
The Calibration of Option Pricing Models

Hilmar Haukur Gudmundsson

Supervisor: prof. dr. David Vyncke
Dissertation submitted in fulfillment of the requirements for the degree of
Doctor in Science: Mathematics

Department of Applied Mathematics,
Computer Science and Statistics
Faculty of Sciences
Ghent University
Academic year 2019-2020





Members of the examination committee

Prof. dr. Kris Boudt
Department of Economics
Ghent University, Belgium

Prof. dr. Marnix Van Daele (chair)
Department of Applied Mathematics,
Computer Science and Statistics
Ghent University, Belgium

Dr. Kathrin Glau
School of Mathematical Sciences
Queen Mary University of London, UK

Prof. dr. Karel in ’t Hout
Department of Mathematics
University of Antwerp, Belgium

Prof. dr. Michèle Vanmaele
Department of Applied Mathematics,
Computer Science and Statistics
Ghent University, Belgium

Prof. dr. David Vyncke (promotor)
Department of Applied Mathematics,
Computer Science and Statistics
Ghent University, Belgium





Acknowledgements

First, I would like to express my sincere gratitude to my advisor Prof. David
Vyncke for his support. He gave me the flexibility I needed to experiment
with new ideas, and his expert opinion when I needed help. His patience
with my long rants about my ideas in his office was greatly appreciated, his
commonsense feedback kept me sane and his knowledge of mathematical
finance kept me on my toes. I could not have asked for a better advisor
throughout these years of research.

I would also like to thank members of my thesis committee: Prof. Michèle
Vanmaele, Prof. Karel in ’t Hout, Prof. Kris Boudt and Dr. Kathrin Glau for
their insightful comments and probing questions which gave me a chance
to see aspects of my research in a new light.

My sincere thanks also go to Prof. Einar Steingrímsson and Prof. Sergey Ki-
taev for completely transforming the way I think about mathematics during
my first two years in graduate school. Their mentoring largely shaped how
I approach mathematical research to this day. I am also grateful to Dr. Jón
Friðrik Sigurðsson for skillfully putting me on the right track during chal-
lenging times in my life.

I also thank my friends and colleagues: Johan, Vahe, Bashir, Xianming, Paula,
Camila, Mushthofa, Christophe, Oliver, Bea, Diego, Koen, Fatemeh, Cather-
ine, Hans, Mina and others for sharing the laughs, beers, troubles and tri-
umphs with me.

My mom and dad have my deepest gratitude for believing in me and sup-
porting me throughout all these years of school. Knowing that they would
always be there for me gave me the strength to keep going.

And finally, I want to thank my beloved Elena for keeping my feet on the
ground with her great sense of humor and broad intellect, for inspiring me
to become a better man, and for reminding me that there is more to life than
math and programming.

Hilmar Gudmundsson
Ghent, December 16, 2019

v





Contents

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

Samenvatting xvii

Summary xix

1 Introduction 1

2 Theoretical Preliminaries 7

2.1 Measure-Theoretic Probability . . . . . . . . . . . . . . . . . . . 7

2.1.1 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Stochastic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Partial Differential Equation Link . . . . . . . . . . . 14

2.2.2 Selected Stochastic Processes . . . . . . . . . . . . . . . . 14

2.3 No-Arbitrage Pricing . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Indifference Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Selected Utility Functions . . . . . . . . . . . . . . . . . . 22

2.5 Computational Finance . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Monte Carlo Pricing . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Pricing With Characteristic Functions . . . . . . . . . . . 25

vii



CONTENTS

3 On the Calibration of the 3/2 Model 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Calibration of the 3/2 Model with an Analytic Characteristic
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 The Analytic Gradient of the Characteristic Function . . 34

3.2.2 Optimal Gradient Computation . . . . . . . . . . . . . . 38

3.3 Regularization with Risk-Neutral MCMC Estimation . . . . . . 43

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Calibration Speed Tests . . . . . . . . . . . . . . . . . . . 51

3.4.2 Regularization Tests . . . . . . . . . . . . . . . . . . . . . 54

3.4.3 Calibration Of Multi-Factor Models . . . . . . . . . . . . 61

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Non-Affine Stochastic Volatility with Seasonal Trends 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Non-Affine Dynamics With Seasonally Varying Volatility Trend 67

4.3 A Fast and Robust Calibration Algorithm . . . . . . . . . . . . . 72

4.4 Numerical Data And Results . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Technical Implementation Details . . . . . . . . . . . . . 78

4.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.3 European Option Price Approximation . . . . . . . . . . 80

4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 A Generalized Weighted Monte Carlo Calibration Method 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 An Overview of the Weighted Monte Carlo Method . . . . . . . 87

5.3 The Weighted Monte Carlo Method as a Utility Maximization
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Calibration with Probability Distortion . . . . . . . . . . . . . . 93

5.4.1 The Weighted Monte Carlo Method with Probability Dis-
tortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



CONTENTS

5.4.2 Path Dependent Option Pricing with GWMC-Calibrated
Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Implementation Details And Numerical Results . . . . . . . . . 101

5.5.1 Initial Models, Pre-Calibration and Path Generation . . 102

5.5.2 Cross-Sectional Calibration Results . . . . . . . . . . . . 103

5.5.3 Intertemporal Calibration Results . . . . . . . . . . . . . 110

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 113

ix





List of Figures

3.1 Estimated parameter values obtained through least squares cal-
ibration of the 3/2 model using different starting points. . . . . 56

3.2 Comparison of parameter stability for regularized (χ = 3.86)
and non-regularized calibration of the 3/2 model. . . . . . . . . 59

3.3 Comparison of in-sample calibration error between regular-
ized (χ= 3.86) and non-regularized calibration of the 3/2 model. 60

4.1 Corn Implied Volatility Index. . . . . . . . . . . . . . . . . . . . . 66

4.2 Wheat Implied Volatility Index. . . . . . . . . . . . . . . . . . . . 66

4.3 Seasonal volatility component χ(t ) with the mean parameter
estimates for options on corn futures. . . . . . . . . . . . . . . . 68

4.4 Seasonal volatility component χ(t ) with the mean parameter
estimates for options on wheat futures. . . . . . . . . . . . . . . 68

5.1 Mean probability distortion values for the gain and loss do-
main for the GBM model. . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Mean probability distortion values for the gain and loss do-
main for the Heston model. . . . . . . . . . . . . . . . . . . . . . 95

5.3 The volatility for SPX options with maturity 30 days implied
by market prices, the OWMC calibrated GBM model, and the
GWMC calibrated GBM model. . . . . . . . . . . . . . . . . . . . 108

5.4 The volatility for SPX options with maturity 30 days implied by
market prices, the OWMC calibrated Heston model, and the
GWMC calibrated Heston model. . . . . . . . . . . . . . . . . . . 109

xi





List of Tables

3.1 Variable constraints for the calibration of the 3/2 model. . . . . 52

3.2 Computational times for the different Fourier pricing gradient
formulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Computational times of the calibration runs for the FFT method,
the COS method, the SC method, and the GMSC method. . . . 53

3.4 Mean absolute differences between the 3/2 model parameter
estimates and the true values for the FFT method, the COS
method, the SC method and the GMSC method. . . . . . . . . . 54

3.5 Variable constraints for the generation of parameter values for
the square root volatility component of the MH32 model. . . . 62

3.6 Computational times for the gradient computation for the char-
acteristic function of the D32 and MH32 models. . . . . . . . . 63

3.7 Computational times for the calibration runs for the D32 and
MH32 models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Variable Constraints. These represent the intervals within which
we constrained the optimization procedure for each parameter. 78

4.2 Parameter summary for the calibration of the homogeneous
3/2 model (H32) and the seasonal 3/2 model (S32) using op-
tions on corn futures. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Parameter summary for the calibration of the homogeneous
3/2 model (H32) and the seasonal 3/2 model (S32) using op-
tions on wheat futures. . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Pricing errors for the homogeneous 3/2 model (H32) and the
seasonal 3/2 model (S32) for options on corn futures. . . . . . 83

4.5 Pricing errors for the homogeneous 3/2 model (H32) and the
seasonal 3/2 model (S32) for options on wheat futures. . . . . . 83

xiii



LIST OF TABLES

5.1 Pre-Calibration summary for initial models. . . . . . . . . . . . 104

5.2 The averages of the probability distortion parameter values for
different maturity clusters and models, along with their stan-
dard deviations in brackets. . . . . . . . . . . . . . . . . . . . . . 106

5.3 Aggregate results for the out-of-sample cross-sectional perfor-
mance for the 2 different initial models along with the 2 differ-
ent weighted calibration methods, as well as the unweighted
versions for comparison. . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Cross-sectional results for the unweighted version, the OWMC
method and the GWMC method using geometric Brownian
motion as an initial model. . . . . . . . . . . . . . . . . . . . . . 107

5.5 Cross-sectional results for the unweighted version, the OWMC
method and the GWMC method using the Heston model as a
initial model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Intertemporal run results for the OWMC method and the GWMC
method using geometric Brownian motion as an initial model. 111

5.7 Intertemporal run results for the OWMC method and the GWMC
method using the Heston model as a initial model. . . . . . . . 111

xiv



List of Abbreviations

BAW Barone-Adesi-Whaley. 80, 81

BFGS Broyden-Fletcher-Goldfarb-Shanno. 88, 102, 105

CARA constant absolute risk aversion. 22

CIR Cox-Ingersoll-Ross. 15

COS Fourier-cosine series expansion. 39, 40, 51, 52, 53, 54, 64

CPT Cumulative Prospect Theory. 86, 93, 94, 96, 97

CRRA constant relative risk aversion. 22

D32 double 3/2 model. 61, 62, 63

EM Euler-Maruyama. 23, 24

FFT fast Fourier transform. 34, 38, 39, 40, 51, 52, 53, 54, 64

FFTAP First Fundamental Theorem of Asset Pricing. 17

GARCH generalized autoregressive conditional heteroskedasticity. 45

GBM geometric Brownian motion. 14, 95, 108, 109, 111

GMM generalized method of moments. 45

GMSC gradient-maturity-strike caching. 42, 43, 51, 52, 53, 54, 61, 62, 63

GWMC generalized weighted Monte Carlo. 99, 100, 101, 105, 107, 108, 109,
111

HARA hyperbolic absolute risk aversion. 22

xv



LIST OF ABBREVIATIONS

MAPE mean average price error. 101, 106, 107

MCMC Markov chain Monte Carlo. 4, 6, 31, 32, 46, 47, 48, 50, 57, 64, 66

MGMSC mixed gradient-maturity-strike caching. 63

MH32 mixed Heston-3/2 model. 62, 63

MRPE mean relative price error. 101, 106, 107, 111

OTC over-the-counter. 1

OTM out-of-the-money. 79, 93, 96, 107, 111

OWMC original weighted Monte Carlo. 99, 104, 105, 107, 108, 109, 111

PDE partial differential equation. 14, 23, 67, 80

RMSIV root mean squared implied volatility. 81

RMSP root mean squared price. 81

SC strike caching. 41, 51, 52, 53, 54, 62, 63, 64

SFTAP Second Fundamental Theorem of Asset Pricing. 17

WMC weighted Monte Carlo. 85, 86, 87, 91, 112

xvi



Samenvatting

Het onderzoek in dit proefschrift richt zich op verschillende aspecten van
de kalibratie van optieprijsmodellen. In het eerste hoofdstuk wordt het ka-
libratieprobleem gesitueerd in de wetenschappelijke literatuur. Het tweede
hoofdstuk geeft vervolgens een overzicht van de fundamenten uit de sto-
chastische analyse, de financiële economie en de computationele financiële
wiskunde waarop de resultaten uit de volgende hoofdstukken steunen.

In het derde hoofdstuk, getiteld On the Calibration of the 3/2 Model, wordt
een kalibratiemethode voor het 3/2 stochastische volatiliteitsmodel voor-
gesteld. Daarbij wordt gebruikgemaakt van de analytische gradiënt van de
karakteristieke functie van het model, samen met een caching algoritme dat
het kalibratieproces van het model aanzienlijk versnelt. Daarnaast wordt
een regularisatie van de kalibratiedoelfunctie voorgesteld waarbij het re-
gularisatiepunt en de dempingsmatrix worden verkregen uit een MCMC-
schatting van de tijdreeks van de geïmpliceerde volatiliteit.

In het vierde hoofdstuk, getiteld Non-Affine Stochastic Volatility With Seaso-
nal Trends, wordt een algemener 3/2 model voorgesteld dat de seizoensge-
bonden trends in de volatiliteit van futures op granen beschrijft. De belang-
rijkste bijdrage – naast de nieuwe modeldynamiek op zich – is de afleiding
van de karakteristieke functie van het model in analytische vorm, wat de
kalibratie van het model aanzienlijk vergemakkelijkt. Daarnaast wordt een
kalibratiemethode met een hybride globaal-lokale optimalisatieprocedure
voor het minimaliseren van de kleinste-kwadratendoelfunctie uitgewerkt.
Pure gradiëntgebaseerde methoden zijn immers problematisch door het ge-
brek aan strikte convexiteit in het optimalisatieprobleem. De kalibratiepro-
cedure werd vervolgens op een parallel computerplatform (CUDA) geïmple-
menteerd om ze te versnellen. De numerieke tests tonen aan dat dit nieuwe
model in staat is om de prijzen van opties op futures op maïs en tarwe met
een aanzienlijk grotere nauwkeurigheid te reproduceren dan het originele
3/2 model.
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In het vijfde hoofdstuk, getiteld A Generalized Weighted Monte Carlo Cali-
bration Method, wordt een veralgemeende versie van de gewogen Monte
Carlo kalibratiemethode voorgesteld. De oorspronkelijke methode berekent
gewichten voor de Monte Carlo paden van het te kalibreren arbitragemo-
del zodat de gewogen paden exact de marktprijzen van de benchmarkop-
ties reproduceren en bovendien zodanig dat de gewichten een minimale
relatieve entropie vertonen ten opzichte van de oorspronkelijke (uniforme)
gewichten. De veralgemening van deze methode omvat een vervorming
van de staartkansen, evenals een opsplitsing van de gegenereerde paden op
basis van de looptijd van de opties zodat elk segment van het pad een eigen
gewicht krijgt. Een uitgebreide numerieke studie toont aan dat deze nieuwe
methode tot aanzienlijke verbeteringen in de out-of-sample fit leidt voor
optieprijzen geschreven op de S&P 500 voor twee veelgebruikte optieprijs-
modellen. Het hoofdstuk bevat ook een gedetailleerde bespreking van de
wiskundig equivalente interpretatie van de gewogen Monte Carlo methode
als een optimalisatieprobleem voor een portefeuille van een belegger met
een verwacht nut.
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Summary

The research in this dissertation focuses on different aspects of the calibra-
tion of option pricing models. In the first chapter the calibration problem
is situated in the scientific literature. The second chapter gives an overview
of the concepts from stochastic analysis, financial economics and compu-
tational finance, serving as foundations for the results in later chapters.

In chapter 3, titled On the Calibration of the 3/2 Model, a calibration method
is proposed for the 3/2 stochastic volatility model which uses the analytic
gradient I derive for the characteristic function of the model combined with
a caching algorithm that greatly speeds up the calibration process of the
model. In addition, a regularization of the calibration objective function
is proposed where the regularization point and the damping matrix are ob-
tained from MCMC estimation of the time series of past implied volatility.

In chapter 4, titled Non-Affine Stochastic Volatility With Seasonal Trends,
a more general 3/2 model is proposed which captures the seasonal trends
in the volatility of commodity futures on grains. The main contribution
besides the new model dynamics is the derivation of the characteristic func-
tion of the model in closed form, which greatly facilitates the calibration
of the model. In addition, a calibration procedure for the model is pre-
sented that uses a hybrid global-local optimization routine for finding the
minimum of the least squares objective function, which tackles the lack
of strict convexity present in the problem that can make purely gradient-
based methods problematic. Furthermore, I implemented this calibration
procedure on a parallel computing platform (CUDA) to speed it up. The
numerical tests of this new model reveal that it is capable of reproducing
the prices of options on futures on corn and wheat with significantly greater
degree of accuracy than the original 3/2 model.

In chapter 5, titled A Generalized Weighted Monte Carlo Calibration Method,
a generalized version of the weighted Monte Carlo calibration method is
proposed. The original method computes a set of weights for the Monte
Carlo sample paths for the no-arbitrage model to be calibrated such that
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the reweighted paths reproduce exactly the market prices of the calibration
benchmark options and furthermore such that the weights exhibit mini-
mum relative entropy with respect to the prior (uniform) weights. The gen-
eralization of this method proposed here incorporates a distortion of the
probability of tail events as well as a maturity-based partition of the sample
paths with each segment of each path getting its own weight. The results of
extensive numerical tests are presented which show that this new method
leads to significant improvements in the out-of-sample fit in terms of the
prices of options written on the S&P 500 for the two commonly used option
pricing models that were calibrated. The chapter also includes a detailed
discussion on the mathematically equivalent interpretation of the weighted
Monte Carlo method as a portfolio choice problem for an investor with ex-
pected utility.

xx



Chapter 1

Introduction

Financial derivatives constitute a broad class of contingent claims that are
used for reallocating capital across uncertain future outcomes. The main
theoretical justification behind financial derivatives is that they allow mar-
ket participants to hedge against financial risk, essentially making financial
derivatives a class of insurance instruments. Modern financial economics
carries the fundamental assumption that participants in financial markets
are risk averse, in the sense that risky assets trade at a discount relative to
their expected value in the market. Since risk aversion among capital hold-
ers is commonly understood to limit the access firms and individuals have
to investment capital, instruments that allow capital holders to share risk
more effectively are implicated as a requirement for increasing the efficiency
of capital allocation in the economy.

Although the derivatives industry has experienced several setbacks in recent
history, the market demand for derivatives continues to be significant. At
the time this is written, the Bank for International Settlements estimates the
combined market value of outstanding over-the-counter (OTC) derivative
contracts to be roughly 9.7 trillion dollars (BIS [2019]).

While derivative contracts have been traded as far back as several thousand
years ago (Crawford and Sen [1996]), the modern mathematical framework
of option pricing is generally traced back to the work of Fischer Black and
Myron Scholes who in 1973 published a simple option pricing model which
still remains widely used today (Black and Scholes [1973]).

The research literature on derivative pricing now contains a vast and di-
verse set of market models which improve upon the original Black-Scholes
model in a variety of ways. In fact, modern no-arbitrage models have been
shown to be able to capture the empirical features of the price processes of
stocks and indices to such a high degree that choosing between them now
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requires considerations beyond their basic empirical fit to the calibration
instruments (Schoutens et al. [2005]).

Meanwhile, the fundamental question of how to efficiently calibrate these
models still remains largely open. One reason is that market models that
are flexible enough to capture the dynamics of financial markets tend to be
too mathematically intractable for standard statistical inference methods to
be applicable. Furthermore, if a model is misspecified, or if the data is noisy,
the calibration process carries with it a subjective judgment on how the loss
function should be formulated to produce the most plausible parameter
estimates.

The calibration of a market model refers here to the procedure of computing
admissible values for the model parameters so that the derivative prices
implied by the model coincide with the corresponding benchmark deriva-
tive prices observed in the market. The standard approach to calibrating
an option pricing model given a set of observed cross-sectional derivative
prices in the market is through the minimization of the model prediction
error. It amounts to obtaining

θ∗ = argminθ
∑

i
wi ||h(πmarket

i ,πmodel
i (θ))||, (1.1)

where πmarket
i is the observed market value for contract i , πmodel

i (θ) is the
price predicted for contract i by the model given the parameter vector θ,
wi is the weight that determines how much the discrepancy between the
market price and model price for contract k influences the calibration ob-
jective function, h is the form of the prediction error, and || · || is the norm
under which the magnitude of the error is calculated. The summand ||h(·)||
is generally referred to as the loss function.

No decisive economic intuition exists so far on which loss function to use to
quantify the discrepancy between the model prices and the observed prices.
Some amount of research has been dedicated to answering the question on
the basis of general consistency. A handful of authors have attempted to deal
systematically with the choice of different loss functions when computing
(1.1). Christoffersen and Jacobs [2004] argue that the loss function for the
in-sample estimation and the function for the out-of-sample evaluation of
a model should be the same to obtain a consistent evaluation of the model.
Bams et al. [2009] propose a method for evaluating the relative performance
of different loss functions and argue that the interaction between different
models and loss functions should be taken into consideration when analyz-
ing the pricing performance. Friedman et al. [2014] propose utility-based
loss functions to make the prediction error more economically meaningful.
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Introduction

The problem given by (1.1) falls under the category of inverse problems.
Within that framework, it is in the general case an ill-conditioned problem,
in the sense that small changes to the option price data can lead to large
changes in θ∗ (Cont [2010]). This is especially pertinent since option price
data tends to be noisy. To begin with, option prices are usually not available
in the market except as a bid-ask interval. A typical resolution to this is
simply taking the average of the bid and ask price, however there is strictly
speaking no guarantee that this is the fair market price of the option. Sec-
ondly, the liquidity of option contracts tends to fall off rapidly as either the
strike price moves away from the price of the underlying, or as the option
maturity moves beyond the span of a few months. An econometrically pre-
cise definition of liquidity is still lacking in the literature1, but it is generally
assumed that a contract needs to be liquid in order for its price to be an ac-
curate measure of the pricing function of the market. Other sources of noise
include fixed "easy number" increments of the option prices with respect to
the strike price, and the asynchronous nature of the price observations.

Aside from the calibration problem being ill-conditioned, the associated
objective function often appears to lack strict convexity (Hirsa [2016]; Gilli
and Schumann [2011]; Guillaume and Schoutens [2010]; Cont and Tankov
[2004]; Gudmundsson and Vyncke [2019a]). This complicates using gradient-
based methods for solving for (1.1) since the optimization routine can get
stuck in a local minimum.

With these issues in mind, several authors have proposed more robust cal-
ibration methods for retrieving (1.1). A method commonly used for stabi-
lizing inverse problems is adding a convexifying penalty term to the cali-
bration objective function. In finance, this approach has so far mostly been
studied in the context of local volatility models (see e.g. Crépey [2010]; Egger
and Engl [2005]; Cezaro et al. [2010]). Apart from utilization in local volatility
modeling, Cont and Tankov [2004] propose a regularized calibration ob-
jective for exponential Levy models that has a penalty term derived from
relative entropy.

Another approach to offset the noise in purely cross-sectional option data
is to add historical prices to the calibration procedure (Bates [2003]). The
most ambitious version of this is a full joint estimation of the parameters of
the model under both the physical and the risk neutral measure. This means
incorporating the full time series of both option prices and the price of the
underlying into the estimation procedure. This tends to be an enormously

1. Traded volume (as well as open interest) is often taken as a proxy to the liquidity of an option
but a glance at the options listed on the S&P500 reveals that on a given day contracts with
zero trading volume are often sandwiched between option contracts with a large trading
volume, implying that this is a somewhat questionable measure of liquidity.
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challenging task from a computational standpoint since most option pricing
models do not yield a known transition density in closed form.

However, the problem has attracted significant attention in the field of econo-
metrics in recent years. The variety of methods proposed in this context
are too numerous and broad to delve into here, but major avenues of re-
search include likelihood function approximation (Aït-Sahalia and Kimmel
[2007]), generalized method of moments (Pan [2002]), method of moments
with semi non-parametric auxiliary models (Chernov and Ghysels [2002]),
and Markov chain Monte Carlo (MCMC) (Eraker [2004], Jones [2003]).

Sidestepping the computational challenges of full joint estimation, some
authors have proposed estimating a subset of the model parameters first
using historical data, thereby reducing the parameter space that the opti-
mization routine needs to consider for solving the calibration problem given
by (1.1). Guillaume and Schoutens [2010] propose using the time series of
historical implied volatility to get an estimate for the long run mean and
instantaneous volatility of the Heston model, which confines the calibra-
tion algorithm to a proper subset of the model parameters that turn out
to be more easily identifiable. Arismendi et al. [2016] construct a seasonal
modification of the Heston model which they estimate under the physical
measure using an MCMC estimator, and the estimates are then plugged into
the model which only leaves the parameter corresponding to the market
price of volatility risk to be determined in the cross-sectional part of the
calibration.

The application of Bayesian estimation to option pricing models for the sake
of robustness is also the topic in Gupta and Reisinger [2014] where it is ap-
plied to a local volatility option pricing model to obtain a range of parameter
estimates for which the model is able to replicate observed option prices
such that they fall within a predetermined error band.

A more active approach to the calibration problem was proposed in Avel-
laneda et al. [2001] where the authors essentially transform the calibration
into a model correction procedure referred to as the weighted Monte Carlo
method. Friedman et al. [2013] refine the method by various means such as
t-distribution innovations for the path simulation and a new kind of entropy
measure.

The statistical reliability of the parameter estimates is only one aspect of
the calibration process. The other major consideration is the speed and
numerical accuracy with which we can obtain them. While we can reason-
ably expect the pricing of a single derivative to be achieved well under a
second on most modern computer systems, the calibration procedure for
the pricing model can require many thousands of option price evaluations.
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Introduction

This fact serves as a motivation for choosing models for which we can derive
(semi)closed form formulas for plain option pricing.

Assuming the loss function is sufficiently smooth with respect to the model
parameters, the most numerically efficient way of computing (1.1) will in-
volve second-order gradient-based optimization. In the event that the cal-
ibration objective function is found to be non-convex and regularization is
unavailable, such methods can be coupled with heuristic global optimiza-
tion algorithms to avoid local minima. However, these tend to require a
significantly greater number of iterations than purely gradient based ones,
so their application generally requires a highly streamlined implementation
to be computationally feasible.

Nonlinear optimization has been studied for centuries with a research liter-
ature to match. For a general overview see e.g. Nocedal and Wright [2006].
A few contributions have been made that focus solely on the optimization
aspect of the calibration problem in finance. Gerlich et al. [2012] propose a
feasible point sequential quadratic programming algorithm which they test
on the Heston model. Cui et al. [2017] derive the gradient of the characteris-
tic function of the Heston model which they use with a caching algorithm to
greatly speed up the calibration of the model. Yang and Lee [2012] compute
the gradient of the characteristic function of several Levy models which they
use to speed up an implementation of the particle swarm method for solving
the calibration problem of those models.

When the model in question yields a probability density for which there is
a known characteristic function, the speed aspect of the calibration is also
impacted by the numerical methods we use for the Fourier inversion part.
Several methods have been proposed for efficient ways of Fourier pricing
specifically for the model calibration setting when many options need to
be priced simultaneously. Carr and Madan [1999] propose using the fast
Fourier transform method for simultaneously generating the prices of the
same option for many different strike prices. Chourdakis [2005] implements
the fractional fast Fourier Transform for the calibration problem and tests
it on both stochastic volatility and variance gamma models. Kilin [2011]
proposes an inversion algorithm that caches the intermediate characteristic
function evaluations in between pricing different options and tests it on
stochastic volatility models. An inversion method based on a Fourier-cosine
expansion is proposed in Fang and Oosterlee [2008] where the inversion
integral is replaced by its cosine series expansion. And in Gaß et al. [2017]
an offline-online procedure is proposed for constructing efficient numerical
quadrature rules for computing the Fourier integral.
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The research presented in this thesis concerns several different aspects of
the calibration procedure of option pricing models, with emphasis on the
computational perspective. In chapter 3, which is based on the published
paper Gudmundsson and Vyncke [2019a], the focus is on the 3/2 stochastic
volatility model which is unique in the sense that it is a non-affine stochastic
volatility model with a known characteristic function. We take advantage
of this fact to compute the gradient of the model’s characteristic function
in closed form and propose further a caching caching algorithm which en-
ables us to calibrate the model more than 10 times faster than the fastest
comparison method we could find in the literature. In the second half of
chapter 3 we derive MCMC estimators for the 3/2 model for the purpose of
proposing a type of regularization for the least squares objective function
which we termed "risk neutral regularization", which refers to the fact that
the estimation is contained entirely within the risk-neutral probability mea-
sure. These methods are tested both on simulated as well as real S&P500
options data.

In chapter 4, which is based on the working paper Gudmundsson and Vyncke
[2019b], the focus continues to be on the 3/2 volatility specification, how-
ever we extend the model by adding to it a cyclical volatility trend which
we show empirically to be well suited for capturing known seasonal effects
in certain types of futures markets. We derive the characteristic function for
this new model in closed form. Furthermore, we test it on real CBOE options
data using a calibration procedure which combines global and local search
methods for added robustness, as well as parallelization of the computation
of the least squares objective function across GPU threads for added speed.

In chapter 5, which is based on the working paper Gudmundsson and Vyncke
[2019c], we go beyond the scope of the 3/2 volatility specification and pro-
pose a general extension to the weighted Monte Carlo calibration method
of Avellaneda et al. [2001]. This generalization introduces a probability dis-
tortion that is applied to the prior measure of the weighted Monte Carlo
method (which so far has been taken as uniform by default). The probability
distortion is inspired by elements of Cumulative Prospect Theory (Kahne-
man and Tversky [1992]), and we show through extensive numerical testing
on S&P500 options data that this modified weighted Monte Carlo method is
capable of calibrating the Monte Carlo paths in such a way that they produce
a much better fit to out-of-sample options prices than what can be achieved
through the original method.
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Chapter 2

Theoretical Preliminaries

In this chapter we establish some terminology and review fundamental def-
initions and well known results from both stochastic analysis, financial eco-
nomics and computational finance which we can think of as being a founda-
tion on top of which the work presented in later chapters is built. Reference
material includes Chesney et al. [2009] for sections 2.1 and 2.2; Back [2010],
Downarowicz [2010] and Biagini [2010] for section 2.3; Skiadas [2009] for
section 2.4; Glasserman [2013] for section 2.5.1; and Schmelzle [2010] for
section 2.5.2. We point to these references for proofs and further elaboration
of the results presented in this technical review.

2.1 Measure-Theoretic Probability

We begin with the relevant definitions from measure-theoretic probability
theory.

Definition 2.1. Let (Ω,F ,P) be a probability space. A filtration F on (Ω,F ,P)
is an increasing family (Ft )t≥0 of sub-σ-algebras on F . More specifically, for
each t , Ft is a σ-algebra included in F and if s ≤ t then Fs ⊆Ft . The tuple
(Ω,F ,F,P) is referred to as a filtered probability space.

Throughout this thesis, we assume that every filtered probability space has
a filtration that satisfies the usual conditions.

Definition 2.2. A filtration F on a probability space (Ω,F ,P ) is said to satisfy
the usual conditions if

1. F0 (hence every Ft ) is complete relative to F with respect to P in the
sense that F0 contains every set A that is contained in the power set of
Ω such that P(A) = 0.
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2. F is right continuous, i.e., Ft =Ft+ for all t ≥ 0, where

Ft+ ≡ ⋂
s>t

Fs ,

Changing the measure with respect to which we compute the expectation of
random variables is a common practice in the field of option pricing. This
is because we generally want to abstract our models away from containing
explicit terms involving the market price of risk. We start with the definition
of equivalence between measures.

Definition 2.3. Let P and Q be two probability measures constructed on the
same measurable space (Ω,F ). We say that Q is absolutely continuous with
respect to P (usually denoted as Q¿ P) if for every A ∈ F such that P(A) = 0
we have that Q(A) = 0. Furthermore, we say that P and Q are equivalent if
they have the same set of impossible events i.e.,

P(A) = 0 ⇔Q(A) = 0,

for all A ∈F .

The next theorem, usually referred to as the Radon-Nikodym theorem, is
fundamental in measure and integration theory. As we explain shortly, it is
particularly relevant to finance as well.

Theorem 2.4. Let P and Q be two measures on (Ω,F ) and P be σ-finite. If
Q¿ P, i.e., if Q is absolutely continuous with respect to P, then there exists
a nonnegative Borel function f on Ω such that for every A ∈ F it holds that
Q(A) = ∫

A f dP The function f is referred to as the Radon-Nikodym derivative

ofQwith respect to P and is denoted by dQ
dP .

Our main object of study is the stochastic process. We can think of it as a
time-indexed sequence of random variables. More formally, we have the
following definition.

Definition 2.5. A stochastic process X = (X t )t≥0 is a family of mappings
from the statespace Ω into R. Furthermore, X is said to be continuous if the
map t → X t (ω) is continuous.

Definition 2.6. A stochastic process X = (X t )t≥0 on (Ω,F ,F ,P) is said to be
adapted to the filtration F if, for each t ≥ 0 we have that X t is Ft -measurable.

In discrete time, we can intuitively describe a stochastic process (Xn)n∈N
as being predictable if Xn+1 is measurable with respect to Fn for each n.
In other words, at time n we already know the value of Xn+1. This has a
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straightforward interpretation in finance where we can think of trading stra-
tegies in a discrete, dynamic setting as predictable processes. In continuous
time, the definition becomes more involved, where the predictability trait is
captured by left-continuity.

Definition 2.7. Let P denote the smallestσ-algebra on [0, . . . ,T ]×Ω that con-
tains every adapted left-continuous process on the state-space. A stochastic
process that is measurable with respect to P is said to be predictable.

The concept of progressive measurability is important for the definition of
stochastic integrals which we give below.

Definition 2.8. A stochastic process X = (X t )t≥0 is said to be progressively
measurable with respect to the filtration F if, for every t , the map [0, t ]×Ω→R

defined by (s,ω) → Xs(ω) is measurable with respect to the product σ-algebra
B[0, t ]×Ft where B[0, t ] is the Borel σ-algebra on [0, t ].

One general property that is embedded in almost every stochastic process
used in continuous-time finance is the Markov property. While it is not
implied intrinsically by an arbitrage free market, it is a major requirement
for tractability.

Definition 2.9. Let X = (X t )t≥0 be an adapted stochastic process, with F X
t =

σ(Xs , s ≤ t ). The process X is referred to as a Markov process if for any times
t ≥ s ≥ 0 and any bounded Borel function f we have that

E[ f (X t )|F X
s ] = E[ f (X t )|Xs],

In other words, a Markov process’s future state is stochastically independent
of its past given its present state.

Finally, the following definitions will be used throughout the remainder of
this chapter.

Definition 2.10. A stochastic process X = (X t )t≥0 is said to be integrable if
for all t ≥ 0 we have that E[|X t |] < ∞. Furthermore, X is said to be square
integrable if for all t ≥ 0 we have that E[X 2

t ] < ∞. In particular, we denote
with L2 the set of all square integrable processes.

2.1.1 Martingales

The concept of martingales is central to mathematical finance since they
represent "fair bets" and are therefore closely connected to the assumption
that markets are arbitrage free.
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Definition 2.11. If the adapted stochastic process X = (X t )t≥0 is integrable,
then it is called

• A martingale if E[X t |Fs] = Xs for all 0 ≤ s ≤ t ,

• A submartingale if E[X t |Fs] ≥ Xs for all 0 ≤ s ≤ t ,

• A supermartingale if E[X t |Fs] ≤ Xs for all 0 ≤ s ≤ t .

A broader class of stochastic processes is the class of local martingales, for
which we need to introduce the concept of stopping times.

Definition 2.12. A random variable τ : Ω → [0,∞] on (Ω,F ,F) is called a
stopping time (with respect to F) if {τ≤ t } ∈Ft for all t ≥ 0.

Definition 2.13. An adapted process X = (X t )t≥0 is said to be a local martin-
gale if there exists a sequence (τn) of stopping times such that

1. The sequence is increasing and limn→∞τn =∞, a.s.,

2. For every n, the stopped process X τn = Xτn∧t is a F-martingale.

The largest class of stochastic processes with respect to which the Ito inte-
gral, which we describe below, can be defined is the class of semimartin-
gales. We restrict our attention to continuous semimartingales in this dis-
sertation, and give the definition accordingly.

Definition 2.14. An adapted, continuous, integrable process X = (X t )t≥0 is
referred to as a semimartingale if it can be decomposed as X t = At + Mt

for each t where M is an adapted, continuous local martingale and A is an
adapted, continuous process of bounded variation.

2.2 Stochastic Calculus

The single most important stochastic process in all of continuous-time fi-
nance is arguably Brownian motion. It belongs to the class of Levy pro-
cesses, where it is uniquely identified as the only (stochastic) process which
has (up to a version) continuous sample paths. Standard Brownian motion
is both a martingale and a Markov process.

Definition 2.15. Let (Ω,F ,F,P ) be a filtered probability space. An F-adapted
real-valued process B is called a standard F-Brownian motion if

1. P(B0 = 0) = 1,
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2. For every 0 ≤ s < t <∞ we have that Bt −Bs is independent of Fs ,

3. For every 0 ≤ s < t <∞ we have that Bt −Bs ∼N (0, t − s).

The sample paths of Brownian motion are in the standard sense nowhere
differentiable, almost surely. As for integration with respect to Brownian
motion, we come to one of the central constructs in stochastic calculus which
is the Ito integral. To establish it in general terms we need to start with a
special case.

Definition 2.16. A process X ∈ L2 = L2(Ω,F ,F,P) is called simple if there
exists a countable partitionΠ : 0 = t0 < . . . < tn < . . . with limn→∞ tn =∞ such
that X t (ω) = X t j (ω) for all t ∈ [t j , t j+1), j = 0,1,2, . . . and for all ω ∈ Ω. The
subspace of square integrable simple processes is denoted by L 0

2 .

We can define the Ito integral for simple processes in intuitive terms.

Definition 2.17. Let X = (X t )t≥0 be a simple process. We define the Ito inte-
gral of X with respect the standard Brownian motion process B = (Bt )t≥0 as

It (X (ω)) = ∑
0≤ j≤m−1

X t j (ω)(Bt j+1 (ω)−Bt j (ω))+X tm (ω)(Bt (ω)−Btm (ω)), (2.1)

where m = max
{

j : t j ≤ t
}

Adapted simple processes can be shown to be progressively measurable.
Moreover, they can be used to approximate more general progressively mea-
surable processes as the following result indicates.

Theorem 2.18. Given any progressively measurable process X ∈ L2, there
exists a sequence of simple processes X (n) ∈L 0

2 such that

lim
n→∞E

[∫ t

0
(X (n)

s −Xs)2d s

]
= 0. (2.2)

With the above in mind, we see that the definition of an integral for a simple
process is extendable to more general processes.

Definition 2.19. Let X = (X t )t≥0 ∈ L2 be progressively measurable. The Ito
integral of X with respect to the standard Brownian motion B = (Bt )t≥0 is the
unique, square integrable martingale I (X ) = (It (X ))t≥0 which, for every t ≥ 0,
satisfies limn→∞E[(It (X (n))− It (X ))2] = 0 for every sequence

{
X (n)

}∞
n=1 ⊂ L 0

2
which satisfies (2.2). We write

It (X ) =
∫ t

0
XsdBs ; 0 ≤ t <∞. (2.3)
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The following result, usually referred to as the Cameron-Martin-Girsanov
theorem, shows that changing the probability measure when the filtration
is generated by Brownian motion is particularly mathematically tractable.
A Brownian motion under one measure stays the same under any other
equivalent measure apart from a drift change.

Theorem 2.20. Let λ= (λt )t≥0 be a F -predictable process such that

EP
[

exp

(
1

2

∫ T

0
λ2

t d t

)]
<∞,

and B = (Bt )t≥0 be standard Brownian motion on (Ω,F ,F,P). Then there
exists a measureQ such that

1. Q is equivalent to P,

2. dQ
dP = exp

[
−∫ T

0 λt dBt − 1
2

∫ T
0 λ2

t d t
]

,

3. The process B̃ = (B̃t )t≥0 defined as

B̃t = Bt +
∫ t

0
λsd s

is a Brownian motion with respect to (Ω,F ,F,Q).

In finance, the Radon-Nikodym derivative has the interpretation of being a
state-price density, i.e., a stochastic process that prices every cash flow in
the market. As such it has to be a strictly positive martingale, to prevent
the presence of arbitrage. Exponential Brownian motion as it appears in the
theorem above is precisely the process that satisfies this condition.

The processes considered throughout this thesis are generally presented as
solutions to stochastic differential equations, which leads to a diffusion pro-
cess more general than Brownian motion.

Definition 2.21. Let B be a standard Brownian motion on (Ω,F ,F,P), and
σ = (σt )t≥0 be a progressively measurable process that satisfies the square-
integrability condition

E

[∫ t

0
σ2

s d s

]
<∞ for each t ≥ 0,

and µ= (µt )t≥0 be another progressively measurable process that satisfies the
following integrability condition∫ t

0
|µs |d s <∞ a.s. for each t ≥ 0.
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An Ito process is a stochastic process of the form

X t = X0 +
∫ t

0
µsd s +

∫ t

0
σsdBs .

With Ito processes formally introduced, we recall the well known Ito’s lemma
which plays the role of the fundamental theorem of calculus for stochastic
integrals.

Definition 2.22. Let X be an Ito process and f = f (t , x) be a function of two
variables with continuous partial derivatives, ft , fx and fxx . Then, for every
T ≥ 0,

f (T, X t ) = f (0, X0)+
∫ T

0

(
ft (t , X t )d t +µt fx (t , X t )+ 1

2
σ2

t fxx (t , X t )

)
d t

+
∫ T

0
fx (t , X t )σt dBt .

Finally, the following result tells us that given certain technical conditions
on the drift µ and volatility σ the corresponding SDE admits a unique solu-
tion, which is a strong Markov process with continuous sample paths. In the
following theorem, we write µt more explicitly as µ(t , x) to emphasize that it
can be considered as a function of both time and the process X itself, with
the same applying to σt and σ(t , x).

Theorem 2.23. Let µ : [0,T ]×Rn →Rn and σ : [0,T ]×Rn →Rn×m with T > 0
be two progressively measurable functions satisfying

|µ(t , x)|+ |σ(t , x)| ≤C (1+|x|),

for some constant C and x ∈Rn , t ∈ [0,T ], and such that

|µ(t , x)−µ(t , y)|+ |σ(t , x)−σ(t , y)| ≤ D|x − y |,

for some constant D. Let Z be a square integrable random variable which is
independent of theσ-algebra F (m) generated by Bs , s ≥ 0. Then the stochastic
differential equation

d X t =µ(t , X t )d t +σ(t , X t )dBt , 0 ≤ t ≤ T

with X0 = Z has a unique, square-integrable, pathwise-continuous solution
X t that is adapted to the filtration F Z

t generated by Z and B.
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2.2.1 The Partial Differential Equation Link

As we explain in greater detail in the next section, computing the price of a
financial derivative is equivalent to computing its expected payoff under a
given (subjective) probability measure. In some cases, probabilistic meth-
ods fail to provide us with computationally efficient means of calculating
this expectation. Instead, we can analyze the problem from a deterministic
perspective by taking advantage of the connection between expectations in-
volving diffusion processes (i.e., Ito processes) on one hand, and partial dif-
ferential equations on the other hand. We have the following result, known
as the Feynman-Kac theorem.

Theorem 2.24. A solution f ∈C 2,1(Rn×[0,T ]) to the partial differential equa-
tion (PDE)

ft (x, t )+1

2
tr

(
σ(x, t )σ(x, t )ᵀ fxx (x, t )

)
+ fx (x, t )µ(x, t )−r (x, t ) f (x, t )+h(x, t ) = 0,

(2.4)
subject to the terminal condition

f (x,T ) = F (x), (2.5)

where x ∈Rn , t ∈ [0,T ) is given by

f (x, t ) =EQ
[

exp
{
−

∫ T

t
r (Xu ,u)du

}
F (XT )|Ft

]
+EQ

[
exp

{
−

∫ T

t
r (Xu ,u)du

}
h(Xs , s)d s|Ft

]
,

(2.6)

where X is given by Definition 2.21, and X t = x.

The theorem tells us that we can solve the derivative pricing problem ei-
ther by computing an expectation or by solving a PDE. While most PDEs do
not have known closed-form solutions, finite difference methods provide a
standard solution approach for the corresponding PDEs of many derivative
pricing models in finance see e.g. Duffy [2013] for an overview.

2.2.2 Selected Stochastic Processes

Definition 2.25. An adapted process X = (X t )t≥0 is referred to as geometric
Brownian motion (GBM) if it follows the dynamics given by

X t =µ
∫ s

0
Xsd s +σ

∫ t

0
XsdBs .
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Definition 2.26. An adapted stochastic process X = (X t )t≥0 is referred to as
a Cox-Ingersoll-Ross (CIR) process, or a square root process, if it follows the
dynamics given by

X t =
∫ t

0
κ(θ−Xs)d s +

∫ t

0
σ

√
XsdBs .

It is said to satisfy the Feller condition if 2κθ >σ2.

Theorem 2.27. A CIR process X = (X t )t≥0 that satisfies the Feller condition is
strictly positive.

Definition 2.28. An adapted stochastic process X = (X t )t≥0 is referred to as a
3/2 process if it follows the dynamics given by

X t =
∫ t

0
κXs(θ−Xs)d s +

∫ t

0
σX 3/2

s dBs .

Finally, Ito’s lemma gives us the following relationship between the CIR pro-
cess and the 3/2 process.

Theorem 2.29. Let X = (X t )t≥0 be a CIR process, and define Yt = X −1
t for all

t ≥ 0. Then we have that

dYt = κ̃Yt (θ̃−Yt )d t + σ̃Y 3/2
t dBt , (2.7)

where

κ̃= κθ−σ2, θ̃ = κ

κθ−σ2 , σ̃=−σ. (2.8)

2.3 No-Arbitrage Pricing

Given a filtered probability space (Ω,F ,F,P), we think of a market as a col-
lection of J ∈N assets, where each asset is associated with an adapted stochas-
tic process we refer to as its spot price process, along with a linear functional
π which we refer to as a pricing function.

Let X be a spot price process. Given t ,T ∈ R such that 0 ≤ t ≤ T and a
function Ψ : FT → R, we denote by πt (Ψ(X ,T )) the market price of the
contingent claimΨ(X ,T ) at time t . Naturally, we can also think of the spot
price process of an asset in the market as a contingent claim whereΨ is the
identity function.
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An example of non-trivial contingent claims are so-called plain European
call and put options with strike price K and maturity T , defined respectively
by

ΨEC (X ,K ,T ) = |XT −K |+ ,

ΨEP (X ,K ,T ) = |K −XT |+ ,

where |x|+ is shorthand for max{x,0}. From now on we will useΨ(X ,T ),ΨT

and Ψ(X ,T,K ) interchangeably to denote a contingent claim with maturity
T depending on the context.

Generally, participation in financial markets is voluntary. Implicit in the
calculation of the price of a contingent claim is that its expected return is
compared to the outcome of not investing in it to begin with. If the market
offers an asset that yields a deterministic rate of return with no risk (i.e., a
risk-free asset) then a profit seeking investor is expected to choose investing
in this risk-free asset rather than simply leaving her capital inactive. This
means the payoff of the contingent claim should be computed "in excess"
of the return which the investor could collect with no risk. An equivalent
way of stating this is that the future payoff of the contingent claim should
be discounted by the payoff that the risk-free asset yields. The rate of return
of the risk-free asset is referred to hereafter as the risk-free rate. Given a
risk-free rate r and maturity T , the well known compound interest discount
formula in discrete time finance extends naturally as a limit in continuous
time as ρT = e−r T . More generally, we can assume that the rate is stochastic,

and rewrite the expression as ρT = exp
(
−∫ T

0 rsd s
)
.

We now turn our attention to the pricing function π. Given certain con-
ditions in the market, which we elaborate on below, the market price of a
contingent claim can be computed as its risk-adjusted expected payoff

πt (Ψ(X ,T )) = ξ−1
t EP [ξTΨ(X ,T )|Ft ] , (2.9)

for some strictly positive stochastic process ξ sometimes referred to as a
stochastic discount factor, a pricing kernel, or a state-price density. For the
purpose of derivative pricing it proves more tractable to "factor out" ξ by
changing to a subjective measureQ that absorbs ξ, obtaining

πt (Ψ(X ,T )) = ρ−1
t EQ

[
ρTΨ(X ,T )|Ft

]
. (2.10)

The measure Q is often referred to as the risk neutral measure, and the for-
mulation above referred to as risk neutral pricing.

The aforementioned conditions that ensure that (2.10) is indeed a mean-
ingful expression are technically involved. The fundamental assumption in
asset pricing, and mathematical finance in general, is that financial markets
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are arbitrage free. Informally, this means that a riskless profit cannot be
made buying and selling the assets in the market that exceeds the return
of the risk free asset (assuming it exists). This condition turns out to imply
the existence of the equivalent martingale measure Q, and vice versa. The
theorem that establishes this equivalence is referred to as the First Fun-
damental Theorem of Asset Pricing (FFTAP). While it is easy to state and
prove for a discrete state-space in discrete time, it is quite difficult in a fully
continuous setting, where the concept of arbitrage becomes too narrow. In
this sense the FFTAP for the general case becomes a collection of results
with various, stronger definitions of the concept of arbitrage. We present
the FFTAP in a "folk theorem" format, and refer to Downarowicz [2010] for
a more comprehensive discussion.

Theorem 2.30. A market is essentially arbitrage free if and only if there exists
a martingale measureQ that is equivalent to the physical measure P.

The FFTAP does not imply that Q is unique. That issue is dealt with by the
Second Fundamental Theorem of Asset Pricing (SFTAP). We begin with a
couple of definitions.

Definition 2.31. Let X = (X 1
t , . . . , X J

t )t∈[0,T ] be the spot price process of the
J assets in the market with an investment horizon 0 ≤ T < ∞, and let Z =
(Z 1

t , . . . , Z J
t )t∈[0,T ] be the discounted price process defined by Z j

t = X j
t /X j

0 for
j = 1, . . . , J . Furthermore, let L(Z ) denote the set of all J-dimensional, pre-
dictable processes that are integrable with respect to the semi-martingale Z . A
stochastic processλ ∈ L(Z ) is said to be an admissible self-financing strategy
if

1. The discounted value process V ∗(λ) ≡∑J
j=1λ

j Z j is almost surely non-
negative.

2. V ∗(λ) satisfies the self-financing condition

dV ∗
t (λ) =

J∑
j=1

λ
j
s d Z j

s , t ∈ [0,T ].

3. V ∗(λ) is a martingale underQ.

Definition 2.32. A contingent claim ΨT is said to be attainable if there ex-
ists an admissible self-financing trading strategy λ such that V ∗

T (λ) = ρTΨT .
Furthermore, the market is said to be complete if every claim is attainable.

In other words, we say that a market X is complete if every possible con-
tingent claim in the market can be replicated by buying and selling traded
assets in that market. We are now equipped to state the SFTAP.
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Theorem 2.33. Let Q be an equivalent martingale measure for the physical
measure P. The following statements are equivalent:

1. The market is complete underQ,

2. Q is the only equivalent martingale measure for P.

An option pricing model usually comes with an assumption on the com-
pleteness of the market it describes. If all the stochastic factors in the model
are traded then the model implies a complete market. An example of a
model where this is the case is the Black Scholes model. It contains one
stochastic factor that drives the price of the underlying stock which is, by
definition, traded in the market. However, making the volatility of that model
a stochastic process in itself2 leads to a model that describes an incomplete
market unless the volatility process itself is taken to be traded in the market.

We end this section with a very useful relationship between European put
and call options that is known as put-call parity and is used extensively in
the computational work behind the research results of this dissertation.

Theorem 2.34. Let P = πt (ΨEP (X ,K ,T )) and C = πt (ΨEC (X ,K ,T )) denote
the prices of a plain European put and call, respectively, with maturity T and
strike price K with 0 ≤ t ≤ T , and let r be the risk free rate of return. Then we
have that C +K e−r (T−t ) = P +X t .

This means once we have computed the price of a call option then we have
with minimal computational effort the price of the corresponding put op-
tion as well, and vice versa.

2.4 Indifference Pricing

As discussed in the preceding section, no-arbitrage pricing considers the
price process of the underlying assets in the market to be exogenous. When
the market is complete, no mention of preferences of the investors in the
market is necessary for reasoning about the price of its contingent claims.
However, when the market is incomplete, an option pricing model requires
an explicit assumption on the preferences over risk in the market.

The theory that explores this aspect of finance is referred to as general equi-
librium asset pricing. The basic setup of this theory consists of a set C of

2. Here, we mean that the volatility becomes a stochastic process with its own stochastic factor.
A volatility process that is only a deterministic function of the stochastic factor belonging to
the underlying asset does not break the completeness of the market.
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investment opportunities referred to as a consumption set, and a binary
relation % over this set referred to as a preference relation. An investor
whose preferences are represented by % prefers x over y , with x, y ∈ C if
and only if x % y .

Definition 2.35. The preference relation % is said to be rational if it possesses
the following two properties:

1. Completeness: For all x, y ∈C we have that x % y or y % x (or both),

2. Transitivity: For all x, y, z ∈C if x % y and y % z, then x % z.

A preference relation is by itself unwieldy when it comes to calculations.
Instead, we hope to be able to find a tractable real-valued function which
produces the same ordering.

Definition 2.36. A function u : C →R is called a utility function representing
preference relation % if, for all x, y ∈C we have that x % y if and only if u(x) ≥
u(y).

Although utility functions map elements in the consumption set to real num-
bers, they are not meant to be considered as cardinal functions, but as or-
dinal functions. This means that we consider two utility functions u and v
as equivalent if there exists a monotonic transformation g :R→R such that
g (u) = v or vice versa.

The question now becomes whether for a given preference relation % we
can always find a corresponding utility function that preserves the ordering
of % over C . To answer that question, we must introduce one additional
property.

Definition 2.37. The preference relation % on C is continuous if it is pre-
served under limits. That is, for any sequence of pairs

{(
xn , yn

)}
with xn % yn

for all n, x = limn→∞ xn and y = limn→∞ yn we have that x % y.

We then have the following powerful result.

Theorem 2.38. Let the preference relation % be rational and continuous.
Then there exists a continuous utility function u that represents %.

The definitions and results presented so far apply to general consumption
sets. Financial economics, however, deals with a very particular kind of con-
sumption sets, where every good is simply a future cashflow. What distin-
guishes between these cashflows is the manner in which they are realized.
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Hence, we need preferences that deal with risk. The most prominent type of
such preferences in the literature is expected utility3.

Definition 2.39. Let C denote the consumption set consisting of the stochastic
payoffs attainable by trading contingent claims in a given market. A utility
function U : C → R is of expected utility type if there exists a utility function
u :R→R over deterministic outcomes such that for each c ∈C

U (c) = E [u(c)] .

The question now becomes when can preferences over risk be represented
as expected utility. To answer that question we need the following definition.

Definition 2.40. The preference relation % over the consumption set C satis-
fies the independence axiom if for all c,c ′,c ′′ ∈C andα ∈ (0,1) we have c % c ′

if and only if αc + (1−α)c ′′ %αc ′+ (1−α)c ′′.

In other words, if we mix two stochastic payoffs with a third one, then the
preference ordering of the two resulting mixtures does not depend on the
particular third stochastic payoff.

What follows is one of the most important results in the theory of choice
under uncertainty.

Theorem 2.41. If a rational preference relation % satisfies the axioms of con-
tinuity and independence then it is representable by a function of the expected
utility type.

One of the primary assumptions we make when modeling financial markets
is that investors are risk averse, which explains why systemic risk is compen-
sated in financial markets.

Definition 2.42. A preference relation % implies risk aversion if for any sto-
chastic payoff c it ranks the certain payoff E[c] higher in the preference order
than c itself.

One of the advantages of the expected utility format is that it allows us to
express risk aversion in a particularly tractable way. The following theorem
is a straightforward application of Jensen’s inequality.

Theorem 2.43. Let U be a utility function of expected utility type, with an
associated utility function u :R→R over deterministic outcomes. The prefer-
ences represented by U imply risk aversion if and only if u is concave.

3. Note that for the remainder of this subsection we drop explicit references to a filtered
probability space in the context of the market made in previous subsections as the following
definitions and results apply in a more general setting.
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In financial economics, the concavity of the function u corresponds directly
with how much the investor needs to be compensated in order to take on
risk in the market. The greater the concavity, the more risk averse the in-
vestor, and thus the higher the compensation she requires.

According to general equilibrium theory, market prices form in a conjunc-
tion with an equilibrium between supply and demand. And within this frame-
work, supply and demand in financial markets are determined by market
participants who seek to trade in the market in an effort to maximize their
expected return while at the same time minimizing the risk they must take
on. This pursuit can be expressed in a simple way as a utility maximization
problem.

Definition 2.44. Consider an investor with expected utility preferences in a
market consisting of J assets with a payoff process G t = (Gt ,1, . . . ,Gt ,J ) and
an associated price vector πt = (πt ,1, . . . ,πt ,J ). Then the investor’s (dynamic)
portfolio choice problem is given recursively by

max
φ

u(ct )+βEt [u(ct+1)]

s.t. ct =φᵀ
t G t −πᵀ

tφt+1,

ct+1 =φᵀ
t+1G t+1 −πᵀ

t+1φt+2,

(2.11)

where u : R→ R is the investor’s utility function over deterministic outcomes,
β is the investor’s deterministic discount rate, and φt = (φt ,1, . . . ,φt ,J ) is the
investor’s portfolio choice at time t .

When the aggregate demand of the market is assumed to have a sufficiently
tractable form, the general equilibrium theory framework allows us to derive
the stochastic discount factor for the market.

Definition 2.45. A stochastic process ξ is referred to as a stochastic discount
factor if for every asset with a payoff process G it holds that the price of the
asset at time t is given by πt = ξ−1

t Et [ξt+1Gt+1] for all t .

Theorem 2.46. If the representative investor’s portfolio choice problem is given
by (2.11), with u differentiable, then the stochastic discount factor is given by

ξt+1 =βu′(ct+1)

u′(ct )
.

The economic interpretation of the stochastic discount factor is that it gives
the relative value of a standard unit of capital for each possible future state
of the market. The intuition behind this statement is that in a realized future
state in which the payoff is large across assets in the market, the value of a
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single unit of capital is less than in a realized future state where the overall
payoff is smaller. Therefore, contingent claims that are negatively correlated
with the market portfolio are priced higher than contingent claims that are
positively correlated with the market.

2.4.1 Selected Utility Functions

We begin with the notions of absolute and relative risk aversion

Definition 2.47. Given any u ∈C 2(l ,∞), the corresponding coefficient of ab-
solute risk aversion Au : (l ,∞) → R and coefficient of relative risk aversion
Ru : (l ,∞) →R are defined by

Au(c) =−u′′(c)

u′(c)
and Ru(c) = c Au(c).

In the definition above, l is present in case u is not defined for negative
wealth. We now give the definition of one of the most frequently used classes
of utility functions over deterministic outcomes in financial economics.

Definition 2.48. The utility function u is of hyperbolic absolute risk aver-
sion (HARA) type with coefficients (α,β) ∈R2 if it belongs to C 2

({
c :α+βc > 0

})
and

Au(c) = 1

α+βc
, α+βc > 0.

The two most prominent elements in the HARA class are retrieved when
either Au(c) = γ which for γ > 0 corresponds to setting (α,β) = (1/γ,0), or
when Ru(c) = γ which for γ> 0 corresponds to setting (α,β) = (0,1/γ).

Definition 2.49. The utility function given by

u(c) =


1−e−γc

γ
if γ 6= 0,

c if γ= 0,

is referred to as the exponential utility function. It is the unique function that
exhibits constant absolute risk aversion (CARA) and is therefore also referred
to as the CARA utility function.

Definition 2.50. The utility function given by

u(c) =


c1−γ−1

1−γ if γ 6= 1,

ln(c) if γ= 1,

is referred to as the power utility function. It is the unique function that
exhibits constant relative risk aversion (CRRA), and is therefore also referred
to as the CRRA utility function.
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2.5 Computational Finance

Here we list some results that have proven fundamental with respect to the
computational aspect of option pricing.

2.5.1 Monte Carlo Pricing

As discussed in 2.3, the price of an option can be computed as the dis-
counted expectation of its payoff at maturity under the risk neutral mea-
sure. Often this expectation cannot be derived analytically. Transforming
the expectation problem to a PDE problem which we can solve using finite
difference methods is one approach. Another is computing the expecta-
tion through simulation. The method, which is generally referred to as the
Monte Carlo method, consists of sampling the probability dynamics of the
option payoff, and computing the sample average which, under fairly gen-
eral conditions, converges towards the true value of the expectation. More
specifically, for a contingent claimΨ(X ,T ) on the filtered probability space
(Ω,F ,F,Q) we compute the following estimate ψ(N ) of EQ[Ψ(X ,T )]:

ψ
(N ) = 1

N

N∑
i=0

ψi , (2.12)

where theψi are realizations of the i.i.d. random variablesΨi with EQ[Ψi ] =
EQ[Ψ(X ,T )] for i = 1, . . . , N .

For most situations where Monte Carlo methods are a computationally com-
petitive approach, we need to simulate the entire path X (ωi ) for the ran-
domly drawn ωi , to obtain the realized payoff of the claim Ψ(X (ωi ),T ) for
each i = 1, . . . , N . A prototypical method for achieving this is the Euler-
Maruyama (EM) scheme. Let X be an Ito process with instantaneous drift
and volatility functions µ and σ respectively, that are Lipschitz continuous.
Consider a partitionτ= [0,∆t ,2∆t , . . . , N∆t ] of the interval [0,T ] with N∆t =
T . An EM approximation to X on the interval [0,T ] using τwith initial value
X0 is given by

X̂(n+1)∆t =µ(n∆t , X̂n∆t )∆t +σ(n∆t , X̂n∆t )∆Bn ,

where ∆Bn = Bn+1 −Bn ∼ N (0,∆t ). Since X̂ is an approximation to X we
need to consider the error involved, which we can reason about in formal
terms using the convergence properties of the scheme.

Definition 2.51. We say that the numerical scheme producing X̂ is strongly
convergent if

lim
∆t→0

E[|XT − X̂T |] = 0.
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Furthermore, if there exists a constant KT such that

E
(∣∣XT − X̂T

∣∣)≤ KT (∆t )γ,

then we say that the scheme is strongly convergent with order γ.

Definition 2.52. We say that the numerical scheme producing X̂ is weakly
convergent if

lim
∆t→0

∣∣E[g (XT )]−E[g (X̂T )]
∣∣= 0,

for every polynomial g . Furthermore, if there exists a constant K g
T such that∣∣E[g (XT )−E[g (X̂T )]

∣∣≤ K g
T (∆t )γ,

we say that the scheme is weakly convergent with order γ.

We can think of the weak convergence rate as a measurement of the error in
the expected payoff, and the strong convergence rate as the error per path.

Theorem 2.53. The EM scheme is strongly convergent with order 1
2 and weakly

convergent with order 1.

A strong convergence rate of 1
2 means the EM scheme has fairly poor path-

wise convergence properties. A refinement of the EM scheme was devel-
oped by Milstein [1975], and is given by

X̂(n+1)∆t =µ(n∆t , X̂n∆t )∆t +σ(n∆t , X̂n∆t )∆Bn

+ 1

2
σ′(n∆t , X̂n)σ(n∆t , X̂n)((∆Bn)2 −∆t ),

where σ′ is the first derivative of σ with respect to its second argument. We
have the following convergence results.

Theorem 2.54. The Milstein scheme is strongly convergent with order 1 and
weakly convergent with order 1.

From a statistics perspective, the estimator ψ(N ) is by itself not particularly
efficient. AssumingΨ1, . . . ,ΨN are i.i.d. with Var[Ψi ] =σ2

ψ, the Central Limit
Theorem implies that

p
N

(
Ψ

(N ) −E[Ψ(X ,T )]
)

d−→ N (0,σ2
ψ),

which implies that with a sample size of N the standard deviation of the
estimate is only shrinking at a rate of 1p

N
. Many strategies have been de-

veloped to increase the efficiency of Monte Carlo estimators in finance. A
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comprehensive overview of these can be found in chapter 4 in Glasserman
[2013]. One of these in particular deserves mention as its broad applicability
makes it ubiquitous in the field of Monte Carlo pricing, and is utilized in
the computational implementation of the research on the weighted Monte
Carlo method presented later in this dissertation. It is referred to as the
antithetic variates method.

Let Ψ1, . . . ,ΨN be i.i.d. such that E[Ψi ] = E[Ψ(X ,T )] for every i = 1, . . . , N
as before. Assume now we have a second i.i.d. sequence, Ψ̂1, . . . ,Ψ̂N that
also satisfies E[Ψ̂i ] = E[Ψ(X ,T )] for every i = 1, . . . , N , but where Ψi and Ψ̂i

are not necessarily independent. We have that an unbiased estimator for
E[Ψ(X ,T )] is given by

1

2N

N∑
i=1
Ψi + 1

2N

N∑
i=1
Ψ̂i . (2.13)

The basic formula for the variance of the sum of two random variables gives
us that

Var[Ψi + Ψ̂i ] = Var[Ψi ]+Var[Ψ̂i ]+2Cov[Ψi ,Ψ̂i ],

which implies that Var[Ψi +Ψ̂i ], and hence of the estimator (2.13) is smaller
whenΨi and Ψ̂i are negatively correlated. If we use, for example, the Inverse
Transform Method to sample the distribution we can for every realization
ui of the uniformly distributed random variable U ∼ Uniform[0,1] calculate
the antithetic realization of ψi using 1−ui . This not only gives us a more
efficient estimator as implied by (2.13), but also reduces the computational
cost of the simulation because we now get two realizations for the price of
one4.

2.5.2 Pricing With Characteristic Functions

Modern no-arbitrage pricing models show tremendous flexibility in terms of
the empirical features in financial markets they can capture. However, most
of the dynamics of which we can perceive in this regard are unlikely to yield
a known transition density. This is a significant drawback since it means the
computational cost of solving the model can become prohibitive, particu-
larly when the model is being calibrated or undergoing sensitivity analysis,
or when the model consists of a large number of factors. In addition, not
having any grasp of the underlying distribution is a hindrance in terms of
the theoretical exploration of these models.

4. While we still need to compute ψ̂i , the fact is that randomly generating numbers on most
computer systems is very slow.
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While the set of models for which we have an explicit transition density is
very small, the set of models for which we know the characteristic function
of the density is much larger. Through that we are able to unlock a great
deal of tractability, often resulting in closed-form solutions (up to Fourier
inversion) for certain derivative prices, while for others it gives us good ap-
proximations that can be used to speed up less computationally efficient
methods such as Monte Carlo simulations.

The characteristic function of a random variable X with an associated prob-
ability measureQ is defined as

φX (u) = EQ[e i uX ] =
∫
Ω

e i uX dQ, (2.14)

and the following basic properties apply to it:

1. φX (u) always exists,

2. φX (u) is a continuous function in u ∈R,

3. φX (0) = 1 for any distribution,

4.
∣∣φX (u)

∣∣≤ 1 for all u,

5. φX (u) =φX (−u),

6. If Y = a +bX then the characteristic function for Y is e i uaφX (bu),

7. If X and Y are stochastically independent with characteristic func-
tions φX and φY , respectively, then the characteristic function of Z =
X +Y is given by φX (u)φY (u),

8. The kth moment of X , assuming it exists, is given by

E
[

X k
]
= 1

i k

d kφX (u)

duk

∣∣∣
u=0

Most of these properties derive directly from the properties of the Fourier
transform since the characteristic function can simply be interpreted as the
Fourier transform of the probability density of X (assuming it exists).

The fundamental property of characteristic functions is the one-to-one map-
ping between them and the set of probability measures. Definition (2.14)
shows us how we go from a random variable X with an associated proba-
bility measure Q to its corresponding characteristic function φX (u). As for
going in the opposite direction, we have the following theorem.
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Theorem 2.55. Let φX be the characteristic function of a random variable X
with probability distribution given by the measureQ on B(R). If a < b, then

Q((a,b))+ Q({a})+Q({b})

2
= lim

1

2π

∫ T

−T

e−i ua −e−i ub

i u
φX (u)du.

As we can see, if {a} and {b} are null sets with respect to Q then the formula
above simply retrieves Q. In simpler terms, we get the cumulative distribu-
tion function as

FX (x) = 1

2
− 1

2π

∫ ∞

−∞
e−i uxφX (u)

i u
du,

and the probability density function as

fX (x) = 1

2π

∫ ∞

−∞
e−i uxφX (u)du.

The importance of the inversion theorem in the context of option pricing
is that we can use it to numerically extract the probability distribution of
contingent claims such as options which in return enables us to compute
their prices in an efficient way.

We conclude this subsection by mentioning the class of affine models, which
make up a large part of the class of models for which we have a characteristic
function in closed form. It includes both the Black-Scholes model as well as
the Heston model of stochastic volatility both of which we use in the last
chapter of this dissertation.

Definition 2.56. A stochastic process X = (X t )t≥0 is called affine if the covari-
ance matrix σ(x)σ(x)ᵀ and the drift µ(x) are affine in x. That is,

σ(x)σ(x)ᵀ = a +
d∑

i=1
xiαi ,

µ(x) = b +
d∑

i=1
xiβi ,

for some real valued d ×d matrices a and αi and real valued d-vectors b and
βi .

The following result shows that given an affine process X , the problem of
finding its characteristic function boils down to solving a system of ordinary
differential equations.
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Theorem 2.57. Let X = (X t )t≥0 be an affine process with drift µ(x) and co-
variance matrix σ(x)σ(x)ᵀ. Then the characteristic function φXT |Ft (u) of XT

conditioned on Ft is exponential-affine in X t for all t ≤ T . That is, there
exist C-and Cd -valued functions ξ(t ,u) and ψ(t ,u) with jointly continuous
t-derivatives, such that

E
[

e i uᵀXT |Ft

]
= eξ(T−t ,u)+ψ(T−t ,u)ᵀX t ,

for all u ∈Rd and t ≤ T . Moreover, ξ andψ= [
ψ(1), . . . ,ψ(d)

]ᵀ
solve the system

of Riccati equations

∂tξ(t ,u) = 1

2
ψ(t ,u)ᵀaψ(t ,u)+bᵀψ(t ,u),

∂tψi (t ,u) = 1

2
ψ(t ,u)ᵀαiψ(t ,u)+βᵀ

i ψ(t ,u), 1 ≤ i ≤ d ,

subject to the boundary conditions ξ(0,u) = 0 and ψ(0,u) = i u.

As we can see in the preceding theorem, ξ can be computed by simple inte-
gration once we know ψ. More specifically, we have that

ξ(t ,u) =
∫ t

0

(
1

2
ψ(s,u)ᵀaψ(s,u)+bᵀψ(s,u)

)
d s.
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Chapter 3

On the Calibration of the 3/2
Model

3.1 Introduction

Since the Black-Scholes model’s rise to prominence in the field of option
pricing, numerous extensions to it have been proposed in an attempt to
address its well known limitations. One category of such extensions involves
generalizing the Black-Scholes by making the volatility of the underlying
asset(s) a stochastic process. While the assumption of stochastic volatil-
ity has been shown to enable option pricing models to reproduce many of
the empirical features of financial markets which the Black Scholes model
misses, the added model complexity brings about its own challenges. In
particular, they generally lack a closed-form solution. This becomes partic-
ularly significant during the calibration of the model to market data, where
a potentially large set of benchmark options need to be priced by the model
up to several thousand times, making the computational tractability of the
model a key issue.

While stochastic volatility models generally do not yield themselves to a
simple solution in the same way as the Black Scholes model, several special
cases do admit a density for which we know the characteristic function in
closed form. This essentially reduces the computation of an option price
to a Fourier inversion, which in most cases is far cheaper computationally
than solving the model through either a Monte Carlo simulation or a finite
difference scheme.

The best known models with this property are those which correspond to an
(exponentially) affine characteristic function, one example being the square
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root volatility model of Heston [1993] and its many (affine) extensions (see
e.g. Bates [1996]; Sepp [2008]; Wong and Lo [2009]). However, several stud-
ies done on the S&P 500 index seem to suggest that the dynamics of the
underlying process are not affine, see e.g. Poteshman [1998]. In particular,
Bakshi et al. [2006] use the VIX index to estimate several specifications of the
volatility process, including

d vt =
(
α0 +α1vt +α2v2

t +
α3

vt

)
d t +β0vβ1

t dWt , (3.1)

with 0 ≤ t ≤ T for a finite horizon T . Their findings suggest that both α2 and
α3 are significant, and that β1 is around 1.27.

A stochastic volatility model with the potential to better match these empir-
ical findings (Carr and Sun [2007]) is the so-called 3/2 model. It is given by

dSt =µSt d t +
√

Vt St dBt ,

dVt = κ(ηVt −V 2
t )d t +σVt

3/2dWt ,
(3.2)

where B and W are standard Brownian motions with Cov(dBt ,dWt ) = ρd t .
Although non-affine, the characteristic function for the corresponding den-
sity is known in closed form, implying the same tractability as we have for
affine models.

A comparison of the 3/2 model and the Heston model reveals several fun-
damental differences. The 3/2 model allows for much stronger and more
rapid volatility deviations away from the zero boundary than the Heston
model. In addition, while the dynamics of the Heston model predict that the
implied volatility skew flattens when the instantaneous volatility increases,
the dynamics of the 3/2 model predict the opposite behavior. As such, the
3/2 model fits the empirical assumptions of risk managers better than the
Heston model (Drimus [2012]).5

A potential issue, however, is that the characteristic function is considerably
more complex than that of the Heston model. In particular, it involves the
confluent hypergeometric function, M(α,β, z) which is defined as the solu-
tion to

z
d 2w

d z2 + (β− z)
d w

d z
−αw = 0. (3.3)

This nests a wide variety of special functions, as well as the exponential
function, which is the most computationally expensive function in the char-

5. Moreover, we do not have to choose between them. Knowing the characteristic function for
both of these models means we can combine them into one multi-factor model for which we
also know the characteristic function in closed form (Grasselli [2017]). This is a consequence
of the convolution property of Fourier transforms, see 3.4.3 for a more in-depth discussion.
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acteristic function of the Heston model. The computational cost of evalu-
ating it in the parameter space that corresponds to plausible values of the
parameters of the 3/2 model can be up to two orders of magnitude greater
than for the exponential function.6

For a one factor stochastic volatility specification, this puts the character-
istic function approach to option pricing with the 3/2 model rather close
to a finite difference scheme in terms of speed. While this might not be
a problem for evaluating the price of a single option, it certainly has a big
impact on the calibration of the model. For this reason, speeding up the
calibration process is crucial to making the model computationally efficient
enough for practitioners.

With this in mind, we propose a calibration method which uses the analytic
gradient of the characteristic function. The compact form of the analytic
gradient we derive allows us to develop a very efficient caching method for
the partial derivatives, in addition to the strike and maturity dimensions.
This approach turns out to be an order of magnitude faster in terms of com-
puting the gradient of the objective function compared to a centered finite
difference gradient approximation, with a similar speedup in the calibration
of the model. The speedup factor is similar to what is reported in Cui et al.
[2017], where the authors give a comprehensive exposition of the calibration
of the Heston model, that includes the derivation of the analytic gradient of
the characteristic function of the Heston model.

Lastly, as has been reported in the literature (see e.g. Cont and Tankov [2004];
Guillaume and Schoutens [2010]; Mikhailov and Nögel [2003]), the nonlin-
ear least squares approach to calibrating option pricing models to market
data is often accompanied by issues of non-convexity and numerical insta-
bility. More precisely, the objective function can exhibit several different
local minima and using a purely gradient-based optimization can lead to
very different parameter values depending on the initial guess. The precise
choice of benchmark options also tends to have an impact on what values
we obtain from the calibration procedure, and the optimal parameter values
can fluctuate considerably between consecutive trading days.7

To tackle these issues for the 3/2 model, we propose using a Tikhonov type of
regularization formulation of the least squares problem, where the regular-
ization point is computed using MCMC estimation of the 3/2 model, and the
damping matrix is the inverse covariance matrix of the parameter estimates.

6. This assumes a standard implementation of the confluent hypergeometric function for
complex valued arguments, see Abramowitz and Stegun [1964]

7. Of course, we could also interpret this in a way that the model should incorporate parameters
that are themselves stochastic processes, but that is outside the scope of this text.
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Since we are only after the parameter values under the risk neutral measure,
we propose using the volatility index VIX as a proxy for the instantaneous
volatility which greatly simplifies the MCMC estimation procedure.

The remainder of this chapter is as follows. In section 3.2, we derive the ana-
lytic gradient for the characteristic function of the 3/2 model and present the
caching algorithm for quickly evaluating it for a set of benchmark options.
In section 3.3 we describe a regularized version of the calibration problem,
and give the MCMC estimators we use for computing the regularization
point and the damping matrix. Finally, in section 3.4 we present the results
of our numerical experiments on these methods.

3.2 Calibration of the 3/2 Model with an Analytic Char-
acteristic Function

Given a set of market quoted plain vanilla options, i = 1, . . . , I , we charac-
terize option i as the pair (K ,T )i , where K is its strike price, and T is its
maturity. We observe the market price πMarket

i for each of these options at
time t , and wish to infer the parameters of our pricing model using these
observed market prices. The standard approach to solving this problem
involves solving the weighted (nonlinear) least squares minimization prob-
lem,

Θ∗ = argmin
Θ

{
I∑

i=1
wi fi (Θ)2

}
, (3.4)

where
fi (Θ) ≡π(Θ; (K ,T )i )−πMarket

i .

Here, wi is a weight which determines the influence of option price i on
the calibration, and π(Θ; (K ,T )i ) is the price of option i given by the model,
given the parameter valuesΘ. In our case, the vector of parameters is given
by Θ = {

κ,η, v,σ,ρ
}
. Note that while the spot volatility v = Vt is strictly

speaking not a parameter of the model, it is unobserved and therefore in-
cluded as a decision variable in the optimization as well.

The set of quoted options we consider for our numerical studies are plain
European options. More precisely, denoting with ST the price of the under-
lying asset at time T , the price πcall of a European call option at time t with
strike K and maturity T is given by πcall = e−r (T−t )E

Q
t

[|ST −K |+]
. Likewise,

the price πput of a European put option at time t with the same strike and
maturity is given by πput = e−r (T−t )E

Q
t

[|K −ST |+
]
. Here, the superscript Q

refers to the fact that the expectation is taken under the risk-neutral mea-
sure, rather than the objective measure.

32



On the Calibration of the 3/2 Model

Since the probability density of ST is not known in closed form for the 3/2
model, a straightforward calculation of the expectation of the payoff is not
possible. On the other hand, we do know the characteristic function of
the density of ln(ST ). More precisely, the characteristic function, φ(u) ≡
EQ

[
e i uXT

]
, where XT ≡ ln(ST ), is known in closed form. With the parameter

setΘ explicitly accounted for, and letting x = ln(St ), it is given by

φ(Θ;u) = e i ux Γ(β−α)

Γ(β)
ζαM

(
α;β;−ζ) , (3.5)

where M(α;β,−ζ) is the confluent hypergeometric function of the first kind,

M(α;β;−ζ) ≡
∞∑

n=0

(α)n

(β)n

(−ζ)n

n!
, (3.6)

with

(x)n ≡
{∏n−1

i=0 (x + i ) if n > 0,

1 if n = 0,

and α,β, and ζ are given by

ζ≡ 2κη

vσ2
(
eκη(T−t ) −1

) ,

α≡−
(

1

2
− p

σ2

)
+

√(
1

2
− p

σ2

)2

+ 2q

σ2 ,

β≡ 2
[
α+1− p

σ2

]
,

p ≡−κ+ iσρu,

q ≡ i u

2
+ u2

2
.

(3.7)

Armed with the characteristic function, the next step is to apply an inverse
Fourier transform to calculate the option price. The details of this step can
vary depending on which technique we use, see e.g. Aichinger and Binder
[2013]. We have selected the following formula by Attari [2004]:

πcall(St ,T,K ) = St − 1

2
e−r (T−t )K

−e−r (T−t )K

π

∫ ∞

0

(
Re(φ(u))+ Im(φ(u))

u

)
cos(uk)+

(
Im(φ(u))− Re(φ(u))

u

)
sin(uk)

1+u2 du,

(3.8)

where k = ln(K ). Comparing the speed of different Fourier based meth-
ods for pricing vanilla options, Kilin [2011] concludes that using adaptive
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quadrature, with intermediary caching with the formula above, vastly out-
performs the fast Fourier transform (FFT) method of Carr and Madan [1999],
as well as the fractional FFT method of Chourdakis [2005]. We present an
extension of this idea in the following section, which takes advantage of the
special structure of the characteristic function of the 3/2 model.

3.2.1 The Analytic Gradient of the Characteristic Function

As mentioned in the introduction, the computation of the characteristic
function of the 3/2 model is very expensive, which makes a gradient-based
approach to finding the solution to (3.4) the only practical option. More
specifically, methods which compute

Θ j+1 =Θ j −γ j H−1∇Θ
(

I∑
i=1

wi fi (Θ j )2

)

iteratively until one or more of the user provided stopping criteria are sat-
isfied. Here γ j is the step length, and H−1 is either the inverse Hessian of
the objective function, or an approximation to the inverse Hessian. Given
the existence of a feasible minimum, this iterative process should terminate
for some j∗ such that Θ∗ = Θ j∗ . Calculating the full Hessian is very time
consuming, so instead we utilize a Quasi-Newton method for solving (3.4),
which is the standard approach to this problem. Quasi-Newton methods
construct an approximation H−1 to the inverse Hessian by means of the
gradient. This means that the gradient computation for (3.4) is the main
computational work of finding Θ∗. How γ and H−1 are calculated depends
on the specific Quasi-Newton method. For our calibration tests in section
3.4, we performed the minimization using the Levenberg-Marquardt algo-
rithm (Marquardt [1963]) which is a typical approach to solving nonlinear
least squares problems such as the calibration problem of (3.4).

Without an analytic form for the gradient, a finite difference approximation
can be used, such as the simple forward difference quotient, or the symmet-
ric difference quotient. These are given by

D+ f (x) ≡ f (x +h)− f (x)

h
, D± f (x) ≡ f (x +h)− f (x −h)

2h
,

respectively, with the latter being significantly more accurate than the first.
There are, however, well known numerical issues that go along with using
either of these for the purposes of optimization. To begin with, they are ill-
conditioned and subject to cancellation errors when h gets small enough.
On the other hand, putting h too large results in truncation errors. Even if
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h is optimally chosen, the value of D+ (D±) is only half as accurate (two-
thirds as accurate) in terms of significant digits as f (x) (see e.g. Griewank
and Walther [1987] for a more in-depth discussion).

Another issue is that if the optimization is constrained, which indeed it is in
our case, invalid values can be generated on the boundary by the finite dif-
ference approximation due to the x ±h step. Lastly, the numerical gradient
approach misses out on the interdependency between the different partial
derivatives which can be used to speed up the computation of the gradient.

With that in mind, deriving and using the analytic gradient of the objective
function (3.4) is well motivated in our attempt to speed up the calibration of
the 3/2 model. We begin by noting that

∇Θ
(

I∑
i=1

wi fi (Θ)2

)
= 2

I∑
i=1

wi fi (Θ)∇Θ fi = 2
I∑

i=1
wi fi (Θ)∇Θπ(Θ; (K ,T )i ).

Furthermore, given the formula for the priceπ(Θ; (K ,T )i ) for i = 1, . . . , I above,
we see that

∇Θπ(Θ; (K ,T )i ) =−e−r (T−t )K

π
×

∫ ∞

0

(
Re(∇Θφ(u))+ Im(∇Θφ(u))

u

)
cos(uk)+

(
Im(∇Θφ(u))− Re(∇Θφ(u))

u

)
sin(uk)

1+u2 du.

(3.9)

Therefore, to calculate the gradient of the objective function in (3.4) with
respect to the parameter vectorΘ, we need the gradient of the characteristic
functionφ, which is presented below through Theorem 3.1 and its corollary.

Theorem 3.1. Define

φ̃(ω;u) ≡ e i ux Γ(β−α)

Γ(β)
ζαM

(
α;β;−ζ) ,

where α,β and z are univariate functions of ω, with

α′ ≡ dα

dω
, β′ ≡ dβ

dω
, ζ′ ≡ dζ

dω
.

Then we have that

Ωω ≡ ∂φ̃

∂ω
= φ̃(ω;u)

[
(β′−α′)ψ(β−α)−β′ψ(β)

+
(
α′ ln(ζ)+α ζ′

−ζ
)
+ βG(α;β;−ζ)−αζ′M(α+1;β+1;−ζ)

βM(α;β;−ζ)

]
, (3.10)
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where ψ is the digamma function, and

G(α;β;−ζ) ≡
∞∑

n=1

(
α′Hα

n −β′Hβ
n

) (α)n

(β)n

(−ζ)n

n!
,

Hα
n ≡

n−1∑
k=0

1

α+k
, Hβ

n ≡
n−1∑
k=0

1

β+k
.

Proof. First, recall that the gamma function Γ(x) and the digamma function

ψ(x) ≡ Γ
′(x)

Γ(x)
,

have the following properties, respectively:

(x)n = Γ(x +n)

Γ(x)
,

and

ψ(x +n) =ψ(x)+
n−1∑
k=0

1

x +k
.

With this in mind, we see that

∂

∂ω

[
Γ(β−α)

Γ(β)

]
= (β′−α′)ψ(β−α)Γ(β−α)Γ(β)−β′ψ(β)Γ(β−α)Γ(β)

Γ(β)2

= Γ(β−α)

Γ(β)

(
(β′−α′)ψ(β−α)−β′ψ(β)

)
,

and

∂

∂ω

[ ∞∑
n=0

(α)n

(β)n

(−ζ)n

n!

]
= ∂

∂ω

[ ∞∑
n=0

Γ(α+n)

Γ(β+n)

Γ(β)

Γ(α)

(−ζ)n

n!

]
=(β′ψ(β)−α′ψ(α))

(
M(α,β;−ζ)−1

)
+

∞∑
n=1

(
α′(ψ(α)+Hα

n )−β′(ψ(β)+Hβ
n )

) (α)n

(β)n

(−ζ)n

n!
−

∞∑
n=0

nζ′
(α)n

(β)n

(−ζ)n−1

n!

=
∞∑

n=1

(
α′Hα

n −β′Hβ
n

) (α)n

(β)n

(−ζ)n

n!
− α

β
ζ′M(α+1,β+1,−ζ).

Furthermore, we have that

∂ζα

∂ω
= ζα

(
α′ ln(ζ)+ αζ′

ζ

)
.
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With these results, we have that the derivative of φ̃ is given by

∂φ̃

∂ω

= ∂

∂ω

[
e i ux Γ(β−α)

Γ(β)
ζαM

(
α;β;−ζ)]

=e i ux
( ∂

∂ω

[
Γ(β−α)

Γ(β)

]
ζαM(α,β;−ζ)+ Γ(β−α)

Γ(β)

∂ζα

∂ω
M(α,β;−ζ)

+ Γ(β−α)

Γ(β)
ζα

∂

∂ω

[
M(α,β;−ζ)

])
=(

(β′−α′)ψ(β−α)−β′ψ(β)
)
φ̃+

(
α′ ln(ζ)+ αζ′

ζ

)
φ̃

+
( ∞∑

n=1

(
α′Hα

n −β′Hβ
n

) (α)n

(β)n

(−ζ)n

n!
− α

β
ζ′M(α+1,β+1,−ζ)

)
φ̃

M(α,β;−ζ)

=φ̃
((

(β′−α′)ψ(β−α)−β′ψ(β)
)+(

α′ ln(ζ)+ αζ′

ζ

)
+βG(α,β;−ζ)−αζ′M(α+1,β+1,−ζ)

βM(α,β;−ζ)

)
.

Note that if α and β are constant with respect to ω, as is the case when we
differentiate the characteristic function with respect to either η or v , we end
up with a significantly simpler form.

Corollary 3.2. The gradient of the characteristic functionφ(Θ;u) with respect
toΘ= [κ,η, v,σ,ρ] is given by

∇Θφ= [Ωκ,Ωη,Ωv ,Ωσ,Ωρ],

whereΩκ, . . . ,Ωρ are defined in theorem 3.1, and the intermediate derivatives
of α,β and ζ with respect to the parameters are given by

∂α

∂σ
= 2κ

σ3 − iρu

σ2 +
(
−2κ
σ3 + iρu

σ2

)(1
2 −

p
σ2

)− 2q
σ3√(1

2 −
p
σ2

)2 + 2q
σ2

,

∂α

∂κ
=− 1

σ2 +
1

2σ2 − p
σ4√(1

2 −
p
σ2

)2 + 2q
σ2

,

∂α

∂ρ
= i u

σ
+

−i u
2σ + i up

σ3√(1
2 −

p
σ2

)2 + 2q
σ2

,
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∂β

∂σ
= 2

(
∂α

∂σ
− 2κ

σ3 + iρu

σ2

)
,

∂β

∂κ
= 2

(
∂α

∂κ
+ 1

σ2

)
,

∂β

∂ρ
= 2

(
∂α

∂ρ
− i u

σ

)
,

∂ζ

∂σ
=−2ζ

σ
,

∂ζ

∂v
=− ζ

v
,

∂ζ

∂κ
=−

(
η(T − t )− 1

κ

)
ζ− (T − t )vσ2

2κ
ζ2,

∂ζ

∂η
=−

(
κ(T − t )− 1

η

)
ζ− (T − t )vσ2

2η
ζ2,

with all other partial derivatives equal to zero.

3.2.2 Optimal Gradient Computation

In computational terms, the most naive approach to solving (3.4) is to apply
an optimization algorithm with finite-difference gradient approximations,
and where π(Θ; (K ,T )i ) is evaluated individually for each option i without
any computational caching. In contrast, the Fast Fourier Transform method
of Carr and Madan [1999] computes the option price for an entire grid of
strikes for a given maturity simultaneously. The integrand of the original
inversion formulation proposed in Heston [1993] precludes the use of the
FFT since a singularity is present at u = 0. To address this, Carr and Madan
[1999] proposed the damped formulation

ψT (u) = e−r (T−t )φ(u − i (γ+1))

γ2 +γ−u2 + i (2γ+1)u
,
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where T is the maturity of the option set, and γ is a damping coefficient,
which needs to be chosen by hand.8 Given ψT (·), the option price is given
by

π(Θ;Ku ,T ) ≈ e−γku

π

N∑
j=1

δ j e−iλµ( j−1)(u−1)e i bv jψT (v j )µ, (3.11)

where ku = −b +λ(u −1), v j = µ( j −1), b = 1
2 Nλ, Ku = eku , and δ j = 0.5 for

j = 1, N , and δ j = 1 otherwise.

In words, λ is the distance between consecutive log strike points, µ is the
distance between consecutive integration nodes, and −b and b are the lower
and upper limits on the log strike range, respectively. Using the FFT to com-
pute the inversion, we set λµ = 2π

N . This implies a tradeoff between the
resolution of the integration grid, and the resolution of the strike price grid.

The FFT method has proven useful for a variety of interesting applications in
quantitative finance (see e.g. Albanese et al. [2004]; Chen and Chen [2014];
Fusai et al. [2016]). However, a major drawback of the method in our setting
is that a very large number of integration nodes are required to obtain a
satisfactory level of accuracy, since the integration nodes need to be equally
spaced and that prohibits the use of genuinely efficient integration schemes.
Furthermore, we end up with a far greater number of option prices for each
maturity than for which we could hope to have any use for most calibration
purposes. This is because strike prices far in or out of the money tend to be
very illiquid. In other words, most of the option prices we obtain from the
FFT are likely matched to noise in the market data which we would prefer to
keep out of the calibration.

A different method of tackling the inversion problem was introduced by
Fang and Oosterlee [2008]. It is generally referred to as the Fourier-cosine
series expansion (COS) method. Here, the inversion integral is replaced
by its cosine series expansion, with the series coefficients extracted directly
from the integrand. Using this method, we have that

π(Θ;K ,T ) ≈ e−r (T−t )
N∑

j=1
δ j Re

{
φ

(
jπ

b −a

)
e−i jπ a

b−a

}
V j , (3.12)

where a and b are the lower and upper endpoints of the truncated interval
of support for the density function, and V j depends on the payoff of the
derivative. For plain vanilla options, V j can be obtained in closed form.

8. The choice of this parameter has a significant impact on the accuracy of the option prices
produced by the model. Furthermore, the optimal value of this parameter depends on the
option maturity, so ideally a different damping parameter value is required for each maturity
present in the set of benchmark options when calibrating the model.
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Define

χ j (c,d) ≡ 1

1+
(

jπ
b−a

)2

[
cos

(
jπ

d −a

b −a

)
ed −cos

(
jπ

c −a

b −a

)
ec

+ jπ

b −a
sin

(
jπ

d −a

b −a

)
ed − jπ

b −a
sin

(
jπ

c −a

b −a

)
ec

]
, (3.13)

and

ψ j (c,d) ≡
{[

sin
(

jπd−a
b−a

)
− sin

(
jπ c−a

b−a

)] b−a
jπ if j 6= 0,

(d − c), if j = 0.

The coefficients for a call and a put option for a given strike are given, re-
spectively, by

V call
j = 2

b −a
K (χ j (0,b)−ψ j (0,b)),

and

V put
j = 2

b −a
K (−χ j (a,0)+ψ j (a,0)).

The COS method has been reported to be around 20-40 times faster (Fang
and Oosterlee [2008]) than the FFT method9. Its efficiency depends in part
on the maturity, with longer maturities requiring a lower N than shorter
maturities. Another factor is the choice of the truncation, i.e., the interval
[a,b]. In Fang and Oosterlee [2008], the following is proposed for the Heston
model for maturities T between 0.1 and 10.0:

[a,b] ≡
[

c1 −L
√

c2 +p
c4,c1 +L

√
c2 +p

c4

]
,

where cn is the n-th cumulant of ln(ST /K ), and L is a control parameter
which in Fang and Oosterlee [2008] is set equal to 10.

A somewhat simpler method, which is of similar computational efficiency
as the COS method, is proposed in Kilin [2011]. By noting that the charac-
teristic function φ does not depend on the strike price K , we see that once
we have computed the inversion of φ for a given option i we can reuse the
computed values of φ to quickly compute (3.8) for the remainder of the
options that have the same maturity T as i but different strike prices. In
addition, we can couple this approach with an efficient integration scheme,
like Gaussian quadrature.

9. We find this difference to be smaller with a more streamlined implementation of the FFT. We
would like to thank an anonymous referee for providing us with the ideas behind making the
FFT faster.
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To be more specific, a direct Fourier inversion of the characteristic function
in (3.8) means calculating a discrete approximation to the integral in (3.8),
which we can write as

J∑
j=1

b j

(
Re(φ(u j ))+ Im(φ(u j ))

u j

)
cos(u j k)+

(
Im(φ(u j ))− Re(φ(u j ))

u j

)
sin(u j k)

1+u2
j

,

(3.14)
where b1, . . . ,b J are the integration weights, and are determined by the in-
tegration scheme, along with the discretization u1, . . . ,u J of the integrand
domain.

In a similar fashion, the numerical inversion of the analytic gradient of the
characteristic function can be written as

J∑
j=1

b j

(
Re(∇Θφ(u j ))+ Im(∇Θφ(u j ))

u j

)
cos(u j k)+

(
Im(∇Θφ(u j ))− Re(∇Θφ(u j ))

u j

)
sin(u j k)

1+u2
j

.

(3.15)

We first give an outline of the technique of computing the prices of a set of
vanilla options through caching the characteristic function calculations for
each maturity without the use of an analytic gradient, as described in Kilin
[2011]. We refer to this method hereafter as strike caching (SC). Let the set of
different maturities present in the set of options be denoted by T = {Ts}S

s=1,

and for a given maturity Ts in this set, let K s = {
K s

r

}Rs

r=1 be the set of different
strike prices present in the set of benchmark options with maturity Ts .

The method works for a given maturity Ts by calculating and caching the
grid A = [

A1, . . . , A J
]

where A j = φ(u j ) for j = 1, . . . , J . This grid is then used
for the computation of (3.14) for each strike K s

r , which reduces the number
of calls to φ by a factor equal to the number of strikes for each maturity. To
make this work, we need to use the same discretization grid for every option
with maturity Ts .

If we use adaptive quadrature to carry out the inversion, the discretization
grid U = [u1, . . . ,u J ], and the integration weights B = [b1, . . . ,b J ], can be ob-
tained simply through keeping track of the node-weight pairs generated by
the quadrature from the calculation of the first option of each maturity. Al-
ternatively, we can create the discretization in advance by standard inter-
polation methods. The application of Algorithm 1 to a finite difference gra-
dient based minimization of (3.4) is straightforward. Let e = [1, . . . ,1] be a
vector of the same dimension asΘ, and let h be a sufficiently small, positive
number. For a central finite difference we simply evaluate SC (·) for the
parameter vectors Θ+he and Θ−he, and then divide the difference of the
two return values with 2h, to obtain the gradient of (3.4) atΘ.
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Algorithm 1 Price Computation with Strike Caching

1: procedure SC(Θ, {(K ,T )i }I
i=1)

2: for s = 1, . . . ,S do
3: Compute U and B
4: for j = 1, . . . , J do
5: A j ←φTs (Θ;u j )
6: end for
7: for r = 1, . . . ,R s do
8: Compute (3.14) with A, B, and U
9: πi ←π(Θ;K s

r ,Ts) using (3.8)
10: end for
11: end for
12: return

∑I
i=1 wi

(
πi −πMarket

i

)2

13: end procedure

The strike caching approach, of course, works just as well for efficiently
computing the analytic gradient of the characteristic function. To gain fur-
ther performance improvements, however, we extend the caching concept,
which so far has been limited to the strike price dimension, to include the
maturity dimension as well.

While the characteristic function φ does not depend on the option strike
price, which makes the strike caching technique straightforward, it does
indeed depend on the option maturity. However, if we take a closer look at
(3.7) we see that only ζ depends on the maturity. So, calculating φ(Θ;u j )
simultaneously for the entire set T while keeping u j fixed enables us to
significantly reduce the overall computational load, since α and β remain
the same for each Ts ∈ T .

Coupling this approach with the computation of the analytic gradient we
presented in the previous section yields an even greater speedup of the cal-
ibration procedure. As is apparent from Theorem 3.1 and its corollary, the
partial derivatives of the gradient of the characteristic function of the 3/2
model tend to include common factors. This means we can use the results
from the computation of one partial derivative to help us calculate the re-
maining ones.

The application of the strike-maturity caching technique to the calibration
problem with the analytic gradient of φ will be referred to hereafter as the
gradient-maturity-strike caching (GMSC) method.
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Let Ξα,β denote the Jacobian of (α,β) with respect to the set of calibration
parameters, i.e.,

Ξα,β =


∂α

∂ω1
. . .

∂α

∂ω5
∂β

∂ω1
. . .

∂β

∂ω5

 ,

where ωi ∈ {
κ,η, v,σ,ρ

}
. Similarly, let Ξζ denote the Jacobian of ζ1, . . . ,ζS

with respect to the model parameters, where ζs , for s = 1, . . . ,S, is calculated
using maturity Ts ∈ T , i.e.,

Ξζ =


∂ζ1

∂ω1
. . .

∂ζ1

∂ω5
...

. . .

∂ζS

∂ω1
. . .

∂ζS

∂ω5

 .

Then the GMSC method is given by Algorithm 2.

The order in which the calculations are done in Algorithm 2 is designed to
take advantage of cached intermediate results. In line 2 we compute the
integration nodes for the transform inversion, and in line 3 we compute
ζ and Ξζ, which are independent of the integration nodes. In line 5 we
computeα,β andΞα,β, that are independent of the option maturity. In lines
6-10 we calculate the grid that consists of the characteristic function values
for integration nodes u1, . . . ,u J , as well as the partial derivatives of the char-
acteristic function in those nodes. The characteristic function evaluation
can be reused for the gradient computation, and is returned along with the
gradient in our actual implementation, which speeds up the optimization
procedure as well. Once we have computed the characteristic function and
its gradient for the grid values U , we use these stored values to calculate the
integral required in (3.8) and (3.9), for the different strikes and maturities
present in the set of benchmark options, as written in lines 13-22. Finally,
the algorithm returns the vector of partial derivatives of the objective func-
tion with respect to the model parameters and spot volatility.

3.3 Regularization with Risk-Neutral MCMC Estimation

The objective function that corresponds to the nonlinear least squares for-
mulation given by (3.4) turns out to exhibit numerically signs of being both
non-convex and ill-conditioned, as we discuss in greater detail in section
3.4. One approach to addressing this issue is to regularize (3.4) with a penalty
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Algorithm 2 Gradient-Maturity-Strike Caching

1: procedure GMSC(Θ, {(K ,T )i }I
i=1)

2: Compute U and B
3: Compute ζ and Ξζ
4: for j = 1, . . . , J do
5: Compute α(u j ),β(u j ), and Ξα,β(u j )
6: for s = 1, . . . ,S do
7: As, j ←φTs (u j )
8: for g = 1, . . . ,5 do

9: Gs, j ,g ← ∂φTs (u j )

∂ωg
10: end for
11: end for
12: end for
13: for s = 1, . . . ,S do
14: for r = 1, . . . ,R do
15: Compute (3.14) with φTs (u j ) = A j ,s for j = 1, . . . , J
16: πi ←π(Θ;Kr ,Ts) using (3.8)
17: for g = 1, . . . ,5 do

18: Compute (3.15) with
∂φTs (u j )

∂ωg
=G j ,s,g for j = 1, . . . , J

19: Di ,g ← ∂π(Θ;Kr ,Ts)

∂ωg
using (3.9)

20: end for
21: end for
22: end for
23: return

[∑I
i=1 wi

(
πi −πMarket

i

)
Di ,1, . . . ,

∑I
i=1 wi

(
πi −πMarket

i

)
Di ,5

]
24: end procedure
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function. In other words, we change the problem from (3.4) to the regular-
ized version

Θ∗ = argmin
Θ

{
I∑

i=1
wi fi (Θ)2 +χH(Θ̌− Θ̂)

}
. (3.16)

Here, Θ̂ = (ω̂1, . . . ,ω̂r ), with r ≤ |Θ|, is a regularization point for the param-
eter vector Θ̌ = (ω1, . . . ,ωr ), with ωi ∈Θ for i = 1, . . . ,r . Furthermore, H is a
function that penalizes solutions to (3.16) in proportion to how far Θ̌ is from
the regularization point, Θ̂. Finally, χ is the regularization coefficient which
determines how severely the penalty impacts the calibration. When χ is set
large enough, the objective function becomes convex in Θ̌. If it is too high,
however, potentially good solutions outside the immediate vicinity of the
regularization point are ignored. The question then arises which χ, Θ̂, and
H we should choose.

One obvious choice for Θ̂ is a historical estimate of the proper model pa-
rameters (Cont and Tankov [2004]). In other words, we estimate

{
κ,η,σ,ρ

}
using the time series of prices of the underlying realized over time. On a
conceptual level, the reason why we want historical data in the calibration
is to make the calibration process more robust against the noise inherent in
option prices. This noise comes from sources such as the bid-ask spreads,
"easy number pricing" (i.e., the market prices of options tend to be given in
convenient numbers at the expense of accuracy), and asynchronous pricing
in end-of-day data. Option prices are therefore only an imperfect proxy for
the market pricing measure.

When the estimation of the model parameters is given by (3.4), the parame-
ter values we obtain correspond to the risk neutral measure, since the bench-
mark options are themselves priced under that measure. Estimation of the
parameters under the objective measure, however, involves a considerably
different formulation of the problem, and requires a study of the histori-
cal realization of the price of the underlying. This is relatively straightfor-
ward for discrete-time models, such as generalized autoregressive condi-
tional heteroskedasticity (GARCH) and its variants, where maximum like-
lihood can be applied directly to the model. In contrast, the application
of standard econometric techniques to continuous-time models are com-
plicated by the fact that the density is usually not known for the model,
so maximum likelihood is not directly applicable. In addition, the instan-
taneous volatility is assumed to be unobserved in the 3/2 model, which
further complicates the estimation.

Several methods have been developed in recent years to tackle this problem
for continuous-time stochastic volatility models, such as ’implied state’ gen-
eralized method of moments (GMM) (Pan [2002]), and simulated maximum
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likelihood (Brandt and Santa-Clara [2002]; Pedersen [1995]). The approach
we have chosen is Bayesian inference through the Markov chain Monte Carlo
method, see Johannes and Polson [2009] for an introduction. Let {St }T

t=0 be
a realized time series of prices for an underlying asset, whose dynamics are
given by (3.2), and let Yt = lnSt−lnSt−1, and Y = {Yt }T

t=1. Assume further, for
the time being, that we do not observe the corresponding realization of the
time series of instantaneous volatility, V = {Vt }T

t=1. Lastly, let Θ̃= (ω̃1, . . . ,ω̃r )
be the parameters we want to estimate using the historical data, interpreted
in the conventional Bayesian sense (i.e., as stochastic variables). Estimating
Θ̃ using the MCMC approach involves repeatedly drawing samples from the
distribution given by the posterior distribution p(Θ̃,V |Y ). More specifically,
assume we have drawn n samples using the posterior distribution, then the
(n +1)-th sample for Θ̃ is drawn in the following way,

1. Draw Θ̃(n+1)
1 ∼ p

(
Θ̃1|Θ̃(n)

2 ,Θ̃(n)
3 , . . . ,Θ̃(n)

r ,V (n)
)

,

2. Draw Θ̃(n+1)
2 ∼ p

(
Θ̃2|Θ̃(n+1)

1 ,Θ̃(n)
3 , . . . ,Θ̃(n)

r ,V (n)
)

,

...

r. Draw Θ̃(n+1)
r ∼ p

(
Θ̃r |Θ̃(n+1)

1 ,Θ̃(n+1)
2 , . . . ,Θ̃(n+1)

r−1 ,V (n)
)

.

With V unobserved we would then, in a similar fashion, also have to repeat-

edly sample the spot volatilities, using p
(
Vt |Θ̃(n)

,V (n)
1 , . . . ,V (n)

T

)
to generate

V (n+1)
t , for each t = 1, . . . ,T . As is (currently) the case for most stochastic

volatility models, we do not have a tractable form for p(Vt | · · · ), so an approx-
imate procedure, such as the Metropolis-Hastings algorithm, is required to
sample it. This is by far the most computationally challenging aspect of the
MCMC estimation.

Note that the procedure outlined above only gives us estimates for the pa-
rameters of the model under the objective measure. This can be useful, for
instance, if we are concerned with how well the model fits the realized price
history of the underlying. However, (3.4) is formulated for option prices,
which means the parameters we are after are under the risk neutral mea-
sure. This is not an issue for σ and ρ which, by Girsanov’s theorem, stay
the same under each measure, whereas η and κ change. To obtain the risk
neutral version of η and κ we need to include option prices in the historical
estimation as well to estimate the variance risk premium.

To make this point clear, assume that the market price of volatility risk is
given by νV 1/2, i.e., it is linear in volatility10, and let W p

t and W q
t be Brow-

nian motions under P and Q, respectively. To further clarify our discussion,

10. This is a standard simplifying assumption in both the Heston model and the 3/2 model, as it
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denote with κp and κq the rate of mean reversion under P and Q, respec-
tively, and ηp and ηq the long run volatility under P and Q, respectively (as
mentioned above σ and ρ stay the same).

From Girsanov’s theorem, we have that under a change of measure from P

toQ the volatility process

dVt = κp (ηpVt −V 2
t )d t +σV 3/2

t dW p
t ,

becomes

dVt = κp (ηpVt −V 2
t )d t +σV 3/2

t dW q
t −σνV 2

t d t

= (
κp +σν)( κpηp

κp +σνVt −V 2
t

)
d t +σV 3/2

t dW q
t

= κq (ηqVt −V 2
t )d t +σV 3/2

t dW q
t .

As we can see from this derivation,

κq = κp +σν, (3.17)

and

ηq = κpηp

κp +σν . (3.18)

soν affects the rate of mean reversion and long run volatility when we change
from P toQ, which means that if we want historical regularization values for
the full set of the model parameters underQ then we need to estimate ν.

Estimation of the variance risk premium is in itself an important part of
the study of incomplete markets, for which MCMC estimation is also suit-
able. There is, however, the issue that incorporating option pricing into the
MCMC estimation is very computationally challenging. The intuition we
present here is that because we are only interested in the historical esti-
mates of the parameters of the 3/2 model under the risk neutral measure, we
can simply cut out the intermediate step of estimating the parameters and
volatility process under the objective measure altogether by using histori-
cal implied volatility as a proxy for the volatility process under Q. In other
words, instead of filtering Vt under P and jointly estimating ν by incorpo-
rating past option prices and using formulas (3.17) and (3.18) to find the
historical estimates of κ and η underQ, we simply take the implied volatility
of short dated options as a proxy for Vt and jump straight into the estimation
of the 3/2 model parameters underQ.

implies these models are the same under the objective measure and risk neutral measure, as
well as having economic justification, see Heston [1993].
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While this idea can be implemented in several different ways, we use CBOEs
volatility index VIX for our numerical tests. The VIX is the square root of
the risk-neutral expectation of the S&P500 variance over the following 30
calendar days, as determined by the market.11

With the proxy for V , we now only need to sample p(Θ̃|Y ,V ). And, as we
show below, we can characterize the posterior distribution for each param-
eter in Θ̃ in closed form, which makes the MCMC estimation process of the
historical data extremely fast.

We begin by discretizing (3.2) to obtain

Yt =
(
r − 1

2
Vt−1

)
∆t +

√
∆tVt−1ε

s
t ,

Vt =Vt−1 +Vt−1κ(η−Vt−1)∆t +V 3/2
t−1

p
∆tεv

t ,

(3.19)

where εs
t ∼ N (0,1) and εv

t ∼ N (0,σ). Note that as we are treating the process
(3.19) under the risk neutral measure, the drift of Y is given by the risk free
rate, r . The equations above can be rewritten in terms of the errors, to give

εs
t =

Yt − r∆t + 1
2Vt−1∆tp

Vt−1∆t
,

εv
t = Vt −Vt−1 −Vt−1κ(η−Vt−1)∆t

V 3/2
t−1∆t

.

Following the setup of Li et al. [2006] for the MCMC analysis of affine jump-
diffusion, we change variables and setψ= ρσ, andΩ=σ2(1−ρ2). This gives
us

(εs
t ,εv

t ) ∼ N

(
(0,0),

[
1 ψ

ψ ψ2 +Ω
])

.

We now require the posterior distributions, p(Θ|Y ,V ), which we use to sam-
ple the parameter space. By Bayes’ theorem,

p(ω̃i |Θ̃−i ,V ,Y ) ∝ p(Y ,V |ω̃i ,Θ̃−i )p(ω̃i ),

for i = 1, . . . ,5, where Θ̃−i ≡ Θ̃ \ {ω̃i }. The joint likelihood function for (Y ,V )
is given by

p(Y ,V |Θ̃) = 1

ΩT /2

(
T∏

t=1

1

V 2
t−1∆T

)
exp

(
− 1

2Ω

T∑
t=1

(
(Ω+ψ2)(εs

t )2 −2ψεs
tε

v
t + (εv

t )2)) .

11. In theory, we could choose a volatility index with any time horizon, and deduce the instan-

taneous volatility by solving (VIX/100)2 = EQ
[∫ T

t vu du|Vt = v
]

for Vt . However, while we

know the right hand side in closed form (Carr and Sun [2007]), the expression is complicated
enough that we would in fact be better off simply including estimation of V in the MCMC
procedure.
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Following standard results on the conjugate prior for a normal distribution
with unknown mean and variance (Koch [2007]), the prior we choose forΩ is
the inverse gamma distribution, i.e.,Ω∼IG (α0,β0), and for the prior for ψ
conditioned onΩwe choose the normal distribution, i.e.,ψ|Ω ∼ N (ψ0, p0Ω).

With these priors, the posterior distribution forΩ is given by IG (α̂, β̂), where
α̂= T

2 +α0, and

β̂=β0 + 1

2

T∑
t=1

(εv
t )2 + p0ψ

2
0

2
− p0ψ0 +∑T

t=1 (εs
tε

v
t )2

p0 +∑T
t=1(ε2

t )2
.

The posterior conditional distribution for ψ given Ω is given by N (ψ̂, σ̂2
ψ),

where

ψ̂= p0 +∑T
t=1 ε

s
tε

v
t

p0 +∑T
t=1

(
εs

t

)2 ,

and

σ̂2
ψ = Ω

p0 +∑T
t=1(εs

t )2
.

These posteriors turn out to be the same for the Heston model. The remain-
ing estimators, i.e., for η and κ, however, turn out to be different.

The prior we choose for κ is the normal distribution, i.e., κ∼ N (κ0,σ2
κ). The

posterior is then given by N (κ̂, σ̂2
κ), where

κ̂= σ̂2
κ

Ω

T∑
t=1

(η−Vt−1)((η−Vt−1)Vt−1∆t −ψ(Yt − r∆t + 1
2Vt−1∆t )−1)

Vt−1

+ σ̂2
κ

Ω

T∑
t=1

Vt (η−Vt−1)

V 2
t−1

+ σ̂2
κκ0

σ2
κ

,

and

σ̂2
κ =

1

∑T
t=1

(Vt−1 −η)2∆t

ΩVt−1
+ 1

σ2
κ

.

Likewise, the prior we pick forη is the normal distribution, i.e.,η∼ N (η0,σ2
η),

and the posterior is given by N (η̂, σ̂2
η), where

η̂=
σ̂2
η

Ω

T∑
t=1

κ(κVt−1∆t −ψ(Yt − r∆t + 1
2Vt−1∆t )−1)

Vt−1
+
σ̂2
η

Ω

T∑
t=1

Vtκ

V 2
t−1

+
σ̂2
ηη0

σ2
η

,

and

σ̂2
κ =

1

∑T
t=1

κ2∆t

ΩVt−1
+ 1

σ2
η

.
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These posterior distributions allow us to sample, and therewith estimate,
the parameters κ,η,σ and ρ in terms of historical returns and the implied
volatility proxy. One advantage of the MCMC estimation procedure is that
we naturally get a gauge for the uncertainty over our parameter estimates.
More specifically, from the samples we draw we can calculate the sample
covariance matrix

Q =

q1,1 . . . q1,4
...

. . .

q4,1 . . . q4,4

 ,

where

qi , j = 1

N −1

N∑
n=1

(ω̃i ,n −ωi )(ω̃ j ,n −ω j ).

Here, ω̃i ,n and ω̃ j ,n are the nth realizations of parameter i and j , respec-
tively, and ωi and ω j are their respective sample averages.

We can then utilize this information to determine how to penalize devi-
ations across the individual historical estimates, ω̃1, . . . ,ω̃4, of the model
parameters during the calibration. For this purpose we have chosen the
following parsimonious formulation for the penalty function H .

H(Θ̌− Θ̂) ≡ (Θ̌− Θ̂)ᵀQ−1(Θ̌− Θ̂).

For a linear least squares problem, this form of the penalty function H is
often referred to as Tikhonov regularization (Tikhonov et al. [1979]), and has
been studied extensively in the literature.

One computational advantage of the MCMC method relevant to our regular-
ization effort is that if we want to incorporate new data into a prior historical
estimate, we do not have to repeat the estimation procedure for the entire
data set. More specifically, let π0(Θ̃) be a prior distribution for the model
parameters. Given observations Y = {Yt }T

t=1 and V = {Vt }T
t=1, let

πT (Θ̃) ≡ p(Θ̃|V ,Y ) ∝π0(Θ̃)p(V ,Y |Θ̃)

denote the posterior distribution. If we then acquire an additional observa-
tion (YT+1,VT+1), we have that

πT+1(Θ̃) ∝πT (Θ̃)p(YT+1,VT+1|V ,Y ,Θ̃),

where πT+1(Θ̃) is the updated posterior distribution. This means that as
time progresses, maintaining an up-to-date historical estimate by adding
price movements and volatilities as they get realized is reduced to sampling
the parameter space for those incoming values.
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Lastly, the choice of χ is done on case-by-case basis. No results exist so far,
to our knowledge, that deal definitively with the issue. Roughly speaking,
we are after a value for χ which is at least high enough to produce a convex
objective function, but not so high that the parameter search space becomes
degenerate. Our search for χ is discussed in more detail in section 3.4.

3.4 Numerical Results

Our numerical experiments tested the speed of the GMSC formulation pro-
posed in section 3.2 and summarized in Algorithm 2, as well as the pure SC
formulation of Kilin [2011] summarized in Algorithm 1, the COS method of
Fang and Oosterlee [2008], and the FFT of Carr and Madan [1999], for a fixed
level of accuracy. For this part, we used option prices derived from the 3/2
model with randomly selected parameter values. We also tested the effects
of regularization as described in section 3.3 and for this we used S&P500
option data in addition to realized historical returns of the S&P500. The
calibration code was written in C/C++ with Alglib and GNU GSL using full
compiler optimization (/O2,/Ot) with MSVC. The historical estimation code
was written in Python with Numpy and Scipy. The tests were run on an Intel
Core i5-4310U (2.0GHz and 2.6GHz) with 8 GB of memory.

3.4.1 Calibration Speed Tests

For the first part of our numerical experiments, we timed the gradient com-
putation of (3.4) using (i) the central finite difference gradient scheme with
the FFT method, (ii) the central finite difference gradient scheme with the
COS method, (iii) the central finite difference gradient scheme with strike
caching, and (iv) the analytic formula for the gradient of the characteris-
tic function where gradient values were cached across both the strike and
maturity dimension. Each gradient evaluation was done using 100 different
options; 10 strikes per maturity, for a total of 10 maturities per evaluation.
The list of maturities consisted of the following: 15, 30, 45, 60, 90, 120, 150,
220, 270 and 365 days. The strikes were close to the money, with strike price
increments ∆K = 5 for T ≤ 45; ∆K = 10 for 45 < T ≤ 120; and ∆K = 20 for
120 < T ≤ 365. The parameter values Θ were randomly generated on the
intervals given in Table 3.1.

Once a random value had been generated for Θ, each of the methods in (i)-
(iv) was used to calculate the gradient of (3.4), and the CPU time for each
was recorded. This procedure was repeated for 400 different parameter re-
alizations. For the FFT method we used 212 integration points with a spacing
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of 0.125. For the SC and GMSC methods we used Gauss-Legendre quadra-
ture with 128 points. For the COS method we used the truncation for [a,b]
given in section 3.2.2, where the cumulants were calculated using numerical
differentiation of the characteristic function. Furthermore, we used a fully
vectorized form for the COS method as given in Fang and Oosterlee [2008].
The error tolerance of the inversion component for both the vectorized COS
method and the FFT method12 was set at 10−6. Lastly, the step size for the
finite difference gradient approach was set to 64 bit floating point precision.

In addition, we timed the full nonlinear least squares calibration of the 3/2
model with box constraints using each of these Fourier inversion methods,
using the same setup for generating the option data and the true parameter
values as in the gradient tests, with the same parameter constraints as given
in Table 3.1. The parameter values were randomly generated, as well as
the starting point of the optimization, and then each of the methods (i)-
(iv) used to solve the inverse problem of retrieving the realized parameter
values (each method was tested using the same set of realized parameter
values and initial guesses to ensure unbiased comparison). This procedure
was repeated 100 times. The optimization routine was set to stop when the
gradient changed less than 2/3 of 64 bit floating point precision between
iterations. The summary statistics for these tests are given in Table 3.3.

min max

κ 1.0 50.0
η 0.01 0.90
v 0.01 0.90
σ 5.0 50.0
ρ -1.0 0.50

Table 3.1: Variable Constraints. These represent the intervals within which
we constrained the optimization procedure for each parameter.

The calibration converged to the true parameter values and terminated within
the specified stopping condition in all 100 test cases for each of the methods
(i)-(iv). The mean absolute difference between the least squares parameter
estimates and the true parameter values is given in Table 3.4.

As can be seen from Tables 3.2 and 3.3, the GMSC clearly outperforms the
other methods both in computing the gradient and in the calibration runs.

12. More specifically, the loop calculating the summands of the vectorized inversion of (3.12),
and the inversion of (3.11) was terminated as soon as five consecutive summands turned
out to be below the error threshold in absolute value.

52



On the Calibration of the 3/2 Model

FFT COS SC GMSC

mean 2.621 0.6109 0.5514 0.03519
std 1.730 0.8214 0.5410 0.02320
max 12.79 4.331 3.918 0.1047
min 1.549 0.2988 0.3710 0.01500

Table 3.2: Computational times in seconds for the central finite difference
gradient approximation calculations for the FFT method, the COS
method, the SC method, and for the analytic gradient with the
GMSC method.

FFT COS SC GMSC

mean 168.3 53.46 48.65 4.499
std 101.9 66.17 43.64 4.013
max 821.7 205.9 174.6 12.17
min 9.562 3.588 1.244 0.0658

Table 3.3: Computational times in seconds of the calibration runs for the
FFT method, the COS method, the SC method, and the GMSC
method.

We notice a slight decrease in the speed gap for the calibration tests, as
compared to the pure gradient computations. This is because the imple-
mentation of the Levenberg-Marquardt procedure that we used required in
some instances objective function evaluations independent of the gradient
evaluations. Overall, the full calibration testing procedure is a somewhat
noisier method of measurement than the pure gradient testing procedure,
since it introduces the issue of finite accuracy of the finite difference gradi-
ent, which can have an implementation-specific effect on the convergence
of the algorithm. Also, different implementations of a given optimization
algorithm can involve varying memory access overhead which is difficult to
control for. From Table 3.4 we see that the GMSC produces slightly more
accurate estimates on average than the comparison methods. This is not a
surprise since the stopping conditions for the optimization are set right at
the cutoff for the accuracy of the central finite difference gradient. However,
all the different calibration methods exhibit good accuracy.
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FFT COS SC GMSC

|κ† −κ∗| 4.10×10−2 3.05×10−2 1.61×10−2 5.16×10−3

|θ† −θ∗| 4.73×10−4 3.89×10−4 3.66×10−4 1.19×10−4

|v† − v∗| 8.26×10−6 1.50×10−5 1.38×10−6 6.80×10−7

|σ† −σ∗| 1.20×10−3 3.25×10−3 9.44×10−4 1.16×10−4

|ρ† −ρ∗| 4.99×10−4 6.05×10−4 2.12×10−4 8.63×10−5

Table 3.4: Mean absolute difference between the model parameter esti-
mates (κ∗, . . . ,ρ∗) from the least squares calibration and the true
values (κ†, . . . ,ρ†) for the FFT method, the COS method, the SC
method, and the GMSC method.

3.4.2 Regularization Tests

For the second part of our numerical experiments, we tested the effect of the
regularization on the objective function on market data. More specifically,
instead of solving (3.4), we solved (3.16) for a data setup similar to that of the
non-regularized tests. We performed our numerical tests on S&P500 option
data from the 3rd of January 2017 to the 8th of March 2017, for a total of 44
trading days. The total number of options (SPX and SPXW) quoted during
this period was 376865.

As in the first part, each calibration consisted of 100 benchmark options; 10
strikes per maturity, for a total of 10 maturities per trading day. The list of
maturities consisted of approximately13 the same maturities as listed for the
speed tests. For each maturity, we chose the 5 out-of-the money call options
and 5 out-of-the money put options with the highest trading volume. We
also included pricing error as an additional stopping criterion. More specif-
ically, we added the condition that change in pricing error should exceed
machine precision and that the pricing error should be strictly decreasing
with each iteration.

Using this market data, we find signs of apparent non-convexity of the least
squares problem to be prevalent when calibrating the 3/2 model. This is
in contrast to our tests on simulated data. Another issue is that for many
of the trading days, the calibration tends to return implausible parameter
estimates when unconstrained. In the case of box constraints, the solu-

13. In the event that less than ten liquid options were present for a given target maturity for a
given trading day, we picked the closest maturity instead which fulfilled the liquid option
criteria. In no instance was there a trading day in which we did not have exactly ten
maturities, with ten strikes per maturity.
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tion to (3.4) generally tended to be on one or more of the boundaries. To
illustrate this, we solve (3.4) using three different starting points, each of
which is close to a different boundary corner. As can be seen in Figure
3.1, the parameter estimates returned by the optimization routine for the
different starting points differ greatly, implying that the objective function
either contains strict local minima, or is so flat that the optimization fails to
find the global optimum due to insufficient precision.

The reason we observe this behavior is due to the interaction between the
model and the data. The calibration of option pricing models in the risk
neutral world for indices like the S&P500 is dominated by close-to-the-money
plain European options because they are the most liquid financial deriva-
tives available. The problem is that the prices of these particular options
are less sensitive to changes in the parameters of stochastic volatility mod-
els than, say, path-dependent options14. This moderate sensitivity leads
to an ill-conditioned Hessian of the least squares objective function, which
poses numerical problems for a second order gradient-based minimization
procedure like the Levenberg-Marquardt method. A consequence of an ill-
conditioned Hessian is that noise in the data (see section 3.3 for a discussion
on noise in option price data) can lead to outsized effects on the calibration
results.

To address this problem, we calibrated the regularized version of the objec-
tive function, i.e., (3.16), using the penalty function proposed in section 3.3.
As previously mentioned, the regularization parameter χ can be thought to
represent how strongly the user of the pricing model believes in the his-
torical estimate, as well as the user’s preferences over model risk. In other
words, this value cannot be derived objectively a priori. Instead, the value
ultimately depends on the real world context in which it is being used.

For illustrative purposes, however, we describe the approach given in Cont
and Tankov [2004] which builds on Morozov’s discrepancy principle (Moro-
zov [1966]) to calculate χ. It requires that we determine the intrinsic error
ε0 in the data we have. In our case that means the lower bound on the
quadratic calibration error. An obvious source of intrinsic error in the option
price data is the bid-ask spread.

14. While more exotic options would potentially allow for a more numerically stable least
squares calibration procedure, such options are generally traded over the counter in the
market which makes them too illiquid to yield reliable parameter estimates. Indeed, the
main reason we are interested in stochastic volatility models such as the 3/2 model is that
they allow us to derive the prices of complex instruments such as path-dependent options
in a way that is empirically consistent (by virtue of the model calibration) with the prices of
exchange traded options (such as plain European options) that are liquid enough to give an
accurate representation of the market pricing measure.
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Figure 3.1: Estimated parameter values obtained by solving (3.4) for S&P
500 option data for the first 44 trading days of 2017, using dif-
ferent starting points for the model parametersΘ= (κ,η, v,σ,ρ).
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Let

ε2
0 =

N∑
i=1

wi

(
πAsk

i −πBid
i

)2
,

where wi is defined as in (3.4). The basic intuition behind Morozov’s dis-
crepancy principle is that we expect that a successful least squares calibra-
tion of our model will yield an error

ε(χ)2 = min
Θ

{
I∑

i=1
wi fi (Θ)2 +χH(Θ− Θ̃)

}

that is not too far away from ε2
0. The problem then becomes that of solving

ε(χ) = δε0 for χ, where δ is some number larger than 1.

This equation can only be solved through iterative root methods. Each iter-
ation requires solving (3.16), making this a rather expensive operation. For
this reason we only solve this equation for the first trading day, and then use
the resulting χ∗ for the regularized calibration of the remaining days. We
find that this generates very stable parameter estimates across trading days,
while the calibration error remains close to the error of the non-regularized
calibration for most of the trading days. In addition, restarting the cali-
bration from different initial guesses for each trading day reveals that the
regularization eliminates any sign of non-convexity.

We performed the initial historical estimation using the history of daily clos-
ing prices of the S&P500 index from the 2nd of January 2014 to the 2nd of
January 2017 and the VIX from that same period. For the MCMC estimation
we used the following parameter priors:

ψ∼ N

(
0,
Ω

2

)
, Ω∼ IG

(
2,

1

200

)
, κ∼ N (0,1), η∼ N (0,1),

where the distributions for κ and η were truncated at zero (making the pos-
teriors also truncated at zero)15. These priors derive from those used in Li
et al. [2006] and Eraker et al. [2003] for the estimation of the Heston model.
The number of samples drawn was 20000, with a burn-in of 5000 iterations,
and the total estimation procedure took roughly 18.3 seconds.

For each successive trading day for which we calibrated the 3/2 model we
updated the historical estimates by the change in price and VIX value re-
alized on that same day, using 2000 iterations and no burn-in, since the
previous estimate acts as an informative prior, as explained in section 3.3.
The updating estimation took roughly 1.5 seconds on average.

15. These are uninformative priors and are completely dominated by the likelihood function
due to the size of our data sample. As we verified numerically, changing the parameters of
the prior distributions appeared to have no discernible effect on the historical estimates.
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The resulting historical estimates, Θ̃ and the corresponding covariance ma-
trix Q for those estimates are given respectively by

Θ̃≡


κ

η

σ

ρ

=


22.46

0.4947
22.72

−0.9085

 ,

and

Q =


2.702 −0.007951 0.02372 −0.0002194

−0.007951 0.0001007 −0.0003903 0.000004462
0.02372 −0.0003903 0.3577 −0.003051

−0.0002194 0.000004462 −0.003051 0.00002612

 .

We used the bisection root finding method for calculating χ∗, with the bi-
section terminating once a search interval of length 0.0001 was reached. We
set the initial interval forχ as [0,5], and the calibration weight, wi , for option
i to the reciprocal of its bid-ask spread, i.e.,

wi =
1

πAsk
i −πBid

i

,

for i = 1, . . . , I . The corresponding calibration results are shown in Figures
3.2 and 3.3.

The results in Figure 3.2 show that the parameter estimates obtained from
the regularized calibration are far more stable across trading days than the
estimates we obtain from the unregularized calibration. Furthermore, start-
ing the regularized calibration from the different initial points described in
the caption of Figure 3.1 all lead to the same solution, meaning that we could
not detect any non-convexity with the objective function of the regularized
calibration.

The results in Figure 3.3 show that the increased parameter stability is ac-
companied on average by a very modest decrease in the in-sample fit, as
measured by the normalized mean squared absolute price error as well as
the root mean squared implied volatility error. Overall, the trade-off be-
tween parameter stability and in-sample fit of the regularized version ap-
pears very favorable, making clear the usefulness of the regularization ap-
proach.
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Figure 3.2: Comparison of parameter stability for regularized (χ= 3.86) and
non-regularized calibration of the 3/2 model.
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Figure 3.3: Comparison of in-sample calibration error between regularized
(χ= 3.86) and non-regularized calibration of the 3/2 model.
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3.4.3 Calibration Of Multi-Factor Models

In this section, we show how the GMSC method for the 3/2 model can be
used when the model is coupled with other stochastic factors for which we
know the characteristic function in closed form. We begin by recalling a
well known fact from characteristic function pricing. For the purpose of
demonstration, consider the following general multi-factor log-price model,

d X t =
M∑

m=1
d Zt ,m , 0 ≤ t ≤ T, (3.20)

where Zt ,m is an adapted semimartingale characterized by the parameter
set Θ(m) such that for each m, the characteristic function for the density of
ZT,m is known in closed form and given by φm

(
Θ(m);u

)
. If the factors Zt ,m

and Zt ,m′ are stochastically independent for any m and m′ such that m 6= m′,
then we have that the characteristic function for XT is known in closed form
and is given by

φ (Θ;u) =
M∏

m=1
φm

(
Θ(m);u

)
, (3.21)

where Θ = [
Θ(1), . . . ,Θ(M)

]
. Calibrating (3.20) through least squares mini-

mization using gradient-based methods means calculating the equivalent
of

∇Θφ=
[
φ

φ1
∇Θ(1)φ1, . . . ,

φ

φM
∇Θ(M)φM

]
. (3.22)

Therefore, the gradient can be calculated separately for each factor while
minimizing the least squares objective function, which means that the com-
putational burden of the factors that correspond to a 3/2 volatility speci-
fication can be efficiently reduced using the results given in this chapter.
Furthermore, this can be done while simultaneously using efficient gradient
calculation techniques developed for other factors nested in the model. The
method given in Cui et al. [2017], for example, can be used here for any of
the M factors that correspond to the square root volatility specification of
the Heston model.

We conclude our discussion with a numerical study of the efficiency of the
gradient calculation methods in this chapter for a double 3/2 model (D32),

dSt =µSt d t +√
Vt ,1St dBt ,1 +

√
Vt ,2St dBt ,2,

dVt ,1 = κ1(η1Vt ,1 −V 2
t ,1)d t +σ1V 3/2

t ,1 dWt ,1,

dVt ,2 = κ2(η2Vt ,2 −V 2
t ,2)d t +σ2V 3/2

t ,2 dWt ,2,

(3.23)
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and a mixed Heston-3/2 model (MH32),

dSt =µSt d t +√
Vt ,1St dBt ,1 +

√
Vt ,2St dBt ,2,

dVt ,1 = κ1(η1Vt ,1 −V 2
t ,1)d t +σ1V 3/2

t ,1 dWt ,1,

dVt ,2 = κ2(η2 −Vt ,2)d t +σ2
√

Vt ,2dWt ,2,

(3.24)

where W1,W2,B1 and B2 are standard Brownian motions such that B1 and
W1 have instantaneous correlation ρ1, and B2 and W2 have instantaneous
correlation ρ2, with all other factor correlations equal to zero.

The setup of our numerical tests on D32 and MH32 is the same as for the
simulated gradient and calibration speed tests for the one factor 3/2 model
in section 3.4.1, with the exception that we focus solely on the SC method of
Kilin and the GMSC. In addition, the true values for κ2,η2, v2,σ2,ρ2 for the
square root volatility process in MH32 are chosen randomly from within the
box constraints given in Table 3.5.

min max

κ2 0.1 10.0
η2 0.01 0.90
v2 0.01 0.90
σ2 0.1 1.0
ρ2 -1.0 0.50

Table 3.5: Variable Constraints. These represent the intervals within which
we constrained the generation of random parameter values for
the square root volatility component of MH32. All other parame-
ter values were simulated using the box constraints given in Table
3.1.

The numerical results are given in Tables 3.6 and 3.7, for the gradient com-
putations and calibration tests, respectively.

For our tests on D32 we use the GMSC with the analytic gradient derived in
this chapter separately for each 3/2 factor. More specifically, we compute
(3.22) by applying Algorithm 2 separately to ∇Θ(1)φ1, and ∇Θ(2)φ2, where φ1

and φ2 are the characteristic functions for single factor 3/2 volatility models
withΘ(1) = [

κ1,η1, v1,σ1,ρ1
]

andΘ(2) = [
κ2,η2, v2,σ2,ρ2

]
, respectively.

For MH32 we denote with φ1 the characteristic function for the one factor
3/2 volatility model, and with φ2 the characteristic function for the one fac-
tor square root volatility model. We compute (3.22) by applying Algorithm 2
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to ∇Θ(1)φ1, and by applying the gradient computation formulas presented in
Cui et al. [2017] for the Heston model to ∇Θ(2)φ2. We refer to this combined
method as the mixed gradient-maturity-strike caching (MGMSC) method in
Tables 3.6 and 3.7.

SC D32 GMSC D32 SC MH32 MGMSC MH32

mean 1.231 0.08375 0.6502 0.04807
std 0.8012 0.03913 0.5824 0.02796
max 6.429 0.1799 4.313 0.1271
min 0.9140 0.0415 0.4040 0.01668

Table 3.6: Computational times in seconds for the analytic gradient com-
putations with the GMSC method for D32, and with the GMSC
coupled with the formula from Cui et al. [2017] (MGMSC) for
MH32. The computational times in seconds for the central finite
difference gradient approximation using SC are given as compar-
ison for both models.

SC D32 GMSC D32 SC MH32 MGMSC MH32

mean 701.2 58.18 95.67 8.302
std 665.0 47.85 79.15 6.224
max 2374 186.6 325.0 29.08
min 193.6 9.077 10.12 1.257

Table 3.7: Computational times in seconds for the calibration runs using
the analytic gradient with GMSC method for D32, and the GMSC
coupled with the formula from Cui et al. [2017] (MGMSC) for
MH32. The computational times in seconds for the calibration
runs using the central finite difference gradient approximation
and SC are given as comparison for both models.

As expected, the time it takes to compute the gradient for D32 is roughly
twice the time it takes for calculating the gradient for the single factor 3/2
model for both the SC and the GMSC methods. In contrast, the compu-
tational cost of the calibration procedure for the multifactor models is sig-
nificantly higher. This is to be expected as well, since the iteration count
of the Newton-based minimization procedure grows superlinearly with the
number of decision variables. This serves to highlight the necessity for nu-
merically efficient calibration techniques for multi-factor models.
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3.5 Conclusion

In this chapter we have derived the analytic gradient for the characteris-
tic function of the 3/2 model of stochastic volatility and devised an algo-
rithm that exploits its mathematical features to avoid redundant calcula-
tions when calibrating the 3/2 model to option data using the standard non-
linear least squares approach. We have shown how this can greatly speed up
the calibration process. In addition, we have proposed a form of regulariza-
tion for the calibration problem that uses MCMC estimation on historical
data to produce both a regularization point, as well as a damping matrix
which we use to produce a parsimonious L2 penalty function.

In our numerical experiments, we compared our calibration algorithm to
the FFT method of Carr and Madan, the COS method of Fang and Ooster-
lee, and the SC method of Kilin. We find that the method presented here
outperforms these by a factor of roughly 37, 12 and 11, respectively. For
researchers or practitioners looking to calibrate the 3/2 model, the method
presented here is, to our knowledge, the fastest way to do it so far presented
in the literature.

Our numerical experiments furthermore demonstrated that for the market
data we had at our disposal, the least squares calibration of the 3/2 model
leads to highly unstable parameter estimates, both with respect to the initial
point of the optimization procedure, as well as across trading days. The
regularization method proposed in this chapter was shown to be an effective
tool to deal with these issues, producing a very favorable ratio of parameter
estimation stability to in-sample fit.

One aspect of characteristic function pricing which we have not delved into
here is the issue of discontinuities due to branch cuts in the complex plane.
This problem has attracted considerable attention in the case of the Heston
model (see e.g. Cui et al. [2017]; del Baño et al. [2010]; Albrecher et al. [2007];
Jäckel and Kahl [2005]). However, it remains an open problem in the case of
the 3/2 model, and is of interest with respect to further study and refinement
of this model.
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Chapter 4

Non-Affine Stochastic Volatility
with Seasonal Trends

4.1 Introduction

Certain classes of commodity derivatives, such as futures written on agri-
cultural products and natural gas, are known to exhibit predictable cyclical
trends with respect to calendar time (Fama and French [1987], Choi and
Longstaff [1985], Sørensen [2002], Back et al. [2013]). This has motivated
researchers to consider modified option pricing models for pricing options
on futures contracts on those particular commodities that take into account
seasonal patterns. Seasonality in the price of the underlying should have
no effect on the option pricing dynamics under the risk neutral measure
by an argument of no-arbitrage, while seasonality in volatility needs to be
addressed. Indeed, in Figures 4.1 and 4.2 we see that the implied volatility
indexes for options on futures contracts for corn and wheat tend to demon-
strate seasonal highs and lows16.

In Koekebakker and Lien [2004] a jump-diffusion model is proposed, where
the volatility function for the diffusion term is deterministic but cyclical in
calendar time. In Richter and Sørensen [2002] a stochastic volatility model is
proposed that includes a convenience yield process and deterministic sea-
sonal effects. A model based on seasonally modified Ornstein-Uhlenbeck
processes is proposed in Back et al. [2013]. In Arismendi et al. [2016] a mod-
ified Heston model is proposed where the long run mean captures seasonal

16. Figure 4.1 shows daily closing spot values from the CBOE/CBOT Corn Volatility Index for the
period 1st of October 2011 to the 1st of June 2018, and Figure 4.2 shows the daily closing spot
values from the CBOE/CBOT Wheat Volatility Index for the period of 1st of September 2012
to the 1st of June 2018.
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Figure 4.1: Corn Implied Volatility Index.
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Figure 4.2: Wheat Implied Volatility Index.

variation of the volatility of the underlying, along with a MCMC-based es-
timation procedure for a robust calibration of the model. In Schneider and
Tavin [2015] a modification of the Heston model is proposed which accom-
modates both the Samuelson effect, as well as seasonal trends in volatility.

These models all share one commonality; they include purely affine volatil-
ity dynamics. In this chapter, however, we propose a new, non-affine stochas-
tic volatility model that takes seasonal effects into account. More specifi-
cally, we propose a generalization of the 3/2 stochastic volatility model which
includes an explicit seasonal volatility component, for which we derive the
characteristic function of the model density in closed form.

The rest of the chapter is as follows. In section 4.2 we present the new model
and its characteristic function. In section 4.3 we go through the model cal-
ibration methodology used in our numerical tests. And in section 4.4 we
present and discuss the results from our numerical tests on the proposed
model using market prices of options on corn and wheat futures.

66



Non-Affine Stochastic Volatility with Seasonal Trends

4.2 Non-Affine Dynamics With Seasonally Varying Vo-
latility Trend

Today, participation in commodity markets generally does not entail buying
and selling the commodities directly, but rather the futures contracts written
on those commodities. Consequently, option contracts in these markets are
generally written on the futures. We therefore treat the futures contracts as
the underlying assets in our study of option pricing for commodities, with
the aim of capturing their empirical features in our option pricing model.
With that in mind, the 3/2 model in its most basic form under the physical
(i.e., real world) measure for the price process of a futures contract is char-
acterized by

dFt (T ) =
√

Vt Ft (T )dBt ,

dVt = κ(ηVt −V 2
t )d t +σVt

3/2dWt ,
(4.1)

where Ft (T ) is the price of a futures contract with expiration date T at time
t , and B and W are standard Brownian motions with an instantaneous cor-
relation coefficient given by ρ, i.e., Cov(dBt ,dWt ) = ρd t .

We can see from the dynamics of the 3/2 model, however, that the model is
homogeneous with respect to calendar time. This is a clear disadvantage for
modeling assets like the futures market on corn which show clear seasonal
trends. This motivates us to consider an alternative specification, where the
dynamics include an explicit function of calendar time.

With that in mind, we turn to the main contribution of this chapter, which
is a 3/2 stochastic volatility model where the volatility trend incorporates
seasonal fluctuations. For this model we derive the characteristic function
in closed form. The dynamics of the model we propose are given by

dFt (T ) =
√

Vt Ft (T )dBt ,

dVt = κ
(
χ(t )Vt −V 2

t

)
d t +σVt

3/2dWt ,

χ(t ) = η+λ
∣∣∣∣1

2
− (t −τ−bt −τc)

∣∣∣∣ ,

(4.2)

where B and W are as in (4.1), τ is the calendar time at which the long
run volatility is at its highest, λ corresponds to the strength of the seasonal
effect, and b·c is the integer floor function, i.e., btc = max{m ∈Z |m ≤ t }. The
corresponding PDE implied by the Feynman-Kac theorem is given by

∂J

∂t
+V F 2

2

∂2 J

∂F 2 +σρFV 2 ∂2 J

∂V ∂F
+σ

2V 3

2

∂2 J

∂V 2 +κV (χ(t )−V )
∂J

∂V
−r J = 0. (4.3)
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Here, the constant long-run volatility parameter in (4.1) is replaced by a
periodic triangular-shaped function χ(t ). This function captures the sea-
sonally deterministic trend that we observe in the data for commodities
like corn and wheat, where the implied volatility of options on futures with
maturities that coincide with the harvest season tends to be higher than
that of options that expire immediately before it. Figures 4.3 and 4.4 show
the triangular pattern for the mean seasonal volatility parameter estimates
for options on corn and wheat futures, respectively, which are presented in
section 4.4.4.
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Figure 4.3: Seasonal volatility component χ(t ) with the mean parameter
estimates for options on corn futures as presented in Table 4.2
(η= 0.182, λ= 6.179 and τ= 0.189).
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Figure 4.4: Seasonal volatility component χ(t ) with the mean parameter
estimates for options on wheat futures as presented in Table 4.3
(η= 0.381, λ= 4.441 and τ= 0.196).
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As is the case with the standard 3/2 model, the probability density of FT

in (4.2) is not known explicitly in closed form. On the other hand, we can
derive the characteristic function17 φ(Θ,T ;u) ≡ EQ [

e i uXT
]

of XT ≡ ln(FT ).
The formula for φ(Θ,T ;u) is given in Theorem 4.1.

Theorem 4.1. Let Ft for 0 ≤ t ≤ T be defined as in (4.2), and let x ≡ ln(F0).
Then the characteristic function of XT is given by

φ(Θ,T ;u) = e i ux Γ(β−α)

Γ(β)
ζαM

(
α;β;−ζ) , (4.4)

where M(α;β,−ζ) is the confluent hypergeometric function of the first kind,

M(α;β;−ζ) ≡
∞∑

n=0

(α)n

(β)n

(−ζ)n

n!
, (4.5)

with

(x)n ≡
{∏n−1

i=0 (x + i ) if n > 0,

1 if n = 0

and α,β, and ζ are given by

ζ≡ 2

vσ2Ω
,

α≡−
(

1

2
− p

σ2

)
+

√(
1

2
− p

σ2

)2

+ 2q

σ2 ,

β≡ 2
[
α+1− p

σ2

]
,

p ≡−κ+ iσρu,

q ≡ i u

2
+ u2

2
,

(4.6)

17. Without loss of generality, we take the initial time to be 0 throughout the chapter to simplify
notation, and take the expiration date of the underlying futures contract to be given as T ,
writing Ft instead of Ft (T ).
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where

Ω≡
M∑

m=−1/2
eξm

√
− π

2γmκλ

(
erf

√
−γmκλ

2

(
m −bmc+γm

η

λ

)
−erf

√
−γmκλ

2

(
m −bmc− 1

2
+γm

η

λ

))

+eξM

√
−π

2γMκλ

(
erf

√
−γMκλ

2

(
T −τ−bMc− 1

2
+γM

η

λ

)
−erf

√
−γMκλ

2

(
M −bMc− 1

2
+γM

η

λ

))

+e
ξ− 1

2

√ −π
2κλ

erf

√
−κλ

2

(η
λ
−2

)−erf

√
−κλ

2

(
−τ− 3

2
+ η

λ

) ,

ξm ≡
(
τ− 1

2

)(
κη+ 1

2
λ

∣∣∣∣τ− 1

2

∣∣∣∣)+(
m + 1

2

)(
η+ κλ

4

)
−κη (τ+m)

− γmκλ

2
(τ+m)2 −

(
τ+bmc+ 1

2

)
(τ+m)

− γmκλ

2

(
τ+bmc+ 1

2
−γm

η

λ

)2

,

erf(x) ≡
∫ x

0
e−t 2

d t ,

M ≡ b2T −2τc
2

,

γm ≡ (−1)2m+1.
(4.7)

Proof. From Carr and Sun [2007] we know that the characteristic function
for the stochastic process defined by

d X t =µX t d t +
√

Vt X t dBt ,

dVt = κ
(
χ(t )Vt −V 2

t

)
d t +σVt

3/2dWt ,
(4.8)

where χ(t ) is an arbitrary deterministic function of time, then the character-
istic function of ln(XT ) is given by

φ(Θ,T ;u) = e i ux Γ(β−α)

Γ(β)
ζαM

(
α;β;−ζ) , (4.9)
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where

ζ≡ v
2

vσ2Ω(t )
,

Ω(t ) ≡
∫ T

0
e

∫ u
0 κχ(s)d sdu,

(4.10)

and where M(α;β,−ζ),α,and β are defined as in (4.6). Setting

χ(t ) = η+λ
∣∣∣∣1

2
− (t −τ−bt −τc)

∣∣∣∣
we have that∫ u

0
κχ(s)d s =

∫ τ

0
κχ(s)d s +

∫ m

τ
κχ(s)d s +

∫ u

m
κχ(s)d s

=
(
τ− 1

2

)(
κη+ κλ

2

∣∣∣∣τ− 1

2

∣∣∣∣)+(
m + 1

2

)(
κη+ κλ

4

)
+κηu + (−1)2m+1κλ

(
u2

2
−

(
τ+n + 1

2

)
u

)
−

(
κη(τ+m)+ (−1)2m+1κλ

(
(τ+m)2

2
−

(
τ+n + 1

2

)
(τ+m)

))
,

where m = 1
2b2u −2τc, and n = bu −τc. Writing

g (u) =
∫ u

0
κχ(s)d s,

we want to find

A1 =
∫ τ

0
eg (u)du, A2 =

∫ M

τ
eg (u)du, and A3 =

∫ T

M
eg (u)du.

Let γ(m) = (−1)2m+1 and

ξ(m) =
(
τ− 1

2

)(
κη+ 1

2
κλ

∣∣∣∣τ− 1

2

∣∣∣∣)+(
m + 1

2

)(
κη+ κλ

4

)
−κη(τ+m)

−γ(m)κλ

(
1

2
(τ+m)2 −

(
τ+n + 1

2

)
(τ+m)

)
− 1

2
γ(m)κλ

(
τ+n + 1

2
−γ(m)

η

λ

)2

.

Then we have that for 0 ≤ u ≤ τ we can write

g (u) = ξ
(
−1

2

)
+ 1

2
γ(m)κλ

(
u −τ− 3

2
+γ(m)

η

λ

)2

, (4.11)
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which means that we can write

A1 = eξ
(− 1

2

)√
− π

2κλ

erf

√
−κλ

2

( η
2λ

−3
)−erf

√
−κλ

2

( η
2λ

−τ−3
) .

Similarly, we see that

A2 =
M∑

m=− 1
2

∫ m+ 1
2

m
eξ(m)e

1
2γ(m)κλ

(
u−τ−bmc− 1

2+γ(m) η
λ

)2

du

=
M∑

m=− 1
2

{
eξ(m)

√
− π

2κλ

[
erf

(√
−γ(m)κλ

2

(
m −bmc+γ(m)

η

λ

))

−erf

(√
−γ(m)κλ

2

(
m −bmc− 1

2
+γ(m)

η

λ

))]}
.

And, finally, we have that

A3 =eξ(M)

√
− π

2γ(M)κλ

{
erf

(√
−γ(M)κλ

2

(
T −τ−bMc− 1

2
+γ(M)

η

2λ

))

−erf

(√
−γ(M)κλ

2

(
M −bMc− 1

2
+γ(M)

η

2λ

))}
.

Although the well-known Gaussian error function, erf(x), is given as an in-
tegral it is usually computed using analytic approximations that yield an
arbitrary level of accuracy, see e.g. Abramowitz and Stegun [1964].

4.3 A Fast and Robust Calibration Algorithm

We now turn our attention to the least squares calibration of the seasonal
3/2 model. We assume throughout this section that the calibration instru-
ments consist of plain European put and call options18. Denoting with FT

the price of the underlying future at time T as in the preceding section we
will from now on refer to T as the maturity of the option derived from F ,
with the expiry of the underlying future itself being immaterial apart from
the fact that it is assumed to exceed T . With that in mind we recall that the

18. In section 4.4 we relax this assumption.
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price πcall of a European call option and the price πput of a European put
option at time 0 with strike price K and maturity T are respectively given by

πcall = e−r T EQ
[|FT −K |+]

,

πput = e−r T EQ
[|K −FT |+

]
,

where the superscriptQ refers to the fact that the expectation is taken under
the risk-neutral measure, rather than the objective measure.

Given a set of options, i = 1, . . . , I , with observed market prices we char-
acterize option i as the pair (F,K ,T )i , where F is the underlying future, K
is the strike price, and T is the option maturity. We observe the market
price πMarket

i for each of these options at time t = 0, and wish to infer the
parameters of our pricing model using these observed market prices. The
least squares calibration objective is given by

min
Θ

L(Θ), (4.12)

where

L (Θ) =
I∑

i=1
wi fi (Θ)2, (4.13)

and
fi (Θ) ≡π(Θ; (F,K ,T )i )−πMarket

i .

Here, wi is a weight which determines the influence of option price i on
the calibration, and π(Θ; (K ,T )i ) is the price of option i given by the model
using the parameter values Θ. In the case of the homogeneous 3/2 model
defined by (4.1) we take the parameter set to be given by Θ = {

κ,η, v,σ,ρ
}
.

Note that while the spot volatility v =Vt is strictly speaking not a parameter
of the model, it is unobserved and therefore included as a decision variable
when solving (4.12). In the case of the seasonal 3/2 model defined by (4.2),
we take the parameter set to be given byΘ= {

κ,η, v,σ,ρ,λ,τ
}
.

As explained in chapter 3, computing the solution to (4.12) requires repeated
Fourier inversions of the characteristic function of the model. For the cal-
ibration procedure of the seasonal 3/2 stochastic model we use the simple
strike-caching method described in section 3.2, where the option price is
given by (3.8) and the inversion is done through the caching algorithm of
Kilin [2011] which is detailed in subsection 3.2.2.

In section 3.4.2 we showed that the homogeneous 3/2 stochastic volatility
model yields a least squares objective function that exhibits sign of non-
convexity. A more general version of the model, such as the one introduced
here, can therefore be expected to suffer from the same problem.
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To address this issue, we augment the gradient-based optimization routine
with a metaheuristic search algorithm referred to as Differential Evolution
(DE). It initializes by randomly generating a set

{
Θ(1), . . . ,Θ(Nc )

}
of candidate

solutions to the optimization problem. Then, for every candidate solution
Θ(c), it randomly selects three other distinct candidates Θ( j ),Θ(k) and Θ(m)

and constructs from these a fourth candidateΘ(n) =Θ( j ) +F × (Θ(k) −Θ(m)),
where F is a weight parameter.

Next, an element-wise stochastic crossover takes place between Θ(c) and
Θ(n). What this means is that for every parameter value Θ(c)

j in Θ(c) a value

ac
j is randomly generated by sampling the uniform distribution U [0,1] and

if this value exceeds a predetermined threshold value C R (referred to as the
crossover probability) thenΘ(c)

j is replaced by the corresponding parameter

valueΘ(n)
j inΘ(n). The new candidate solution Θ̂

(c)
constructed by perform-

ing this crossover for each of the parameter values in Θ(c) is then compared
to the original solutionΘ(c), and if it results in a smaller error it replaces the
original solution. Otherwise, Θ(c) is retained. The current iteration ends
once this procedure has been carried out for all the candidate solutions
present at the start of the iteration, and the next iteration begins, repeating
the mixture-crossover process for each candidate solution. The algorithm
terminates either when a solution has been found that yields a sufficiently
low calibration error, or it has exhausted its allocated computational bud-
get. Pseudo-code for this procedure is given in Algorithm 4, while a more
comprehensive description of DE can be found in Price and Storn [1997].

In our implementation, the best solution generated by the DE algorithm at
its termination is subsequently improved by a Quasi-Newton method. As is
typical for global optimization algorithms, the introduction of the DE algo-
rithm in the context of solving (4.12) requires a considerably higher number
of price computations which includes the rather costly Fourier inversion
of the characteristic function of the seasonal 3/2 model. To prevent the
calibration procedure becoming too slow, we take advantage of the fact that
the Fourier inversion can be computed numerically in parallel, which ex-
tends naturally to the individual price computations embedded in the least
squares calibration objective function.

The approach we take here mixes the efficient characteristic function com-
putations using the strike caching method described above with the par-
allelization of the computation of both (4.13) and (3.14) to quickly evalu-
ate the least squares calibration objective function. The computing plat-
form we chose for the parallel computation task is CUDA. Two hardware-
related issues guide the implementation19. One of these is the performance

19. An in-depth discussion of the technical details of GPU programming and the CUDA API is
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bottleneck of reading from and writing to global memory. Efficiently seg-
menting the execution of the algorithm between the host system and the
GPU is therefore important for the overall performance. Another bottleneck
is encountered when the results from different threads need to be repeat-
edly combined since this requires extensive thread synchronization (i.e., for
threads to wait on each other) which slows down the overall execution. Con-
sequently, purely parallelizable code should be executed without interrup-
tion on the GPU device.

In summary, we implemented the following method. To start with, the spec-
ifications of the benchmark options (i.e., the strike price, maturity, and ob-
served market price for each benchmark option) along with the price of the

underlying asset and an initial set of model parameter values
{
Θ(c)

}Nc

c=1 are
loaded into global memory20. Next, the CUDA kernel is launched with Nc

threadblocks, each with Nb threads. The implementation assumes that Nb =
J×S, where J is the (fixed) number of integration nodes per option maturity,
and S is the number of maturities present among the benchmark options.
Thread p in threadblock c first computes φ̂p = φ

(
Θ(c),Tp ′ ;up

)
where p ′ =

b p
J c+1 before computing

(
Re(φ̂p )+ Im(φ̂p )

up

)
1+u2

p
,

(
Im(φ̂p )− Re(φ̂p )

up

)
1+u2

p

 , (4.14)

which it stores in the shared memory of p’s threadblock. This is followed
by thread synchronization, after which thread p = 1, . . . , I is assigned the
task of fetching (4.14) from shared memory and the specifications of op-
tion contract number p from global memory to compute (3.8), and writ-
ing the weighted least squares error wp rp (Θ)2 again to an array in shared
memory21. Finally, the first thread in the block fetches and sums together
the elements w1r1(Θ)2, . . . , w I fi (Θ)2 computed previously by the selected I
threads, and writes the result to global memory.

Assuming the DE routine is executed with Nc candidate solutions, a single
call to the CUDA pricing kernel described above launches Nc , each with
Nb threads. Once the DE routine has terminated, the gradient-based local
search takes over using the output of the DE routine as the initial guess.

beyond the scope of this text, but a comprehensive introduction to these can be found at
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

20. More specifically, these are loaded into the constant segment of global memory in our
implementation.

21. Note that while we start the indexes in Algorithm 3 at 1 to maintain consistency in our
presentation, both the block index and the thread index in the CUDA API start at 0, which is
the arrangement we use in the actual software implementation of the kernel.
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Assuming that a central finite difference approximation is used (as we did
in our numerical experiments) to approximate the gradient, a model with
Np parameters will require 2∗Np evaluations of the objective function for
a single evaluation of the gradient. In addition, an extra evaluation of the
objective function is required for keeping track of the progress of the routine.
So, a single iteration of the local search calls the CUDA pricing kernel once,
launching a total of 2Np +1 threadblocks, each with Nb threads.

Algorithm 3 CUDA Pricing Kernel

1: procedure PARALLELPRICINGKERNEL({Θc }Nc
c=1 , {(F,K ,T )i }I

i=1)
2: %Shared memory arrays are prefixed with s_m%

3: %NodeIndexer(p) calculates (or fetches) element p from

U%

4: %NodeWeighting(p) calculates (or fetches) element p

from B%

5: p ← threadID

6: c ← blockID

7: up ← NodeIndexer(p)

8: s_m1[p] ← up

9: s_m2[p] ← NodeWeighting(p)

10: p ′ ←b p
J c+1

11: φ̂p ←φ
(
Θ(c),Tp ′ ;up

)
12: s_m3[p] ←

(
Re(φ̂p )+ Im(φ̂p )

up

)
1+u2

p

13: s_m4[p] ←
(
Im(φ̂p )− Re(φ̂p )

up

)
1+u2

p

14: -Thread Synchronization-

15: if p < I then
16: Compute (3.14) using stored values in s_m1, s_m2,

s_m3 and s_m4

17: Compute π
(
Θ; (K ,T )p

)
using (3.8)

18: s_m5[p] ← wp rp (Θ)2

19: end if
20: -Thread Synchronization-

21: if p = 1 then
22: g_m[c] ← Sum(s_m5)

23: end if
24: end procedure
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Algorithm 4 Parallelized Differential Evolution

1: procedure DE({(F,K ,T )i }I
i=1)

2: Randomly Generate
{
Θ(1), . . . ,Θ(NC )

}
3: Ξ← {

Θ(1), . . . ,Θ(NC )
}

4: LP ← ParallelPricingKernel<<<Nc , Nb>>>
(
Ξ, {(F,K ,T )i }I

i=1

)
5: for g = 1, . . . ,G do
6: for c = 1, . . . , NC do
7: Randomly choose j ,k,m ∈ {1, . . . , NA} s.t. j ,k,m, i are

all distinct

8: Θ(n) ←Θ( j ) +F × (Θ(k) −Θ(m))
9: for j = 1, . . . , J do

10: Generate ai
j ∼U [0,1]

11: if ai
j <C R then

12: Θ̂(c)
j ←Θ(n)

j
13: else
14: Θ̂(c)

j ←Θ(c)
j

15: end if
16: end for
17: Ξ̂c ← Θ̂

(c)

18: end for
19: LN ←ParallelPricingKernel<<<Nc , Nb>>>

(
Ξ̂, {(F,K ,T )i }I

i=1

)
20: for c = 1, . . . , NC do
21: if LN[c] < LP[c] then
22: LC[c] ← LN[c]

23: Ξc ← Ξ̂c

24: end if
25: end for
26: end for
27: returnΘ(c) ∈Ξ | L

(
Θ(c)

)≤ L
(
Θ(c ′)

)
,c ′ = 1, . . . , NC

28: end procedure
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4.4 Numerical Data And Results

We now give the results from our numerical tests on the model proposed
in section 4.2, along with a detailed description of the data used and the
implementation details of the computational method described in section
4.3.

4.4.1 Technical Implementation Details

The code for the numerical tests was written in C++ in Visual Studio 2017 for
execution on the host system and CUDA-C for execution on the GPU with
version 9 of CUDA. The machine used was a 64 bit Lenovo ThinkPad T470p
with a i7-780HQ dual core at 2.9GHz and 16.0GB RAM. The graphics card
used was NVIDIA GeForce 940MX.

For obtaining an approximate global minimum of the least squares objec-
tive function (4.13) we used the differential evolution procedure given in
Algorithm 4 with 50 candidate solutions that were initially randomly gener-
ated and a termination criterion of 100 iterations. The crossover probability
was set at 0.9 and the weight parameter at 0.8.

For refining the best solution from the DE procedure we used box-constrained
Levenberg-Marquardt routine from the ALGLIB library with a central finite
difference approximation to the gradient. The gradient tolerance was set at
2/3 of the 64 bit machine precision. For the Fourier inversion, we used the
Gauss-Legendre quadrature with 128 nodes.

The Differential Evolution routine and the Levenberg-Marquardt routine
shared the same parameter search constraints, which are given in Table 4.1.

min max

κ 2.0 50.0
η 0.01 0.90
v 0.01 0.90
σ 5.0 30.0
ρ -0.99 0.99
λ 0.0 20.0
τ 0.0 1.0

Table 4.1: Variable Constraints. These represent the intervals within which
we constrained the optimization procedure for each parameter.
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As of yet, the library of mathematical functions in CUDA is rather limited.
We therefore had to implement complex valued versions of the Gaussian er-
ror function, the Gamma function and the confluent hypergeometric func-
tion explicitly in order to be able to compute the characteristic function of
the seasonal 3/2 model on the GPU. For the implementation of the Gaussian
error function we ported code from the Faddeeva module made available by
the AB-Initio physics research group at MIT22, and for the implementation
of the gamma function and confluent hypergeometric function we used the
respective formulas given in Abramowitz and Stegun [1964].

4.4.2 Data

We compared the empirical fit of the homogeneous 3/2 model defined by
(4.1) and the seasonal 3/2 model defined by (4.2) to market prices using
weekly (first trading day of the week) market prices of options written on
corn and wheat futures for the period from 01/04/2016 to 10/16/2017. From
this data set, we retained only out-of-the-money (OTM) call and put options
for which there was strictly positive open interest, and the settlement price
was at least 0.2.

Furthermore, we grouped the option contracts from each trading day ac-
cording to the expiration date of the underlying futures contract, and cate-
gorized these as ’short’ (with futures expiration date less than 100 days from
trading day), ’medium’ (with futures expiration date between 100 and 200
days from trading day), and ’long’ (with futures expiration date between 200
and 365 days from trading day).

Within each of these expiration categories for a given trading day we chose
the option maturities for which at least 5 OTM calls and 5 OTM puts satisfied
the liquidity criteria listed above. Trading days that did not contain enough
liquid option such that the aforementioned procedure yielded at least one
representative maturity for each expiration category were dropped from the
sample. This left us with 91 trading days for the corn futures options and 94
trading days for the wheat futures options. Out of these, we chose the 5 puts
and 5 calls which were closest to the money for the shortest maturity, and
the 5 puts and 5 calls for each of the longer maturities were selected (to the
extent possible given the occasionally limited number of liquid options) in
such a way that the aggregate price was roughly the same across the different
maturities. This was done in an effort to prevent the more expensive long
dated options from disproportionately influencing the least squares objec-
tive function.

22. See http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
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4.4.3 European Option Price Approximation

While the pricing formulas given in the preceding section assume the op-
tions are European, the options in our market data are American options.
For the call options these option types coincide in price, whereas for the put
options they differ with non-zero interest rates. To address this discrepancy,
we follow the work of Trolle and Schwartz [2009] and Arismendi et al. [2016]
and use the inverted formula of Barone-Adesi-Whaley (BAW) (Barone-Adesi
and Whaley [1987]) to compute the prices of the corresponding European
put options implied by the American put options in our data set.

We begin by recalling23 the pricing PDE of the Black-76 model (Black [1976]),

∂J

∂t
+ 1

2
σ2S2 ∂

2 J

∂S2 − r J = 0. (4.15)

Now we define the following:

γ= 1

2

(
1−

√
1+ 8r(

1−e−r T
)
σ2

)
,

A =−S∗

γ

(
1−e−r T N[−d1(S∗)]

)
,

d1(S) = ln(S/K )+σ2T /2

σ
p

T
.

(4.16)

Then the BAW approximation for the American put option price πAP given
the corresponding European put option price πEP is given by

πAP (S0,T,K ) =
{
πEP (S0,T,K )+ A

(
S0
S∗

)γ
S0 > S∗,

K −S0 S0 ≤ S∗.
(4.17)

The variable S∗ is the stock price below which the option should be ex-
ercised. A closed form solution for S∗ is not available, however, we can
compute it by numerically solving

K −S∗ =πEP (S∗,T,K )− (
1−e−r T N[−d1(S∗)]

) S∗

γ
(4.18)

23. The BAW approximation is derived for the Black-Scholes model, and since we are working
with futures as the underlying asset with zero cost-of-carry, the Black-Scholes pricing PDE
is simplified to that of the Black-76 model. Note that the application of this formula to the
prices in our data sample does not enforce the assumptions of the Black-Scholes model since
the implied volatility is not constrained to be constant across the different option prices we
are computing.
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using a root search algorithm. Once we have computed S∗ we can then
derive πEP (S0,T,K ) from (4.17) since we know πAP from the data.

We note that while the use of the BAW formula for retrieving the price of a
European option from a corresponding American option is used throughout
the previously mentioned literature on futures options pricing, other meth-
ods could be used as well. In particular, lattice methods, when applicable,
are known to be exceptionally fast for computing the prices of American
options and could be implemented in a similar fashion here to obtain πEP .
See e.g. Burkovska et al. [2018] for an exploration of this methodology.

4.4.4 Results

For each trading day, both the homogeneous 3/2 model and the seasonal 3/2
model were calibrated against the set of benchmark options obtained from
the data filtering procedure described above, and the root mean squared
price (RMSP) error and the root mean squared implied volatility (RMSIV) er-
ror recorded. The summary statistics for these two error measurements are
given in Tables 4.4 and 4.5 for the corn options and wheat options, respec-
tively. Furthermore, the estimated parameter values obtained from each
calibration run were recorded. The summary statistics for these values are
given in Tables 4.2 and 4.3 for the corn options and wheat options, respec-
tively.

As can be seen from Tables 4.4 and 4.5, the seasonal 3/2 model outper-
forms the homogeneous 3/2 model across all maturity groups and mon-
eyness categories both in terms of both error measures for both the corn
futures options and the wheat futures options. For the corn futures options
the seasonal 3/2 model gives roughly 32% lower RMSP error and 31% RMSIV
error compared to the homogeneous 3/2 model. And for the wheat futures
options the RMSP and RMSIV errors are approximately 62% and 35% lower,
respectively, for the seasonal 3/2 model.
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Model Statistic κ η v0 σ ρ λ τ

H32 mean 6.180 0.633 0.060 11.399 0.467 * *
std 6.489 0.325 0.047 5.335 0.091 * *
max 50.000 0.891 0.314 30.000 0.816 * *
min 2.000 0.010 0.016 5.000 0.248 * *

S32 mean 15.811 0.182 0.105 14.965 0.587 6.179 0.189
std 18.216 0.303 0.161 7.297 0.143 7.483 0.083
max 50.000 0.773 0.824 29.638 0.899 20.000 0.388
min 2.000 0.001 0.009 5.000 0.357 0.000 0.000

Table 4.2: Parameter summary for the calibration of the homogeneous 3/2
model (H32) and the seasonal 3/2 model (S32) using options on
corn futures.

Model Statistic κ η v0 σ ρ λ τ

H32 mean 7.888 0.656 0.070 11.154 0.477 * *
std 12.695 0.280 0.064 3.079 0.055 * *
max 50.000 0.900 0.416 19.476 0.581 * *
min 2.000 0.062 0.023 8.200 0.385 * *

S32 mean 9.490 0.381 0.089 15.708 0.544 4.441 0.196
std 10.698 0.399 0.053 3.243 0.077 4.295 0.118
max 50.000 0.900 0.283 23.462 0.728 16.316 0.491
min 2.119 0.001 0.024 9.807 0.330 0.000 0.000

Table 4.3: Parameter summary for the calibration of the homogeneous 3/2
model (H32) and the seasonal 3/2 model (S32) using options on
wheat futures.
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Model Strike Short Medium Long All
H32 K<F 0.688, 0.022 0.730, 0.019 0.697, 0.011 0.707, 0.016

K>F 0.861, 0.032 0.648, 0.015 0.593, 0.011 0.655, 0.017
All 0.779, 0.028 0.690, 0.017 0.647, 0.011 0.682, 0.016

S32 K<F 0.220, 0.010 0.395, 0.011 0.440, 0.007 0.401, 0.009
K>F 0.273, 0.014 0.462, 0.012 0.588, 0.011 0.514, 0.012
All 0.247, 0.012 0.430, 0.012 0.519, 0.009 0.461, 0.011

Table 4.4: Pricing errors for the homogeneous 3/2 model (H32) and the sea-
sonal 3/2 model (S32) for options on corn futures. The first entry
in each column is the root mean squared price error, while the
second entry in each column is the root mean squared implied
volatility error.

Model Strike Short Medium Long All
H32 K<F 0.771, 0.019 0.602, 0.014 0.792, 0.009 0.725, 0.013

K>F 0.967, 0.025 0.654, 0.013 0.949, 0.010 0.857, 0.014
All 0.875, 0.023 0.629, 0.013 0.874, 0.009 0.794, 0.014

S32 K<F 0.234, 0.011 0.275, 0.008 0.361, 0.005 0.313, 0.007
K>F 0.215, 0.020 0.261, 0.006 0.315, 0.005 0.281, 0.010
All 0.225, 0.016 0.268, 0.007 0.339, 0.005 0.298, 0.009

Table 4.5: Pricing errors for the homogeneous 3/2 model (H32) and the sea-
sonal 3/2 model (S32) for options on wheat futures. The first entry
in each column is the root mean squared price error, while the
second entry in each column is the root mean squared implied
volatility error.
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4.5 Conclusion

In this chapter we proposed a modified 3/2 stochastic volatility model for
assets that exhibit seasonal trends in volatility, such as futures on corn and
wheat. To our knowledge, this is the first non-affine stochastic volatility
model proposed in the literature that incorporates deterministic seasonal
trends in the volatility process. We also derived the characteristic function
for this model in closed form, which can be used to greatly reduce the com-
putational load of using the model for pricing purposes.

We studied the in-sample empirical fit of this new model, as well as the
original 3/2 model, to market data consisting of options written on corn
and wheat futures. We implemented a robust minimization procedure for
calibrating the models that mixed heuristic global minimum search with a
Quasi-Newton method. The most computationally demanding aspects of
the code were written in CUDA-C++ and executed on a GPU to prevent the
procedure from becoming infeasibly slow.

Our tests revealed that the seasonal 3/2 model significantly outperformed
the homogeneous 3/2 model across all strikes and maturity groups, both in
terms of root-mean-squared error as well as mean implied volatility error.

This is a promising result, particularly since the new model contains no
additional stochastic factors beyond the original 3/2 model, which means
that no additional computational cost is incurred for derivative pricing that
requires more general numerical approaches such as finite difference meth-
ods or Monte Carlo simulations. The characteristic function we derived
for the model is mathematically tractable, and by using standard analytic
approximations to the Gaussian error function that is embedded in it we
avoid any numerical integration beyond the Fourier inversion itself.
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Chapter 5

A Generalized Weighted Monte
Carlo Calibration Method

5.1 Introduction

So far, we have focused on the calibration of the 3/2 stochastic volatility
model and its more general seasonal modification primarily in terms of the
characteristic function. However, not all models come with a known charac-
teristic function in closed form, which means we need to resort to different
computational methods for the calibration process.

If the model prices can be computed using a Monte Carlo simulation the
weighted Monte Carlo (WMC) method by Avellaneda et al. [2001] gives us
a way to calibrate the model in such a way that we obtain from that model
a set of weighted paths which can reproduce exactly (or almost exactly as
in a least squares approach) the prices of the derivatives used in the model
calibration.

More specifically, the method consists of simulating a set of price paths
using the no-arbitrage model that is to be calibrated, and calculating a new
(risk neutral) probability measure for this set of paths that reproduces the
observed market prices of benchmark options exactly, or almost exactly as
in the case of a least squares approach. As we tend to have more paths
than benchmark options in a simulation, such a measure is not uniquely
defined in general. This problem is solved in the original WMC method
by selecting the measure closest to the (uniform) prior measure in terms of
relative entropy (Kullback and Leibler [1951]), also referred to as Kullback-
Leibler divergence.
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While relative entropy is a well established concept within information the-
ory, it does not by itself offer any particular economic intuition in the con-
text of the WMC method. The implication of this is that there is no obvious
way to discriminate between relative entropy and any other kind of diver-
gence when choosing how to weight the sample paths in a manner that
is economically justified. However, as we discuss in greater detail in the
following sections, the entropy minimization problem of the WMC method
is mathematically equivalent to a portfolio choice problem for an investor
with expected exponential utility. And by considering the utility version of
the WMC, we open up the possibility of exploiting the theoretically and em-
pirically mature field of consumption based asset pricing (Ludvigson [2011];
Carmona [2009]) to develop refinements of the WMC method.

As we explain in greater detail in the following sections, the WMC calibration
method can in theory reweight the paths simulated from the model to be
calibrated in such a way that they can reproduce the market prices of the
benchmark options used in the calibration procedure exactly. However, as
we observe in our numerical tests for two popular option pricing models
(the Black Scholes model and the stochastic volatility model of Heston), the
accuracy drops quite quickly for out-of-sample options as we move away
from the strike range and maturity range of the benchmark options.

The contribution of this chapter consists of formulating a more general ver-
sion of the WMC which in our numerical tests produces a far better fit to the
whole range of options available on the underlying asset than the original
WMC. It achieves this by first splitting the paths into segments by the matu-
rities present in the set of benchmark options, and then applying a prob-
ability distortion transformation to the prior distribution associated with
these path segments. This probability distortion transformation is inspired
by the work of Kahneman and Tversky [1992] on Cumulative Prospect The-
ory (CPT), but differs in that our approach preserves the additivity of the
probability measure, whereas the probability distortion in the CPT model
leads to a non-additive one which results in certain tractability challenges.

The remainder of this chapter is as follows: in section 5.2 we give a general
formulation of the weighted Monte Carlo method, in section 5.3 we discuss
the relationship between entropy minimization and utility maximization
and give an alternative formulation of the entropy minimization problem
as a portfolio choice problem, in section 5.4 we propose a weighted Monte
Carlo method that incorporates multiple weights-per-path and rare event
probability distortion, and in section 5.5 we give the numerical results for
the different methods.
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5.2 An Overview of the Weighted Monte Carlo Method

We begin by briefly describing the weighted Monte Carlo method in general
terms. Our discussion follows the same reasoning as that presented in a
more comprehensive format in Avellaneda et al. [2001]), with the exception
that we do not assume that the prior distribution is uniform. So the original
WMC method is a special case of what is presented in this section.

Given a filtered probability space (Ω,F ,F ,P), a finite time horizon T , and
an adapted price process S = {St }t∈[0,T ] we can view the set of N paths pro-
duced by a Monte Carlo simulation of St as a discrete approximation to the
distribution of S at time t . The general idea behind the weighted Monte
Carlo approach is to reweight the sampled paths in such a way that the new
distribution is as statistically close as possible to the original one, while at
the same time reproducing the observed market prices at time 0 for a set
of contingent claims on S. Here, the notion of statistical distance is taken
to be the Kullback-Leibler divergence24, which for two discrete probability
measures, P andQ is given by

DK L(Q|P) =∑
i

qi ln

(
qi

pi

)
.

A no-arbitrage model described at each t ∈ [0,T ] by St which we want to
calibrate using the weighted Monte Carlo method is referred to hereafter as
the initial model. Assume we have a set of K benchmark options25 on S
we want to use to reweight the simulated paths of the model. We begin by
simulating N paths from S and calculating the payoff matrix

G =


g1,1 g1,2 · · · g1,K

g2,1 g2,2 · · · g2,K
...

...
. . .

...
gN ,1 gN ,2 · · · gN ,K

 , (5.1)

where gi k is the payoff from option k when path i is realized.

Assuming the simulated paths are initially assigned prior weights given by
p = (p1, . . . , pN ) then the new weights q = (q1, . . . , qN ) in the exact-fit version

24. However, other types of divergences have been studied, see Friedman et al. [2013].
25. Any type of option will do as long as its payoff along a given sample path is completely

determined by that path. This excludes, for example, American style options.
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are calculated as the solution to

min
q

D(q |p) = min
q

{
N∑

i=1
qi ln

(
qi

pi

)}

s.t. πk =
N∑

i=1
qi gi k , k = 1, . . . ,K

(5.2)

where πk is the price of benchmark option k. Note that throughout our
discussion we will use Q and q (and P and p) interchangeably but write the
former when we want to emphasize it as a probability measure and the latter
when we want to emphasize it as a set of path weights

Using the Lagrange multiplier approach, this can be rewritten as the dual
problem

min
λ

max
q

{
−D(q |p)+

K∑
k=1

λk

(
N∑

i=1
qi gi k −πk

)}
. (5.3)

Looking at the first order conditions for the inner problem we see that a
solution is given by

qi = pi

Z (λ)
exp

(
K∑

k=1
gi kλk

)
, (5.4)

where

Z (λ) =
N∑

m=1
pm exp

(
K∑

k=1
gmkλk

)
,

is a normalization factor to ensure the distribution sums to 1. Using (5.4) we
can simplify (5.3) to get

min
λ

{
ln(Z (λ))−

K∑
k=1

πkλk

}
. (5.5)

This problem requires numerical methods to solve. As the objective func-
tion is smooth and convex, the method of choice is a gradient-based mini-
mization procedure such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm (Broyden [1970]) which requires the computation of the partial
derivatives of (5.5). They are given by

∂W

∂λ j
= 1

Z (λ)

N∑
i=1

gi j pi exp

(
K∑

k=1
gi kλk

)
−π j , (5.6)

for j = 1, . . . ,K .

Finally, although a unique solution should always exist for (5.2) given an ar-
bitrage free market, the presence of asynchronous and noisy data can lead to
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problems for the optimization procedure, with one instrument being bought
or sold in quantities much larger than the rest. A remedy to this problem is
adding a regularization term to the objective function. The term we use in
our tests is a simple quadratic term,

χ2
w = 1

2

N∑
k=1

1

wk
λ2

k , (5.7)

where w1, . . . , wK are penalization weights that determine the influence of
option k on the calibration. The resulting optimization problem in (5.5) is
given by

min
λ

{
ln(Z (λ))−

K∑
k=1

πkλk +χ2
w

}
. (5.8)

5.3 The Weighted Monte Carlo Method as a Utility Max-
imization Problem

Using the observed price information of assets such as stocks and options in
a financial market to derive (or approximate) the stochastic discount factor
of that market is a central task in the field of asset pricing (for a standard
reference, see e.g. Cochrane [2000]). Within the field of financial economics,
this is commonly done in the setting of consumption based pricing, where
the market is treated like a single representative investor with a given utility
function over uncertain future cash flows. The stochastic discount factor
in this setting is proportional to the marginal utility of the representative
investor over her optimal consumption in each possible future state. Given
a set of contingent claims in the market, this optimal consumption process
can be calculated by solving for the optimal portfolio of the investor.

In more concrete terms, consider the following one period26 model. We
assume the investor maximizes expected utility, with investment horizon
T . The assets available to the investor form an arbitrage-free market of
total initial wealth W0 with an associated probability space (Ω,F ,P). Let the
investor’s utility function over deterministic outcomes realized at time T be
given by a continuously differentiable function u :R→R such that u′(x) > 0
and u′′(x) < 0 for all x ∈ R, and let A (W0) denote the set of all contingent
claims in the market which can be financed with initial wealth W0. If we
denote with X ∗

T the optimal solution to the portfolio selection problem

sup
XT ∈A (W0)

EP[u(XT )], (5.9)

26. Here, ’one period’ refers to the investor only choosing a portfolio at time 0. This does not
restrict the assets from evolving continuously from time 0 to time T with realized payoffs in
between.
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there exists β ∈R+ such that for every contingent claim XT in the market we
have that the market price of XT is given by πX = EP[βu′(X ∗

T )XT ]. We can
write the expectation in more compact form through a change of measure
using the Radon-Nikodym derivative dQ

dP = u′(X ∗
T ) to obtain πX = EQ[βXT ].

In mathematical terms, the correspondence between this type of utility max-
imization and entropy minimization is well known (see e.g. Nau et al. [2009]).
It is therefore reasonable to ask precisely how this relationship enters in the
weighted Monte Carlo setting. As is explained in Avellaneda et al. [2001] the
Arrow-Debreu prices that correspond to the measure computed from (5.2)
coincide with the marginal utilities for consumption obtained by solving
(5.9) when u is the exponential utility function.

More specifically, solving for the Lagrange multipliers λk in (5.3) is equiv-
alent to finding the optimal portfolio weights for a utility maximizer with
exponential utility (Samperi [1997]), where we can think of the benchmark
instruments as the assets in the market, and the set of sample paths gener-
ated by the initial model as the statespace of the market. The relationship
between the two is more precisely as follows: the optimal portfolio weights
given by φ= (φ1, . . . ,φK ) for an investor with a utility function given by

U (φ) =−
N∑

i=1
pi exp

(
−

K∑
k=1

φk (gi k −πk )

)
(5.10)

are related to the optimal Lagrange multipliers λ1, . . . ,λK by φk = −λk for
k = 1, . . . ,K . Consequently, if we assume that the utility maximizer is a rep-
resentative investor, then the path weighting through entropy minimization
is mathematically equivalent to deriving the stochastic discount factor in
this market through solving for the optimal portfolio of the representative
investor.

Before elaborating further on how the weighted Monte Carlo method fits
with the standard consumption-based asset pricing approach, we need to
introduce some additional terminology. Given an underlying statespace Ω,
and a σ-algebra F defined on Ω, we refer to the probability measure that
describes the true probability of the different events in F as the objective
measure. In contrast, we refer to any probability measure that is absolutely
continuous with respect to the objective measure, but absorbs to some ex-
tent risk premiums that exist in the market, as a subjective measure. An
example of a subjective measure would be a risk neutral measure, i.e., a
probability measure Q such that the market price of any contingent claim
in the market is the discounted expected value of the claim with respect to
Q. Lastly, we use "pricing measure" and "risk neutral measure" interchange-
ably.
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The standard way to formulate a consumption-based asset pricing model
is to assume that the investor observes the objective measure P associated
with the statespace. This means the expected utility is calculated under the
P measure. On the other hand, option pricing models are typically cali-
brated against existing option contracts, making the probability measure
corresponding to the sample paths of the initial model subjective, as op-
posed to objective.

However, this apparent discrepancy is dissolved with the realization that
we are effectively deriving a "decomposed" stochastic discount factor. To
clarify, let L be the subjective probability measure corresponding to the uni-
form weighting of the Monte Carlo simulation paths generated by the ini-
tial model (i.e., R is the subjective measure under which the sample path
approximation to the initial model is given). Let P denote the objective
probability measure corresponding to these paths. If our model is arbitrage
free, we expect that L¿ P, i.e., that L is absolutely continuous with respect
to P. Next, let Q be the subjective probability measure corresponding to
the weighting of the sample paths computed by the WMC method. Again,
the absence of arbitrage means we must have Q¿ L. The Radon-Nikodym
derivative dQ

dL is proportional to the stochastic discount factor u′(X ∗
T ) we

obtain from the utility maximization equivalent of the WMC entropy mini-
mization. Given that Q¿ L¿ P, then by the measure-theoretic chain rule,
we have that

dQ

dP
= dQ

dL

dL

dP
- P a.s.

In other words, changing the measure from P to L and then from L to Q is
the same (a.s.) as changing it straight from P to Q. So whether we derive
the risk neutral pricing distribution Q straight from P as in the standard
representative investor pricing approach, or by first deriving L from P and
thenQ from L as in the WMC approach, we end up with the same results.

With the theoretical justification out of the way, we now give the utility max-
imization equivalent of the formulation presented in section 5.2. Let u(·)
be defined as in (5.9). The statespace Ω consists of the paths we simulate
from the initial model, and P is whatever weighting we attach to the paths
to represent the prior measure. The market consists of the benchmark in-
struments we use for the calibration. We denote with π = (π1, . . . ,πK ) the
vector of prices for the benchmark instruments, and with G = (G1, . . . ,GK )
the vector of their stochastic payoffs. With this in mind, we formulate the
portfolio selection problem for the investor as

max
φ

EP
[
u(φᵀG)

]
s.t. φᵀπ≤W0, (5.11)
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where φ= (φ1, . . . ,φK ) is the portfolio choice. Since an unconstrained opti-
mization problem generally allows more efficient computational methods,
and the budget constraint can be assumed to hold with equality, we can
rewrite (5.11) as

max
φ

N∑
i=1

pi u

(
K∑

k=2
φk

(
gi k − gi 1

πk

π1

)
+ gi 1W0

π1

)
, (5.12)

where we have substituted

φ1 = 1

π1

(
W0 −

K∑
k=2

φkπk

)
in the maximization problem above, and gi k denotes the payoff from option
k when path i is realized. The first order conditions are given by

N∑
i=1

[
pi

(
gi h − gi 1

πh

π1

)
u′

(
K∑

k=2
φk

(
gi k − gi 1

πk

π1

)
+ gi 1W0

π1

)]
= 0, (5.13)

for h = 1, . . . ,K . The solution φ∗ = (φ∗
1 , . . . ,φ∗

K ) to this problem, which needs
to be computed using numerical methods, is the optimal portfolio choice
for the representative investor with initial wealth W0.

The pricing kernel is now obtained by plugging
(
φ∗)ᵀG into u′(·), and the

corresponding change of measure gives us the new risk neutral distribution
we are after. More precisely, the new weights qi for i = 1, . . . , N are given by

qi =
pi u′

(∑K
k=2φ

∗
k

(
gi k − gi 1

πk
π1

)
+ gi 1W0

π1

)
∑N

i=1 pi gi 1
π1. (5.14)

The least squares setup is the following:

max
φ

N∑
i=1

pi u

(
K∑

k=2
φk

(
gi k − gi 1

πk

π1

)
+ gi 1W0

π1

)
− 1

2

K∑
k=2

wkφ
2
k

− 1

2

(
1

π1

(
W0 −

K∑
k=2

φkπk

))2

, (5.15)

with the first order conditions given by

N∑
i=1

[
pi

(
gi h − gi 1

πh

π1

)
u′

(
K∑

k=2
φk

(
gi k − gi 1

πk

π1

)
+ gi 1W0

π1

)]

−whφh + πh

π1

(
W0 −

K∑
k=2

φkπk

)
= 0, (5.16)
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with h = 1, . . . ,K and the weights qi for i = 1, . . . , N given by (5.14) as before.

As previously mentioned, if we set u(x) = −e−x and pi = 1
N for i = 1, . . . , N ,

the formulation is mathematically equivalent to the original weighted Monte
Carlo method of Avellaneda et al. [2001], where the measure of statistical
distance is given by the Kullback-Leibler divergence and the prior measure
is uniform. The initial wealth W0 in this case does not affect the solution,
since u(x) is translation invariant. In the general case, a straightforward
choice for W0 that conforms to the representative investor model is the "mar-
ket wealth", i.e., the value of the underlying assets.

5.4 Calibration with Probability Distortion

As can be seen from Figures 5.3 and 5.4 in section 5.5, the implied volatility
we obtain from the original weighted Monte Carlo method turns out to be
much lower for the far-OTM options than what is implied by the market
prices. From the consumption-based asset pricing perspective this could in
theory be explained by positing that the preferences represented by (5.10),
and by extension of duality the relative entropy formulation in (5.2) are not
risk averse enough. More specifically, (5.10) trivially includes a coefficient of
risk aversion equal to one. Adding an explicit coefficient of risk aversion to
the formulation in (5.10) and then deriving the corresponding generalized
version of (5.5) using the Legendre transform then gives us a divergence
measurement that contains a parameter which directly affects the tail thick-
ness of the derived subjective probability measure represented by q , with
higher values for the risk aversion coefficient translating to thicker tails.

Preliminary numerical tests revealed, however, that the risk aversion coeffi-
cient by itself had barely a noticeable effect on the tail thickness for the range
of values which still allowed a decent fit with the benchmark instruments.

From a decision-theoretic perspective we can, however, accommodate the
thick tails implied by the market prices by positing that the market over-
weights the probability of large market movements with respect to the initial
model. To implement this idea, we apply a probability distortion that is
partly similar to that introduced by Kahneman and Tversky [1992] in their
work on Cumulative Prospect Theory. This generalization turns out to give
vastly better empirical performance than the original method as well as its
purely utility function-based modifications in our tests.

As compared to expected utility, two novel features characterize CPT pref-
erences. The first feature is a utility function over deterministic outcomes
that is concave over gains and convex over losses with respect to a given
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reference point of wealth. The second feature is a distortion function that
is applied to the cumulative distribution function of the physical measure,
yielding a non-additive measure. The general CPT specification is given by

U (X ) =
∫ +∞

0
W +(P(u+(X ) > x))d x −

∫ +∞

0
W −(P(u−(X ) > x))d x, (5.17)

where W +,W −,u+ and u− are the probability distortion functions and util-
ity functions over deterministic outcomes for the gain and loss domains,
respectively, and P is a probability measure. The distortion function we
chose to implement for the numerical tests is the one introduced by Prelec
[1998], which gave considerably better results than the original distortion
function by Kahneman and Tversky, and is given by

ν+(P ) = exp
{
−γ+(− ln(P ))δ+

}
(5.18)

for the gains domain, and

ν−(P ) = exp
{
−γ−(− ln(P ))δ−

}
(5.19)

for the loss domain. Here, δ+ and δ− correspond to the curvature of the dis-
tortion, while γ+ and γ− correspond to the elevation of the distortion, with a
value of 1.0 for all parameters corresponding to a non-distorted probability
measure, as demonstrated in Figures 5.1 and 5.2. See Prelec [1998] for a
comprehensive discussion on the interpretation of these parameters.

We can adapt the formulation in (5.17) to a discrete statespace in the follow-
ing way. Let Ω = {x−m , . . . , x0, . . . , xn} be the set of possible outcomes, such
that x−m ≤ x−m+1 ≤ . . . ≤ xn−1 ≤ xn with x0 = 0 by convention, and let pi be
the probability of outcome xi for i =−m, . . . ,n. Furthermore, let u− :Ω− →
R, be a strictly increasing convex function, with Ω− = {x−m , . . . , x−1}, and
u+ :Ω+ →R, be a strictly increasing concave function, withΩ+ = {x0, . . . , xn}.
Furthermore, let ν− : [0,1] → [0,1] and ν+ : [0,1] → [0,1] be two strictly in-
creasing functions such that ν−(0) = ν+(0) = 0 and ν−(1) = ν+(1) = 1 If we
denote by X = (x−m , p−m ; . . . ; x−1, p−1; x0, p0; x1, p1; . . . ; xn , pn) the prospect
X , then the Cumulative Prospect value of X is given by

U (X ) =
n∑

i=−m
νi u(xi ), (5.20)

where

u(xi ) =
{

u+(xi ), if 0 ≤ i ≤ n,

u−(xi ), if −m ≤ i < 0,
(5.21)
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Figure 5.1: Mean probability distortion values for the gain domain (γ =
1.051,δ= 0.97) and the loss domain (γ= 0.316,δ= 0.611) for the
GBM model as presented in Table 5.2.
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Figure 5.2: Mean probability distortion values for the gain domain (γ =
0.555,δ = 0.623) and the loss domain (γ = 0.791,δ = 0.640) for
the Heston model as presented in Table 5.2.
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and

νi =
{
ν+(pi + . . .+pn)−ν+(pi+1 + . . .+pn), if 0 ≤ i ≤ n,

ν−(p−m + . . .+pi )−ν−(p−m + . . .+pi−1), if −m ≤ i < 0.
(5.22)

On a theoretical level, CPT has been shown to produce potential resolutions
to a wide array of empirical puzzles in finance and economics (Camerer
[2004]; Barberis [2013]; Fox et al. [1996]; Polkovnichenko and Zhao [2013];
Baele et al. [2018]; Vandenbroucke [2015]). However, it introduces two seri-
ous tractability issues. Firstly, the non-concavity of the utility function com-
plicates the computation of the global maximum. Secondly, the probability
distortion as it is formulated in (5.17) leads to a non-additive expectation
operator.

As we explain in the following section, however, the formulation we propose
in this chapter includes neither of these problems; the strict convexity (con-
cavity) of the statistical divergence (utility function) is maintained, and the
probability distortion we incorporate maintains the additivity of the expec-
tation operator.

5.4.1 The Weighted Monte Carlo Method with Probability Distor-
tion

We now turn to the main contribution of this chapter, which is a method
that combines probability distortion in style of CPT preferences with the
weighted Monte Carlo method. This allows us to adapt the no-arbitrage
model we want to calibrate to the thick tails implied by far-OTM options
while maintaining an exact fit with the benchmark instruments we use for
the calibration.

When the benchmark instruments all have the same maturity, we proceed
exactly as in section 5.2 where we solve (5.5) to obtain the new weights q
with the exception that we now use a prior measure p which incorporates
probability distortion that re-weights the tail events of the initial model.
This is in contrast to the original weighted Monte Carlo method where the
prior measure is simply taken to be uniform.

We define the tail events to be large changes in the price of the underlying
asset. That means we need to sort the realized paths according to their value
at the time the benchmark options expire. We then enumerate them in an
ascending order as −m,−m+1, . . . ,n−1,n1, where path i = 0 is the closest to
realizing no change in value for the underlying among the sampled paths,
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and compute the prior measure as

pi =
{
ν+( n−i

N )−ν+( n−i−1
N ), if 0 ≤ i ≤ n,

ν−( m−i
N )−ν−( m−i−1

N ), if −m ≤ i < 0,
(5.23)

where ν+(·) and ν−(·) are the distortion functions for the gain and loss do-
mains, respectively.

As we mentioned in the preceding section, a portfolio choice problem with
CPT preferences generally leads to a non-additive expectation operator. This
is not the case in the formulation above. To understand why we avoid a
non-additive expectation we recall that the Choquet integral is additive for
comonotonic random variables. For a portfolio choice problem where the
available instruments consist of an underlying asset and options on that
asset the prospect outcomes can most generally be taken to be the value
of the portfolio of the investor, which generally is not comonotonic with the
underlying asset if, for example, the portfolio includes short positions on
that asset. However, in our formulation the probability distortion does not
depend on λ (or φ in the utility maximization case), so the expectation is
trivially contained within a single comonotonic class.

If the algorithm is implemented in such a way that the portfolio problem is
solved for only one option maturity, the ordering is straightforward, since
the value of each realized path relative to the rest is unambiguous at matu-
rity. If more than one benchmark maturity is present, the ordering of entire
paths is no longer unambiguous, since the simulated paths can cross each
other between maturities. The method proposed here tackles this issue by
splitting the set of benchmark instruments into single-maturity subsets, and
solving the portfolio problem for each subset separately. In other words,
if our benchmark instruments consist of options with M different matu-
rities, we split the options into M groups and solve the equivalent of M
single maturity entropy minimization problems. This results in each path
being assigned a vector of weights. Realized values along the simulated
paths at times that do not coincide with the maturities present in the set of
benchmark options are then assigned weights based on linear interpolation
with respect to their relative position. This is in contrast with the original
weighted Monte Carlo method which assigns a single weight to entire paths.

The full specification of the method we propose is as follows. Let Jb and Js be
the two sets of indices such that Γb = {

t j | j ∈ Jb
}

is the set of all points in time
between 0 and T that coincide with the maturity of a benchmark option, and
Γs =

{
t j | j ∈ Js

}
is the set of all points in time between 0 and T that do not

coincide with a benchmark maturity but for which we would like to know
the state price density implied by the benchmark options. Furthermore,
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given j ∈ Jb , let S j =
{

x j
−m , . . . , x j

−1, x j
0 , x j

1 , . . . , x j
n

}
denote the ordered set of

realized points in our sample space at time t j , such that x j
i < x j

i ′ for i < i ′.

We start by computing the prior weights p j using (5.23). Next, we compute
the new weights q j by solving either (5.5) for an exact fit or (5.6) for an
approximate fit, and plugging the solution λ j into (5.4). Once the weights
have been computed for each maturity t j ∈ Γb , the set of weights for each
t j ′ ∈ Γs are calculated as follows. Assume first that we have j , j ′′ ∈ Jb and
j ′ ∈ Js such that t j = sup

{
τ ∈ Γb |τ< t j ′

}
and t j ′′ = inf

{
τ ∈ Γs |τ> t j ′

}
.

First, we calculate the sort index arrays I j , I j ′ , and I j ′′ (i.e., the index arrays
for the sorted versions of S j , S j ′ , and S j ′′). Denote the weight arrays for S j

and S j ′′ by q j and q j ′′ , and for the sake of visual clarity let us introduce the

notation q j (i ) ≡ q j
i . If I j ′(i ) = i ′, we compute

q j ′ (i ′
)= t j ′ − t j

t j ′′ − t j
q j

(
I j (

i ′
)−1

)
+ t j ′′ − t j ′

t j ′′ − t j
q j ′′

(
I j ′′ (i ′

)−1
)

, (5.24)

for i = 1, . . . , N . Finally, if either t j or t j ′′ does not exist, i.e., if the maturity
of t j ′ falls outside the range of maturities of the benchmark instruments,
then we simply choose whatever benchmark maturity is closest and put the
interpolation weight of that maturity to one.

To summarize, the calibration algorithm proposed above works in its gen-
eral form as follows:

1. A set of N paths is generated from the initial model, and the payoff
matrix in (5.1) is computed.

2. The paths are indexed according to their sort order at each of the M
benchmark maturities, and the set of prior weights p j for j = 1, . . . , M
are computed.

3. With the payoffs and prior weights from 1)-2) in hand we solve sep-
arately for each t j the problem given by (5.5) (or (5.8) for an approx-
imate fit) using the prior weights p j and the restriction of the payoff
matrix to the set of benchmark instruments which expire at t j . We
then plug the solution λ j into (5.4) to obtain q j which become the
weights attached to the points on the sample paths at time t j .

4. For a maturity t j ′ of interest which does not coincide with the maturi-
ties present in the set of benchmark instruments we use the formula
given by (5.24) to interpolate between the two weights vectors q j and
q j ′′ obtained for the two subsets of benchmark instruments whose
maturities t j and t j ′′ most narrowly sandwich t j ′ . In the event that
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the maturity is either longer or shorter than anything that is available
in the set of benchmark instruments we simply attach to it the weights
vector computed for the set of benchmark instruments with the ma-
turity closest to t j ′ .

We see that if we set the probability distortion function in (5.23) equal to
the identity function and drop the distinction between benchmark instru-
ments based on their maturity then we retrieve the original weighted Monte
Carlo method. For the sake of conciseness we shall hereafter refer to the
procedure given above as the generalized weighted Monte Carlo (GWMC)
method, and to the special case where no partition is performed on the set
of benchmark instruments and where the prior measure is uniform as the
original weighted Monte Carlo (OWMC) method.

5.4.2 Path Dependent Option Pricing with GWMC-Calibrated Paths

In the most basic setup of the weighted Monte Carlo method, where a single
weight is assigned to each path, the probabilistic interpretation is clear. The
weight qi represents the subjective probability that path i , in the statespace
that consists of the sample paths generated by the initial model, is realized.
However, the GWMC method gives us several weights per path. Each weight
in this case corresponds to the subjective, unconditional probability of ob-
serving a particular realization of the price of the underlying, S, at a given
time t . To explain how this translates into the usual concept of Monte Carlo
pricing of path dependent options, we start by giving the following theorem.

Theorem 5.1. Let si =
{

s1
i , . . . , sM

i

} ∈Ωdenote the i th realization of S = {
S j

}M
j=1

in our sample of N paths. Furthermore, assume that for each h, i = 1, . . . , N

and j ,m = 1, . . . , M we have that s j
i = sm

h if and only if i = h and j = m, i.e., no
sample path i in S contains any elements also contained by another sample
path h of S. Then the probability of path i being realized under the subjective
measureQ is given by

Q({S = si }) = 1

M

M∑
j=1

q j
i ,

where q j
i is the unconditional probability underQ of observing s j

i .

Proof. By the law of total probability, we have that

Q({S = si }) =
M∑

j=1
Q

({
S = si |s j

i

})
Q

({
s j

i

})
,
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where Q
({

s j
i

})
is the unconditional probability that s j

i is realized at all. We

have that s j
i completely identifies the path si , by our assumption of sample

uniqueness. Therefore,Q
({

S = si |s j
i

})
= 1, and we can write

Q ({S = si }) =
M∑

j=1
Q

({
s j

i

})
=

M∑
j=1

1

M
q j

i .

Note that q j
i is the subjective probability of observing s j

i at time t j . However,

the unconditional subjective probability of observing s j
i at all is given by

Q
({

s j
i

})
= q j

i

M
,

since s j
i can only appear at time t j , and not in any of the other M −1 matu-

rities, by our assumption of unique realizations of S.

In other words, the subjective probability of observing a given sample path
when the weights are determined by the GWMC is simply the average of the
weights along that path. Note that our assumption of uniqueness among the
values generated by the simulation of the initial model is a simplifying one,
but we would expect it to hold for any decent random number generator.

We conclude this section by illustrating the application of the GWMC to
path dependent options by the way of an example. Consider the Monte
Carlo formula for the price of an arithmetic Asian option with M monitoring
points. The standard Monte Carlo price for this option is given by

πA = 1

N

N∑
i=1

∣∣∣∣∣ 1

M

M∑
t=1

s j
i −X

∣∣∣∣∣
+

,

with X being the strike price. Now, let q j
i denote the weight of path i at time

t j . If we write

q i =
1

M

M∑
j=1

q j
i ,

the price πA is given by

πA =
N∑

i=1
q i

∣∣∣∣∣ 1

M

M∑
j=1

s j
i −X

∣∣∣∣∣
+

.
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If all the weights q j
i are identical for a given i , this expression simplifies to

the original weighted Monte Carlo formulation. If we further set q j
i = 1

N for
every i and every j we get the usual Monte Carlo pricing formula for the
arithmetic Asian option.

5.5 Implementation Details And Numerical Results

Our numerical experiments consisted of two parts:

1. A cross-sectional run where we tested the GWMC method for single
maturities only.

2. An intertemporal run where we tested the GWMC method for multiple
maturities simultaneously.

In section 5.5.1 we describe the initial models we used and the pre-calibration
we employed to estimate their parameters, as well as the probability distor-
tion function we chose to implement. In sections 5.5.2 and 5.5.3 we give the
numerical results from the cross-sectional and intertemporal tests, respec-
tively.

Our numerical tests were performed on SPX options priced during the pe-
riod 01/01/2013 to 31/12/2013. This data set contained a total of 765952
contracts. We calculated the risk free rate by linearly interpolating yields
from US Treasury bills data available on the US Federal Reserve website. The
dividend payments on the S&P 500 index were approximated by a continu-
ous dividend yield. In addition to the options, we included the underlying
asset itself as well as a risk-free asset in the set of benchmark instruments.

Throughout our empirical tests we calculated two types of error measure-
ments. These were the mean relative price error (MRPE) and the mean av-
erage price error (MAPE). More precisely,

MRPE = 1

K

K∑
k=1

|πModel
k −πMarket

k |
πMarket

k

, (5.25)

and

M APE = 1

K

K∑
k=1

|πModel
k −πMarket

k |, (5.26)

where πModel
k is the model-predicted price of benchmark instrument k and

πMarket
k is the price of that instrument observed in the market.
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The data exhibited a significant number of put-call parity violations, which
can likely be attributed to the fact that we used end-of-day prices which
leads to a degree of asynchronicity. For this reason all of the numerical
tests are done on out-of-money puts and out-of-money calls. As the num-
ber of benchmark instruments increases, the entropy minimization/utility
maximization part of the calibration procedure can become a challenge in
itself, particularly when an exact solution is sought. We kept the number
of benchmark instruments small for this reason, and used the least squares
approach in the intertemporal tests. In addition, we performed each cal-
ibration separately for the puts and the calls to further reduce calibration
failures.

For the pre-calibration (i.e., the estimation of the parameters of the geo-
metric Brownian motion and Heston models) we used Matlab’s lsqnonlin
routine, and for the calibration runs we used the BFGS routine in Python’s
Scipy library.27

5.5.1 Initial Models, Pre-Calibration and Path Generation

We used two no-arbitrage models as a prior for our calibration procedure;
geometric Brownian motion, and Heston’s stochastic volatility model (He-
ston [1993]). Sampling with these models was done using the Euler dis-
cretization scheme. More specifically, for the geometric Brownian motion
model we generated the paths using the discretized dynamics

St+∆t = St e(r−d− 1
2σ

2)∆t+σp∆t Z ,

where r is the risk-free rate, d is the continuous dividend yield, σ is the
volatility and Z are standard Gaussian innovations, i.e., Z ∼ N (0,1). For
the Heston model we generated the paths using

St+∆t = St e(r−d− 1
2σ

2)∆t+pvt∆t ZS ,
vt+∆t = vt +κ(θ− vt )∆t +ηpvt∆t Zv ,

where St is the price process of the underlying asset, vt is the variance pro-
cess, r and δ are the risk free rate and dividend yield as before, κ is the
rate of mean reversion, θ is the long run volatility, and η is the volatility-of-
volatility. Here, the innovations Zv ∼ N (0,1) and ZS ∼ N (0,1) are correlated
with correlation coefficient ρ.

The calibration runs for the out-of-sample performance tests were all done
using N = 40000 simulated paths with antithetic variance reduction. For the

27. For a discussion on the computational considerations on the weighted Monte Carlo method,
see Elices and Giménes [2006].
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variance process in the Heston model, we used a full truncation scheme28

for the variance process to prevent it becoming negative. Each path sim-
ulated for the Heston model contained 100 points which were distributed
equally between each benchmark maturity present along the path.

The pre-calibration of these models was done using a nonlinear least squares
approach. That is, the parameter values χ∗ for the respective models were
found by computing29

χ∗ = argmin
χ

{
K−2∑
k=1

wk

(
πModel

k −πMarket
k

)2
}

. (5.27)

The weights wk , k = 1, . . . ,K −2 were calculated as the inverse of the bid-ask
spread for the corresponding option, i.e.,

wk = 1

πMarket,ask
k −πMarket,bid

k

.

For the Geometric Brownian model, the decision variable is χ=σ, whereas
for the Heston model we haveχ= (v0,θ,η,κ,ρ). In terms of European option
pricing, both the geometric Brownian motion model and the Heston model
have closed form solutions, although in the latter case we make use of the
characteristic function, which contains an integral which must be evaluated
numerically.

A pre-calibration was done for each open market day over the period of
01/01/2013 to 31/12/2013. For each such day the set of options used in
the pre-calibration procedure consisted of the 14 most traded out-of-money
puts, together with the 14 most traded out-of-money calls for each maturity.
For maturities where fewer than 14 puts (calls) were traded that day, we sim-
ply included all put (call) options with nonzero trading volume. The sum-
mary of the parameter estimates obtained from this pre-calibration proce-
dure are given in Table 5.1.

5.5.2 Cross-Sectional Calibration Results

Our goal for this part of the numerical tests was to try and include as much of
the strike range of the out-of-money puts and calls for each maturity as pos-
sible, to see the full effect of the over-and-underweighting of probabilities

28. Here, full truncation means the variance process is given by max{Vt ,0} at every sample
time t .

29. Here the index only reaches K −2 since we performed the pre-calibration using only the op-
tion data, leaving out the underlying and risk-free assets added for the subsequent weighted
Monte Carlo calibration tests.
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σ v0 θ η ρ κ

mean 0.1313 0.0166 0.0422 0.3981 -0.9337 1.9219
std 0.0063 0.0030 0.0039 0.0313 0.0207 0.4448
max 0.1435 0.0232 0.0477 0.4655 -0.8979 2.8056
min 0.1237 0.0127 0.0341 0.3514 -0.9715 1.3233

Table 5.1: Pre-Calibration summary for initial models.

of extreme events on the pricing measure. However, at the extreme ends of
option moneyness the data becomes noticeably less reliable, with instances
of duplicate prices for options with different strikes, bid prices of zero, and
so on. For these reasons, we removed the following:

• Any option with bid price zero.

• Any option with price lower than 0.5

• Any set of options with different strikes but the same price, same op-
tion type, and same maturity quoted on the same day.

• Any option which’s open interest count fell below 2000 for short and
medium maturities, and 1000 for long maturities.

• Any set of options of the same maturity quoted on a given trading day
with fewer than 10 options satisfying the above criteria.

Here, short maturities are defined to be between 1 and 90 days, medium
maturities between 91 and 250 days, and long maturities anything longer
than 250 days. We used open interest as our measure of liquidity, instead
of trading volume, since trading volume gave a much thinner support for
options at the far ends of the moneyness spectrum, as well as options with
long maturities.

After the aforementioned contracts had been removed, we were left with
a set of 24263 contracts, consisting solely of out-of-money puts and calls.
For this set of contracts we performed an out-of-sample test for 3 different
calibration methods for 2 different initial models:

1. The unweighted geometric Brownian motion model.

2. The unweighted Heston model.

3. The geometric Brownian motion model calibrated with the OWMC.
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4. The Heston model calibrated with the OWMC.

5. The geometric Brownian motion model calibrated with the GWMC.

6. The Heston model calibrated with the GWMC.

For each model-method pair we calculated the out-of-sample performance
for each maturity and option type (i.e puts, calls) separately, as well as their
aggregate performance over these categories, and these results are given in
Tables 5.4 and 5.5, while Table 5.3 gives the aggregate result for each model-
method pair. The first entry in each number pair in these tables is the mean
relative pricing error, and the second entry is the mean absolute pricing
error, as explained in section 5.5.1. For each option type (i.e., put or call),
we used as benchmark instruments the 5 options with strikes closest to the
forward price of the underlying, so a total of 10 benchmark options per
maturity. The remainder of the options in the data set, obtained from the
data cleaning procedure described above, were used as out-of-sample in-
struments.

For the calibration of a given trading day, we used the distortion parameter
values, ξ= {

γ+,δ+,γ−,δ−
}
, which gave the best out-of-sample performance

during the calibration of the previous trading day.30 More specifically, be-
fore calibrating the model for a given trading day, we solve the following for
the trading day immediately before it:

ξ∗ = argmin
ξ

{
1

K

K∑
k=1

|πModel
k (ξ)−πMarket

k |
πMarket

k

}
. (5.28)

This optimization problem was solved using BFGS. While each function eval-
uation in this minimax optimization problem is expensive (we are solving
the portfolio choice problem with each function call) the computational
times are drastically reduced by reusing the previous optimal parameter es-
timate as a starting point, since the optimal values turn out to change very
little between trading days in our data. In addition, since there is no interac-
tion between the gain domain parameters and the loss domain parameters,
the objective function is separable into two parts, each with only two deci-
sion variables (i.e., the elevation and curvature parameters), which further
reduces the computational load.

30. As can be seen from comparing the values in Table 5.2, we expect these values to be different
for different initial models.
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Model Horizon γ+ δ+ γ− δ−

GBM Short 1.137 0.921 0.431 0.577
(0.124) (0.132) (0.129) (0.178)

Medium 1.051 0.975 0.316 0.611
(0.138) (0.166) (0.111) (0.142)

Long 1.100 1.022 0.332 0.580
(0.083) (0.090) (0.105) (0.107)

Heston Short 0.614 0.588 0.630 0.547
(0.149) (0.168) (0.153) (0.177)

Medium 0.555 0.623 0.791 0.640
(0.157) (0.182) (0.139) (0.210)

Long 0.451 0.601 0.788 0.754
(0.112) (0.124) (0.116) (0.118)

Table 5.2: The averages of the probability distortion parameter values for
different maturity clusters and models, along with their standard
deviations in brackets.

Method GBM Heston
Unweighted 0.736, 9.727 0.313, 3.316
OWMC 0.378, 2.439 0.220, 0.796
GWMC 0.174, 0.643 0.066, 0.286

Table 5.3: Aggregate results for the out-of-sample cross-sectional perfor-
mance for the 2 different initial models along with the 2 different
weighted calibration methods, as well as the unweighted versions
for comparison. The first and second number in each column are
the average MRPE and MAPE, respectively, for the entire data set.
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Method Strike Short Medium Long All
MC K<F 0.624, 3.216 0.818, 9.492 0.853, 24.52 0.748, 11.286

K>F 0.855, 3.515 0.53, 3.429 0.345, 3.63 0.69, 3.513
All 0.684, 3.294 0.768, 8.442 0.789, 21.901 0.736, 9.727

OWMC K<F 0.439, 1.071 0.506, 2.444 0.444, 5.625 0.457, 3.042
K>F 0.121, 0.275 0.089, 0.295 0.076, 0.438 0.101, 0.331
All 0.355, 0.86 0.435, 2.078 0.369, 4.567 0.378, 2.439

GWMC K<F 0.186, 0.331 0.224, 0.567 0.208, 1.343 0.203, 0.755
K>F 0.072, 0.155 0.079, 0.264 0.068, 0.391 0.072, 0.249
All 0.155, 0.284 0.198, 0.514 0.180, 1.154 0.174, 0.643

Table 5.4: Cross-sectional results for the unweighted Monte Carlo method
(MC), the OWMC method and the GWMC method using geomet-
ric Brownian motion as an initial model, for OTM puts (K<F) and
OTM calls (K>F). The first and second number in each column are
the MRPE and MAPE, respectively.

Method Strike Short Medium Long All
MC K<F 0.234, 0.798 0.362, 2.861 0.391, 8.284 0.317, 3.592

K>F 0.292, 1.569 0.314, 2.356 0.297, 4.283 0.298, 2.215
All 0.249, 1.001 0.353, 2.773 0.379, 7.782 0.313, 3.316

OWMC K<F 0.271, 0.544 0.222, 0.78 0.152, 1.138 0.216, 0.815
K>F 0.216, 0.397 0.27, 0.813 0.239, 1.21 0.232, 0.73
All 0.256, 0.505 0.23, 0.787 0.17, 1.153 0.22, 0.796

GWMC K<F 0.084, 0.206 0.049, 0.195 0.067, 0.593 0.067, 0.322
K>F 0.075, 0.147 0.044, 0.120 0.042, 0.161 0.060, 0.142
All 0.081, 0.190 0.048, 0.182 0.063, 0.536 0.066, 0.286

Table 5.5: Cross-sectional results for the unweighted Monte Carlo method
(MC), the OWMC method and the GWMC method using the Hes-
ton model as an initial model, for OTM puts (K<F) and OTM calls
(K>F). The first and second number in each column are the MRPE
and MAPE, respectively.
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Figure 5.3: The volatility for SPX options with maturity 30 days implied by a)
market prices (solid line), b) the OWMC calibrated GBM model
(dashed line), and c) the GWMC calibrated GBM model (dot-
dashed line).

Figures 5.3 and 5.4 give an idea of how the GWMC improves upon the orig-
inal weighted Monte Carlo method in terms of the empirical fit. They show
a cross-section of the implied volatility calculated from market prices of
options traded on the 21st of May 2013 with maturity of 30 days, plotted
together with the OWMC and GWMC implied volatilities for those same
options. The benchmark options for the OWMC and GWMC consisted of 5
close to the money puts and 5 close to the money calls. The figures demon-
strate a typical difference between the OWMC and the GWMC as pricing
models; the former tends to underprice far-out-of-money options to a much
greater degree than the latter, with the exception of call options for geomet-
ric Brownian motion as the initial model.

When comparing the performance of a given model across the three matu-
rity categories it should be kept in mind that the presence of options of ex-
treme moneyness tended to be significantly more prevalent in the medium
range of our data than in the other two maturity groups, in addition to the
fact that the liquidity requirements were not the same across the maturity
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Figure 5.4: The volatility for SPX options with maturity 30 days implied by a)
market prices (solid line), b) the OWMC calibrated Heston model
(dashed line), and c) the GWMC calibrated Heston model (star-
dashed line).

groups. With that said, the Heston model outperforms the GBM model over-
all as expected in the unweighted case. Interestingly, though, the OWMC
for GBM appears to achieve very good performance for the call options,
which highlights the fact that a poor empirical fit of the initial model does
not necessitate a poor fit once the paths have been reweighted. Overall,
however, the GWMC method produces significant improvements, both for
the geometric Brownian motion and the Heston model compared to the
OWMC. It should also be noted here that one reason why the weighted GBM
models underperform, particularly for the put options, is that the Monte
Carlo simulation often did not produce any paths that reached the extreme
levels necessary for the most far-out options to become exercised, while the
Heston model did. And the distortion function does not take effect for zero-
measure events.
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5.5.3 Intertemporal Calibration Results

The numerical tests in this section consisted of calibrating the initial models
of section 5.5.1 to benchmark options spanning more than one maturity.
For each benchmark option maturity present during a given trading day,
we chose the 10 out-of-money put options and the 10 out-of-money call
options with the highest trading volume, and out of these we used the 5 out-
of-money put options and the 5 out-of-money call options that had strikes
closest to the forward value as benchmark options. The remainder of the
options served as out-of-sample options. We used the same probability
distortion values as are given in Table 5.2 in section 5.5.2.

For the purpose of demonstration, let Ud , with d = 1, . . . ,D denote the set of
all options for trading day d , where D is the final day (i.e., 31st of December
2013), in our sample with nonzero trading volume. Furthermore, for each
Ud let Md , j ⊆Ud denote the set of the 10 puts and 10 calls with the highest
trading volume with maturity m j , where the maturities are indexed here by
j = 1, . . . , J in such a way that if j ′ < j ′′ then m j ′ < m j ′′ . Also, let Kd , j ⊆ Md , j

be the set of 5 puts and 5 calls in Md , j that are closest to being at-the-money.

Lastly, define the Cartesian product Hd := ⊗J
j=1Md , j , and let Dim(Hd ) := J ,

be the number of different maturities present in Hd . The intertemporal test
can then be described in the following way. For a given trading day d :

1. if Dim(Hd ) ≤ 3 that trading day is dropped from the sample,

2. if Dim(Hd ) = 4 the in-sample instruments consist of Kd ,1 and Kd ,3,
and the out-of-sample instruments are Md ,1\Kd ,1, Md ,2, Md ,3\Kd ,3 and
Md ,4,

3. if Dim(Hd ) = 5 the in-sample instruments consist of Kd ,2 and Kd ,4,
and the out-of sample instruments are Md ,1, Md ,2\Kd ,2, Md ,3, Md ,4\Kd ,4

and Md ,5,

4. if Dim(Hd ) ≥ 6 the in-sample instruments consist of Kd ,2+ι and Kd ,5+ι,
and the out-of-sample instruments are Md ,1+ι, Md ,3+ι\Kd ,3+ι, Md ,3+ι,
Md ,4+ι, Md ,5+ι\Kd ,5+ι, and Md ,6+ι, with ι= 0, . . . ,Dim(Hd )−6.

To elaborate on part 4, for Hd with Dim(Hd ) = J > 6 we begin by setting
ι= 0 and calibrate. Once the calibration is done and we have calculated the
out-of-sample prices, if Dim(Hd ) > 6, we set ι = 1 which shifts the maturity
index by one to the right to perform the calibration and out-of-sample cal-
culation again, and so on, until Md ,6+ι = Md ,J . This test scheme resulted in
the calculation of 135792 option prices.31
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Method Strike MRPE MAPE
OWMC K<F 0.313 1.859

K>F 0.267 1.163
All 0.303 1.716

GWMC K<F 0.151 0.899
K>F 0.089 0.490
All 0.136 0.816

Table 5.6: Intertemporal run results for the OWMC method and the GWMC
method using geometric Brownian motion as an initial model for
OTM puts (K<F) and OTM calls (K>F).

Method Strike MRPE MAPE
OWMC K<F 0.164 0.692

K>F 0.202 0.696
All 0.172 0.693

GWMC K<F 0.074 0.401
K>F 0.103 0.357
All 0.080 0.392

Table 5.7: Intertemporal run results for the OWMC method and the GWMC
method using the Heston model as a initial model for OTM puts
(K<F) and OTM calls (K>F).

The design of the intertemporal test was made with the aim of avoiding
biases in the selection of the benchmark options by including an approxi-
mately even mix of "outside" and "inbetween" options, and by rolling over
every maturity as in step 4 for each trading day. As the results in Tables 5.6
and 5.7 show, the Heston model gives better results overall than the geomet-
ric Brownian motion, and the GWMC likewise improves upon the OWMC
in all categories. The only break from this pattern of improvement is the
MRPE for the OTM call category for the GWMC, which is smaller for the
GBM model than the Heston model which we can trace back to the ex-
cess volatility on the up side of the underlying for the geometric Brownian
motion, which counters the exponential decay of the tails that we get from
using the Kullback-Leibler divergence more aggressively.

31. Most trading days fell under the fourth case, meaning most options were priced several times

using different benchmarks, and the number reflects every such calculation.
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5.6 Conclusion

We have presented a generalization of the weighted Monte Carlo calibration
method first proposed by Avellaneda et al. [2001] which we show yields a sig-
nificant improvement in empirical fit through extensive numerical testing
using S&P 500 options data. The method is centered around relative entropy
minimization like the original method, but instead of assuming a uniform
prior measure for the sample paths we compute a measure which distorts
the probability of tail events. This allows us to overcome the consistent
implied volatility gap between the market data and what the original WMC
method produces. Furthermore, the proposed method partitions the set of
benchmark instruments by maturity and assigns multiple weights per path
which increases the flexibility of the method, as opposed to the original
method which assigns only one weight per path, and can be considered a
special case of what we have presented here.

Furthermore, we have provided a detailed discussion on the utility maxi-
mization problem which is known to be dual to the relative entropy min-
imization formulation. The utility maximization formulation presented in
this chapter is technically speaking more general than the relative entropy
minimization formulation, and fits with any type of preferences which are
of expected utility type which opens up the possibility of refinements of the
weighted Monte Carlo method through a purely utility-based approach.

112



Bibliography

Abramowitz, M., & Stegun, I. A. (1964). Error Function and Fresnel Integrals.
Handbook of Mathematical Functions (pp. 295-300). National Bureau of
Standards, Washington, DC.

Abramowitz, M. Stegun, I (1964). Confluent Hypergeometric Functions,
Handbook of Mathematical Functions (pp. 503-537). National Bureau of
Standards, Washington, DC.

Aichinger, M. & Binder, A. (2013). Characteristic Function Methods for Op-
tion Pricing. A Workout in Computational Finance (pp. 193-209). John
Wiley & Sons.

Aït-Sahalia, Y. & Kimmel, R. (2007). Maximum Likelihood Estimation of
Stochastic Volatility Models. Journal of Financial Economics, 83:413–452

Albanese, C., Jackson, K. & Wiberg, P. (2004). A new Fourier transform algo-
rithm for value-at-risk. Quantitative Finance, 4(3):328-338.

Albrecher, H., Mayer, P., Schoutens, W. & Tistaert, J. (2007). The Little Heston
Trap. Wilmott Magazine, (Jan):83-92.

Arismendi, J. C., Back, J., Prokopczuk, M., Paschke, R. & Rudolf, M. (2016).
Seasonal stochastic volatility: Implications for the pricing of commodity
options. Journal of Banking & Finance, 66:53-65.

Attari, M. (2004). Option pricing using Fourier transforms: A numerically ef-
ficient simplification (Working Paper). Available at SSRN: https://ssrn.
com/abstract=520042 or http://dx.doi.org/10.2139/ssrn.520042

Avellaneda, M., Buff, R., Friedman, C., Grandechamp, N., Kruk, L. & New-
man, J. (2001). Weighted Monte Carlo: a new technique for calibrating
asset-pricing models. International Journal of Theoretical and Applied
Finance, 4(01):91-119.

113

https://ssrn.com/abstract=520042
https://ssrn.com/abstract=520042
http://dx.doi.org/10.2139/ssrn.520042


BIBLIOGRAPHY

Bank For International Settlements, Statistical Release: OTC Derivative
Statistics at end-December 2018 (pp. 1-9). Available at https://www.bis.
org/publ/otc_hy1905.htm

Back, J., Prokopczuk, M. & Rudolf, M. (2013). Seasonality and the valuation
of commodity options. Journal of Banking & Finance, 37(2):273-290.

Back, K. (2010). Asset pricing and portfolio choice theory. Oxford University
Press. New York, NY.

Baele, L., Driessen, J., Ebert, S., Londoño, J. M., & Spalt, O. G. (2018). Cu-
mulative prospect theory, option returns, and the variance premium. The
Review of Financial Studies, 32(9), 3667-3723.

Bakshi, G., Ju, N. & Ou-Yang, H. (2006). Estimation of continuous-time mod-
els with an application to equity volatility dynamics. Journal of Financial
Economics, 82(1):227-249.

Bams, D., Lehnert, T. & Wolff, C. (2009). Loss Functions in Option Valuation:
A Framework for Model Selection. Management Science, 55(5):853-862.

Barberis, N. (2013). The psychology of tail events: Progress and challenges.
The American Economic Review, 103(3):611-616

Barone-Adesi, G. & Whaley, R. E. (1987). Efficient analytic approximation of
American option values. The Journal of Finance, 42(2):301-320.

Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate pro-
cesses implicit in deutsche mark options. The Review of Financial Studies,
9(1):69-107.

Bates, D. S. (2003). Empirical option pricing: A retrospection. Journal of
Econometrics, 116(1-2):387-404.

Biagini, F. (2010). Second fundamental theorem of asset pricing. In R. Cont,
(Eds). Encyclopedia of Quantitative Finance (pp. 1623–1628). Wiley.

Black, F. (1976). The pricing of commodity contracts. Journal of financial
economics, 3(1-2), 167-179.

Black, F. & Scholes, M. (1973). The pricing of options and corporate liabili-
ties. Journal of political economy, 81(3):637-654.

Brandt, M. W. & Santa-Clara, P. (2002). Simulated likelihood estimation of
diffusions with an application to exchange rate dynamics in incomplete
markets. Journal of Financial Economics, 63(2):161-210.

114

https://www.bis.org/publ/otc_hy1905.htm
https://www.bis.org/publ/otc_hy1905.htm


BIBLIOGRAPHY

Broyden, C. G. (1970). The convergence of a class of double-rank mini-
mization algorithms 1. general considerations. IMA Journal of Applied
Mathematics, 6(1):76-90.

Burkovska, O., Gaß, M., Glau, K., Mahlstedt, M., Schoutens, W., & Wohlmuth,
B. (2018). Calibration to American options: numerical investigation of the
de-Americanization method. Quantitative finance, 18(7):1091-1113.

Camerer, C. F. (2004). Prospect theory in the wild: Evidence from the field.
Advances in Behavioral Economics (pp. 148-161). Princeton University
Press.

Carmona, R. (2009). Indifference pricing: theory and applications. Princeton
University Press.

Carr, P., & Madan, D. (1999). Option valuation using the fast Fourier trans-
form. Journal of computational finance, 2(4):61-73.

Carr, P., & Sun, J. (2007). A new approach for option pricing under stochastic
volatility. Review of Derivatives Research, 10(2):87-150.

Cezaro, A. D., Scherzer, O. & Zubelli, J. P. (2010). A convex-regularization
framework for local volatility calibration in derivative markets: The con-
nection with convex risk measures and exponential families. Sixth World
Congress of the Bachelier Finance Society.

Chen, M. Y. & Chen, B. T. (2014). Online fuzzy time series analysis based on
entropy discretization and a Fast Fourier Transform. Applied Soft Com-
puting, 14:156-166.

Chernov, M., & Ghysels, E. (2002). A study towards a unified approach to the
joint estimation of objective and risk neutral measures for the purpose of
options valuation. Journal of Financial Economics, 56:407–458.

Chesney, M., Jeanblanc, M. & Yor, M. (2009). Mathematical methods for
financial markets. Springer Science & Business Media.

Choi, J. W. & Longstaff, F. A. (1985). Pricing options on agricultural futures:
An application of the constant elasticity of variance option pricing model.
Journal of Futures Markets, 5(2):247-258.

Chourdakis, K. (2005). Option pricing using the fractional FFT. Journal of
Computational Finance, 8(2):1-18.

Christoffersen, P. & Jacobs, K. (2004). The importance of the loss function in
option valuation. Journal of Financial Economics, 72(2):291-318.

115



BIBLIOGRAPHY

Cochrane, J. (2000). Asset Pricing. Princeton University Press

Cont, R. & Tankov, P. (2004). Non-parametric Calibration of Jump-diffusion
Option Pricing Models. Journal of Computational Finance, 7(3):1–49.

Cont, R. (2010). Model calibration. Encyclopedia of Quantitative Finance
(pp. 1210–1218). John Wiley & Sons.

Crawford, G., & Sen, B. (1996). Derivatives for decision makers: Strategic
management issues (Vol 1). John Wiley & Sons.

Crépey, S. (2010). Tikhonov Regularization. Encyclopedia of Quantitative
Finance (pp. 1807–1812). John Wiley & Sons.

Cui, Y., del Baño Rollin, S., & Germano, G. (2017). Full and fast calibration of
the Heston stochastic volatility model. European Journal of Operational
Research, 263(2):625-638.

del Baño Rollin, S., Ferreiro-Castilla, A., & Utzet, F. (2010). On the density
of log-spot in the Heston volatility model. Stochastic Processes and their
Applications, 120(10):2037-2063.

Downarowicz, A. (2010). The first fundamental theorem of asset pricing.
Revista de Economía Financiera, 21:23-35.

Drimus, G. G. (2012). Options on realized variance by transform methods: a
non-affine stochastic volatility model. Quantitative Finance, 12(11):1679-
1694.

Duffy, D. J. (2013). Finite Difference methods in financial engineering: a
Partial Differential Equation approach. John Wiley & Sons.

Egger, H. & Engl, H. W. (2005). Tikhonov regularization applied to the in-
verse problem of option pricing: convergence analysis and rates. Inverse
Problems, 21(3):1027-1045.

Elices, A. & Giménes, E. (2006). Weighted Monte Carlo. Risk Magazine, 19:78-
83.

Eraker, B., Johannes, M. & Polson, N. (2003). The impact of jumps in volatil-
ity and returns. The Journal of Finance, 58(3):1269-1300.

Eraker, B. (2004). Do Stock Prices and Volatility Jump? Reconciling Evidence
from Spot and Option Prices. Journal of Finance, 59:1367–1404.

Fama, E. F. & French, K. R. (1987). Commodity Futures Prices: Some Evi-
dence on Forecast Power, Premiums, and the Theory of Storage. Journal
of Business, (Jan):55-73.

116



BIBLIOGRAPHY

Fang, F. & Oosterlee, C. W. (2008). A novel pricing method for European
options based on Fourier-cosine series expansions. SIAM Journal on Sci-
entific Computing, 31(2):826-848.

Fox, C. R., Rogers, B. A. & Tversky, A. (1996). Option Traders Exhibit Subad-
ditive Decision Weights. Journal of Risk and Uncertainty, 13:5-17.

Friedman, C. A., Cao, W., Huang, Y. & Zhang, Y. (2013). Engineering More
Effective Weighted Monte Carlo Option Pricing Models (Working Paper).
Available at SSRN: https://ssrn.com/abstract=2193807 or http://
dx.doi.org/10.2139/ssrn.2193807

Friedman, C. A., Cao, W. & Huang, Y. (2014). Some Economically Mean-
ingful Option Model Calibration Performance Measures (Working Paper).
Available at SSRN: https://ssrn.com/abstract=2193803 or http://
dx.doi.org/10.2139/ssrn.2193803

Fusai, G., Germano, G. & Marazzina, D. (2016). Spitzer identity, Wiener-
Hopf factorization and pricing of discretely monitored exotic options.
European Journal of Operational Research, 251(1):124-134.

Gaß, M., Glau, K., & Mair, M. (2017). Magic points in finance: Empiri-
cal integration for parametric option pricing. SIAM Journal on Financial
Mathematics, 8(1):766-803.

Gerlich, F., Giese, A. M., Maruhn, J. H. & Sachs, E. W. (2012). Parameter iden-
tification in financial market models with a feasible point SQP algorithm.
Computational Optimization and Applications, 51(3):1137-1161.

Gilli M. & Schumann E. (2011). Calibrating Option Pricing Models with
Heuristics. In: Brabazon A., O’Neill M. & Maringer D. (Eds), Natural Com-
puting in Computational Finance (pp. 9-37). Springer, Berlin, Heidelberg.

Glasserman, P. (2013). Monte Carlo methods in financial engineering.
Springer Science & Business Media. New York, NY.

Grasselli, M. (2017). The 4/2 stochastic volatility model: a unified approach
for the Heston and the 3/2 model. Mathematical Finance, 27(4):1013-
1034.

Griewank, A., & Walther, A. (2008). Evaluating derivatives: principles and
techniques of algorithmic differentiation. Society for Industrial and Ap-
plied Mathematics.

Gudmundsson, H., & Vyncke, D. (2019). On the Calibration of the 3/2 Model.
European Journal of Operational Research, 276(3):1178-1192.

117

https://ssrn.com/abstract=2193807
http://dx.doi.org/10.2139/ssrn.2193807
http://dx.doi.org/10.2139/ssrn.2193807
https://ssrn.com/abstract=2193803
http://dx.doi.org/10.2139/ssrn.2193803
http://dx.doi.org/10.2139/ssrn.2193803


BIBLIOGRAPHY

Gudmundsson, H., & Vyncke, D. (2019). Non-Affine Stochastic Volatility with
Seasonal Trends (Working paper).

Gudmundsson, H., & Vyncke, D. (2019). A Generalized Weighted Monte Carlo
Calibration Method (Working paper).

Guillaume, F. & Schoutens, W. (2010). Use a reduced Heston or reduce the
use of Heston?. Wilmott Journal, 2(4):171-192.

Gupta, A., & Reisinger, C. (2014). Robust calibration of financial models
using Bayesian estimators. J. Comput. Finance, 17:3-36.

Heston, S. L. (1993). A closed-form solution for options with stochastic
volatility with applications to bond and currency options. The Review of
Financial Studies, 6(2):327-343.

Hirsa, A. (2016). Model Calibration. In M.A.H. Dempster, D.B. Madan, & R.
Cont (Eds.), Computational methods in finance (pp. 259-341). CRC Press.
London, UK.

Jäckel, P. & Kahl, C. (2005). Not-so-complex logarithms in the Heston model.
Wilmott magazine, 19(9):94-103.

Johannes, M. & Polson, N. (2009). MCMC methods for continuous-time
financial econometrics. Handbook of Financial Econometrics, 2(1):1-72.

Jones, C. S. (2003). The dynamics of stochastic volatility: evidence from
underlying and options markets. Journal of Econometrics, 116(1-2):181-
224.

Kahneman, D. & Tversky, A. (1992). Advances in Prospect Theory: Cumula-
tive Representation of Uncertainty. Journal of Risk and Uncertainty, 5:297-
323.

Kilin, F. (2011). Accelerating the calibration of stochastic volatility models.
The Journal of Derivatives, 18(3):7-16.

Koch, K. R. (2007). Introduction to Bayesian statistics. Springer Science &
Business Media. New York, NY.

Koekebakker, S. & Lien, G. (2004). Volatility and price jumps in agricultural
futures prices—evidence from wheat options. American Journal of Agri-
cultural Economics, 86(4):1018-1031.

Kullback, S. & Leibler, R. A. (1951). On information and sufficiency. The
Annals of Mathematical Statistics, 22(1):79-86.

118



BIBLIOGRAPHY

Li, H., Wells, M. T. & Yu, C. L. (2006). A Bayesian analysis of return dynamics
with Lévy jumps. The Review of Financial Studies, 21(5):2345-2378.

Ludvigson, S. C. (2011). Advances in consumption-based asset pricing: Em-
pirical Tests(No. w16810). National Bureau of Economic Research. Cam-
bridge, MA.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of non-
linear parameters. Journal of the Society for Industrial and Applied Math-
ematics, 11(2):431-441.

Mikhailov, S. & Nögel, U. (2004). Heston’s stochastic volatility model: Im-
plementation, calibration and some extensions. The Best of Wilmott (pp.
401-411). John Wiley and Sons.

Milstein, G. N. (1975). Approximate integration of stochastic differential
equations. Theory of Probability & Its Applications, 19(3):557-562.

Morozov, V. A. (1966). On the solution of functional equations by the method
of regularization. Doklady Mathematics, 7(1):414-417.

Nau, R. F., Jose, V. R. R. & Winkler, R. L. (2009). Duality between maximization
of expected utility and minimization of relative entropy when probabili-
ties are imprecise. ISIPTA, 9:337-346.

Nocedal, J. & Wright, S. (2006). Numerical optimization. Springer Science &
Business Media. New York, NY.

Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an
integrated time-series study. Journal of Financial Economics, 63(1):3-50.

Pedersen, A. R. (1995). A new approach to maximum likelihood estimation
for stochastic differential equations based on discrete observations. Scan-
dinavian Journal of Statistics, 22(1):55-71.

Polkovnichenko, V. & Zhao, F. (2013). Probability Weighting Functions Im-
plied in Option Prices. Journal of Financial Economics, 107:580-609.

Poteshman, A. M. (1998). Estimating a general stochastic variance model
from option prices (Working Paper). University of Chicago.

Prelec, D. (1998). The Probability Weighting Function. Econometrica,
66:497-527.

Storn, R. & Price, K. (1997). Differential evolution: a simple and efficient
heuristic for global optimization over continuous spaces. Journal of global
optimization, 11(4):341-359.

119



BIBLIOGRAPHY

Richter, M. & Sørensen, C. (2002). Stochastic volatility and seasonality in
commodity futures and options: The case of soybeans (Working paper).
Copenhagen Business School.

Samperi, D. (1997). Inverse Problems, Model Selection and Entropy in Deriva-
tive Security Pricing (PhD thesis). New York University.

Schmelzle, M. (2010). Option pricing formulae using Fourier trans-
form: Theory and application (Working Paper). Available at http://

pfadintegral.com.

Schneider, L. & Tavin, B. (2015). Seasonal Stochastic Volatility and Corre-
lation together with the Samuelson Effect in Commodity Futures Mar-
kets (Preprint arXiv:1506.05911). Available at https://arxiv.org/abs/
1506.05911.

Schoutens, W., Simons, E. & Tistaert, J. (2003). A perfect calibration! Now
what?. The best of Wilmott, 2:281-305.

Sepp, A. (2008). Pricing Options on Realized Variance in Heston Model
with Jumps in Returns and Volatility. Journal of Computational Finance,
11(4):33-70.

Skiadas, C. (2009). Asset pricing theory. Princeton University Press. Prince-
ton, NJ.

Sørensen, C. (2002). Modeling seasonality in agricultural commodity fu-
tures. Journal of Futures Markets, 22(5):393-426.

Tikhonov, A. N., Arsenin, V. I. & John, F. (1979). Solutions of ill-posed prob-
lems. SIAM Rev., 21(2):266-267.

Trolle, A. B. & Schwartz, E. S. (2009). Unspanned stochastic volatility and
the pricing of commodity derivatives. The Review of Financial Studies,
22(11):4423-4461.

Vandenbroucke, J. (2015). A cumulative prospect view on portfolios that
hold structured products. Journal of Behavioral Finance, 16(4):297-310.

Wong, H. Y. & Lo, Y. W. (2009). Option pricing with mean reversion
and stochastic volatility. European Journal of Operational Research,
197(1):179-187.

Yang, S. & Lee, J. (2012). Multi-basin particle swarm intelligence method
for optimal calibration of parametric Lévy models. Expert Systems with
Applications, 39(1):482-493.

120

http://pfadintegral.com
http://pfadintegral.com
https://arxiv.org/abs/1506.05911
https://arxiv.org/abs/1506.05911

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Samenvatting
	Summary
	1 Introduction
	2 Theoretical Preliminaries
	2.1 Measure-Theoretic Probability
	2.1.1 Martingales

	2.2 Stochastic Calculus
	2.2.1 The Partial Differential Equation Link
	2.2.2 Selected Stochastic Processes

	2.3 No-Arbitrage Pricing
	2.4 Indifference Pricing
	2.4.1 Selected Utility Functions

	2.5 Computational Finance
	2.5.1 Monte Carlo Pricing
	2.5.2 Pricing With Characteristic Functions


	3 On the Calibration of the 3/2 Model
	3.1 Introduction
	3.2 Calibration of the 3/2 Model with an Analytic Characteristic Function
	3.2.1 The Analytic Gradient of the Characteristic Function
	3.2.2 Optimal Gradient Computation

	3.3 Regularization with Risk-Neutral MCMC Estimation
	3.4 Numerical Results
	3.4.1 Calibration Speed Tests
	3.4.2 Regularization Tests
	3.4.3 Calibration Of Multi-Factor Models

	3.5 Conclusion

	4 Non-Affine Stochastic Volatility with Seasonal Trends
	4.1 Introduction
	4.2 Non-Affine Dynamics With Seasonally Varying Volatility Trend
	4.3 A Fast and Robust Calibration Algorithm
	4.4 Numerical Data And Results
	4.4.1 Technical Implementation Details
	4.4.2 Data
	4.4.3 European Option Price Approximation
	4.4.4 Results

	4.5 Conclusion

	5 A Generalized Weighted Monte Carlo Calibration Method
	5.1 Introduction
	5.2 An Overview of the Weighted Monte Carlo Method
	5.3 The Weighted Monte Carlo Method as a Utility Maximization Problem
	5.4 Calibration with Probability Distortion
	5.4.1 The Weighted Monte Carlo Method with Probability Distortion
	5.4.2 Path Dependent Option Pricing with GWMC-Calibrated Paths

	5.5 Implementation Details And Numerical Results
	5.5.1 Initial Models, Pre-Calibration and Path Generation
	5.5.2 Cross-Sectional Calibration Results
	5.5.3 Intertemporal Calibration Results

	5.6 Conclusion

	Bibliography

