
Data Augmentation and Semi-supervised Learning for
Deep Neural Networks-based Text Classifier

Heereen Shim∗†

Philips Research
Eindhoven, the Netherlands
heereen.shim@philips.com

Stijn Luca
Department of Data Analysis and Mathematical Modelling

Ghent University
Ghent, Belgium

stijn.luca@ugent.be

Dietwig Lowet
Philips Research

Eindhoven, the Netherlands
dietwig.lowet@philips.com

Bart Vanrumste‡
Campus Groep T, e-Media Research Lab

KU Leuven
Leuven, Belgium

bart.vanrumste@kuleuven.be

ABSTRACT
User feedback is essential for understanding user needs. In this
paper, we use free-text obtained from a survey on sleep-related
issues to build a deep neural networks-based text classifier. How-
ever, to train the deep neural networks model, a lot of labelled data
is needed. To reduce manual data labelling, we propose a method
which is a combination of data augmentation and pseudo-labelling:
data augmentation is applied to labelled data to increase the size of
the initial train set and then the trained model is used to annotate
unlabelled data with pseudo-labels. The result shows that the model
with the data augmentation achieves macro-averaged f1 score of
65.2% while using 4,300 training data, whereas the model without
data augmentation achieves macro-averaged f1 score of 68.2% with
around 14,000 training data. Furthermore, with the combination of
pseudo-labelling, the model achieves macro-averaged f1 score of
62.7%with only using 1,400 training data with labels. In other words,
with the proposed method we can reduce the amount of labelled
data for training while achieving relatively good performance.

KEYWORDS
Text classification, data augmentation, semi-supervised learning,
deep neural networks
ACM Reference Format:
Heereen Shim, Stijn Luca, Dietwig Lowet, and Bart Vanrumste. 2020. Data
Augmentation and Semi-supervised Learning for, Deep Neural Networks-
based Text Classifier. In The 35th ACM/SIGAPP Symposium on Applied Com-
puting (SAC ’20), March 30-April 3, 2020, Brno, Czech Republic. ACM, Brno,
Czech Republic, Article 4, 8 pages. https://doi.org/10.1145/3341105.3373992

∗Also with Campus Groep T, e-Media Research Lab, KU Leuven.
†Also with Department of Electrical Engineering (ESAT), STADIUS, KU Leuven.
‡Also with Department of Electrical Engineering (ESAT), STADIUS, KU Leuven.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6866-7/20/03.
https://doi.org/10.1145/3341105.3373992

Figure 1: Overview of the proposed approach.

1 INTRODUCTION
User feedback contains rich information about the users and is
essential for user-driven development. Many products are providing
in-app survey and collecting feedbacks from the users to identify
their needs for the better quality of service and support. Especially,
open-ended questions are good for understanding user-specific
problems. Unlike a closed-ended question that provides pre-defined
options limiting the users’ answer, the open-ended questions allow
the users to answer it in free-text format such that they can answer
based on their situation and feeling [5]. The answers to these open-
ended questions can be used to obtain detailed information on the
users.

One of the biggest challenges with analysing free-text is how
to automate the process. Manually analysing free-text is labour-
intensive and not suitable as the amount of user feedback is increas-
ing. In this case, developing a free-text analysis tool with the help
of recent advances of deep neural networks could be a solution.
However, there are technical challenges in applying the deep neural
networks to the real-world application: one is labelling data for
training the model. Data labelling is a time-consuming and tedious
task and it requires a lot of human and financial resources [3]. More-
over, since the labels are prone to be added or deleted as a new
batch of user feedback is obtained, the data labelling process is ex-
pected to be repeated frequently throughout product development.
Minimised manual labelling could mitigate these issues.

1119

https://doi.org/10.1145/3341105.3373992
https://doi.org/10.1145/3341105.3373992

In this paper, we focus on the topic of sleep. The goal is to under-
stand user-specific situations and problems via free-text to provide
personalised coaching service to users who want to optimise their
nights of sleep. As the first step, we collected experimental data
containing pairs of a free-text sentence and a set of sleep issues
via a web-based survey (Section 3). To automate analysing these
free-text data, we aim to build a neural networks-based text clas-
sifier with the limited number of labelled data. In this paper, we
propose a method which is a combination of data augmentation and
semi-supervised learning as shown in Figure 1 (Section 4). We eval-
uate our method and show the proposed method achieves similar
performance while reducing the amount of labelled data (Section 5).
Also, we analyse the error of the model and investigate the effects
of the proposed method (Section 6).

2 RELATED WORK
Neural language model for NLP tasks
One of the breakthroughs in neural networks based natural lan-
guage processing (NLP) is attention mechanism [1, 12]. The atten-
tion mechanism is firstly proposed to solve long term dependency
problems of sequential models [2, 6] that use a single context vec-
tor compressing every input from previous time steps. Attention
mechanism allows the models to take hidden states from several
time steps as inputs and calculate the degree of importance re-
garding the current time step’s input. After Ashish Vaswani et
al.[17] proposed Transformer architecture with sorely attention
mechanisms, Transformer architecture has beenwidely used for lan-
guage models[4, 13] to capture complex linguistic patterns. These
pre-trained language models can be easily fine-tuned on various
downstream NLP tasks [11, 20, 21]. However, it is widely accepted
that the performance of the neural networks-based model is highly
dependent on the size and the quality of training data.

Data augmentation for language data
Data augmentation is a technique that can increase the size of a
data. Many researchers have been working on data augmentation
in various fields, including vision [9] and speech [14]. Compared
to these fields, data augmentation for language is less studied and
there is no standard method yet. Some researchers proposed data
augmentation methods for language data, including synonym re-
placement by using a thesaurus[22], similar word replacement by
using a pre-trained word embedding [18], contextual word replace-
ment by using a pre-trained language model [8], and sentence
rephrase by back-translation [15]. However, these techniques are
computationally expensive compared to their performance gain.
Because of this reason, simple text editing operations are commonly
used in practice. Recent research empirically shows that simple text
editing operations could contribute substantially to improvements
in various text classification tasks [19]. We will explain this simple
text editing method in Section 4.2

Semi-supervised learning
Semi-supervised learning focuses on leveraging both labelled and
unlabelled data to build a better classifier. Pseudo-labelling, also
known as self-training, is a type of semi-supervised learning meth-
ods which is used to add more labels with iterative training. In spite

Table 1: Example of question and answer. Red coloured text
shows a spelling error.

Question What is going on with your sleep?

Answer I mainly have tow problems. The first is that it’s hard
for me to stay asleep for more than about an hour
withoutwaking up. The other problem is I sometimes
have trouble either going to sleep or getting back to
sleep once I wake up.

of its simplicity, using these pseudo-labels can improve classifier’s
performance, especially when there are little labelled training data
[10]. However, since the classifier uses its predictions to teach itself,
pseudo-labelling might reinforce the initial model’s error [23].

3 DATA
For experiments, free-text datawas collected via aweb-based survey.
Participants was asked to fill in questionnaires in free-text sentences
and select sentences representing to their answers. The free-text
responses to the open-ended questions will be used as input for the
classification model, while the selected sentences will be used as
ground truth labels to train and validate the model. In the following
subsections, we explain the data collection protocol and provide
initial data analysis result.

3.1 Participants
We recruited American adults for the survey by using Amazon’s
Mechanical Turk (MTurk) platform. Before participating in the
survey, participants were informed of the background, purpose,
and legal basis of the survey and their rights. When participants
signed up for participating in the study, they received the link to
the web page hosting the survey. Additional inclusion criteria were
applicable:

Inclusion criteria for subject selection.

• They are 18 years or older
• They have an MTurk-approval rate of 97% or higher (this
means that at least 97% of the prior tasks they completed on
MTurk were of acceptable quality)
• They are proficient in English
• They are willing and able to provide informed consent

3.2 Survey Questions
Participants described issues related to their sleep with at least one
complete sentence. Beforehand, the participants were provided with
a guide to imagine that they are sitting at the doctor’s office because
they are having some sleep issues. Table 1 illustrates an example of
the question and a user’s answer. As we can see, the answer contains
spelling errors. After describing sleep-related issues, participants
were asked to select at most 3 sentences that capture the meaning
of their answers from Table 2. Labels of the selected sentences are
used as ground truth labels in experiments.

1120

Table 2: Options for selecting matched sentences.

Label Sentence

troubleFallingAsleep I lie in bed awake have trouble
falling asleep

troubleStyaingAsleep I have been waking up frequently
wakeUpTooEarly I am waking up too early (before I

want/have to)
staysUpLate I am staying up (too) late
sleepsInLater I am sleeping in (too) late
problemWakingUp I have trouble waking up
SnoringBothersMe I am bothered by my snoring
SnoringBothersOthers Others are bothered by my snoring
SnoringStoppedBreathing I stop breathing during the night
otherIssue I have another concern
goodSleep I have no sleep concern

$!
#� �

	!%
��#

$��

$!
#� �

	!%
��#

$�%
��#

$

$!
#� �

�%!
""�

�	#
��%

�� �

!%�
�#�$

$&�

$���
"$�

�%
�#

"#!
����

��
�� �

�"

$%�(
$�"

�%
�

'��
��"

�!!

�#

�(

�!!
���

��"

%#!&
����

%�(�
 ��

$���
"

%#!&
����

����
��$

���"

����

�

���

����

����

����

����

����

����

����

��
!�
�!
��
&#
#�
 �
�$

$� ���
�&�%�"��

Figure 2: Label distribution of the train set. Blue graphs rep-
resent when the sample is single-labelled and orange graphs
represents when the sample is multi-labelled.

3.3 Data Analysis
In total 16,096 sentences were collected. We split data into train
and test set: the train set consists of 14,363 samples and the test set
consists of 1,733 samples. Figure 2 illustrates the label distribution
of train set. It is observed that the data distribution is highly skewed:
it has imbalances between labels and between single- and multiple-
labelled data.

4 METHOD
4.1 Classification model
Bidirectional Encoder Representations from Transformers (BERT)
[4] is used as a baseline text classifier. We use a pre-trained BERT
model and fine-tune on our data to detect multiple sleep issues from
the given free-text input. As it is illustrated in Figure 3, we add a
dense layer on the top of the pre-trained BERT model and the final
hidden vector of the classification token [CLS] is fed into this dense

Figure 3: Overview of the BERT model for multi-label clas-
sification.

layer. To perform multi-label classification, the sigmoid function is
used for an activation function and binary cross-entropy is used as
a loss function. For more details on tokenization and BERT model,
please refer the original paper [4].

4.2 Data augmentation
We use Easy Data Augmentation (EDA) technique [19] which con-
sists of four different text editing operations:
• Synonym replacement: N words are randomly selected
from the sentence and replaced with one of its synonyms
chosen at random.
• Random noise injection: N words are randomly selected
from the sentence and a single character of each word is
replaced with a random alphabetical character.
• Random swap: we randomly choose two words in the sen-
tence and swap their positions and repeat N times.
• Random deletion: N words from the sentence are ran-
domly chosen and removed from the sentence.

The value of N is decided based on the length of each sentence. We
set a percentage p = 0.1 and calculated p×len(sentence), where the
number words in the sentence is used as a length of the sentence.
Rounded up value of p × len(sentence) is used as the value of N .

During data augmentation, we select sample sentences consisting
of more than 5 words to avoid too short sentences. Four operations
are applied separately to each sentence. For synonym replacement,
we only select a word that contains more than two characters to
avoid selecting too short words. Also, unlike the original paper [19],
we insert random noise rather than a synonym. This can be seen as
introducingmisspelling to make the model robust to a spelling error,
which is common in user-generated free-text. Table 3 illustrates
examples of text editing operations.

4.3 Pseudo-labelling
We use pseudo-labelling [23] as a semi-supervised learning method.
During pseudo-labelling procedure, a classifier is trained on the

1121

Table 3: Examples of text editing operations.

Operation Text

Original I snore a lot.
Synonym replacement I snore a lot entirely.
Random noise injection I snoret a lot
Random swap snore I a lot
Random deletion I snore a lot

initial labelled data and then the trained model is used to do classify
unlabelled data. The predicted labels with a high confidence score,
which are called pseudo-labels, are then added to the new training
set. For selecting pseudo-labels, we set a threshold value of 0.6.
Then the classifier is re-trained with the new training set consisting
of the initial labelled and the pseudo-labelled data. This process is
repeated until it reaches a certain termination condition. In this
paper, we set the termination condition based on the number of
iterations and the size of the pseudo-labelled data. Until the number
of iterations reaches the limit, which is set as 5, we check the size
of the pseudo-labelled data. If the size of the pseudo-labelled data
is not bigger than the pseudo-labelled data from the previous step,
the pseudo-labelling process is terminated. Algorithm 1 illustrates
the pseudo-labelling procedure.

Algorithm 1: Pseudo-labelling procedure
Data: Training set Dt , labelled set Dl , unlabelled set Du
Result: New training set D̂t , trained modelMi

1 Dt ← Dl
2 i = 0
3 termination condition← False
4 while termination condition == False do
5 Mi ← train(Dt)
6 predictions← inference(Mi , Du)
7 Dp ← thresholding(predictions)
8 D̂t ← Dt + Dp
9 termination condition← check condition(Dp , i)

10 if termination condition == False then
11 Dt ← D̂t
12 i+ = 1
13 end
14 end

5 EXPERIMENTS AND RESULTS
To validate our method, 4 experiments were conducted: Firstly, we
check the baseline model’s performance without data augmentation
and pseudo-labelling. Secondly, we apply data augmentation and
train the model with augmented data. Thirdly, we apply pseudo-
labelling and iteratively train the model. Lastly, we train the initial
model with augmented data and iteratively train the model with
pseudo-labels. The purpose of these experiments is to evaluate how
the proposed method can contribute to performance improvement.

Table 4: Detailed implementation specification.

Item Specification

CPU Intel®Xeon®W-2123 CPU @ 3.60 GHz
GPU NVIDIA GeForce GTX 1080 ti, 11 GB memory
Graphic driver NVIDIA graphic driver version 416.34
CUDA Version 10.0
OS Windows 10, 64-bit
Python Version 3.6.6
Pytorch Version 1.0.1

Evaluation Metric
In our experiment, we use f1 score for each label as an evaluation
metric, which is defined as follows:

Precision =
tp

tp + f p

Recall =
tp

tp + f n

F1 = 2 ×
precision × recall

precision + recall

where tp, fp, and fn represent true positive, false positive, and false
negative of each label, respectively.

Additionally, we usemarco-, micro-averaged f1 scores [16].Macro-
averaged f1 is per label averaged and does not take label imbalance
into account. Micro-averaged f1 is calculated by counting the total
true positives, false negatives, and false positives so that it would
be more affected by the performance of the classes which has more
examples.

Settings
All experiments were performed on the Windows 10 operating
system. The detailed specification of hardware and software is
summarized in Table 4. We used PyTorch version of BERT [7]. The
smallest model, whose size of the final hidden vector of classification
token is 512, was used for the experiments with pre-trained model
weights. Softmax function in the final output layer was changed
to sigmoid function to perform multi-label classification. We did
not change other hyperparameter settings except the number of
training epochs: we trained the model on training datasets for 10
epochs.

5.1 Baseline model
We trained the BERTwith the entire training data. Table 5 shows the
result. It is observed that the trained model achieved varying perfor-
mances over labels: it achieves relatively high performance on some
labels (e.g., troubleFallingAsleep, troubleFallingAsleep, and goodSleep)
that occurred more in train set than other labels (e.g.,otherIssue and
snoringBothersMe) where the model achieves low performances.
This result implies that the trained model tends to performs well on
some labels with more training data compared to other labels with
less training data. We call these labels with relatively few train-
ing samples as minority labels. This results in a large difference
between macro- and micro-averaged performances. In our case,

1122

Table 5: Classification results when using entire training
data.

Label Precision Recall F1

troubleFallingAsleep 0.79 0.84 0.82
troubleStayingAsleep 0.78 0.79 0.79
wakeUpTooEarly 0.74 0.68 0.71
staysUpLate 0.74 0.65 0.69
problemWakingUp 0.75 0.74 0.75
sleepsInLater 0.64 0.57 0.60
snoringBothersOthers 0.82 0.65 0.73
snoringBothersMe 0.67 0.38 0.49
snoringStoppedBreathing 0.78 0.56 0.65
goodSleep 0.97 0.94 0.96
otherIssue 0.42 0.25 0.31

Macro-averaged 0.74 0.64 0.68
Micro-averaged 0.79 0.75 0.77

Figure 4: Performances based on various dataset sizes. X-axis
represents the size data used for training. Y-axis represents
macro-averaged f1 score.

the macro-averaged f1 score is suitable for evaluating the model’s
performance. Because micro-averaged performance might mislead
interpretation that the trained model works well even though it
misclassifies minority labels.

We further investigate how the size of the training set affects
the model’s performance. We trained model with the following
training set fractions (%): {10, 30, 50, 70, 90, 100} whose sizes (k) are:
{1.4, 4.3, 7.2, 10.0, 12.9, 14.3}. In Figure 4, the red dashed line shows
the performance of the model based on the size of the training
set. Interestingly, the model achieves nearly 90% of performance
upper limit - that can be achieved when around 14,300 samples
are used - with only using around 4,300 samples. Also, we can see
that the size of the training set does not have a significant impact
on the model’s performance after around 7,200. This shows that
after some number of data, the performance tends to be saturated.
Details of the training set size and its performance are described in
the following Section 6.2.

5.2 Data augmentation
We investigated the effect of data augmentation while varying
the size of the training data. In Figure 4, the green line shows the
performance of the model with data augmentation. From Figure 4,
it can be seen that the data augmentation provides the largest
performance increase when the training data is the smallest: it is
observed thatmacro-f1 score is increased from 39.13% to 59.7%when
only using 1,400 samples. However, the amount of performance
improvement decreases as the training size increases. This suggests
that the best scenario to apply data augmentation is when the only
small size of data is available for training. Details of additional
training data made by data augmentation are given in the following
Section 6.2.

5.3 Pseudo-labelling
We iteratively trained a model with a subset of training data as a
labelled data and the remaining as an unlabelled data by applying
pseudo-labelling. We investigate how the size of the labelled train-
ing data could affect the final model’s performance. In Figure 4,
the orange line shows the performance of the model trained with
pseudo-labelling. Similar to the data augmentation result, the per-
formance improvement tends to decrease as the size of labelled data
increases. The largest improvement is observed when around 4,300
samples are given as labelled data: the model use 10,000 of unlablled
data with pseudo-labels achieves a macro-f1 score of 64.8% while
the model trained without pseudo-labels achieves 58.9%. One no-
ticeable thing is that when only around 1,400 samples are given as
a labelled data, there is almost no performance increase even after
iterative training with 12,900 unlabelled samples with pseuo-labels:
it only increases from 39.1% to 41.1%. We will discuss this in the
following Section 6.3.

5.4 Data augmentation + Pseudo-labelling
We apply data augmentation to the initially given labelled data and
iteratively train the model by using unlabelled data with pseudo-
labels. As it can be seen from the Table 6, the baseline model,
without data augmentation and pseudo-labelling, achieves macro-
averaged f1 of 39.1% when around 1,400 of labelled data are given
for training. If we train the model with 1,400 of labelled data and
11,900 of unlabelled data with pseudo-labels, it slightly improves
the performance to 41.2%. Compared to this, if data augmentation is
applied to the 1,400 of labelled data and the model is iteratively add
more training data with pseudo-labels, it achieves macro-averaged
f1 score of 62.7%. However, it can be interpreted that this improve-
ment is mainly derived from data augmentation, because the model
trained with 1,400 of labelled data and additional augmented data
without pseudo-labels already achieves macro-averaged f1 score of
59.7%. In other words, data augmentation can contribute to perfor-
mance improvement significantly when there is a little amount of
labelled data. On top of that, pseudo-labelling can provide additional
performance increase by using unlabelled data.

1123

Table 6: Details of models’ training data sizes and compared performances.

Model Labelled Augmented Unlabelled Macro-f1

Baseline 1,436 0 0 0.39
Pseudo-labelling 1,436 0 12,927 0.41
Data augmentation 1,436 5,607 0 0.60
Data augmentation +pseudo-labelling 1,436 5,607 12,927 0.63

Figure 5: Normalised confusion matrix of the trained
model’s predictions. A row represents target label, whereas
a column represents predicted label. The values of the di-
agonal elements represent the degree of correctly predicted
classes.

6 DISCUSSION
6.1 Misclassification analysis
To analyse the misclassification, firstly we plot a confusion matrix
based on predictions made by the baseline model from Section 5.1.
Since our case is multi-label classification, we select samples whose
ground truth label set contains only single labels. We added oth-
erMisclassification label, which means that the trained model pre-
dicted more than one labels. As it is shown in Figure 5, misclassifi-
cation happens more often in between similar labels: the trained
model often misclassifies snoringBothersMe as snoringBothersOthers
and sometimes fails to distinguish problemWakingUp and sleepsIn-
Later. We speculate that this is because samples with these labels
are too close to be distinguished from each other. This suggests
avoiding pre-defining too similar labels for classification.

6.2 Data augmentation result analysis
We investigate the effects of the size of the training set and data aug-
mentation on the model’s performance. Table 7 shows the size of
each fraction with and without data augmentation and performance
with each dataset. To analyse the effect of data augmentation, two
comparisons are given: model trainedwith augmented datawhen (1)

Table 7: Size of training set and data augmentation result
and trained model’s performance.

Percent of dataset Min Max Total Macro-f1

10% 29 399 1436 0.39
30% 98 1,221 4309 0.59
50% 167 2,044 7,182 0.65
70% 219 2,829 10,054 0.66
90% 297 3,623 12,927 0.66
100% 317 4,073 14,363 0.68

Data augmentation on data of minority labels

10% + data augmentation 133 486 2,555 0.56
30% + data augmentation 460 1,376 7,170 0.60
50% + data augmentation 774 2,126 11,385 0.64
70% + data augmentation 1,005 2,750 15,326 0.66
90% + data augmentation 1,331 3,371 18,970 0.65
100% + data augmentation 1,551 5,260 26,206 0.68

Data augmentation on entire data

10% + data augmentation 133 1,946 7,043 0.60
30% + data augmentation 458 5,913 20,809 0.65
50% + data augmentation 776 9,708 34,059 0.66
70% + data augmentation 1,006 13248 47,024 0.66
90% + data augmentation 1,335 16749 59,595 0.68
100% + data augmentation 1,557 20,283 71,377 0.69

data augmentation is only applied to training samples of minority
labels or (2) data augmentation is applied to entire data. Minority la-
bels mean the labels with relatively few training samples, including
snoringBothersMe, snoringBothersOthers, snoringStoppedBreathing,
otherIssue, sleepsInLater, and problemWakingUp. In Table 7, min and
max represent a minimum and a maximum number of training
samples per label, respectively. For example, in 10% of data, the
smallest label set (snoringBothersMe) consists of 29 samples and
the largest label set (troubleFallingAsleep) consists of 399 samples.
From the Table 7, we can see that even when data augmentation is
applied to only data of minority labels, the model’s performance is
similar to when data augmentation is applied to entire data which
means that there are more than two times many training samples.
This implies that what plays a key role in data augmentation is the
number of training samples of minority labels, not the total size of
the training set.

1124

Figure 6: The number of pseudo-labelled data obtained by
using the initial model trained with 1,400 labelled data.

Table 8: The number of pseudo-labels and increase over iter-
ative training.

Iteration Pseudo-labels Increase

1 10,059 10,059
2 11,705 1,646
3 12,139 434
4 12,344 205
5 12,451 107

6.3 Pseudo-labelling result analysis
In previous Section 5.3, we showed that themodel trainedwith 1,400
labelled data and 12,900 unlabelled data with pseudo-labels achieves
the almost same performance of the model trained without pseudo-
labels. We hypothesise that this is because the initial model trained
with 1,400 samples with ground truth is not robust enough to get
sufficient pseudo-labels. To validate this, we investigate the number
of pseudo-labels obtained by using the initial model. As it is shown
in Figure 6, there is almost no pseudo-labelled data of minority
labels. This means that no additional samples of minority labels
will be added to the new training set for the next iteration. This
could enhance the data imbalance and result in poor performance
at the end of iterative training. This suggests that the initial model’s
performance, especially for minority labels, is critical in the pseudo-
labelling method.

Another observation from analysing pseudo-labelling result is
that the termination condition of the size of pseudo-labelled data is
not strict enough: as shown in Table 8, during the iterative training
the size of pseudo-labelled data is increasing, but with negligible
margin after the first iteration. Therefore, the iteration was repeated
until it met the termination condition of the iteration number, which
is set as 5 times in this paper. In future work, adding a margin for
the termination condition of the size of pseudo-labelled data is
foreseen to avoid unnecessary iterations.

6.4 Data augmentation and pseudo-labelling
efficiency analysis

To evaluate the efficiency of the proposed method, we investigate
the computation power required to train each model. Table 9 sum-
marises the required training time for each model and its training
data. For pseudo-labelling, the values of training set and training
time are for a single iteration and the value of the performance is
the final model’s performance. It is observed that data augmenta-
tion on 100% of data does not contribute to performance increase
significantly when considering its increase of training time. Un-
likely, data augmentation on 10% of data provides a relatively high
performance boost with only around 15 minutes of training time
increase. For pseudo-labelling, it seems not efficient compared to
data augmentation, because it requires multiple training sessions.
As it is described in Section 6.3, considering the number of newly
added pseudo-labels sharply decreases after the first iteration, the
best scenario is to train the model with augmented data and conduct
pseudo-labelling only 1-2 times.

7 CONCLUSION
In this paper, we propose a method which is a combination of data
augmentation and semi-supervised learning to reduce manual data
labelling process for developing a deep neural networks-based text
classification model. To validate our method, experiments on how
each method could contribute to the performance improvement
with various settings were conducted. We experimentally showed
that applying data augmentation can improve the model’s perfor-
mance, especially when there is little training data. Also, the result
shows that the size of minority labels is critical to the model’s
performance when the training data is imbalanced. Furthermore,
using unlabelled data with pseudo-labels can provide additional
performance improvement. However, for the pseudo-labelling, the
training time increases as the training sessions are iterated. These
results suggest two possible scenarios: Firstly, develop an initial
model with augmented data when there is little training data. Sec-
ondly, apply pseudo-labelling when there is additional data which
is not labelled yet and iterate the process only 1-2 times. We expect
this method can boost the development process by reducing manual
data labelling.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 766139. This article reflects
only the author’s view and the REA is not responsible for any use
that may be made of the information it contains.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[3] Michael Chui, James Manyika, and Mehdi Miremadi. 2018. What AI can and
can’t do (yet) for your business. McKinsey Quarterly (2018).

1125

Table 9: Details of each model’s training set, approximated training time, and performance.

Model Train set Time Macro-f1

Baseline with 100% of data 14,363 45m 0.68
Data augmentation on 100% of data 71,377 3h30m 0.69
Baseline with 10% of data 1,436 5m 0.39
Data augmentation on 10% of data 7,043 20m 0.60
Pseudo-labelling with 10% of data ≤ 14,363 ≤ 45m 0.41
Data augmentation on 10% of data + pseudo-labelling ≤ 19,970 ≤ 20m + 45m 0.63

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[5] Barbara Snell Dohrenwend. 1965. Some effects of open and closed questions on
respondents’ answers. Human Organization 24, 2 (1965), 175–184.

[6] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[7] Huggingface [n. d.]. PyTorch - BERT. https://github.com/huggingface/pytorch-
transformers.

[8] Sosuke Kobayashi. 2018. Contextual augmentation: Data augmentation by words
with paradigmatic relations. arXiv preprint arXiv:1805.06201 (2018).

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[10] Dong-Hyun Lee. 2013. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on Challenges in Repre-
sentation Learning, ICML, Vol. 3. 2.

[11] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[12] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[13] Alec Radford, Karthik Narasimhan, Time Salimans, and Ilya Sutskever. 2018.
Improving language understanding with unsupervised learning. Technical Report.
Technical report, OpenAI.

[14] Anton Ragni, Katherine Mary Knill, Shakti P Rath, and Mark John Gales. 2014.
Data augmentation for low resource languages. (2014).

[15] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Improving neural ma-
chine translation models with monolingual data. arXiv preprint arXiv:1511.06709
(2015).

[16] Mohammad S Sorower. 2010. A literature survey on algorithms for multi-label
learning. Oregon State University, Corvallis 18 (2010), 1–25.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[18] William Yang Wang and Diyi Yang. 2015. That’s so annoying!!!: A lexical and
frame-semantic embedding based data augmentation approach to automatic
categorization of annoying behaviors using# petpeeve tweets. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing.
2557–2563.

[19] Jason W Wei and Kai Zou. 2019. Eda: Easy data augmentation techniques for
boosting performance on text classification tasks. arXiv preprint arXiv:1901.11196
(2019).

[20] Yuxiang Wu and Baotian Hu. 2018. Learning to extract coherent summary via
deep reinforcement learning. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[21] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V Le. 2019. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. arXiv preprint arXiv:1906.08237 (2019).

[22] Ye Zhang and Byron Wallace. 2015. A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820 (2015).

[23] Xiaojin Jerry Zhu. 2005. Semi-supervised learning literature survey. Technical
Report. University of Wisconsin-Madison Department of Computer Sciences.

1126

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

