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Abstract. After more than 30 years, reconfigurable computing has grown from a
concept to a mature field of science and technology. The cornerstone of this evo-
lution is the field programmable gate array, a building block enabling the configu-
ration of a custom hardware architecture. The departure from static von Neumann-
like architectures opens the way to eliminate the instruction overhead and to op-
timize the execution speed and power consumption. FPGAs now live in a grow-
ing ecosystem of development tools, enabling software programmers to map al-
gorithms directly onto hardware. Applications abound in many directions, includ-
ing data centers, IoT, AI, image processing and space exploration. The increasing
success of FPGAs is largely due to an improved toolchain with solid high-level
synthesis support as well as a better integration with processor and memory sys-
tems. On the other hand, long compile times and complex design exploration re-
main areas for improvement. In this paper we address the evolution of FPGAs to-
wards advanced multi-functional accelerators, discuss different programming mod-
els and their HLS language implementations, as well as high-performance tuning
of FPGAs integrated into a heterogeneous platform. We pinpoint fallacies and pit-
falls, and identify opportunities for language enhancements and architectural re-
finements.

Keywords. FPGAs, high-level synthesis, high-performance computing, design
space exploration

1. Introduction

Parallel Computing is predominantly focusing on high performance computing. It typi-
cally covers three major domains: architectures, algorithms and applications. These three
components are considered a joint force to accelerate computations. Modern applications
have an ever growing processing need. This is the case for many areas such as artificial
intelligence, image processing, Internet of Things, and big data, not to mention cyber
physical systems, which is the topic of one of the Horizon 2020 calls by the European
Commission [14]. Despite an exponential rise of computing power for CPUs in general,
we see that since 2003 the performance rate is dropping [19], first of all due to the Den-
nard scaling [9], which is actually a problem of warming up caused by a continuously
rising clock frequency. A second aspect, not related to technology but to the type of ap-
plication, is Amdahl’s law [1], which is analyzed using parallel program models in sec-
tion 5. The third one is the end of Moore’s law [26], because transistors cannot prac-

1E-mail: Erik.DHollander@UGent.be.

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200020

16



tically be made smaller than a few silicon atoms. This means that we have to go new
ways to accelerate the computations. One of the accelerators notoriously present in our
today’s desktops and supercomputers is the graphics processing unit. A GPU is an ex-
cellent device for parallel number crunching, originally rooted in image processing, but
which since many years has outgrown this application domain by an order of magnitude.
While GPUs are voracious number crunchers, graphics processing units are not a one
size fits all architecture for every problem on the earth. A GPU is best suited for mas-
sively parallel computations. It has a fixed architecture consisting of many parallel pro-
cessing engines, and a fast thread manager which is able to switch very quickly between
threads waiting for data from the memory.

A major alternative emerging as a rising star is the field programmable gate array. In
contrast to the GPU, the field programmable gate array has not a fixed but a flexible, re-
configurable architecture. An FPGA behaves metaphorically speaking like a chameleon
because it is able to adapt itself to the type of the algorithm. This compute engine allows
to build an ad hoc architecture which is a one-to-one mapping of the algorithm onto the
hardware. There is no program, no instructions, just an interconnection of computing el-
ements and control logic performing the task implied by the algorithm. This brings us to
a very regular layout of the field programmable gate array: it consists of logic elements,
computing elements such as digital signal processors, memory elements or RAM blocks,
input-output elements at the border, clock signals to synchronize all the operations and
finally a network of programmable interconnections used to configure the control and
data paths of the design (Fig. 1).

Figure 1. FPGA architecture with basic logic elements, programmable interconnects, I/O pins, block RAM
and digital signal processors.

The so-called programming of an FPGA involves mapping a logic design, including
DSPs and their interconnections, onto the physical hardware of the FPGA. This is done
in two steps. First, a high-level synthesis or HLS compiler converts the program into a
task graph, assigns the nodes of the graph to computing resources of the FPGA, maps
the edges to control and data paths between the computing elements and generates a
low-level hardware description in VHDL or Verilog. In the second step, the hardware
description is mapped, placed and routed onto the physical available resources of the
FPGA. The result is stored in a binary file, called the bitstream, which is uploaded to the
configuration memory of the FPGA. After configuration, i.e. setting the interconnections,
the programmed FPGA can operate e.g. as a data flow engine.
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The rest of this paper is organized as follows. The origins of FPGAs are presented
in section 2. The back-end of an FPGA compiler is described in section 3 and section 4
introduces the front end of high-level synthesis compilers, including performance factors
and design exploration. The differences between FPGA and GPU accelerators are ad-
dressed in section 5, in particular focusing on the typical programming styles and appli-
cation areas of both accelerators when using the same programming language OpenCL.
Section 6 explores an integrated FPGA-CPU environment, including shared virtual mem-
ory, coherent caching and high bandwidth, as presented in the HARP-v2 platform. The
power of this platform is illustrated by a guided image filter application. In section 7
some common misconceptions are addressed and concluding remarks are given in sec-
tion 8.

2. History

Field programmable gate arrays have come a long way. They found their origin in the 60s
when researchers were looking for new computer architectures as an alternative for the
stored program concept of von Neumann. Not that the stored program concept was a bad
idea, on the contrary: it is an ingenious innovation to put instructions and data in the same
memory and to reconfigure the processor during instruction fetch and decode cycles.
Why then look for new architectures? Well, by configuring the control and data paths at
each instruction, the von Neumann computer trades in performance for flexibility.

The first person to challenge the von Neumann concept was Gerald Estrin from
UCLA [12]. His idea was to extend the traditional computer, which he called a fixed ar-
chitecture, with a variable part, used to implement complex logic functions. He built a six
by six motherboard to hold configurable computing and memory elements. The compute
elements implemented functions much more complex than the simple instructions in the
fixed architecture. The backside of the motherboard consists of a wiring panel to inter-
connect the different components. Programming the ”fix+variable” computer was quite
a challenge, e.g. the computation of the eigenvalues of a symmetric matrix is described
in a publication of 20 pages and resulted in a speedup of 4 with respect to an existing
IBM computer [13]. Although these results are modest, they show that implementing
an algorithm directly into hardware is beneficial. The question remains how this can be
done efficiently.

In 1975 Jack Dennis of MIT pioneered a new architecture which he called the data-
flow processor [10]. The architecture consists of a large set of computing elements which
can be arbitrarily interconnected and which fire when data is present on the inputs. Pro-
gramming the dataflow processor consists of interconnecting the computing elements
according to the dataflow graph of the algorithm and percolating the data from the top.
There are two performance gains. First, since the program is not stored in a memory, the
instruction fetch and instruction decode phases are eliminated, leading to a performance
gain of 20 to 40%. Second, the parallelism is maximally exploited, because it is only
limited by the dependencies in the algorithm and by the available computing elements.
A drawback of the first dataflow architecture is that the computing resources may be
underutilized when occupied by a single data stream. Therefore Arvind, a colleague of
Jack Dennis, proposed the tagged dataflow architecture [2] in which several separate data
streams are identified by tokens with different colors and tokenized data compete for the
compute resources in the system.
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Why did these new architectures not materialize? Obviously, the technology was
lagging behind, compared to the large-scale integration of today and also silicon com-
pilers were still in their infancy. These problems have been largely overcome by the
confluence and synergistic effects of hardware and software developments together with
a major progress in the detection and management of parallelism in programs. Paral-
lel computing techniques and versatile micro-electronics created a fertile ground for a
new kind of architecture, the field programmable gate array. Almost simultaneously two
companies were established. In 1974 Altera (now Intel) was founded by graduates of the
University of Minnesota and in 1975 Xilinx was created with people from university of
Illinois. Together these companies own more than 80% of the FPGA market. Nowadays,
the field of FPGAs has grown into a mature hardware technology enhanced by two soft-
ware developments. First, the integrated development tools now incorporate cycle ac-
curate logic simulation, power and performance estimations and resource usage reports.
Second, the support of high-level synthesis languages allows algorithms and programs
to be written in C or OpenCL, and converted into low-level VHDL for implementation
on the FPGA, thereby gaining several orders of magnitude in design exploration and de-
velopment time. Nevertheless, programming FPGAs with high-level synthesis tools still
requires a minimal notion of the underlying hardware.

3. Compiler back end

The smallest compute element of an FPGA, the lookup table or LUT, calculates an ar-
bitrary logic function of a number of input variables. Several logic functions with the
same inputs are calculated in parallel with the same LUT. Since the propagation delay
of a LUT is much smaller than the clock cycle time of the FPGA, many LUTs can be
cascaded into a long chain within the time frame of one clock cycle and thus create com-
plex functions, such as an integer addition or multiplication. When the combined prop-
agation delay becomes larger than the clock cycle time, the result is put into a flip-flop.
The combination of a lookup table and the flip-flop is called a basic logic element. This
element can be configured either as a logic function or as a state element, depending on
the use of the flip-flop.

A high-level synthesis compiler converts a high-level program into LUTs, DSPs,
gates, and their interconnections. Consider a sequence of functions operating on a data
stream, y = f1( f2(. . . fn(x))). Each of the functions is synthesized such that the combi-
national execution time is less than one clock cycle time and the result is stored in a
flip-flop where it is ready for the next function. This creates a pipeline with a latency
equal to the number of functions and a throughput of one result per cycle, as soon as the
pipeline is filled with data. How is a pipeline created by the compiler? Let us look at a
simple example, y = ax+b, represented by the task graph in figure 2. Assuming that the
multiplication and the addition require one clock cycle each, then the compiler inserts
registers or flip-flops to hold the intermediate results. The computation takes three clock
cycles, one to read the input elements, one for the multiplication and one for the addition.
Let us now extend this operation for arrays of n elements, y[i] = a[i]x[i]+b[i]; i= 0 . . .n
as described in a loop statement. In this case, the compiler creates extra control logic to
fetch the input variables, launch the computation and store the output.

The output of an HLS compiler is a description of the data- and control paths, mem-
ory, registers, flip-flops, and interconnection logic, written in a low-level hardware lan-
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Figure 2. Task graph, registers (squares), I/O data streams and control logic for y = ax+b.

guage such as VHDL or Verilog. Next, the placement and routing of the hardware de-
scription are done by mapping, placing and routing the design onto the FPGA, taking
into account the available resources. The resulting configuration of the hardware design
is written into a bitstream file used to set the interconnections in the FPGA. The bitstream
is moved to a persistent memory (e.g. flash memory) and from there it is stored in the
configuration memory at the boot time of the FPGA. It is important to note that high-
level synthesis compilers such as Vivado HLS of Xilinx or OpenCL of Intel run typically
in about five minutes whereas the hardware place and route tools run in the order of five
hours.

4. Compiler front end

Before long there were early birds attempting to create high-level synthesis compilers,
mostly based on the knowledge and ideas of parallel computing developed in the 80s. The
efficiency of these compilers was limited, partly due to the lack of detailed inside knowl-
edge and proprietary information from the FPGA vendors [27]. Everything has turned
around since Xilinx and Altera, now Intel, have developed high-level synthesis tools for
their own devices, leading to Vivado HLS [28] by Xilinx or OpenCL [17] by Altera and
Intel. Besides these imperative C-like languages, Maxeler developed a dataflow-oriented
language Maxeler Java [3].

4.1. Design space exploration

The approach to obtain efficient hardware with high-level synthesis is the same for
OpenCL and Vivado HLS: maximize the compute power using DSPs and maximize the
reuse of local data, since on-chip BRAM memory is limited. This calls for algorithms
with a high arithmetic density, i.e. a large number of operations per byte I/O [8]. The first
step is to adapt the algorithm to the computational model of an FPGA and carry out an
initial performance evaluation. Next, pragmas are inserted to improve the performance
taking into account the available resource budget of DSPs, BRAMS, and LUTs. In gen-
eral, it is not required to know low-level programming or detailed characteristics of the
FPGA because most information is available in the compiler reports. Further refining can
be done by simulation, emulation, and profiling. The interactive phase of generating an
efficient design is called the design space exploration.
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4.2. Performance factors

Key performance factors during the design space exploration are:

• clock frequency. A small clock cycle time limits the amount of work that can
be done in one cycle and therefore more flip-flops and cycles will be needed to
implement the design. This has an impact on speed and resource consumption.
An HLS compiler will optimize the clock frequency, based on the value requested
by the user and the capabilities of the hardware.

• pipelining. If the compiler is able to create pipelines with n stages, the execution
speed increases to n times the speed of the non-pipelined version.

• parallelism. When an algorithm has m independent data streams, the compiler can
organize m parallel pipelines and therefore multiply the speedup by the number of
pipelines. Examples are executing pipelined dot product calculations of a matrix
multiplication in parallel or using parallel streams in systolic computations [16].
The challenge here is to feed all pipelines simultaneously.

The bottom line is that the performance of an FPGA depends on two basic principles:
cram as much as possible operations into a pipeline and create as many pipelines as
possible which can be fed simultaneously.

4.3. The initiation interval

For maximum performance, pipelines need new data in each and every clock cycle.
Pipeline bubbles and gaps are caused by memory or data dependencies. Memory depen-
dencies occur when the number and width of data ports to the cache or DDR memory are
insufficient to provide continuous parallel data streams to all pipelines. Data dependen-
cies occur when computing elements have to wait more than one cycle for the results of
other computing elements in order to carry out the computation. Both memory and data
dependencies involve an action from the programmer. Off-chip memory dependencies
due to bandwidth limitations are removed by using on-chip cache cores or reduced using
fast interfaces, such as PCI-Express. Memory dependencies caused by contention for the
limited number of on-chip BRAM memory ports are avoided by partitioning data over
many parallel accessible memory banks. Data dependencies occur between loop itera-
tions when the result of one iteration is used in a subsequent iteration. The impact of
loop carried dependencies is expressed by the initiation interval, II. The initiation inter-
val of a loop is the number of cycles one has to wait before a new iteration can start.
Ideally, the initiation interval II = 1. However, due to data or memory dependencies, the
initiation interval may become larger than 1 for example, II = 2. In that case, the perfor-
mance drops by 50%. The initiation interval is therefore one of the most important loop
characteristics shown in the compiler reports.

There are a number of hints to improve loop operations: loops are unrolled to in-
crease the number of parallel iterations and generate more opportunities for pipelining.
Complete unrolling may lead to an overuse of resources, requiring partial loop unrolling.
The bandwidth usage is improved by coalescing load operations, leading to single wide
data fetches instead of doing sequential loads. Memory locations unknown at compile
time, caused by pointer arithmetic or complex index calculations, are an area of concern.
In nested loops it is better to represent matrices as multidimensional arrays instead of
using a computed index into a single array.
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To illustrate the impact of design space exploration, consider the program in list-
ing 1. A constant is added to a matrix in a double nested loop, l1 and l2. The pragmas of
the Vivado HLS compiler used are unroll, pipeline and array partitioning. The pragmas
are applied selectively according to the scenarios in table 1. Unrolling the outer loop
gives no speedup. Unrolling the inner loop creates 512 parallel iterations, generating a
modest 6-fold speedup. The reason is that FPGA memory banks have 2 ports, therefore
we can only read two values per cycle, i.e. start 2 iterations in parallel in each cycle.
The inner loop takes 512/2 = 256 cycles, whereas the same loop without pragmas takes
512*3 = 1536 cycles (3 cycles for respectively read, add and write). The solution is to
increase the number of memory banks by partitioning the arrays din and dout. This
scenario leads to a better speedup of 512, but still leaves an initiation interval of II = 3 in
the outer loop, because the parallel iterations of the inner loop don’t overlap and there-
fore an inner loop iteration takes 3 cycles. Pipelining the outer loop implies unrolling the
inner loop according to the compiler documentation. Without partitioning, we again ob-
tain a speedup of 6, due to the memory bottleneck. Pipelining the inner loop, plus array
partitioning, creates overlapping iterations, an initiation interval II = 1 and a speedup
of 1529. The same happens if we pipeline the outer loop, which implies unrolling and
pipelining the inner loop completely.

Listing 1 Design space exploration, optimal case, II=1.
# d e f i n e N 512
void n e s t e d l o o p ( i n t d i n [N] [N] , i n t dou t [N] [N] ) {
#pragma HLS ARRAY PARTITION v a r i a b l e = d i n f a c t o r =256 dim=2
#pragma HLS ARRAY PARTITION v a r i a b l e = d ou t f a c t o r =256 dim=2
l 1 : f o r ( i n t i = 0 ; i < N; i ++) {
#pragma HLS PIPELINE
l 2 : f o r ( i n t j = 0 ; j < N; j ++) {

dou t [ i ] [ j ] = d i n [ i ] [ j ] + 4 0 ;
}

}
re turn ;

}

Scenario Outer (l1) Inner (l2) Array partitioning II Speedup

Unroll x 1

Unroll x 256 6

Unroll x x 3 512

Pipeline x 256 6

Pipeline x x 1 1,529

Pipeline x x 1 1,529

Table 1. Design space exploration using unrolling, pipelining and array partitioning.

This simple design space exploration shows a performance improvement of more
than 1500 with a number of well-chosen pragmas.
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5. FPGA vs GPU programming: pipelining vs parallelism

Since more than two decades the performance gain of processors is hampered by clock
rate and transistor scaling constraints. In accelerators such as GPUs, low clock rates have
been replaced by explicit parallelism, yielding chips with hundreds or even thousands
cores per chip die [21]. The exponential growth of parallel cores requires a proportional
scaling of the problem parallelism. Recently, Hennessy and Patterson have illustrated
that the law of Amdahl comes into play for the diminishing processing speed between
the years 2011 and 2015 [19]. In this period GPUs were growing at a fast pace, and it
reminds us that the basic power of GPUs is not always applicable in every algorithm.
Amdahl’s law specifies that we cannot diminish the execution time below the critical
execution path of serial calculations, even if everything else is parallelized. This has two
consequences for HPC programming: 1) the amount of serial computations in a program
needs to be minimized and 2) highly parallel computers or GPUs require applications
with ample parallelism. The first consequence is visible in figure 3, displaying the max-
imum speedup with p processors as a function of the critical serial part. Even with only
2% serial operations, the speedup is limited by 50, irrespective of the number of pro-
cessors used, see figure 3. For the impact of the second consequence, we look at the
distribution of the parallelism in a program.

Figure 3. Application dependent speedup limit, Amdahl’s law.

5.1. Distribution of parallelism in ordinary programs

Ideally, all p processors of a multiprocessor work all the time, so the parallelism is p.
Ruby Lee studied three other distributions [23]: the equal time, equal work and inverse
work hypothesis. Equal time means that the program executes an equal amount of time
with respectively 1, 2 up to p processors operating in parallel. Equal work means that the
amount of work executed with i processors is proportional to i, i = 1 . . . p. The inverse
work hypothesis means that the amount of work done by i processors in parallel is in-
versely proportional to i. These hypotheses give rise to three analytical formulas for the
speedup, respectively Set = O(p) for the equal time distribution, Sew = O(p/ ln(p)) for
the equal work distribution and Siw = O(ln(p)) for the inverse work distribution, with
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et = equal time, ew = equal work and iw = inverse work hypothesis. As an example, a
workload of 48 units executed on 4 processors has a minimal execution time of 12 units.
Equal time, equal work and inverse work distributions of the parallelism increase the
execution time to respectively 19.2, 25.0 and 32.8 units. Ruby Lee also analyzed the par-
allelism of a large number of programs using the Paraphrase compiler at Illinois [22,23].
The results are shown in table 2.

Available processors Speedup Sp Hypothesis

1–10 O(p) Equal time
11–1000 O(p/ ln(p)) Equal work

1001–10000 O(ln(p)) . . .O(p/ ln(p)) Transient
>10000 O(ln(p)) Inverse work

Table 2. Speedup bounds for applications with diminshing parallelism.

In this study, the exploitable parallelism diminishes with a growing number of avail-
able processors. Although this is an old empirical observation, it may reflect that Am-
dahl’s law is actually a law of diminishing parallelism. Since GPUs are largely dependent
on massive parallelism this may also explain the decreasing rise of the computing speed
in the years 2011-2015 due to Amdahl’s law.

5.2. The case of OpenCL

Partly due to the success of OpenCL for programming GPUs, FPGA vendors Altera/In-
tel and also Xilinx have selected this language for high-level synthesis [7]. However,
GPUs and FPGAs are fundamentally different and this is reflected in the way an OpenCL
compiler for FPGAs is designed and used.

GPUs have ample parallel cores called streaming multi-processors. These are most
useful for SIMD calculations, which are launched in OpenCL by the NDRange kernel.
An NDRange kernel executes the same iteration on parallel processors for each index
in the n-dimensional iteration space of a nested loop. In a GPU architecture, the index
points of a parallel loop are organized into groups of 32 threads, each executing the same
instruction of the iteration for different index values [24]. Such a group of 32 threads is
called a warp. All warps compete for execution and the warp scheduler assigns a SIMD
instruction to a warp for which all data are available. This means that a GPU operates
strictly in a single instruction multiple data or SIMD mode. When the data for a warp are
not available, the warp scheduler assigns another warp for which data are ready. The fast
thread switching allows to hide the memory latency of the waiting threads.

GPU FPGA

Fast warp (thread) scheduler Fixed configuration, no thread switching
Independent iterations Loop carried dependencies OK
Massively parallel (SIMD) Pipelined execution (MISD)
Large memory Small memory footprint
Send → Calculate → Receive Streaming data, comp./comm. overlap

Table 3. Operational differences between GPU and FPGA.
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When implementing this mode of operation on an FPGA, we are faced with a num-
ber of discrepancies and operational differences, see table 3. First, an FPGA has no warp
scheduler, since the design of a program is fixed in the configuration memory of the
FPGA. This precludes thread switching to hide the memory latency, one of the major
performance factors in GPUs. As a consequence, all data for the warp need to be avail-
able at all times, creating an extra hurdle since FPGAs usually have a small memory
footprint and no cache on chip. Second, all threads in a warp operate independently and
therefore require parallel loops without loop carried dependencies between iterations.
This precludes the generation of long pipelines, which are favorable for execution on
FPGAs. Third, since a GPU has its own hierarchy of memories and caches, the data is
moved to the GPU, processed, and the results are sent back to the CPU. In contrast,
FPGAs are best fit for long streams of data that are processed using overlapping compu-
tation and buffered communication. It becomes clear that FPGAs and GPUs are not so
much competitors, but have a complementary role when it comes to different application
domains.

5.3. Vector types in OpenCL

As an alternative to the resource-hungry NDRange loop control, OpenCL for FPGAs
supports the more efficient vector data types. Vector types allow to operate in a SIMD
fashion on vector data. This creates parallel pipelines, thereby multiplying the pipeline
performance by the number of parallel data streams operating in lockstep. An example is
the use of a vector type in the matrix multiplication C = A×B by specifying the rows of
matrix B as float8 vectors. In this way, 8 elements of the product matrix are calculated
simultaneously within the pipelined inner loop (see listing 2). This results in 8 new values
per cycle.

Listing 2: Vectored pipelines. Matrix B has data type float8. Loop j creates 8 pipelines
each operating in SIMD fashion on 8 vector elements in loop k.

# d e f i n e T f l o a t 8

k e r n e l void a t t r i b u t e ( ( t a s k ) )
matmul ( g l o b a l f l o a t ∗ r e s t r i c t A,

g l o b a l T ∗ r e s t r i c t B , g l o b a l T ∗ r e s t r i c t C)
{

f o r ( i n t i = 0 ; i<N; i ++)
f o r ( i n t j = 0 ; j<N; j += 8)
{ / / 8 p a r a l l e l p i p e l i n e s

T vsum = 0 ;
#pragma u n r o l l 8

/ / g e n e r a t e p i p e l i n e d k−l oop
f o r ( i n t k = 0 ; k<n ; k ++)

vsum += A[ i ∗N+k ] ∗ B[ k∗N/ 8 + j / 8 ] ;
C[ i ∗N/8+ j / 8 ] = vsum ;

}
}
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6. Advancing FPGA accelerator integration

FPGAs have a limited amount of on-chip storage, much less than GPUs. Therefore, the
interaction between an FPGA accelerator and the CPU is more crucial than for GPUs.
FPGA connects with a data stream either using a PCI-express bus, by accessing device
data directly such as with video input or via an on-chip interconnect such as the AXI
bus in the Zynq. A tighter integration is beneficial, but presents a number of other prob-
lems such as using a common cache, translating the virtual addresses of the CPU into
addressable locations in the FPGA and sharing virtual memory between CPU and FPGA.

6.1. The HARP platform

In order to explore several design improvements, Intel has created a research platform
consisting of a fast Xeon Broadwell processor and an Arria 10 FPGA, together with extra
hardware for caching, and a high-speed CPU-FPGA interconnection [29]. In addition,
the OpenCL language is supported for this platform [4]. The Heterogeneous Architecture
Research Platform (HARP) introduces three innovations shown in figure 4. First, the
local DDR RAM at the FPGA side is replaced by a transparently shared DDR memory
at the CPU side. This includes IP cores translating physical FPGA addresses into virtual
CPU addresses, a Quick Path Interconnect and two PCI-Express channels, providing
a combined maximum bandwidth of 28 GB/s, managed by the channel steering logic.
Second, the FPGA contains a fixed hardware cache of 64 KB as well as an application-
specific cache, generated by the OpenCL compiler. Third, the OpenCL implementation
includes coherent shared virtual memory (SVM) support between the FPGA and the
CPU.

Figure 4. HARP architecture with coherent shared memory, fast interconnection and 2 local caches.

There are a number of questions that can be addressed: how efficient is the cache,
how large is the bandwidth between the FPGA and the CPU and what is the benefit of the
shared memory between the CPU and the FPGA. Regarding the bandwidth, we found
that the real achieved bandwidth is between 15 and 16 GB/s, depending on the buffer
size [15]. Regarding the cache, we have to make the distinction between the fixed 64 KB
Soft IP cache of the FPGA Interface Unit (FIU) and a special OpenCL cache which
is implemented by the compiler based on the data structures and usage in the OpenCL
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program. In order to study the cache performance, we exploited the temporal locality
by repeatedly reading a buffer with increasing length from the CPU. The specialized
OpenCL cache was able to double the bandwidth with respect to the fixed cache in the
Arria 10, see figure 5.

Figure 5. Cache efficiency: the OpenCL application-generated cache doubles the available bandwidth (red).
The FIU cache was measured by disabling the OpenCL cache using the volatile keyword (blue).

Finally, in a traditional FPGA-CPU configuration, the CPU memory cannot be ac-
cessed by the FPGA, therefore OpenCL buffers are required to explicitly send and re-
ceive data, which is time-consuming. Furthermore, cache coherency is lost. In the HARP
platform, a shared virtual memory (SVM) space has been implemented to transparently
access data in the memory of the processor. As a result, data is sent to, or read from the
FPGA on demand. This improves the communication efficiency and avoids extra buffer
space in the FPGA.

6.2. Case study: a guided image filter

The impact of the innovations were tested using the ”guided image filter” (GIF) image
processing algorithm [18]. The guided image filter takes two images: a raw noisy input
image I and an image with extra information G, for example LIDAR data, which is used
to improve the noisy image. GIF is a convolution algorithm in which an output pixel
Oi is obtained by averaging the input pixels I j multiplied with weighted guidance pixels
W (G j) in a window of radius r (r = 1,3,5...) centered around pixel i. The general form
is

Oi = ∑
j

W (G j)I j (1)

The algorithm uses a sliding window buffer to receive streaming input data and
reuses most of the data in consecutive pixel calculations, see figure 6.
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Figure 6. Sliding window with radius r = 1 in the guided filter algorithm. Windows I and G are used to
calculate pixel O.

Figure 7. Measurements of the guided filter on the HARPv2 platform: bandwidth, OpenCL generated cache
hit rate, impact of using shared virtual memory vs. copying data into local memory buffers.

6.3. Results

The key performance indicators (KPIs) of this example are the bandwidth, the cache effi-
ciency and the impact of the shared memory. The KPIs obtained in [15] are summarized
in figure 7. The algorithm has been tested on full HD color images (1920x1080x3 pixels)
with radius r = 3. The pipelined and vectorized design is compute-bound and has a data
throughput of 1.7 GB/s for reads and 1.5 GB/s for writes. The OpenCL cache hit rate is
81.5% and 95.4% for the input and guidance images respectively, showing the favorable
impact of an algorithm-specific designed cache. The use of shared virtual memory in-
stead of loading data into local buffers increases the frame rate from 30 to 45 frames per
second. These results are obtained using floating-point operations and correspond to the
maximum design fitting on the FPGA. As mentioned in [15], a larger radius generates
more computations per frame. Using fixed-point instead of floating-point calculations, a
radius r = 6 can be implemented, yielding 74 frames per second.
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This example shows that OpenCL and the HARP platform go together well. The
HARP platform offers a high bandwidth and a shared memory architecture. OpenCL,
on the other hand, adds a design-specific generated cache and the use of shared virtual
memory to the application developer.

7. Fallacies and pitfalls

The world of FPGAs is exciting, but also challenging, there are a lot of high expectations,
but also misconceptions. We would like to address some of these particular items or
issues here.

One kernel fits all sizes

It is reasonable to expect that one compute kernel can be used for any size of data. This
is mostly not true because the hardware generated depends on the kernel arguments. E.g.
the number of rows and columns of a matrix multiplication are used to reserve local
buffers, since the FPGA has no dynamic memory. Smaller matrices are fine, but one
loses the unused resources. Larger matrices require other techniques such as block matrix
multiplication to get the job done [11]. An FPGA kernel is thus less flexible than CPU
or GPU procedures.

Switching kernels in an FPGA or a GPU is equally fast

This is true only if there are enough resources to store multiple kernels simultaneously
in the logic fabric. Otherwise, switching between multiple kernels implies a full or par-
tial reconfiguration for each kernel, and this takes in the order of milliseconds or even
seconds [30]. In a GPU, a kernel switch is as fast as a procedure call. However, running
multiple kernels simultaneously by sharing processors is more complicated and involves
merging several kernels [31].

OpenCL is a standardized language for FPGAs

While OpenCL is a standard, its usage, attributes, pragmas and programming model are
not standardized across the FPGA vendors. This applies also to the compiler reports
which are used to optimize the design. E.g. the initiation interval is tabulated for each
loop in the Xilinx reports whereas it is specified for basic blocks in the Intel reports.
The Xilinx software gives the total number of cycles as well as the expected frequency
which allows to calculate the execution time of the kernel and even the number of GFlops
straight from the compiler report. Intel shows the number of cycles for each node in the
task graph and each basic block. It is not obvious to calculate the total number of cycles
from the task graph of the program. See also the tutorial [20].

FPGA programming eats time

As is mentioned in section 3, compiling an HLS program typically requires in the order
of several minutes, whereas implementing the hardware design into a bitstream can take
many hours. Since HLS resource usage and cycle time reporting is quite accurate and not
time-hungry, HLS design space exploration shows a much more favorable development
cycle time than what is generally assumed.
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An OpenCL program for a GPU is easily portable to an FPGA

The GPU architecture differs fundamentally from the FPGA, e.g. FPGAs have a small
memory and no hardware thread switching. Hardware thread reordering, proposed
in [25], doubles the resource usage due to arbitration logic and extra memory manage-
ment. The GPU parallel programming style using the NDrange kernel consumes a lot of
resources when used in the FPGA. OpenCL kernels for FPGAs are mostly single work
items, which are then pipelined. Finally, FPGAs require a thorough design space explo-
ration to optimize resource usage or to obtain a significant speedup. For these reasons, it
is often better to redesign the algorithm from the ground up to orient the program to the
characteristic features and optimizations of an FPGA [5].

8. Conclusion

Field programmable gate arrays have become a significant player in parallel computing
systems. While the support of a common OpenCL language suggests a transparent use
of GPUs and FPGAs accelerators, the application domain, algorithm selection and pro-
gramming style is substantially different. The initial high expectations have made way
for a more realistic view and a focus on better tools and design concepts, with good re-
sults. A number of key improvements to be expected are a tight integration of FPGAs
in SoCs, enhanced compiler reporting, standardized pragmas as well as increased use of
HLS languages for reconfigurable computing in software engineering curricula [6].
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