

Model-based investigation of the performance of a novel aeration system in the Dommel river

Watermatex 2019

A. Amaral^{1,2,3}, U. Rehman^{1,4}, T. Flameling⁵, N. Nicolaï^{1,3}, Y. **Amerlinck¹ and I. Nopens¹**

¹BIOMATH, Ghent University, Ghent, Belgium ²MARETEC, Universidade Lisboa, Lisbon, Portugal ³model*EAU*, Université Laval, Québec City, Canada ⁴AM-TEAM, Ghent, Belgium ⁵Waterschap de Dommel, Boxtel, The Netherlands

Background

<u>Problem:</u> Discharges of > 200 combined sewer overflows (CSOs) + Eindhoven WWRP \rightarrow Low dissolved oxygen concentration (DO) in the Dommel river, The Netherlands.

Results

Nominal case

Almost vertical aeration plume with limited mixing on the sides.

Solution: The Waterboard De Dommel, The Netherlands is installing additional aeration systems at different locations in the Dommel river.

Objectives

Study the impact of a novel aeration system on DO in a stretch of the Dommel river, just upstream of the Eindhoven WWTP.

Figure 3 – DO of the first skid under nominal conditions. Top: Axial plane. **Bottom: Longitudinal plane.**

Comparison	nominal	case	with	the	different
scenarios					

Scenario	DO
Wet weather	\checkmark
Supersaturated	$\uparrow \uparrow \uparrow$

Figure 1 – Location of the studied river stretch (white): 1 – inlet; 2 – outlet; 3 – Eindhoven WWTP; Sk1, Sk2, SK3, Sk4, and Sk5 – position of the 5 aeration skids that compose the aeration system.

Aeration system

- 5 aeration skids at 10 m from each other. Each of them include 4 flowmixers (Pathema BV, The Netherlands).
- A saturated water jet is released from the flowmixers together with air bubbles.

Micro bubbles

1 & more spatially uniform

Figure 4 – DO profile. Top left: Nominal case. Top right: Wet weather. Bottom

Figure 2 – Right: Aeration skid. Left: Flowmixer.

CFD scenarios

Name	Weather conditions	DO of the water jet [mg/L]	Average bubble size [mm]
Nominal case	Dry	9.1	1.0
Wet weather	Wet	9.1	1.0
Supersaturated	Dry	35.0	1.0
Micro bubbles	Dry	9.1	0.1

left: Supersaturated. Bottom right: Micro bubbles.

Conclusions

- DO stratified pattern observed. lacksquare
- **Exact knowledge of the actual DO of the water jet and bubble** size distribution is highly important to obtain accurate CFD predictions.
- Benefits to use CFD to understand the impact of the aeration system in the river is undeniable.

More info

andreia.amaral@gci.ulaval.ca; ingmar.nopens@ugent.be

