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A B S T R A C T

Replicating results (i.e. obtaining consistent results using a new independent dataset) is an essential part of good
science. As replicability has consequences for theories derived from empirical studies, it is of utmost importance
to better understand the underlying mechanisms influencing it. A popular tool for non-invasive neuroimaging
studies is functional magnetic resonance imaging (fMRI). While the effect of underpowered studies is well
documented, the empirical assessment of the interplay between sample size and replicability of results for task-
based fMRI studies remains limited. In this work, we extend existing work on this assessment in two ways. Firstly,
we use a large database of 1400 subjects performing four types of tasks from the IMAGEN project to subsample a
series of independent samples of increasing size. Secondly, replicability is evaluated using a multi-dimensional
framework consisting of 3 different measures: (un)conditional test-retest reliability, coherence and stability.
We demonstrate not only a positive effect of sample size, but also a trade-off between spatial resolution and
replicability. When replicability is assessed voxelwise or when observing small areas of activation, a larger sample
size than typically used in fMRI is required to replicate results. On the other hand, when focussing on clusters of
voxels, we observe a higher replicability. In addition, we observe variability in the size of clusters of activation
between experimental paradigms or contrasts of parameter estimates within these.
er).
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1. Introduction

In recent years, challenges related to replicability and reproducibility
of scientific findings have been heavily debated in the literature (see for
example Baker, 2016; Begley and Ioannidis, 2015; Collins and Tabak,
2014; Munaf�o et al., 2017). In this paper, we focus on replicability of
results from an fMRI data-analysis. While several different definitions
exist (Plesser, 2018), we use the definition of replicability given by Patil
et al. (2016). A successful replication of an experiment entails obtaining
consistent results when repeating the exact same experimental procedure
and data analysis plan, using a new (independent) dataset obtained by a
different experimenter. The topic of replicating scientific results has been
addressed in several fields such as psychology (Open Science Collabo-
ration, 2015), biomedical sciences (Baker, 2015) or neurosciences (Pol-
drack et al., 2017). In general, there are many factors which can lead to
scientific results that cannot be replicated (Munaf�o et al., 2017). Exam-
ples include poor study designs, low power due to small sample sizes
(Ioannidis, 2005), questionable research practices (John et al., 2012)
and, in the neurosciences, a low signal-to-noise ratio (Button et al., 2013;
Poldrack et al., 2017) combined with substantial variability in the
analysis pipelines and the reporting of results (Carp, 2012). The inability
to replicate experimental results has major consequences for theories
derived from these results.

Increased awareness of these problems has led to new initiatives that
have been put forward in neuroscience literature. These include pre-
registration (see e.g. Munaf�o et al., 2017) and incentives to share raw
data instead of results summarized by (thresholded) statistical maps or
coordinates of peaks of activation (Pernet and Poline, 2015; Poline et al.,
2012). In case of pre-registration, authors are requested to register the
study design, proposed methods and data analysis before data collection
takes place. The manuscript is then reviewed and either rejected or
accepted in principle (for example see Cortex1 which accepts registered
reports). This reduces analytical flexibility and prohibits questionable ad
hoc research practices in the phase of data-analysis. Sharing data not only
promotes open science but it also creates the opportunity for other re-
searchers to use previous data as pilot data in an a priori power analysis
(Durnez et al., 2016; Mumford and Nichols, 2008) or in a meta-analysis
(Costafreda, 2009; Wager et al., 2007).

Although the importance of replicability is widely recognized, insight
into the effect of (low) statistical power on the replicability of fMRI re-
sults is limited (Mumford, 2012; Thirion et al., 2007; Turner et al., 2018).
The relation between underpowered studies and the prevalence of false
positive effects is theoretically well documented (see for example Ioan-
nidis, 2005). However, an empirical assessment of the relation between
sample size and replicability in neuroimaging studies remains chal-
lenging. We identify three main causes. First, an extensive number of
individual subjects are needed to effectively study the effect of sample
size. Previous studies relied on subsampling from databases with a
relatively limited number of subjects. For instance, in Thirion et al.
(2007) and Pajula and Tohka (2016) the sample size (N) was equal to 81
and 130 subjects respectively. More recently, large collaborations have
been set up and have gathered large amount of data. Examples include
the Human Connectome Project (Van Essen et al., 2013) with N � 1200,
the UK Biobank (Sudlow et al., 2015) with N � 500:000and the IMAGEN
consortium (Schumann et al., 2010) with N � 2000. Second, an empir-
ical assessment of the relation between replicability and sample size
based on a single database is not conclusive. Therefore, independent
empirical assessments using different databases and different in-
vestigators are necessary. Finally, lack of agreement on an exact defini-
tion for replicability (Peng, 2011; Pernet and Poline, 2015; Plesser, 2018)
complicates conceptualization on how to measure replicability of fMRI
data.
1 https://www.elsevier.com/editors-update/story/peer-review/cortexs-regis
tered-reports.
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In this paper, we aim to extend the empirical assessment of task-based
fMRI replicability. To this end, we aim not only to replicate results ob-
tained by Thirion et al. (2007) and Turner et al. (2018) who studied
replicability of fMRI results and its relation to sample size (amongst other
predictors) but also extend the sample sizes under consideration using a
subsampling method. This approach consists of sampling at random in-
dependent sets of subjects from the entire database and then incremen-
tally increase the sample size. These groups are subsequently compared
to measure replicability of fMRI results. Thirion et al. (2007) collected
data on 81 subjects and observed reasonable replicability for a simple
left-right button press contrast. In their work, replicability was concep-
tualized twofold. The first measurement used was voxelwise coher-
ence/concordance (Genovese et al., 1997; Liou et al., 2003, 2006)
between several replications. Coherence is defined as the agreement over
independent replications in classifying voxels as either active or inactive.
Their second measure was the average distance between statistically
significant clusters of voxels. Turner et al. (2018) on the other hand used
approximately 500 subjects from the Human Connectome Project uti-
lizing various contrasts. They studied test-retest reliability in a replica-
tion context. A study is reliable if the deviance between the outcome of
the study and a replication is small. The outcome can be a test-statistic
such as a t-value (i.e. unconditional reliability) or the result of thresh-
olding for statistical significance (i.e. conditional reliability). Among
other measurements, Turner et al. (2018) used the Pearson correlation
coefficient between the test-statistics of independent replications to
measure unconditional reliability and a Jaccard index to measure con-
ditional reliability. The latter is a measurement of spatial overlap be-
tween thresholded images. Interestingly, the authors observed only a low
to modest degree of reliability. In this paper, we study how generalizable
the set of findings regarding coherence and (un)conditional test-retest
reliability are. To do so, we use a different data set from the IMAGEN
project (with N ¼ 1400). As this database contains more subjects than
those previously used, we can assess replicability in larger sample sizes.

Second, we further extend the empirical assessment by studying an
additional measure of replicability (i.e. stability) for task-based fMRI.
This is needed as results of an fMRI data-analysis can be summarized by
features such as peaks or clusters of activation. Furthermore, Roels et al.
(2015) demonstrate the need to extend methodological research with
measurements regarding the variability of the main characteristics of
these features (see also Qiu et al., 2006 for a similar argumentation in
gene selection). Main characteristics could be the size or the number of
the selected clusters of voxels. Methods where the results show high
variability regarding these characteristics are less stable indicating a
lower replicability. For example, a specific cluster could be selected in
different replications though its size may vary substantial. To assess
stability, we focus on clusters of voxels as the main feature of interest.

To summarize, we conceptualize replicability by measuring (un)condi-
tional test-retest reliability, coherence and stability between independent
replications created through a subsampling approach, using a large database.

2. Methods

To study the interplay between sample size and replicability, we
repeatedly subsample subjects from a large database to create sets of
independent groups with a given sample size. Results of the analysis of
these groups are then compared to assess replicability.

In this section, we first describe the database and the various single-
subject pre-processing steps that are performed to obtain the data from
which to subsample. We use six contrasts based on the following exper-
imental paradigms: perform a cognitive task, watch angry faces, partic-
ipate in amonetary incentive delay task and in a Stop signal task. We then
focus on the subsampling scheme which is used to create independent
pairs of group analyses. Next, we discuss these analyses and finally
describe our measurements to quantify the replicability of fMRI results.
In order of discussion, these are test-retest reliability, coherence and sta-
bility. Within these, we distinguish between two categories of

https://www.elsevier.com/editors-update/story/peer-review/cortexs-registered-reports
https://www.elsevier.com/editors-update/story/peer-review/cortexs-registered-reports
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measurements. The first one is not conditional on any particular
threshold chosen for statistical significance. We use the term “uncondi-
tional” here to stress that our measurement does not depend on a chosen
criterion for thresholding. The second is a conditional assessment, during
which thresholded images are used to measure replicability. In this case,
results potentially depend on the criteria chosen to threshold the images.
Within the latter, we also focus on both voxels and clusters.

The code of the sampling procedure, analysis and figures of this paper
together with the processed results (as R objects) to reproduce figures are
available at: https://github.com/NeuroStat/replicability_fmri. Note that
the database used in this paper is not publicly available.

2.1. Data and pre-processing

In this section, we first discuss the description of the tasks and then
the pre-processing. The pre-processed data (i.e. contrast of parameter
estimates and their variances) are provided by the IMAGEN consortium
(Schumann et al., 2010). This is a European multi-center project to
investigate the association between reinforcement-related behaviour in
adolescents and the development of frequent psychiatric disorders. For
this paper, we used fMRI data of adolescents aged between 13 and 15
years, acquired across several research centres on 3 T scanners from
multiple manufactures. The data are stored centrally at the Neurospin2

center (Paris).
Pre-processing and single subject statistical analyses were performed

by the consortium using SPM83 (Statistical Parametric Mapping: Well-
come Department of Cognitive Neurology, London, UK) for the cognitive
task and SPM124 for the other tasks.

2.1.1. Cognitive task
For the first contrast, we use the same data and hence identical

scanning protocol and pre-processing steps as those described in Bossier
et al. (2018). For each participant, a total of 160 volumes were acquired.
The scanning session involved a global cognitive assessment. In this
assessment, participants had to perform a series of cognitive tasks. The
total series contained up to 10 type of tasks. We restrict our analysis to
two tasks: reading sentences in silence (LANGUAGE) and solving math
subtractions (MATH). In the latter, single digits (0–9) were presented and
had to be subtracted from a double digit between 11 and 20. The design
of the experiment was a fast-event related design where each of these two
type of trials were presented for 10 times with a probabilistic
inter-stimulus interval of on average 3 s (see Pinel et al., 2007). Our
contrast of interest is MATH > LANGUAGE.

Due to scanning errors or artefacts, sections of the brain images may
be missing in some participants. As the total sample size per study will be
up to 700 subjects (more details below), we assured the data quality via a
qualitative visual check and a quantitative check on the number of voxels
with a measured response value. Subjects who had no data in more than
4% of the median number of voxels over all subjects were excluded from
further analysis. This resulted in 87 subjects being removed from the
database for this contrast (the total number of available subjects is 1400).

2.1.2. Faces task
In this task, participants were instructed to watch 18-s blocs of either

a face or control stimulus. The faces could be angry or neutral (greyscale
clips of male or female faces). The control stimulus corresponded to a
greyscale video of either an expanding or contracting circle. The fMRI
sequence of 160 volumes contained 10 faces and 9 control stimuli. The
inter-stimulus interval was 2.2 s. The chosen contrast of interest is
ANGRY FACE > CONTROL. After quality control and removing subjects
where data was missing, we retain 1400 of the 1890 participants doing
2 http://joliot.cea.fr/drf/joliot/en/Pages/research_entities/NeuroSpin.aspx.
3 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.
4 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/.
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this task in the database to sample from.

2.1.3. Monetary incentive delay (MID) task
In this task, participants were presented with sequences of cues, tar-

gets and a feedback phase. The cue indicated a possible amount of gain
the subjects could win. This could be a small, big or no win. They were
instructed to respond when the target was presented (approx. 4 sec. after
the cue) after which they received feedback (approx. 1.5 s later) about
the win or loss of the trial. The fMRI sequence of 300 volumes contained
144 trials with an inter-stimulus interval of 2.2 s. We have two contrasts
of interest using this task. The first is the average effect of participants
receiving feedback of a success without a gain (Hit No Gain). The second
is Large Win > Small Win. After quality control and removing subjects
where data was missing, we retain 1608 of the 1955 participants
included in the database to sample from.

2.1.4. Stop signal task
In this task, participants were presented with either a stop/go stim-

ulus where the motor response speed was measured after the go (i.e.
signal) stimulus. An event was considered successful if either a motor
response was recorded (go) or inhibited (stop). Furthermore, the stop
signal delay increased on the next stop by 50 ms if a successful stop was
recorded and decreased by 50 ms if participant failed to inhibit on the
previous stop trial. The entire fMRI sequence of 444 volumes contained
300 go trials and 80 stop trials. The average inter-stimulus interval was
2.2 s. The chosen contrasts of interest are Stop Failure> Stop Success and
its reverse: Stop Success > Stop Failure. After quality control and
removing subjects where data was missing, we retain 1450 of the 2026
participants included in the database to sample from.

Note that we do not assess the Stop process as is usually done by
including a contrast with a successful Go (e.g. Stop Failure> Go Success).
As this corresponds to a completely different cognitive process with a
highly delineated set of brain regions associated with, we would expect
results to be different when including such a contrast. Written otherwise,
we do not consider the results for the chosen contrasts as representative
for research done in the Stop signal domain as a whole.

2.1.5. Pre-processing
BOLD time series for each participant were recorded using echoplanar

imaging with an isotropic voxel size of 3.4 mm and a repetition time of
2.2 s. For each participant, a number of volumes (depending on the task)
were obtained, together with a T1-weighted structural image used for
registration. The parameters of the latter were based on the ADNI-
protocols.5

The pre-processing carried out at the Neurospin center included slice-
timing correction, movement correction, coregistration of the functional
images to the segmented T1-weighted structural images, non-linear
warping of the images into MNI space using a custom EPI template and
spatial smoothing of the signal with a 5 mm Gaussian kernel to improve
the signal-to-noise ratio, reduce the effects of residual misalignment and
meet the conditions for the use of parametric statistics such as those in
SPM (Imagen fMRI data analysis methods, revision2, July 2010).

Single subject statistical analyses were performed at each voxel using
univariate general linear models (GLM) with all experimental tasks
(depending on the four paradigms). For the cognitive task, 18 estimated
movement parameters were included as covariates in the design matrix
(these correspond to 3 rotations, 3 regular, 3 quadratic and 3 cubic
translations, 3 translations shifted 1 TR before, and 3 translations shifted
1 TR later). For the other three tasks, 21 additional columns (corre-
sponding to short and long term movement effects) were added to ac-
count for estimated movements. A standard autoregressive [AR(1)] noise
model was estimated to account for temporal correlation in the time
series.
5 http://adni.loni.usc.edu/methods/documents/mri-protocols/.

https://github.com/NeuroStat/replicability_fmri
http://joliot.cea.fr/drf/joliot/en/Pages/research_entities/NeuroSpin.aspx
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2.2. Sampling procedure and group analyses

We use two general sampling procedures to assess replicability: the
first to measure test-retest reliability and stability and the second to
measure coherence.

The first is obtained through pairwise comparisons of the results of
group analyses. Note that results for group analyses are based on statis-
tical parametric maps (SPMs) containing the test statistic (e.g. t-values) in
each voxel. Thresholded SPMs are binary images where 1 corresponds to
a voxel being statistically declared significant and 0 otherwise.

To obtain the independent replications, we start by samplingN ¼ 10
subjects at random from the entire database into set A. Next, we sample
N ¼ 10 from the remaining (1400� 10) subjects at random into set B.
We fit the group level models and perform statistical inference as
described below. The resulting non-thresholded SPMs, together with the
thresholded SPMs, are saved and this sampling process is repeated for a
total of 50 times. In a next step, we repeat the sampling process, but
increase the number of participants in each set by 10. This process con-
tinues until we reach a maximum of N ¼ 700 subjects per set. In total,
we thus generate 3500 comparisons between two independent replica-
tions (A & B).

To measure coherence, results for more than 2 group analyses are
compared. Therefore, we obtain as many independent subsets of subjects
as possible from the total database within each sample size. For instance,
we create 140 disjoint sets each of 10 subjects for N ¼ 10, 70 sets of 20
subjects for N ¼ 20, etc. We continue in steps of N ¼ 10 until we
obtain 3 disjoint subsets of N ¼ 460 subjects. This is the maximum
sample size for this measurement as we need at least 3 subsets. We iterate
the sampling procedure at each sample size 50 times.

The second level group analysis for each sampled group of subjects
consists of fitting a linear mixed model in each voxel. This allows us to
model within- and between-subject variability separately, and was per-
formed using FLAME1 (Woolrich et al., 2009) from the FSL (RRID:S
CR_002823) package (Smith et al., 2004). After estimating the parame-
ters of interest in the group model, we obtain the SPMs. These t-images
are used for assessing unconditional replicability.

To measure conditional replicability, we threshold the image while
apply a correction for multiple testing. The choice depends on our feature
of selection. When focussing on voxels, we apply a voxelwise correction
where the false discovery rate is controlled at level 0.05 using the Ben-
jamini and Hochberg approach (Benjamini and Hochberg, 1995). When
features of interest are clusters, we first define a cluster forming threshold
at Z ¼ 2.3, then use a 26-voxel neighbourhood search algorithm (default
values) and finally control the family wise error rate at 0.05 using the
Gaussian Random Field theory (Friston et al., 1994). Note however that
in prior work, Woo et al. (2014) argue to use more conservative cluster
forming thresholds to ensure valid family-wise error rate control.

2.3. Measures for assessing replicability

2.3.1. (Un)conditional test-retest reliability
To assess unconditional test-retest reliability, we measure the simi-

larity between two non-thresholded SPMs using the Pearson product-
moment coefficient (ρÞ for the correlation between the t-images of
study A and study B.

Conditional test-retest reliability is measured using the percent
overlap of activation (Maitra, 2010). This measure is an adaptation of the
Dice similarity index (Dice, 1945) or Sørensen similarity coefficient
(Sørensen, 1948). Let VA;B represent the number of statistically signifi-
cant voxels from the intersection between image A and B, VA the amount
of statistically significant voxels in image A and VB the amount of sta-
tistically significant voxels in image B. The proportion of overlap ωA;B in
two images is then defined as:

ωA;B ¼ VA;B

VA þ VB � VA;B
:

4

This measure focusses on the spatial pattern of activation in thresh-
olded SPMs and ranges from 0 (no overlap of activation) to 1 (perfect
overlap).

Note that we require at least one voxel declared significant in either
image A or B. Furthermore, ωA;B may be confounded by the proportion of
voxels declared active in both images. In one extreme, if all voxels from
both image A and B are declared statistically significant, then the overlap
will be perfect. Hence, the effect of the sample size on ωA;B may be
different depending the threshold for significance. A demonstration of
this effect is given in a numerical simulation in the appendix. To deal
with this possible confounding effect, we also apply different criteria to
determine statistical significance of the voxels, using a FDR control at
0:001, 0:01, 0:1 and 0:2 for the cognitive contrast. Furthermore, we stress
that results obtained by this measure are conditional on the chosen
threshold for significance.

In addition, one can also expect the effect of sample size to be
different depending on the amount of true activation. Furthermore, as N
increases, so does the proportion of voxels classified as statistically sig-
nificant. To circumvent this issue, we run a second procedure for the
cognitive contrast (as an additional check) to calculate ωA;B in which we
condition on the proportion of voxels being classified as active as
opposed to the chosen threshold for significance. This is referred to as
adaptive thresholding. In this procedure, the total number of voxels to be
classified as statistically significant is set a-priori, in this case at 20% of
the total number of masked voxels. We then adapt the significance
thresholding level for each group level analysis so that the percentage of
significant voxels matches this target percentage. The variable of interest
remains the overlap between images (ωA;B) while increasing the sample
size. By adapting the level of threshold for significance within each group
analysis, we can check whether we obtain similar response curves as the
regular analysis. Although this is not a valid inference procedure (the
type I error rate will be higher than 5%), this procedure allows us to
remove the effect of the proportion of significant voxels (which increases
with sample size). In other words, this strategy allows us to assess the
effect of the sample size on the delineation of spatial activation in
replication contexts, irrespective of the varying proportion of voxels
classified as significant.

2.3.2. Coherence
The second measure of interest is coherence (or concordance) of the

thresholded SPMs (Genovese et al., 1997; Liou et al., 2006, 2003; Thirion
et al., 2007). Coherence is estimated based on Cohen’s kappa (κ). It is a
measure that considers agreement over replications based on the pro-
portion of voxels that are correctly labelled as active or inactive, cor-
rected for the probability of being correctly classified by chance alone.

Starting from a binary label per voxel (1/0; active/non-active
respectively), we calculate coherence from R � 3 independent replica-
tions. Adapting the notation from Thirion et al. (2007), we obtain over
the R replications per voxel v ¼ 1; …; V an R-dimensional binary vector:
½g1ðvÞ; …; gRðvÞ�. The sum in each voxel over all replications is denoted as
GðvÞ ¼ PR

r¼1grðvÞ. Over all voxels, we assume G(v) to be a mixture
distribution of two binomials - corresponding to either the inactive or
active state of voxels.

We define π1A as the probability of a true active voxel correctly being
declared statistically significant. Conversely, we define π1I as the proba-
bility of a true inactive voxel incorrectly being classified as active. The
complements are defined as π0A ¼ 1� π1A and π0I ¼ 1� π1I . Finally, let λ
denote the proportion of truly active voxels. An overview of these pa-
rameters is given in Table 1.

Let p0 ¼ λπ1A þ ð1�λÞπ0I represent the proportion of correctly classi-
fied voxels. To adjust p0 for correct classification by chance, we first
define the probability of a voxel being declared active: π1 ¼ λπ1A þ ð1 �
λÞπ1I . Then we have pc ¼ λπ1 þ ð1 � λÞð1 � π1Þ. The values p0 and pc
naturally fit in the formula of Cohen’s κ:

rridsoftware:SCR_002823
rridsoftware:SCR_002823
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κ¼ p0 � pc
1� pc

(1)
with kappa lying between 0 (no coherence) and 1 (perfect coherence).
To estimate the parameters λ, π1A and π1I , we assume G to be inde-

pendent and identically distributed with the following density function

f
�
G;R; λ; π1

A; π
1
I

�¼ λP1

�
G;R; π1

A

�þ ð1� λÞP2

�
G;R; π1

I

�
;

where P1 and P2 are characterised by the probability mass function of a
binomial distribution.

The E(xpectation) M(aximisation) algorithm is used to estimate λ, π1A
and π1I . Full details are given in the appendix; while the NeuRRoStat
package6 provides an implementation in R. After running the EM-
algorithm, we plug the obtained estimates into equation (1) to calcu-
late κ. An illustration of coherence is given in Fig. 1.

2.3.3. Stability
Our third measure of interest probes the stability of fMRI results

(Roels et al., 2015). In this paper, we focus on clusters of voxels as the
main feature of interest to describe the relation between sample size and
stability. The latter is expressed in terms of variability of outcome met-
rics, where an increased variability indicates less stable results and is
therefore an indication for lower replicability.

We describe and quantify stability using several metrics. First, we
measure the size (in absolute number of voxels) of the clusters that are
classified as significant. We do the same for the largest cluster in each
study expressed as the proportion of total masked voxels. These metrics
are obtained from the same sampling framework as described above
(section 2.2).

Next, we measure the count of total, unique and overlapping clusters
when comparing two independent replications. We use two definitions of
overlapping cluster: a lenient and a conservative one. In the first, a cluster
is replicated as soon as one voxel from a given cluster overlaps with a
voxel from a cluster in the corresponding replication. In the second, a
cluster is replicated if at least 50% of the voxels in a given cluster overlaps
with a cluster in the corresponding replication. To see how much overlap
there is between clusters, we also calculate the proportion of overlapping
clustered voxels in both replications. Finally, wemeasure the variability of
the number of clusters that are declared significant as well as the vari-
ability of the cluster size (in number of connected voxels). Results are
more stable when the variability is low.

An overview of all measurements, their category, and the corre-
sponding feature selection for fMRI results, is given in Table 2.

3. Results

To begin with, we stress that the relationship between sample size
and our measurements of replicability depends on the experimental
paradigm or chosen contrast therein. We observe better replicability for
Table 1
Parameters of a mixture distribution where voxels correspond either to the dis-
tribution characterised by the inactive or active state. A high coherence of in-
dependent replications is indicated by a separation of the mixture distribution
into the diagonal parameters compared to the off diagonal parameters.

DECLARED

Active Inactive

TRULY Active π1A π0A λ

Inactive π1I π0I 1� λ

6 See: https://github.com/NeuroStat/NeuRRoStat.
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tasks such as solving math equations, watching angry faces and the
monetary incentive delay task (at least for one contrast). A lower repli-
cability is associated with the Stop signal contrasts. For the latter, a
higher statistical power (i.e. sample size) is needed. It is therefore
impossible to provide an absolute description of the replicability of fMRI
results. The results presented here will inevitable depend on the exper-
imental paradigm and contrast. Our results do demonstrate that repli-
cability for any experimental paradigm/contrast generally increases with
sample size.

In Fig. 2, we present the unconditional test-retest reliability of vox-
elwise inference of independent replications of fMRI results against
increasing sample size for all paradigms. We observe a median (over all
resampling iterations) ρ between ½0:304;0:80� over all tasks when N ¼
50. Furthermore, the maximum median value of ρ for the cognitive,
faces, MID (Hit No Win), MID (Large Win > Small Win) contrast equals
0:976 ðN ¼ 690Þ, 0:982 ðN ¼ 700Þ, 0:974 ðN¼ 700Þ & 0:888 ðN¼ 700Þ
respectively suggesting ρ asymptotically approaching 1 for these tasks.
However, for both contrasts of the Stop signal task, we observe a
maximum median value of the correlation of 0:86 ðN ¼ 700Þ, suggesting
a higher sample size is needed.

In Fig. 3 (all contrasts) and 4 (only for the MATH > LANGUAGE
contrast), we plot the test-retest reliability conditional on the chosen
threshold for significance against increasing sample size. First, we fix the
false discovery rate at 0:05 and retain that rate over all sample sizes
(Fig. 3). As expected, the overlap increases with the sample size. How-
ever, we need at least N ¼ 200 to observe a range of ½0:098;0:744�
corresponding to the median (over all resampling iterations) overlap
between two replications over all tasks/contrasts. Furthermore, we only
reach a maximum percentage of overlap between ½0:493;0:893� with
N 2 ½430; 700�. Note that the variability of the overlap estimates de-
creases as the sample size increases. Furthermore, since the overlap is
conditional on the chosen threshold for significance, we also investigated
the same measurement when controlling the FDR at 0:001, 0:01, 0:1 and
0:2 using the MATH > LANGUAGE contrast. We observe a main effect
where liberal thresholds correspond to slightly higher values for the
overlap over the entire range of N. Figure A.7 in the appendix shows the
effect of varying FDR thresholds, with the overall trends being very
similar to those of the cognitive task in Fig. 3.

Fig. 4 shows results for the adaptive thresholding strategy (focussing
on the cognitive task), where the number of significant voxels in each test
is restricted to 20% of the total number of masked voxels. As expected,
the overlap at the lowest sample sizes is higher compared to the previous
setting. For instance, the median omega equals 0:303 forN ¼ 20 (with a
median uncorrected threshold of P � 0:156). Again, we observe a
gradually increasing overlap with increasing sample size and a maximum
median of ω ¼ 0:794 at N ¼ 700 (median threshold P � 0:00001).
These results suggest that a high number of subjects is needed to replicate
the voxelwise spatial shape of activation.

The final measurement to assess replicability of voxelwise inference is
the coherence (κ) of fMRI results (Fig. 5). We compare results of different
images that are all thresholded such that the FDR remains constant at
0:05. As with the previous measurements, κ increases with increasing
sample size. We observe a median coherence � 0:80 when N ¼ 180 for
both the cognitive and faces task. The maximum median κ for the faces
task, the Stop signal task (Stop Failure > Stop Success), Stop signal task
(Stop Success > Stop Failure), the MID task (Hit No Win) and MID task
(Large Win > Small Win) equals 0:865 ðN ¼ 460Þ, 0:774 ðN ¼ 460Þ,
0:664 ðN ¼ 460Þ, 0:864 ðN¼ 460Þ & 0:774 ðN¼ 460Þ respectively. The
highest median κ (0:894) is observed at N ¼ 460 for the cognitive task.
Note that we observe a considerable gain in κ when N is low. Indeed, it is
possible to fit a continuous piecewise linear regression model where
break-points can be estimated using an iterative optimization technique
(Muggeo, 2003). Fitting this model on the observed values for κ for the
cognitive task yields a break-point at N � 60. Under 60, an increase of
10 subjects in the group analysis is associated with an average
improvement of 0:129κ, while above 60 this becomes 0:005κ per 10

https://github.com/NeuroStat/NeuRRoStat


Fig. 1. Illustration of R ¼ 10 thresholded SPMs
with on the X-axis the result of summing the bi-
nary images (range 0–10) and on the Y-axis the
number of voxels. The illustration is shown for
brain images with any dimension and therefore
no values are plotted on the Y-axis. The left panel
shows a perfect agreement over the labels of each
state of the voxel (active/inactive, κ ¼ 1). A more
likely scenario is shown in the right panel where
a mixture two binomial distributions can be fitted
to the observed data (κ ¼ 0:21Þ. Annotated
parameter values correspond to the likelihood
function.

Table 2
Overview of the measurements for test-retest reliability, stability and the
coherence of results of an fMRI data-analysis. It is also indicated whether the
measurement depends on a threshold for statistical significance and whether it is
used for voxel- or clusterwise inference.

Measurement Calculation Category Feature

Test-retest
reliability

Pearson’s Product-Moment
Correlation Coefficient (ρÞ

Unconditional Voxel

Test-retest
reliability

ωA;B ¼ VA;B

VA þ VB � VA;B

Conditional Voxel

Coherence κ ¼ p0 � pc
1� pc

Conditional Voxel

Stability (Absolute/relative) average
cluster size

Conditional Cluster

Number of (unique) clusters Conditional Cluster
Proportion of overlapping voxels
in a cluster

Conditional Cluster

Variability of cluster count Conditional Cluster
Variability of cluster size Conditional Cluster

Fig. 2. Pearson product-moment correlation coefficient between two indepen-
dent replications of non-thresholded fMRI statistical parametric maps under
increasing sample size. Solid line represents the median value over all resam-
pling iterations. The height of the boxes represents the distance between the
third and first quantile over all iterations. Results indicate a median correlation
higher than 0.8 between replications at sample sizes starting from N ¼ 80 for the
cognitive, faces and MID (Hit No Win) task. We observe a maximum value for
the Stop signal paradigm of 0.860 (N ¼ 690) for both contrasts (the correlation
is identical between reverse contrasts as the t-values are identical, only the sign
differs and is therefore irrelevant in this case).
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subjects. Note that for the cognitive, faces andMID (Hit NoWin) task, the
effect of sample size seems to reach a plateau below 1. Also, we observe a
low variability between the different estimates of κ from all the resam-
pling runs for each sample size.

Moving from the voxelwise dimension to the cluster dimension, Fig. 6
shows the stability of fMRI results for the MATH > LANGUAGE contrast.
To condense the amount of results, we refer to the appendix for figures
containing the results of the other contrasts. Generally, the sample size to
response curves are similar. Differences are mainly observed in the ab-
solute values.

First, we observe a convergence in the size and number of clusters as
the sample size increases. This is shown in panel A and E of Fig. 6. The
average size (in number of voxels) of the significant clusters in a given
fMRI data-analysis stabilizes or increases only marginally with sample
size. Furthermore, we observe on average 1:02 significant clusters at
N ¼ 700 (in only two analyses out of 100, we found an additional small
significant cluster). Moreover, this single cluster corresponds on average
to 31% of the masked brain (panel B from Fig. 6). Interestingly, in some
analyses at N ¼ 100 it is already possible to observe these large clusters.
This is reflected in the gap in panel A and B of Fig. 6. Second, the vari-
ability on the number of clusters and their corresponding size at first
6

increases with the sample size (panel C and D of Fig. 6). However, for
N � 100 in case of the number of clusters and N � 200in case of the size
of clusters, the variability then decreases again, which corresponds to a
higher stability. The same trend is observed in the other contrasts. Third,
as sample size increases, the average number of clusters that are observed
in both the replications increases at first. It then converges to the average
total number of significant clusters as the latter decreases to 1 significant
cluster per analysis. This is true for both definitions of replicated clusters.



Fig. 3. Overlap under increasing sample size between two independent repli-
cations of thresholded fMRI studies. Control for multiple testing is done at the
voxelwise False Discovery Rate of 0.05. Solid line represents the median value
over all resampling iterations. The height of the boxes represents the distance
between the third and first quantile over all iterations. Results indicate vari-
ability between and within experimental paradigms.
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When comparing these definitions, we observe that a higher sample size
is needed to replicate clusters if at least 50% of a cluster has to be
observed at the same location in a given replication. Furthermore, only
for N � 50 do we observe a higher number of replicated versus non-
replicated clusters. This is not the case when using a lenient definition
of replicated clusters. In contrast to the individual voxel results, we
observe a better reliability when reporting clusters of activation when
using the lenient definition. For instance, once N � 180, it is possible to
replicate almost every cluster (there are no unique clusters). When using
a conservative definition, we need N � 570 to replicate almost every
cluster. Note, if we calculate the proportion of clustered voxels that
overlap in both the replications (panel F in Fig. 6), we observe values
7

similar to the voxelwise percent overlap of activation. The median pro-
portion overlapping clustered voxels equals 0:645 when N ¼ 200 and
themaximummedian proportion equals 0:799 atN ¼ 700.With respect
to the other tasks, we observe higher values for stability when the
experimental paradigm results in larger areas of activation. For instance,
the MID (Hit No Win) task results in clusters with a size over 60% of the
masked brain at the highest sample size. Moreover, there are close to zero
non-overlapping clusters over N ¼ 100. Both the Stop signal contrasts on
the other hand result in a high number of smaller clusters (the largest
clusters entails approximately 10% & 18% of the masked brain at N ¼
700) which results in lower values for the stability.

Finally, we provide the range of the values over all contrasts for each
measurement at N ¼ 30. This corresponds roughly to the median
sample size of single-group fMRI studies in 2015 (Poldrack et al., 2017).
For N ¼ 30, we observe a median (over all sampling iterations) corre-
lation ρ 2 ½0:203; 0:709�, a median percent overlap of activation ω 2
½0;0:302� when the FDR is controlled at 0:05 and a median coherence
κ 2 ½0;0:504�. Averaged between both independent replications in each
task, we observe a median total number between ½0:75;45:8� significant
clusters. The lower bound is observed in the Stop signal task (Stop Suc-
cess > Stop Failure), while the upper bound is observed in the faces task.
When using a lenient definition of overlapping clusters (i.e. only voxel
found in both clusters), then we observe a median between ½0;11:5�
overlapping clusters and a median between ½0;34:8� non-overlapping
clusters. When using a conservative definition (i.e. at least 50% of the
voxels within a cluster overlap with the corresponding replication), then
we observe a median between ½0; 6:5� overlapping clusters and a median
between ½0:75;38:8� non-overlapping clusters. The observed median
proportions of overlapping voxels in a cluster between both replications
are between ½0; 0:33�.

4. Discussion

The primary aim of this paper was to replicate and extend previous
empirical assessments of replicability of fMRI results. We used data from
1400 subjects from the IMAGEN project in a subsampling approach to
investigate the role of sample size (i.e. essential to obtain sufficient sta-
tistical power). Participants were involved in four types of experimental
paradigms (i.e. a cognitive task, watching angry faces, a monetary
Fig. 4. Overlap (in triangles) under increasing
sample size while keeping the number of signifi-
cant voxels fixed at 20%. The overall pattern is
similar to applying the same significance thresh-
olding level over all sample sizes (MATH >

LANGUAGE). The dashed lines represent the
median overlap when the average significance
level equals P � 0.001, uncorrected for multiple
testing. Thus, we observe in this database a me-
dian ω ¼ 0:73when we have N ¼ 390 and apply a
(non-recommended) conventional significance
thresholding level of P � 0.001.



Fig. 5. Coherence in categorizing voxels into true active or true inactive states
over R independent replication studies while increasing the sample size. The
number of independent studies ranges from 140 (N ¼ 10) to 3 (N ¼ 460). Solid
line represents the median value over all resampling iterations. The height of the boxes
represents the distance between the third and first quantile over all iterations. We
observe a median value for κequal to 0.80 when N ¼ 180 for the cognitive and
faces task and N ¼ 250 for the MID (Hit No Win) task. The maximum value for
the Stop signal task equals 0.774 (N ¼ 460), Stop Failure > Stop Success.
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incentive delay task and a Stop signal paradigm). We used independent
replications to assess replicability in a multidimensional framework.
Furthermore, we quantified replicability using three evaluation mea-
surements: (un)conditional test-retest reliability, coherence and stability
of fMRI results.

First we observe variability in terms of the degree of replicability
depending on the experimental paradigms and chosen contrast. An fMRI
task resulting in larger areas of activation is associated with higher values
on our measurements of replicability. We hypothesize that more subjects
are needed to obtain replicable results for experimental paradigms
associated with small effect sizes and/or small areas of activation.
Interestingly, previous research on activation reliability in the MID
paradigm showed higher values for test-retest reliability in a large win
condition (Wu et al., 2014). In our study however, we observe higher
values for replicability in the condition where participants receive no
gain. In addition for the Stop signal task, we observe higher values for
replicability in the Stop Failure > Stop Success condition compared to its
reverse contrast. As pointed out by a reviewer, this is a surprising
observation as successful stopping is associated with a relatively cir-
cumscribed neural circuit, while failing to stop is probably not. Since
participants could fail to stop for many reasons (e.g. subject wanted to
stop but responded too late or did not pay attention), we would expect
more diverse activation patterns.

With respect to our various measurements of replicability, we note
the following key observations. First, we show that the correlation be-
tween two images containing the test-statistics from a test and inde-
pendent replication can be relatively high even at small sample sizes (e.g.
lower than 70 subjects). This is consistent with earlier results of Turner
et al. (2018) who observed values in the same range. Note that Sochat
et al. (2015) also demonstrate relatively high correlations between
test-statistics of thresholded SPMs. In this work, we thus extend this
observation to complete images.

A high test-retest reliability between full (i.e. non-thresholded) im-
ages is important for several applications in neuroimaging. In decoding
studies using for instance multivariate pattern classifiers (Haxby et al.,
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2014), the goal is not only to achieve a high prediction accuracy but also
to evaluate the spatial patterns underlying the classification accuracy
(Conroy et al., 2013; Poldrack et al., 2009). Our results suggest that
replicability of these spatial patterns is likely to be acceptable.

Interestingly, the replicability of thresholded images, using only bi-
nary values (i.e. activated or not) can be poor at common fMRI sample
sizes (N� 30). This is indicated by the low overlap of activation between
replications for the contrasts considered in our study. Furthermore, when
enforcing the same proportion of active voxels across analyses by means
of adaptive thresholding, we demonstrate the same poor relation be-
tween sample size and the delineation of the approximated true spatial
pattern of activation. The same observation regarding the overlap values
is found in Turner et al. (2018) who used subjects from the Human
Connectome Project. In the latter database however, subjects can be
genetically related to each other which potentially influences replica-
bility. Multiple factors could explain this pattern including the effect size
of interest, characteristics of the studied population (13–15 years old
adolescents), design of the experiments (e.g. some tasks are based on a
limited number of trials), difficulties with quality control when working
with a large database, the signal-to-noise ratio of fMRI data etc. More
details regarding these factors are given in the paragraph discussion
limitations of this study below.

Next, even though the overlap between thresholded images can be
poor, we observe a better performance in terms of coherence between
independent replications. This is expected as coherence is measured
using more than 2 replications (i.e. from 3 to 140), while overlap is
measured using only pairs of images. Furthermore, the coherence is
measured using both active and inactive voxels. Note that we observe
lower values for the coherence than Thirion et al. (2007). For instance, at
N � 30the median value κ ¼ 0:80 in the latter, while we observe only a
median κ ¼ 0:504 at best at the same sample size. This difference may be
due to the difference in type of cognitive task, experimental paradigms or
statistical analysis. For instance, Thirion et al. (2007) show how the
coherence declines with more conservative thresholding. Indeed, while
Thirion et al. (2007) used an uncorrected P � 0:001 level for statistical
significance, we corrected for multiple comparison at a false discovery
rate of 0:05. For larger sample sizes, this is substantially more conser-
vative than thresholding at an uncorrected P � 0:001.

Finally, while replicability of individual voxels can be low at typical
sample sizes, we observe a better performance when looking at clusters of
voxels. Although initially, the variability of the number and size of
clusters increases with increasing sample sizes, we have shown that it
stabilizes for higher sample sizes. As can be expected, the number of non-
replicable clusters is low if one uses a lenient definition of non-replicable
clusters. That is when at least one voxel from the cluster overlaps with a
cluster in a given replication. If one considers a cluster only replicated if
at least half of it is observed in a given replication, then more subjects are
needed. This is true for any experimental paradigm. Moreover, these
results potentially depend on the number and size of selected clusters.
Small clusters of activation (or highly variable cluster sizes) are more
prone to be non-replicable. Furthermore, it has been shown that para-
metric statistical methods relying on cluster-wise inference are associ-
ated with an inflated false positive rate (Eklund et al., 2016). For this
reason, Eklund et al. (2016) suggest using non-parametric methods such
as permutation testing (Brammer et al., 1997; Bullmore et al., 1999;
Nichols and Holmes, 2002; Winkler et al., 2014). We have not investi-
gated the effect of using these methods.

In this paper, we focused on the relation between replicability and
statistical power and demonstrate potentially low voxelwise replicability
due to low statistical power. However, a lack of replicability is not the
only problem associated with low statistical power. There is (1) an
increased probability of a positive research claim being false (Ioannidis,
2005), (2) an overestimation of the reported effect sizes compared to the
true effect size (Cremers et al., 2017) and (3) an increased risk of missed
effects (i.e. false negatives) which potentially induces publication bias
(Acar et al., 2018; Rosenthal, 1979; Sterling, 1959). Note that the most



Fig. 6. Results on stability of fMRI data analysis inference on cluster-level (MATH > LANGUAGE). Panel A shows the average cluster size for a given fMRI group
analysis at each sample size. Panel B shows the proportion out of the total number of masked voxels of the largest cluster (separated for both replications for
visualization purpose). Panel C and D display the standard deviation respectively on the number of clusters and on the size of the largest cluster. The top 4 panels show
how the number and size of significant clusters stabilize as the sample size increases. Note that panel A to D do not explicitly compare independent replications of
group analyses. In panel E and F, replications are compared pairwise. For panel E, we calculate the total number of clusters and then split between the number of
overlapping versus non-overlapping clusters. We separate between two definitions of overlapping clusters: at least one voxel is overlapping between both clusters (A)
or at least 50% of both clusters are overlapping (B). Counts are averaged over the two replications. The curves are obtained by fitting a generalized additive model
with cubic splines. In panel F, we look at the proportion of overlapping voxels in a cluster. Clusters of voxels converge to the same spatial location and shape as the
sample size increases.
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optimistic rate of missing contrasts in the fMRI literature is estimated to
be 6/100 (Samartsidis et al., 2017). However, this estimate is (1) based
on one database and (2) corresponds to missing studies where no single
effect in the entire masked brain is observed. Another consequence of
9

underpowered studies is the detection of some but not all true positive
voxels within a single fMRI study. In other words, even with low power
one is likely to find at least one significant voxel (Cremers et al., 2017)
which is not sufficient for fMRI studies to be replicable.
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Several solutions to increase the sample size have been suggested
(Cremers et al., 2017; Poldrack et al., 2017). To begin with, it is advised
to run power analyses at the design phase of fMRI studies. Some tools
exist to calculate either the power to detect a true effect in a region of
interest (Mumford and Nichols, 2008) or when designing a whole brain
analysis (Durnez et al., 2016). Second, data sharing initiatives such as
NeuroVault7 (Gorgolewski et al., 2015) create the opportunity to pool
data into meta-analyses (see Salimi-Khorshidi et al., 2009; Wager et al.,
2007) or mega-analyses. By sharing data, it might be possible to increase
the power of subsequent studies. Finally, if increasing the sample size is
infeasible, it is possible to complement statistical analyses with sensi-
tivity analyses (Wilke, 2012). The idea here is to iterate the statistical
analysis but systematically remove and replace r subjects. The sensitivity
can then be calculated using the percent overlap of activation. Another
approach presented by Liou et al. (2003) and Liou et al. (2006) is to
create so called “reproducibility maps” using multiple sessions or runs of
the same participants in an experiment.

Note that our definition of replicability concerns the generalizability
of scientific claims as different data are used to answer the same research
question. A vast number of studies (e.g. Gorgolewski et al., 2013; Lee
et al., 2010; Machielsen et al., 2000) have investigated the reliability of
fMRI results over repeated measurements using a small number of sub-
jects (N 2 ½1; …; 18�). The research question in this case corresponds to
the ratio of within- versus between-subject variability where one is
interested in partitioning and quantifying the total observed variability
into both components. We have not addressed this issue in the current
paper. Another related research question is to investigate whether indi-
vidual differences in behaviour can be used as a predictor for replicability
in task-based fMRI results.

To end the discussion, we mention some important limitations of this
study. First only a limited number of trials are used in the design of the
experiments contained in the IMAGEN database. The inter-subject vari-
ability of such a fast paced experiment was investigated in (Pinel et al.,
2007). Although these researchers could reliably detect most peaks of
activation when compared to longer scanning sequences, improved
measurements of replicability can be expected with longer scanning se-
quences. This has been demonstrated in recent work by Nee (2018) who
reported an increase of replicability of fMRI results with the duration (i.e.
number of time points) of the scanning sequence. An important research
question is therefore the interaction between number of time points in
the scanning sequence and sample size on replicability of fMRI results.
Furthermore, the replicability of fMRI results will also depend on other
factors such as the studied population, type of (cognitive) task, etc. It is
not unlikely to observe even more different response curves between the
sample size and our measurements of replicability. For instance, there
may be a higher replicability when using college-aged participants rather
than adolescents. Potentially, adolescents are associated with a greater
variability in terms of brain development. This in turn could influence
replicability between sets of participants from the same age. In addition,
as we only use the pre-processed data, we are not able to investigate the
effect of design choices or various pre-processing steps on fMRI replica-
bility. For these reasons, we are unable to provide an absolute number as
a required sample size for task-based fMRI replicability.

Second, as data are anonymized before the start of our analysis we are
unable to investigate the proportion of between-site variability. In the
literature, there are mixed results regarding the influence of the scanner/
site. In some studies, substantial between-site variability is observed
(Rath et al., 2016) while in others only marginal variability is observed
(Costafreda et al., 2007). Furthermore, it has been shown that
between-site reliability increases as the number of sessions increases
(Friedman et al., 2008). It should be noted that the influence of inter-site
variability will be averaged out in our study as we sample subjects over
all scanning sites. Therefore, our measurements of replicability could also
7 www.neurovault.org.
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change depending on the effect of between-site variability on the ability
to replicate results.

Third, our results are based on only four experimental paradigms for
which we did not explore all possible contrasts representing these par-
adigms (Thirion et al., 2007; Turner et al., 2018). For instance, in the
Stop signal paradigm, we were not able to include a contrast with a Go
condition. Given the vast literature on this contrast, we hypothesize re-
sults will be better when isolating a Stop process. Furthermore, Thirion
et al. (2007) observe variability in their reliability analysis related to the
statistical model used in the group analysis. However, we compared
current results to those obtained using ordinary least squares and did not
observe substantial differences (results not shown).

In conclusion, we observe over experimental paradigms and contrasts
an effect of sample size and differences between voxel and cluster level
analyses in the ability to replicate fMRI results. To our knowledge, the
latter has not been demonstrated before. We hope these results further
foster designing fMRI studies with appropriate sample sizes and ulti-
mately lead to more replicable scientific findings.
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