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a voltage and current 
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This paper presents the Plug-Load Appliance Identification Dataset (PLAID), a labelled dataset 
containing records of the electrical voltage and current of domestic electrical appliances obtained 
at a high sampling frequency (30 kHz). The dataset contains 1876 records of individually-metered 
appliances from 17 different appliance types (e.g., refrigerators, microwave ovens, etc.) comprising 
330 different makes and models, and collected at 65 different locations in Pittsburgh, Pennsylvania 
(USA). Additionally, PLAID contains 1314 records of the combined operation of 13 of these appliance 
types (i.e., measurements obtained when multiple appliances were active simultaneously). Identifying 
electrical appliances based on electrical measurements is of importance in demand-side management 
applications for the electrical power grid including automated load control, load scheduling and non-
intrusive load monitoring. This paper provides a systematic description of the measurement setup and 
dataset so that it can be used to develop and benchmark new methods in these and other applications, 
and so that extensions to it can be developed and incorporated in a consistent manner.

Background & Summary
The Plug-Load Appliance Identification Dataset (PLAID) is a public dataset consisting of voltage and current 
measurements from different electrical household appliances sampled at 30 kHz. All appliances are monitored 
individually: they are submetered and the data traces captured over a few seconds include the activation of the 
appliances. Additionally, some of them are also monitored when active simultaneously: their aggregated consump-
tion is measured and the data captured over a few minutes contains the activation and deactivation of a subset 
of the appliances. Activations and deactivations are characterized by events in the current and voltage signals.

In total, 17 different appliance types (e.g., refrigerators, microwave ovens, etc.) are measured in 65 different 
locations for the submetered data, and 13 different appliance types (a subset from those used for the submetered 
data) are measured at one single location for the aggregated data. Not all appliance types are available in all dif-
ferent locations. In total, the dataset contains 330 different appliances (i.e., different appliance models for each of 
the 17 different appliance types). For some appliances (approximately 10% of them), multiple operating modes 
were monitored.

The dataset has grown over the years1,2: published in 2014 and3,4 published in 2017 contain, respectively, 55% 
and 38% of the currently available submetered data. Note that some of the original measurements from2 and4 have 
been removed in this version. Specifically, measurements were removed if the following conditions on voltage (V) 
and current (I) were not met in steady state:
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•	 Compiles all previous PLAID dataset releases into a single reference dataset;
•	 Augments the available submetered data with additional 7% of data;
•	 Adds aggregated data measurements;
•	 Provides all data and metadata into a unified and structured format for a more convenient usage.

Moreover, the added appliances and location are different as compared to previous versions, and include new 
appliance types. Our goal is to continuously expand this dataset by incorporating additional measurements of 
appliances at different locations. To facilitate this goal, this paper describes the technical procedure to consistently 
replicate the setup. The aim of this paper is thus to advocate and streamline the usage and potential extension of 
PLAID as a publicly available resource for NILM research for both high-frequency submetered and aggregated 
data. The data described in this paper is accessible at5.

PLAID can be used in two ways. First, the high resolution submetered appliance measurements (30 kHz) can 
be used to automate the labelling of submetered data, enabling the possibility for appliance classification (i.e., 
being able to classify appliance types from just voltage and current measurements). This knowledge is interesting 
for smart plugs6 that are used for smart grid and building-level energy management applications such as auto-
mated load control7 and load scheduling8. In addition to appliance classification, this data can also be used to 
create an appliance power consumption inventory. As the submetered data is captured in different houses, the 
generalization of the labelling methods across houses can be tested. Second, the high resolution aggregated appli-
ance measurements (30 kHz) can be used to learn how to dissagregate the total current consumption measured 
at the main feed of a household at high frequency. This is known as non-intrusive load monitoring (NILM)9. Two 
important steps in NILM are event detection10 and load identification11. This dataset provides the means to learn 
and implement both tasks on high frequency data. The obtained information can also be used to identify energy 
consumption and to monitor the deterioration of appliances.

Table 1 shows similar datasets that are publicly available. PLAID is distinct because it contains submetered and 
aggregated data sampled at a frequency higher than 1 Hz. Only two other datasets (WHITED12 and COOLL13) 
contain submetered data sampled at a frequency higher than 1 Hz. All the others, like ACS-F214 and Tracebase15, 
contain submetered data sampled at a frequency lower than 1 Hz. From these last datasets, only two, i.e., REDD16, 
and UK-DALE17, contain aggregated data sampled at a frequency higher than 1 Hz. HELD118 contains aggregated 
measurements at a frequency of 4 kHz, where up to ten devices can be switched on/off simultaneously. All the 
other datasets, i.e. DRED19, Dataport20, REFIT21 and AMPds222 contain aggregated data sampled at a frequency 
lower than 1 Hz.

Methods
First, the hardware used to monitor the appliances is described. Next, we describe the selected appliances and 
their occurrence in the different households. The next two subsections explain how the appliances are subme-
tered and aggregated. Finally, known issues and details on the data and code availability are given in the last 
subsections.

Monitoring set-up. All electrical measurements were collected using a National Instruments (NI-9215) data 
acquisition card (https://www.ni.com/data-acquisition/). The NI-9215 includes four simultaneously sampled 
analog input channels paired with a 16-bit analog-to-digital converter (ADC) that we use to collect voltage and 
current measurements. These are stored in a computer via a USB connection, as shown in Fig. 1.

To measure the different appliances, these were connected to the power strip. This power strip has a negli-
gible amount of power consumption as a small lamp was burning indicating the activity of the power strip. As 

Sampling Frequency
Appliance 
operating 
modes

# of 
buildings

Submetered Aggregated

<1 Hz ≥1 Hz <1 Hz ≥1 Hz

PLAID ✓ ✓ multiple 65

WHITED12 ✓ on, off

COOLL13 ✓ on, off

ACS-F214 ✓ on, off

Tracebase15 ✓ on, off

REDD16 ✓ ✓ on, off 2

UK-DALE17 ✓ ✓ on, off 6

DRED19 ✓ ✓ on, off

Dataport20 ✓ ✓ on, off 1200+

REFIT21 ✓ ✓ on, off 20

AMPds222 ✓ ✓ on, off

HELD118 ✓ on, off

Table 1. An overview of PLAID and similar datasets in terms of submetered data sampled at a frequency <1 Hz 
or ≥1 Hz, aggregated data sampled at a frequency <1 Hz or ≥1 Hz, different appliance operating modes and the 
number of different buildings.
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a consequence, this small load is measured during the data collection. From this power strip, the current and 
voltage are measured.

Current is measured with a Fluke i200 AC current clamp (https://en-us.fluke.com/products/all-accessories/
Fluke-i200s.html) that has a cut-off frequency of 10 kHz, allowing us to sample signals with frequency content up 
to 5 kHz according to the Nyquist-Shannon sampling theorem23. These current clamps have a measuring range 
of 0.5 to 240 A, with less than 3.5% + 0.5 A accuracy in the 48–65 Hz range, and less than 6° phase shift for the 
amplitudes of interest in this study. It is important to note that if the current is sampled at a high frequency, it is 
necessary to have a clamp with a high cut-off frequency. Some of the existing datasets with high sampling fre-
quency did not account for this (e.g., BLUED24 used a current transformer with a cut-off frequency of ~300 Hz). 
The Fluke i200 is connected to the NI-9215, see Fig. 1.

Voltage is measured with a Pico-TA041 Oscilloscope probe (https://www.picotech.com/accessories/
high-voltage-active-differential-probes/25-mhz-700-v-differential-probe). The TA041 is an active differential 
probe suitable for high common-mode voltage measurement applications up to ±700 V (DC + peak AC). It can 
be used with signal frequencies of up to 25 MHz. Because the active probes significantly reduce capacitive loading, 
they are able to achieve fast signal measurements with much better signal fidelity making them well suited for 
high frequency measurements. As with the current clamp, the Pico-TA041 is connected to the NI-9215, see Fig. 1.

The NI-9215 converts the analog voltage and current signals into digital signals and sends them via an 
USB-connection to a computer. The digital signals have an effective resolution of approximately 0.03 A for 
current, and 0.03 V for voltage. Libraries for different programming languages (e.g., Python, C++, MATLAB, 
and LabVIEW) can be used to communicate with the NI-9215 under the condition that the correct drivers are 
installed. We used MATLAB and LabVIEW and stored the data in comma-separated values (CSV) files. Reference 
scripts for replicating this process are also made available as part of the dataset.

Though the specific hardware used in our instrumentation setup can be costly, low-cost alternatives with sim-
ilar or better specifications have become available in recent years (e.g.25–32).

Selected homes and appliances. In total, 17 appliance types were measured at 65 locations. These include 
one lab environment and 64 households. These households were recruited via an email campaign and mainly 
consist of graduate student homes. All the households are located in Pittsburgh, Pennsylvania, USA.

Table 2 gives an overview of the 17 appliance types, their occurrence in the 65 locations (number of appli-
ances) and the number of times these were monitored/activated (number of instances), both for the submetered 
and aggregated case. For example, for the refrigerator appliance type, 28 physically different refrigerators are 
monitored separately multiple times, leading to 100 instances of this appliance type. One of these refrigerators 
is monitored 79 times when other appliances were active or were turned on. For six appliances types that were 
located in the lab environment, only one appliance is monitored. Those appliances were also used to generate the 
aggregate measurements. Note, that there is less data of the blender appliance type compared to the other appli-
ance types, as it broke down in the middle of the experiment.

All the appliances were activated by connecting them to the power strip and turning on the switch if present. 
However, the following remarks need to be given concerning activation assumptions:

•	 The blender was kept empty during the experiments.
•	 The refrigerator was activated after it warmed up by opening the door. This ensured the motor would activate.
•	 An unknown mode of the refrigerator was activated by plugging in the refrigerator twice shortly after each 

other. The second time, the unknown mode is activated.
•	 The soldering iron has a two-phase activation process: around 6 seconds after activation, there is an increase 

in power consumption. The two events are stored in two separate files, both with the label ‘soldering iron’.

Submetered appliances. Each time an appliance is activated, a state transition (event) will happen10. When 
the appliances are monitored individually, i.e., submetered, the activation is measured together with some sec-
onds of the steady state following this activation. This measurement captures the transient start-up containing 
information of the present electrical components and possible present inertia. The deactivation of the appliances 

Data Acquisition Card
NI-9215

Voltage Signal Current Signal

Current Clamp
Fluke i200 AC

Oscilloscope Probe
Pico-TA041

Power Line

Fig. 1 The measurement set-up for capturing the data.
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is not measured because then the electrical circuit is disconnected and appliance specific information is no longer 
present. The recorded steady state duration ranges from 1 to 20 seconds.

Besides monitoring the activation of the appliances, the following meta-data is stored, when available:

•	 Manufacturing data of the appliance: the brand, manufacturing year, model number, appliance type (first 
column of Table 2), load type, and the rated current, voltage and power consumption values.

•	 Information concerning the data capturing process: the time of data collection expressed in month and year, 
the sampling frequency, the total measurement duration, and the specific operating mode that was measured.

•	 The location identifier, which is a string (e.g., ‘house5’ or ‘CMU lab’).

The current and voltage measurements themselves are stored in separate CSV files. The measurement is stored 
in two columns, one for the the current expressed in ampere and the other one for the voltage expressed in volt. The 
precision of the numbers is three decimals. As the sampling rate was kept constant, there was no need to associate 
each measurement with a timestamp. The time that has passed relative to the beginning of the file can be calculated 
using the sampling frequency (e.g., for a frequency of 30 kHz, the 30000th point occurs one second after the start).

The meta-data is stored in one JavaScript Object Notation (json) file which contains for each measurement 
an attribute-value pair with the CSV file name of the measurement file, as attribute and the meta-data of the 
measurement in question as the value. The meta-data itself is also structured as attribute-value pairs as described 
in Box 1.

Appliance Submetered

Operating modes

Aggregated

type load # of appl.
# of 
inst. # of appl. # of inst.

Air Conditioner NL 27 204 [high cool, high fan, low cool, low fan] 1 160

Blender I 1 2 [off, on] 1 51

Coffeemaker R 1 10 [off, on] 1 106

Compact Fluorescent 
Light NL 45 230 [off, on] 1 104

Fan I 31 220 [high, medium, low] 1 102

Refrigerator I 28 108 [off, on, unknown] 1 167

Hairdryer R 36 246 [high warm, low warm, high hot, low 
hot] 0 0

Hair iron NL 1 10 [off, on] 1 98

Heater R 15 85 [high, low] 0 0

Incandescent Light Bulb R 33 157 [off, on] 1 11

Laptop NL 46 216 [off, on] 1 90

Microw. oven NL 32 200 [high, medium] 0 0

Soldering iron NL 1 20 [off, on] 1 218

Vacuum cleaner I 15 83 [off, on] 1 98

Washing Machine NL 16 75 [off, on] 0 0

Water kettle R 1 10 [off, on] 1 109

Total 1876 1314

Table 2. Summary of the different appliances in PLAID. R = resistive, I = inductive, NL = non-linear.

Box 1. Format of the meta-data files for submetered data.
‘appliance’: {

‘brand’: ‘’,
‘current’: ‘’,,
‘load’:‘’,
‘manufacture_year’: ‘’,
‘model_number’: ‘’,
‘notes’: ‘’,
‘type’: ‘’
‘voltage’: ‘’},
‘wattage’: ‘’},

‘header’: {
‘collection_time’: ‘’,
‘notes’: ‘’,
‘sampling_frequency’: ‘’},

‘instances’:
‘length’: ‘’,
‘status’: ‘’},

‘location’: ‘’}

https://doi.org/10.1038/s41597-020-0389-7
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Aggregated appliances. To measure the aggregated signals, several appliances are activated one after 
another. Different from the submetered case, the deactivation is also monitored. This is done because other appli-
ances may still be running after deactivation. The 13 appliances that were present in the lab environment were 
used to create the aggregated data (see Table 2). The goal of this dataset is to capture the signal characteristics for 
combined operation of appliances. Full coverage of all the combinatorial possibilities would have been impracti-
cal. Indeed, there are 312 combinations of 2 appliances that can be made from 13 appliances. This amounts to 

⋅ ( )4 13
2

 combinations. The multiplication factor 4 refers to the different order in which 2 appliances can be acti-
vated and deactivated under the condition that first the 2 appliances must be activated before one can be deacti-
vated. Activating more than two appliances each in turn, becomes intractable as the number of combinations 
grows exponentially with the number of appliances.

To make the amount of combinations more tractable, the following division is used: appliance types can be 
linear (L) or non-linear (NL) loads. A load is linear if there is a linear relationship between its current drawn and 
the supplied voltage. Some loads, such as these containing transistors and other electronics, do not behave in this 
way and are called non-linear loads. The linear loads can be resistive (R), capacitive (C) or inductive (I). Examples 
of a resistive, capacitive, and inductive loads are respectively a light bulb, a battery, and a motor. An example of 
a non-linear load is a computer. The grouping for the appliances present in the lab are given in the first column 
of Table 2 between brackets. As can be seen, there are no purely capacitive loads available, leaving the following 
groups: R, I and NL. The following combinations in and between the groups are measured:

•	 Two different appliances of the same group are selected (e.g., A and B) and combined in all possible ways under 
the condition that first the two appliances must be activated before one can be deactivated. All possible selec-
tions of appliances A and B for each group are measured. For example, for the resistive group consisting of 4 
appliances, there are 6 different selections of two appliances A and B, and each is combined in 4 ways, leading 
to 24(=6 · 4) measurements.

•	 Two different appliances, each of a different group, are selected and combined in all possible ways under the 
condition that first the two appliances must be activated before one can be deactivated (see above). All pos-
sible selections of two different appliances, each of a different group are measured. As the resistive, induc-
tive and non-linear group consists of 4, 5, and 4 appliances respectively, this leads to 56(=4 · 5 + 4 · 4 + 5 · 4) 
selections of two different appliances. As each selection is combined in four possible ways, in total there are 
224(=56 · 4) measurements. Note that some of the combinations with the blender are missing because it broke 
down before the end of the experiments.

•	 Three different appliances, each from one group, are selected and combined in a random way under the condi-
tions that three appliances must be all activated before one is deactivated and that the order of activation is the 
same as deactivation. As the number of possible appliance selections and combinations is too large to cover 
exhaustively, a random generator is used to select the three appliances and their order. This is repeated 60 times.

Combining the appliances in this way allows us to investigate the influence that appliances of the same or 
different groups have on each other. Investigation of this data will point out if further elaborating this dataset is 
necessary. Each of these measurements is only done once.

A special case of aggregating appliances is when an appliance is (de)activated during the transient behavior of 
another appliance. In Fig. 2a, an example is given of the transient behavior of the air conditioner. When an appli-
ance is (de)activated during the transient phase, it is seen that its behavior before/after the event is different. The 
AC is the only appliance in PLAID with a sufficiently large and slow transient behavior that makes it possible to 
simultaneously (de)activate appliances. The other appliances (except for the blender, laptop charger, refrigerator 
and refrigerator defroster) were either activated or deactivated at 5 different random time instances during the 
transient of the AC. An illustration is shown in Fig. 2b,c. In the end, 80(=8 · 5 + 8 · 5) measurements for this spe-
cial case are captured. This was not done for the blender as it already broke down and not for the laptop charger, 
refrigerator and refrigerator defroster as these appliances are activated by connecting the plug to the power line, 
and it was not feasible to accomplish this within the time frame wherein the transient behavior takes place.

Another special case is when the soldering iron with the two-phase activation process is used (see Fig. 3a). In 
the previously described measurements, other appliances are only (de)activated when the soldering iron reached 
the second step of its activation. To complete the dataset, we also captured data where appliances are (de)activated 
during the first step of the soldering iron’s activation. More specifically for an appliance A two measurements are 
captured in the following manner:

•	 Appliance A is activated between the first and second step of the soldering iron’s activation. Once the activa-
tion of both appliances is complete, the soldering iron and A are deactivated each in turn, as shown in Fig. 3b.

•	 Appliance A and the soldering iron are activated each in turn. Then, appliance A deactivated in between the 
first and second step of the soldering iron’s activation, as shown in Fig. 3c.

For each appliance type, the above measurements are only done once, as repeating the experiments would 
result in almost identical events, since the time and the current consumption between the two activation steps is 
always the same. This is done for every other appliance, resulting in 24(=2 · 12) measurements.

The measurements are stored in CSV files. Table 3 gives an overview of the files corresponding to each exper-
iment. The meta-data follows the same structure as for the submetered data and extends it by adding an array of 
appliances monitored in the file. Each appliance is characterized by its manufacturing data (see meta-data of sub-
metered data), and timestamps of activation and deactivation. The timestamps are expressed using indices from 
which the time passed since the start of the file can be calculated using the known sampling frequency of 30 kHz. 

https://doi.org/10.1038/s41597-020-0389-7
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The index represents the moment the appliance is activated and not the moment the appliance reaches steady 
state. Note that the soldering iron induces two events when it is activated, one for each activation phase, and both 
are labelled. Just as for the meta-data of the submetered data, the meta-data of the aggregated data is structured as 
attribute-value pairs as described in Box 1, where the additions are put in italic.

Known Issues. Some issues are present in PLAID. When monitoring the appliances individually in the 2014 
version (the submetered files with identifiers going from 1 to 1027), the calibration was not checked every time 
when the set-up changed places. As an example, the histogram in Fig. 4 shows the distribution of maximal current 
and voltage values for the vacuum appliance type, indicating a great variation in the values as the maximal current 
values range from 5.4 A to 70.7 A and the maximal voltage values range from 159.02 V to 383.7 V. Some of the 
variance in the values can be explained by the fact that there are 15 different vacuum cleaners, but the smallest 
values suggest a calibration error. As a consequence, a data normalization step is needed for further processing. 
This must be done by the user.

Table 2 also shows that the data is very imbalanced (e.g., 85 instances for the heater appliance type compared 
to the 230 instances for the compact fluorescent lamp appliance type). This imbalance needs to be considered in 
evaluation of, e.g., automatic classification3.

Fig. 2 An example of the aggregated data, where appliances are (de)activated during the transient 
behavior of an air conditioner (AC). (a) The transient of the current consumption of an AC is shown 
(submetered/1825.csv). (b) The CFL is activated during the transient of the AC (aggregated/484.
csv). (c) The CFL is deactivated in the transient behaviour of the AC (aggregated/485.csv).

Fig. 3 An example of the aggregated data, where appliances are (de)activated during the first step of 
a soldering iron (SI)’s activation. (a) The transient of the current consumption of the CFL is shown 
(submetered/1745.csv). (b) The CFL is activated during the first phase of activation of the soldering iron 
(SI) (aggregated/558.csv). (c) The CFL is deactivated during the first phase of activation of the soldering 
iron (SI) (aggregated/559.csv).

Files Experiment

1–474

2 or 3 appliances active,

on/off outside transient,

on/off in second activation phase of soldering iron

475–554

AC and other appliance,

on/off during AC transient,

on/off in second activation phase of soldering iron

555–576

Soldering iron and other appliance,

on/off outside transient,

on/off in first activation phase of soldering iron

Table 3. An overview of the correspondence between file number and experiment for the aggregated data.

https://doi.org/10.1038/s41597-020-0389-7
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An additional minor issue is that the meta-data concerning the manufacturing of the appliances is quite often 
left blank by the measurer, as can been seen in Table 4. Having this information could be valuable for comparing 
the power consumption between different generations of appliances or different brands.

Data Records
Meta-data for both submetered and aggregated data are stored in JavaScript Object Notation (.json) with the 
format described in Boxes 1 and 2 respectively. The number of instances for which the metadata fields are com-
pleted is shown in Table 4. The data files referenced in the meta-data are stored in CSV (.csv) format. Each.csv file 
is numbered, and an overview on the mapping between file number and experiment can be found in Table 3  5. 
Moreover, the data is made available in the HDF5 format as a single hierarchical file. Here, two groups are present 
(‘aggregated’ and ‘submetered’): each group consists of several datasets, each corresponding to one raw data file. 
These are indexed with their ID and the corresponding metadatas are stored as attribute of the datasets. When 
using Python, the following query can be used to, e.g., retrieve the submetered file with ID 100 and its metadata, 
using the h5py (https://github.com/h5py/h5py) package:

f = h5py.File(‘plaid.hdf5’,  ‘r’)
d = f[‘submetered’][‘100’]
metadata = d.attrs[‘metadata’]

technical Validation
PLAID can be used for different use cases that involve appliance recognition from electrical data. An advantage 
of this dataset is that the same appliance type is measured in different houses. In this section, we check if different 
appliances of the same type have a similar power profile, using the submetered data that was correctly calibrated. 
This can give insight whether or not it is justified to combine data from different brands within the same appliance 
type.

In Fig. 5, the active power consumption for the appliance types is shown. The active power for one cycle is 
calculated from the current and voltage signal in the following manner:

∑=
=

P
n

I V1
(1)i

n

i i
1

Fig. 4 The histograms of maximal current and voltage values in steady state for the measured vacuum cleaners.

Box 2. Format of the meta-data files for aggregated data.
‘appliances’: [{

‘brand’: ‘’,
‘current’: ‘’,
‘load’: ‘’,
‘manufacture_year’: ‘’,
‘model_number’: ‘’,
‘notes’: ‘’,
‘on’: ‘’,
‘off’: ‘’,
‘type’: ‘’,
‘voltage’: ‘’,
‘wattage’: ‘’}, …],

‘header’: {
‘collection_time’: ‘’,
‘notes’: ‘’,
‘sampling_frequency’: ‘’},

‘instances’: {
‘length’: ‘’,
‘status’: ‘’},

‘location’: ‘’}
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where n is the total number of samples in a cycle, Ii and Vi are respectively the ith sample of current and voltage of a 
steady state cycle of respectively the current and voltage. Figure 5 shows that the power draw of same type appliances 
between different brands can vary significantly. For example, the power consumption of the microwave oven varies 
from an average of around 500 W for the 2017 version to around 1250 W for the 2014 version. In Fig. 6, the RMS 
values for voltage and current of all measurements are shown, showing differences between the various versions of 
the dataset. This implies that the appliance recognition generalization on different houses will not be straightforward 
using power- or RMS-related features only, and others must be examined as well. More details on the distinguish-
ability of individual appliances using the PLAID data can be found in3, where the submetered data from4 is used.

Usage notes
The PLAID data is provided in CSV files and can be extracted using the common programming languages and 
software packages (e.g., Python, MATLAB). The dataset concerning the submetered data has grown over time. 
The data in2 corresponds to file identifiers 1–1027, while measurements from4 use the identifiers 1028–1745. For 
this paper, additional submetered data is captured, which is stored in files 1745–1877. Note that only for the files 
1028–1745, multiple operating modes are considered (not only binary on/off). This versioning can also be easily 
achieved when the data is accessed. The current version of PLAID is available on figshare (figshare.com)5. If the 
dataset keeps growing in the future, figshare will enable controlled growth of the dataset, since versioning is avail-
able. On the repository, the following files can be found:

•	 metadata_submetered.json: the metadata for all submetered data in JSON format;
•	 metadata_aggregated.json: the metadata for all aggregated data in JSON format;
•	 submetered.zip: an archive containing the submetered data in CSV format;
•	 aggregated.zip: an archive containing the aggregated data in CSV format;
•	 plaid_hdf5.zip: an archive containing all the data in HDF5 format;
•	 collecting_data.m, collecting_data.vi: MATLAB and LabVIEW scripts used for capturing the data.

Fig. 5 The power draw (W) of the appliances present in the dataset, across the different versions. Per appliance 
type, the power consumption of each measurement is shown as a dot, whose color indicates the source dataset 
version.

Meta-data Submetered #/Total (%) Aggregated #/Total (%)

brand 823/1876 (43.87%) 1254/1305 (96.09%)

current consumption 449/1876 (23.94%) 759/1305 (58.16%)

manufacturing year 23/1876 (1.23%) 0/1305 (0.00%)

model number 581/1876 (30.97%) 90/1305 (6.9%)

on N/A 1305/1305 (100%)

off N/A 1305/1305 (100%)

voltage consumption 654/1876 (34.86%) 1087/1305 (83.30%)

wattage 452/1876 (24.09%) 700/1305 (53.64%)

capturing moment 1876/1876 (100%) 576/576 (100%)

sampling frequency 1876/1876 (100%) 576/576 (100%)

total time 1876/1876 (100%) 576/576 (100%)

measured mode 1876/1876 (100%) 576/576 (100%)

location identifier 1876/1876 (100%) 576/576 (100%)

appliance type 1876/1876 (100%) 1305/1305 (100%)

Table 4. The number of instances for which the metadata fields are completed. Note that for the aggregated 
data, the total number of instances for the manufacturing meta-data is larger than for the other meta-data, this 
because multiple appliances can be activated at the same time.

https://doi.org/10.1038/s41597-020-0389-7
http://figshare.com
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Code availability
The complete PLAID dataset and all mentioned scripts are available in5. In the same repository, code written to 
capture the data can be found. The files are two scripts, namely ‘collecting_data.vi’ (written with LabVIEW) and 
‘collecting_data.m’ (written in MATLAB).
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