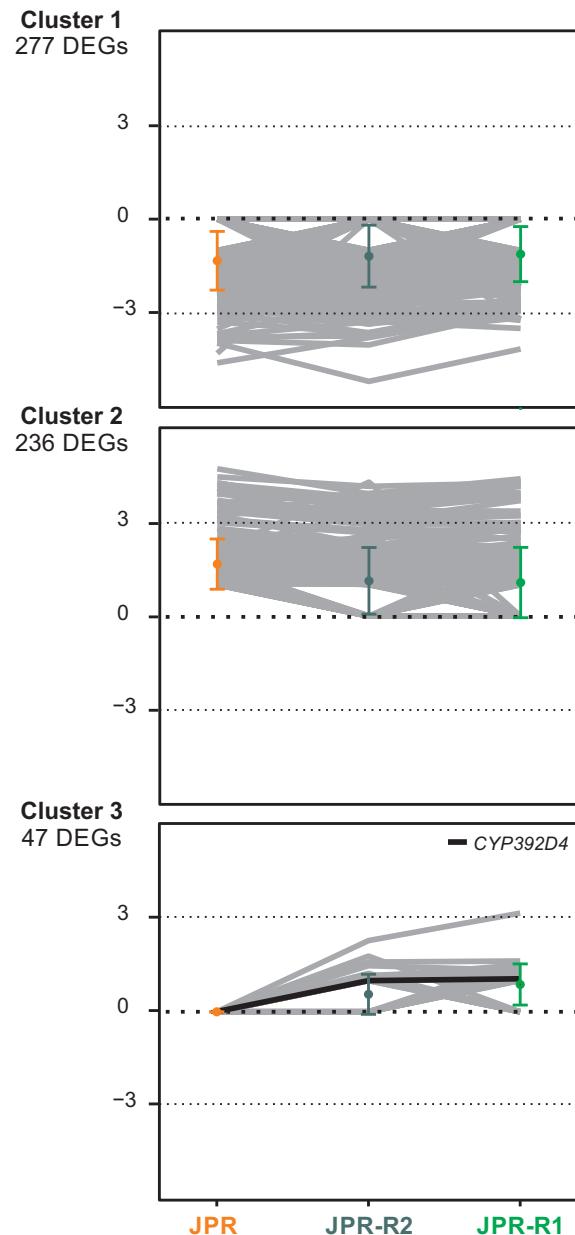
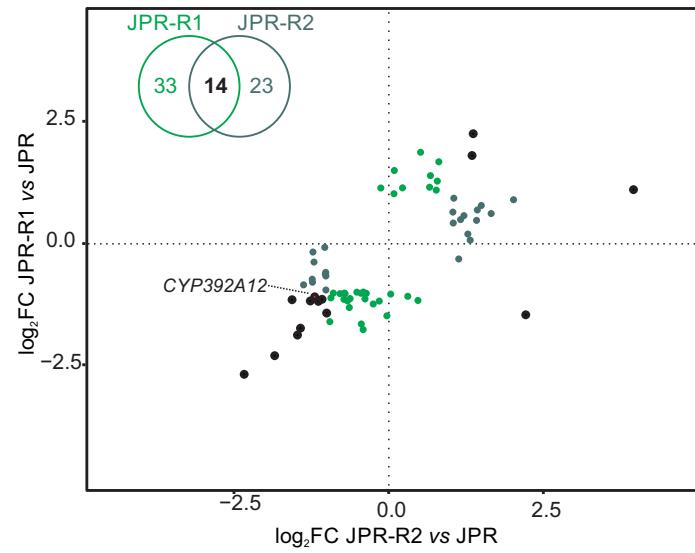
^fBarbital ratio, LC₅₀ of induced population/LC₅₀ of non-induced population

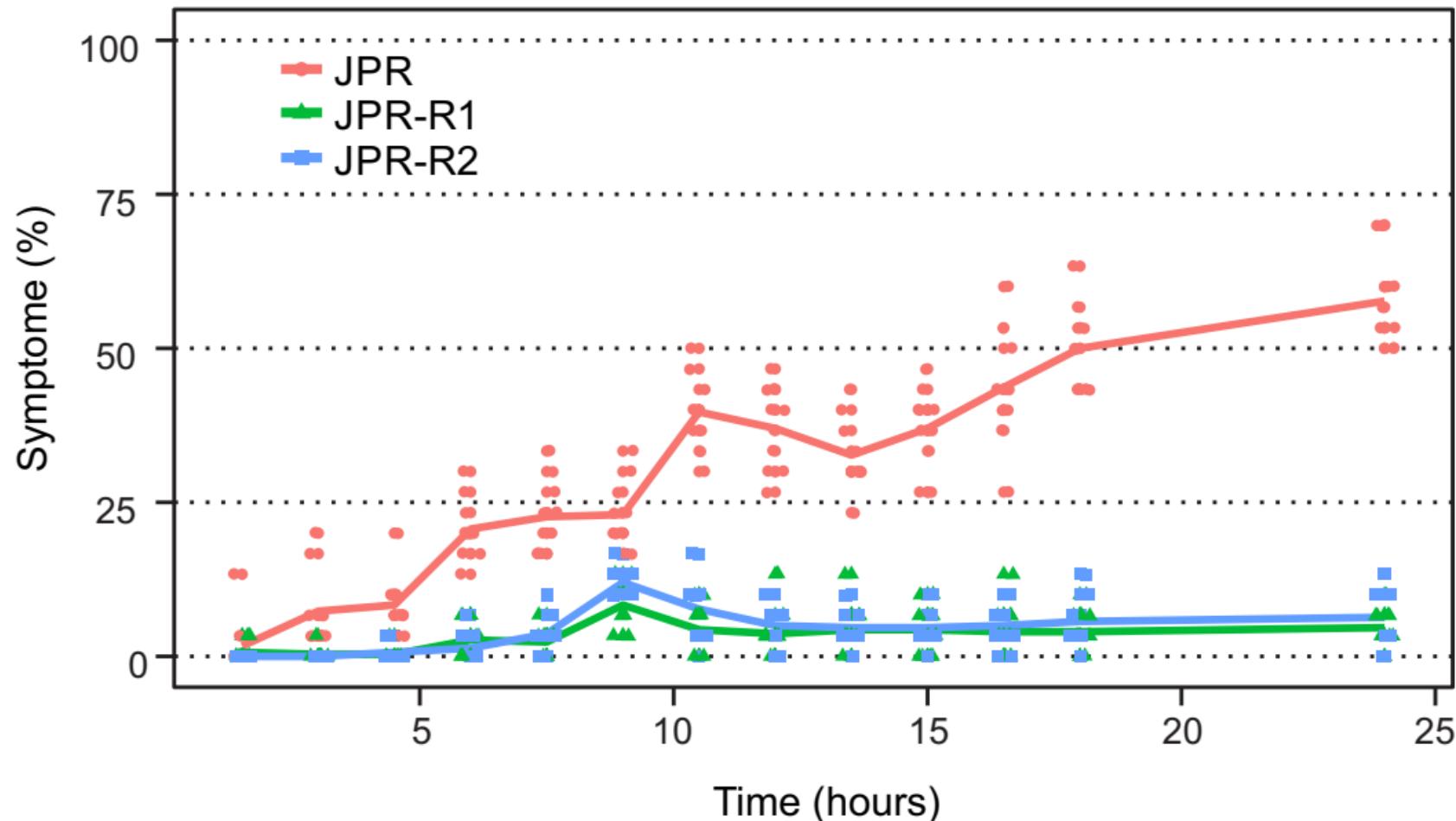
550 **Fig. Legends**

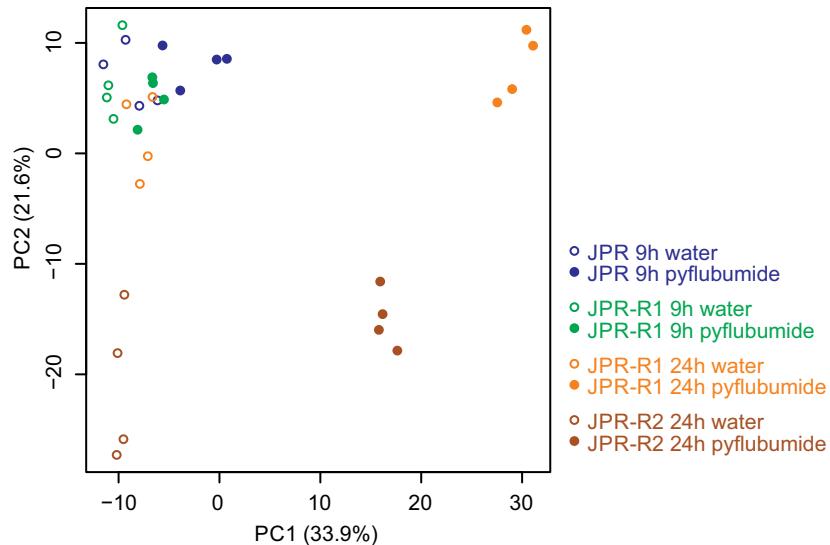
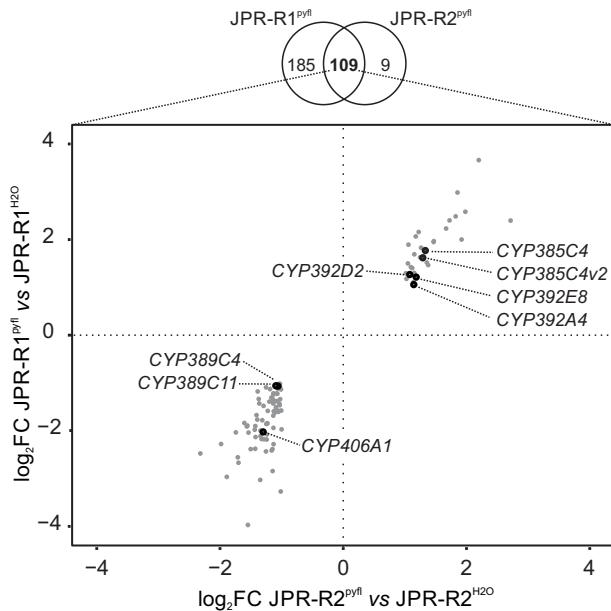
551 **Fig. 1 Dose-response relationships of pyflubumide toxicity on JPO, and the pyflubumide selected**
552 **strains.** JPO is susceptible to complex II acaricides, and was first used in selection experiments. JPO
553 was selected with cyenopyrafen resulting in JPR (Khalighi et al. 2016) and developed low to moderate
554 cross-resistance to pyflubumide. From JPR, two selection lines (JPR-R1 and JPR-R2) were established
555 by pyflubumide selection. SEL1 and SEL2 was the first and second generation of selection that finally
556 generated the JPR-R1 strain. JPRR-R2 as selected out of JPR on plants as described in M&M.

557 **Fig. 2 The constitutive transcriptomic changes between JPO, JPR, JPR-R1, and JPR-R2. Panel**
558 **A:** PCA plot of JPO, JPR, JPR-R1, and JPR-R2. The four samples of each strain are separately plotted.
559 **Panel B:** Scatterplot of the differentially expressed genes in the two pyflubumide-resistant strains JPR-
560 R1 and JPR-R2 versus ancestral JPR. Only the genes with an FDR-corrected *p*-value of < 0.05 and
561 $\log_2\text{FC} \geq 1$ were regarded as differentially expressed. Only one cytochrome P450 was differentially
562 transcribed in both pyflubumide-resistant strains, was down-regulated, and coded for CYP392A12. In
563 panel B: Venn-diagram showing the overlap of differentially expressed genes in JPR-R1 and JPR-R2
564 versus ancestral JPR. **Panel C:** Using JPO as the common reference, the transcriptional patterns of the
565 three *k*-clustered groups of the 560 DEGs across JPR, JPR-R2, and JPR-R1 are plotted. Circles represent
566 the average ($\pm\text{SD}$) of gene-expression in each strain (color coded)


567 **Fig. 3 Timing of symptomology in *T. urticae* strains JPR, JPR-R1, and JPR-R2.** Percentage of mites
568 that showed the symptoms of poisoning caused by pyflubumide treatment over 24 hours time course
569 after spraying. Symptoms include death, inability to walk, or uncoordinated behavior (spastic
570 movement) after a gentle touch by a tiny brush




571 **Fig. 4 The plastic transcriptomic changes upon 9 and 24 hours of exposure to a sub-lethal dose of**
572 **pyflubumide. Panel A:** PCA plot of the individual samples alongside PC1 and PC2 (55.5% of total data
573 variation) that were collected to investigate plastic transcriptomic responses. **Panel B:** Above, venn-
574 diagram showing the overlap of differentially expressed genes in JPR-R1 and JPR-R2 after 24 h
575 exposure to 100 mg/L pyflubumide. Below, scatterplot of the 109 shared differentially expressed genes
576 in JPR-R1 and JPR-R2 exposed for 24 h to 100 mg/L pyflubumide. Genes that code for cytochrome


577 P450s are depicted by black circles and labelled with their CYP identifier. Only the genes with an FDR-
578 corrected *p*-value of < 0.05 and $\log_2\text{FC} \geq 1$ were regarded as differentially expressed



579

580

A**C****B**

A**B**