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Abstract

B A longstanding view of the organization of human and ani-
mal behavior holds that behavior is hierarchically organized—in
other words, directed toward achieving superordinate goals
through the achievement of subordinate goals or subgoals.
However, most research in neuroscience has focused on tasks
without hierarchical structure. In past work, we have shown
that negative reward prediction error (RPE) signals in medial
prefrontal cortex (mPFC) can be linked not only to super-
ordinate goals but also to subgoals. This suggests that mPFC

INTRODUCTION

Learning and behavioral adaptation depend on reward
prediction error (RPE) signals, which indicate when ex-
pectations about future reward are violated. The neural
correlates of RPEs have been observed in ventral striatum
(VS) and medial prefrontal cortex (mPFC) across a variety
of experimental paradigms (Hyman, Holroyd, & Seamans,
2017; Dolan & Dayan, 2013; Roesch, Esber, Li, Daw, &
Schoenbaum, 2012; Niv, 2009). Yet, although RPEs reflect
surprise concerning progress toward obtaining rewards,
human behavior often involves achieving subgoals to ob-
tain those rewards (or goals; Logan & Crump, 2011;
Botvinick, Niv, & Barto, 2009; Lashley, 1951). The hierar-
chical reinforcement learning (HRL) theory suggests that
progress toward subgoals should also elicit RPEs, irrespec-
tive of goal-related progress.

Evidence for such subgoal-related RPEs was provided
by our past work (Ribas-Fernandes et al., 2011, hence-
forth RF2011), where we used a multistep navigation task
to manipulate independently the distances to subgoals
and to goals. In that experiment, we observed that nega-
tive subgoal-related RPEs—which indicate unexpected
failure to progress to the subgoal—were associated with
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tracks impediments in the progression toward subgoals. Using
fMRI of human participants engaged in a hierarchical navigation
task, here we found that mPFC also processes positive prediction
errors at the level of subgoals, indicating that this brain region is
sensitive to advances in subgoal completion. However, when
subgoal RPEs were elicited alongside with goal-related RPEs,
mPFC responses reflected only the goal-related RPEs. These find-
ings suggest that information from different levels of hierarchy
is processed selectively, depending on the task context. il

an increased BOLD response in mPFC and anterior insula.
Further analyses confirmed that these effects did not result
from perceptual- or motor-related task confounds. Since
RF2011, the HRL framework has been adopted in numer-
ous theoretical and experimental studies (Chiang &
Wallis, 2018; Umemoto, HajiHosseini, Yates, & Holroyd,
2017; Balaguer, Spiers, Hassabis, & Summerfield, 2016;
Zarr & Brown, 2016; Holroyd & McClure, 2015; Badre &
Frank, 2012).

Although RF2011 introduced novel evidence for neural
mechanisms of HRL, it had three important limitations.
First, the study only examined negative subgoal-related
RPEs and not positive subgoal-related RPEs. A positive
RPE consists of situations where the outcome is better
than expected, whereas a negative RPE consists of situa-
tions where the outcome is worse than expected. In the
context of subgoal-related RPEs, outcomes refer to prog-
ress toward the subgoal. Second, the task did not elicit
goal-related RPEs, which makes RF2011 less comparable
to more standard studies of goal-related RPEs. Third,
RF2011 elicited RPEs with changes in effort expenditure
rather than changes in monetary incentives or other stan-
dard task elements, again confounding comparisons with
the prior literature.

We report here two experiments that address these
limitations directly. In Experiment I, we explored the
neural correlates of positive subgoal-related RPEs. In
Experiment II, we explored the interplay between
subgoal-related RPEs and goal-related RPEs by eliciting
RPEs related to both effort expenditure and monetary
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incentives. The inclusion of monetary-incentive RPEs
allows us to compare the neural areas involved with pro-
cessing of effort-related subgoal RPEs with those of
money-related goal RPEs. As we shall detail, our experi-
ments yielded surprising results that enrich the original
HRL-based interpretation.

EXPERIMENT I: AN fMRI EXAMINATION OF
POSITIVE SUBGOAL-RELATED RPEs

As we have reviewed, RF2011 provided evidence for
subgoal-related RPEs in mPFC in an effortful spatial
navigation task that incorporated an explicit subgoal-goal
structure. Subgoal-related RPEs were elicited by unexpect-
edly making the subgoal harder to attain by increasing the
distance to the subgoal. Here, we adopt the same task, mod-
ifying it so that the subgoal is sometimes unexpectedly
easier (rather than harder) to attain, thus eliciting—by
hypothesis—a positive subgoal-related RPE.

Methods
Participants

Participants were recruited from the Princeton University
community, and all gave their informed consent. Thirty

individuals were recruited (ages 18-25 years, M = 20.5 years;
11 men, all were right-handed). All participants received
monetary compensation at a departmental standard
rate. To further encourage performance, participants
also received a small monetary bonus based on task
performance.

Task and Procedure

Task rationale. We used a hierarchical multistep spatial
paradigm similar to RF2011 (see Figure 1A). In what
follows we will describe the published paradigm, high-
lighting any experimental details that depart from the
original task design.

In this navigation task, human participants were re-
quired to simulate picking up an envelope and delivering
it to a house, using a joystick to guide a truck presented
on a computer display. Each joystick movement dis-
placed the truck by a fixed distance on the display. We
assumed that participants represent the task hierarchi-
cally, meaning that they construe delivery to the house
as the top-level or “task-level” goal and acquisition of
the envelope as a subgoal or “subtask-level” goal.

Importantly, the task was effortful. This was accom-
plished by randomly changing the orientation of the
truck on the display following each joystick movement

Figure 1. Hierarchical
delivery task. (A) In this task,
participants had to move a

Example Trial with a Type C Jump

Effect of Joystick
Movement

truck, using a joystick, to pick A
up an envelope and deliver it to ﬂ
a house. Each joystick

movement displaced the truck

by 50 pixels (note that the

distance between start point ﬂ
and envelope was 395 pixels).
However, after each movement,
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the orientation of the truck
would change randomly. In two

thirds of the trials, the envelope
would jump to a new location
before the truck had reached it,
signaled by a beep and a forced
pause for 900 msec (see panel
bordered by the dashed line). In
the remaining third of trials,
only the beep and the pause

u
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would happen. After delivering
the envelope to the house,

participants would be rewarded
with 10 cents. (B) To ensure
that each step would be
cognitively effortful, the effect
of joystick movements was
contingent on the orientation of
the truck relative to the screen.
For example, if the truck were

Led

facing downward, as illustrated

in the bottom panel, a rightward
movement would displace the
truck to the left of the screen.
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(Figure 1A). Thus, to move the truck in a desired direc-
tion, participants were required to adjust the angle of the
joystick to compensate for the random deviations
(Figure 1B). Given that each movement required a chal-
lenging sensorimotor adjustment, we expected that par-
ticipants would prefer to travel shorter distances when
delivering the envelope. Indeed, in an independent be-
havioral assay, in RF2011, where participants chose be-
tween two envelope delivery trajectories that differed in
their overall distance to the goal, they overwhelmingly
preferred the shorter route.

The task design allows for changing the distance to the
subgoal (i.e., from the starting location to the envelope
location) without changing the distance to the goal
(i.e., from the start location to the house via the envelope
location; Figure 2). Geometrically, all points on an ellipse
with foci on the truck and the house have the same over-
all distance from the start to the house via the envelope,
though different distances from the start to the envelope.

We hypothesized that unexpected changes to the dis-
tance to the subgoal by displacing the envelope in a
random subset of trials, termed “jumps,” would elicit
subgoal-related RPEs. To be specific, an unexpected in-
crease in distance to the envelope should elicit a negative
subgoal-related prediction error (see Farther Subgoal
condition, which was explored in RF2011, but not in
the current experiment). In contrast, an unexpected de-
crease in distance to the envelope should elicit a positive
subgoal-related prediction error (see Closer Subgoal con-
dition in Figure 2, which was used in the current exper-
iment, but not in RF2011). Note that the Mirror Jump
condition preserves the distance to subgoal and goal,
thus not eliciting any RPEs, while still eliciting perceptual
and motor changes on the part of the subject; this con-
dition was featured in both the current and published
experiments.

Procedure. The computerized task was coded using
MATILAB (The MathWorks) and the MATLAB Psychophysics
toolbox, version 3 (Brainard, 1997). An MR-compatible
joystick was used for the scanning part of the task
(MagConcept), whereas a regular joystick was used for
trials outside the scanner (Logitech International).

On each trial, the starting positions of the icons (truck,
envelope, house) were vertices in a triangle with fixed
distances and angles. The actual positions were random
rotations or reflections of the following triangle: truck,
0, 200; envelope, 151, —165; and house, 0, —200 (x, y co-
ordinates in pixels, referenced to the center of a 1024 X
768 pixels screen). Therefore, the distance between the
start point and the envelope was 395 pixels, and the
distance between the envelope and the house was
365 pixels, totaling 760 pixels. Note that, as mentioned
above, actual positions could vary due to the random ro-
tations and reflections, but the distances and angles
between icons were preserved.

Each joystick movement displaced the truck by 50
pixels. The direction of the displacement was a function
of the truck’s angle with the screen’s vertical axis and the
angle of the hand movement, inputted through the joy-
stick, relative to center front of the joystick (Figure 1B).
After each displacement, the angle between the truck
and the screen’s vertical axis was changed randomly.
Therefore, participants had to adjust the angle of their
hand movements on each step to move the truck in
the intended direction.

On every trial, after the first, second, or third joystick
movement, a brief tone occurred, and the envelope
flashed for 900 msec, during which joystick movements
were ignored (Figure 1A). On one third of these events
(selected at random), the envelope remained in its orig-
inal location (No Jump condition). On the remaining
trials, at the onset of the tone, the envelope jumped to

Figure 2. Different types of
RPEs induced by jumps of the
envelope to different screen
locations. Left view is task
display and underlying
geometry of the delivery task.
Jumps to points on the solid
black line, including Closer
Subgoal, Farther Subgoal, and
Mirror Jump, preserve the
overall distance to the goal
(start-to-envelope summed with
envelope-to-house). Therefore,
points on the solid black line
only differ in their distance to
the subgoal. Right view shows
RPE signals generated in each
category of jump event. In
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Experiment I, the envelope

would jump to location Closer Subgoal in a third of the trials (triggering a positive subgoal-related RPE) and to location Mirror Jump in a third of the
trials and remain in the same place for a third of the trials (No Jump condition). In Experiment II, the envelope would jump to locations that would trigger
both a goal-related RPE and a subgoal-related RPE (locations not shown) on two thirds of the trials and remain in the same place in a third of the trials.
For illustration, locations where only a goal-related RPE is elicited are shown (A and B).
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a new location (jump conditions—described below).
Hereafter, we refer to the interruption in the task, com-
mon across when the subgoal jumped and did not, No
Jump, as “pause event.” In half of the trials in the jump
conditions, the distance between the envelope’s new
position and the truck position was unchanged by the
jump (Mirror Jump in Figure 2). On the remaining third
of the trials, Closer Subgoal condition (Closer Subgoal
jump) would happen; here, the destination of the enve-
lope was chosen such that the distance between truck
and envelope always decreased to 120 pixels whereas
the overall path length to the goal (house) was left un-
changed. Participants were told that the envelope some-
times stayed in the same place and that sometimes it
jumped, with no mention of the distinction between
Mirror Jump condition and Closer Subgoal condition.

After the pause event, participants resumed navigating
toward the location of the subgoal. When the truck
passed within 30 pixels of the envelope, the envelope
moved to the truck and remained there for the sub-
sequent moves (Figure 1A). When the truck with the
envelope passed within 30 pixels of the house, the image
of the truck and the envelope appeared in the house.
This image was displayed for 200 msec.

At the completion of each trial (which required, on
average, 17.16 steps or joystick movements), participants
were rewarded with 10 cents (U.S. dollars). This was
indicated by a screen displaying “10 ¢” for 500 msec.
Immediately following this, a fixation cross appeared for
2500 msec, followed by the onset of the next trial, signaled
by the appearance of a new spatial arrangement of icons.

Given that the task requires complex sensory—motor
coordination, participants practiced the task before func-
tional data acquisition. Practice consisted of 15 min out-
side the scanner, followed by an 8-min session inside the
scanner during structural scan acquisition.

Inside the scanner, for the actual task, participants
performed 90 trials, in six runs of 15 trials each, sepa-
rated by a self-paced rest interval. Each run was approx-
imately 6.8 min, depending on participants’ speed
(range = 4.7-10.7 min). Functional data were acquired
during these 90 trials.

Bebavior Analysis

For each participant, we extracted the mean RT of each
condition (Closer Subgoal condition, Mirror Jump condi-
tion, and No Jump). We then performed two-tailed paired
t tests of the mean of the jumps against the mean of No
Jump and Closer Subgoal conditions against Mirror Jump
condition. We applied a similar analysis to assess the effect
of jumps on movement’s accuracy as elaborated below.

Image Acquisition

Data were acquired with a 3-T Siemens Allegra head-only
MRI scanner, with a circularly polarized head volume coil.

High-resolution (1 mm?® voxels) T1-weighted structural
images were acquired with an MP-RAGE pulse sequence
at the beginning of the scanning session. Functional data
were acquired using an EPI pulse sequence (3 X 3 X
3 mm voxels, 34 contiguous slices, interleaved acquisi-
tion, repetition time = 2000 msec, echo time = 30 msec,
flip angle = 90°, field of view = 192 mm, aligned with the
anterior commissure—posterior commissure plane). The
first five volumes of each run were ignored.

Data Analysis

Data were analyzed using AFNI software (Cox, 1996). The
T1-weighted anatomical images were aligned to the func-
tional data. Functional data were corrected for inter-
leaved acquisition using Fourier interpolation. Head
motion parameters were estimated and corrected allow-
ing six-parameter rigid body transformations, referenced
to the initial image of the first functional run. Data were
spatially smoothed with a 6-mm FWHM Gaussian kernel.
Each voxels’ signal was converted to percent change.

General Linear Model Analysis

For each participant, we created a design matrix model-
ing events of interest and nuisance variables. At the time
of an event of interest, we defined an impulse and con-
volved it with a hemodynamic response. The following
regressors were included in the model: (a) an indicator
variable marking the occurrence of all pause events, (b)
an indicator variable marking the occurrence of Mirror
Jump condition and Closer Subgoal condition, (c) an
indicator variable marking the occurrence of Closer
Subgoal condition (note that the events Mirror Jump
condition and Closer Subgoal condition are combined
together as one regressor to control for the effect of
the displacement), (d) a parametric regressor indicating
the change in distance to subgoal induced by each jump
(only relevant for Closer Subgoal condition, and zeros
otherwise), mean-centered, (e and f) indicator variables
marking subgoal and goal attainment, and (g) an indica-
tor variable marking all periods of task performance,
from the initial presentation of the icons to the end of
the trial. Also included were head motion parameters,
first- to third-order polynomial regressors to regress out
scanner drift effects, and global signal, estimated as the
mean for each volume. Parameter estimates from the
general linear model were normalized to Talairach space
(Talairach & Tournoux, 1988), using SPM5 (www.fil.ion.
ucl.ac.uk/spm/).

Group Analysis

For each regressor and for each voxel, we tested the sam-
ple of 30 participant-specific coefficients against zero in a
two-tailed # test. We defined a threshold of p = .01 and
applied correction for multiple comparison based on
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cluster size using Monte Carlo simulations based on esti-
mates of spatial autocorrelation function as implemented
in AFNI's 3dClustSim (Version 2018). We report results
at a corrected p < .01

ROI Analysis

Given the strong prior for BOLD correlates of RPEs in nu-
cleus accumbens (NAcc) and amygdala (Lee, Seo, & Jung,
2012; Niv, 2009), we defined these anatomical areas as
ROIs. NAcc was defined based on anatomical boundaries
on a high-resolution T1-weighted image for each partici-
pant. Amygdala was defined at the group level using the
Talairach atlas in AFNI. Mean coefficients were extracted
from these regions for each participant. Reported coeffi-
cients for all ROIs are from general linear model analyses
without subtraction of global signal. The sample of 30
participant-specific coefficients from these regions was
tested against zero in a two-tailed ¢ test, with a threshold
of p < .05.

Results
Bebhavior

Each trial took 17.16 steps, on average, across partici-
pants (SEM = 0.60 steps). There was no difference in
the number of steps between conditions (one-way
ANOVA, F(2, 29) = 0.08, p = .92). Mean RT for each
joystick movement was 1090 msec (SEM = 60 msec).
On average, at 3.96 steps (SEM = 0.11 steps), the pro-
gram interrupted the execution of the task by introduc-
ing a pause of 900 msec (i.e., a pause event, which
encompasses the Closer Subgoal, Mirror Jump, and No

Table 1. Closer Subgoal Condition. Experiment I. Whole Brain

Jump conditions). In two thirds of the trials, the envelope
jumped to a new location at the onset of the pause (jump
condition), and in the remaining third, it remained in the
same place (No Jump condition). After the pause event
was completed, participants took, on average, 610 msec
to produce a new joystick movement (SEM = 70 msec;
note that the enforced delay of 900 msec for all condi-
tions is not included in this measurement). Participants
were significantly slower to react to a pause in the jump
condition (M = 690 msec, SEM = 70 msec) than in the
No Jump condition (M = 460 msec, SEM = 60 msec) as
revealed by a two-tailed paired ¢ test, £#(29) = 7.96, p <
.01. However, there was no significant difference be-
tween Closer Jump (M = 700 msec, SEM = 80 msec)
versus Mirror Jump (M = 660 msec, SEM = 80 msec;
1(29) = 1.53, p = .14, two-tailed paired ¢ test).

Whole-brain Analysis

We regressed BOLD activity onto two regressors of inter-
est, a categorical regressor indicating a positive subgoal-
related RPE (elicited by Closer Subgoal condition, see
Figure 2) and a parametric regressor for the magnitude
of subgoal-related RPE (measured as mean-centered de-
crease in truck—subgoal distance). In the same model, we
included three task-specific control regressors (common
effect of jump: Closer Jump + Mirror Jump, mean-
centered displacement distance, and common effect of
pause event: Closer Jump + Mirror Jump + No Jump),
along with standard control regressors (see Methods).
As in RF2011, we found an effect of subgoal-related
RPEs on the BOLD activity in the mPFC. However, the
sign of the effect was notable: Whereas in the previous

Sise Peak Voxel
Area (No. of Voxels) Parameter Estimate t Statistic Coordinates (X, y, z)
R. lingual G. 462 —.36 —-5.74 +0, +71, +1
L. postcentral G. 360 -.25 —3.41 +33, +29, +67
R. superior frontal G. 127 30 3.26 —33, —46, +31
L. medial frontal G. (see Figure 3) 119 14 4.62 +0, =7, +43
L. lentiform nucleus 91 —.11 —4.41 +24, —1, =2
R. insula 90 12 3.03 —45, —13, +1
L. medial frontal G. 65 —.11 —4.26 +3, +20, +49
R. lentiform nucleus 60 .09 —3.80 —24, =7, +4
L. middle frontal G. 57 17 3.37 +36, —28, +43
R. superior temporal G. 53 -.21 —2.83 -51, =19, =20
L. superior temporal G. 53 -.11 —4.20 +54, +20, —2

Primary threshold p < .01, cluster-corrected to p < .01, df 29. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.
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Positive Subgoal-related RPE

0 tvalue

Figure 3. Whole-brain results of Experiment I, positive subgoal-related
RPE (Closer Subgoal). Jumps that featured a decrease in distance to

the envelope, without changing the overall distance to the house, were
associated with an increase in BOLD activity in mPFC and anterior insula.
This effect is independent from spatial reorientation, as suggested by the
absence of activity in these areas to Mirror Jump, a condition with the
highest angle of displacement and no changes in distance to the envelope.

study we observed an increase in BOLD activity in mPFC
and right anterior insula to negative subgoal-related RPEs,
here we found this activity to positive subgoal-related
RPEs (cluster-corrected, p < .01; Table 1 and Figure 3).
Results for control regressors are in Tables 2-5.

ROI Analysis

To investigate whether areas known to process goal-
related RPEs were responsive to subgoal-related RPEs in
our experiment, we anatomically delineated two ROIs,
NAcc, and amygdala.

As in RF2011, we found no significant change in the
BOLD response associated with Closer Subgoal condition
in an anatomically defined ROI around bilateral NAcc
(mean of regression coefficient, M = —1.83 X 1072, p =
94). Qualitatively similar results were obtained when the
same analysis was performed on separate ROIs encom-
passing either left or right NAcc. However, in contrast
with RF2011, we did not observe any subgoal-related
RPE in the amygdalar region (Closer Subgoal condition,
M = —0.04, p = .06; parametric decrease in subgoal

distance, M = —3.58 X 10_4,p = .30, similar null results
for bilateral and unilateral analyses).

Interim Discussion

Although RF2011 found that the BOLD activity in the
mPFC is elevated by negative subgoal-related RPEs, that
study did not directly test for the neural correlates of pos-
itive subgoal-related RPEs. We showed here that activity
in mPFC is also correlated with positive subgoal-related
RPEs. Taken with the previous results, these findings
suggest that the mPFC BOLD signal response to subgoal-
related RPEs is unsigned, that is, sensitive to the magni-
tude of the RPE, but not its valence (Roesch et al., 2012;
Hayden, Heilbronner, Pearson, & Platt, 2011). We discuss
the implications of this observation in the general discus-
sion. Note that we did not find any effect for the para-
metric regressor of subgoal RPE. However, it is hard to
interpret this finding because our parametric regressor
had a restricted range. A stronger test of unsigned predic-
tion errors would entail eliciting changes in magnitude of
the RPE, as well as presence/absence of an RPE. However,
given our task design, where the subgoal jumped to a
fixed subgoal location, the restricted range in the magni-
tude of positive subgoal-related RPEs limits our experi-
mental power to detect an effect of magnitude.

EXPERIMENT II: AN EXAMINATION OF GOAL
AND SUBGOAL-RELATED RPEs

RF2011 and present Experiment I provided evidence for
subgoal-related RPEs. However, one limitation of both
studies is that they did not elicit goal-related RPEs and
thus cannot assess the direct relations between the neu-
ral correlates of subgoal-related and goal-related RPEs.
Therefore, the present experiment included subgoal dis-
placements that simultaneously changed the distances to
both the goal and the subgoal, thereby eliciting both

Table 2. Decrease in Distance to Subgoal. Experiment I. Whole Brain

Sise Peak Voxel

Area (No. of Voxels) Parameter Estimate 1 Statistic Coordinates (x, y, z)
L. precuneus 1105 .01 5.59 +0, +77, +49
L. medial frontal G. 118 -.00 —3.26 +0, —61, +19
L. middle temporal G. 113 —.00 —4.39 +66, +5, —11

L. angular G. 76 —.01 —3.36 +45, +74, +34
L. medial frontal G. 72 -.00 —2.89 +0, —43, +16
L. middle temporal G. 68 —-.01 —-3.11 +69, +44, +1

R. superior temporal G. 58 —.00 —3.86 —42, -1, —11

Primary threshold p < .01, cluster-corrected to p < .01, df 29. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.
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Table 3. Pause Event. Experiment I. Whole Brain

Sise Peak Voxel
Area (No. of Voxels) Parameter Estimate t Statistic Coordinates (X, y, z)
R. superior temporal G. 1346 37 4.91 —69, +41, +10
L. precuneus 1151 —.37 —4.04 +12, +80, +46
L. precuneus 1017 34 5.57 0, +59, +43
R. middle frontal G. 882 —.32 —3.39 —36, —43, +34
L. middle frontal G. 835 —-.22 —4.50 24, —19, +55
L. superior temporal G. 798 35 6.35 +66, +44, +13
L. middle frontal G. 786 —.34 —6.24 +45, —28, +37
R. cuneus 772 44 2.90 -3, +95, +13
R. inferior parietal lobule 703 —.43 —-4.91 —51, +44, +52
L. inferior frontal G. 463 —.34 —4.58 +54, —16, =2
L. postcentral G. 366 .29 4.47 +39, +38, +64
R. medial frontal G. 352 .28 3.02 -3, —61, +4
L. lentiform nucleus 137 22 6.43 +21, —4, =2
R. lentiform nucleus 128 18 4.95 —21, —4, =2
R. middle occipital G. 124 —-.33 —-3.21 33, +95, +4
L. inferior temporal G. 118 —-.21 —-3.27 +66, +53, —11
R. middle frontal G. 71 —-.12 —3.93 —24, +5, +58
R. caudate nucleus 63 —.16 —6.06 —12, +8, +19
L. caudate nucleus 63 —.16 —4.29 +12, +8, +19

Primary threshold p < .01, cluster-corrected to p < .01, df 29. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.

subgoal- and goal-related RPEs within a single event. We
dissociated these two types of RPEs by systematically
manipulating the displacements over the course of the
experiment.

Our prediction—which turned out to be incorrect—
was that the activity of mPFC would be modulated by

both subgoal- and goal-related RPEs. This prediction
was informed by prior empirical research showing simul-
taneous subgoal- and goal-related activity in an anatomi-
cally overlapping region (Diuk, Tsai, Wallis, Botvinick,
& Niv, 2013). A second, subordinate objective of this
experiment was to examine the relation between RPEs

Table 4. Mirror Jump and Closer Subgoal Conditions. Experiment I. Whole Brain

Size Peak Voxel

Area (No. of Voxels) Parameter Estimate t Statistic Coordinates (x, y, z)
R. precuneus 839 42 3.30 —3, +68, +52
R. lingual G. 556 25 6.09 0, +74, +1

R. insula 188 —.11 —5.42 -39, +32, +19
L. fusiform G. 69 13 3.47 +24, +56, —8

L. superior frontal G. 64 .18 3,51 +30, +8, +64

R. middle frontal G. 58 —.10 —3.90 -39, =31, +16

Primary threshold p < .01, cluster-corrected to p < .01, df 29. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.
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Table 5. Displacement Distance. Experiment I. Whole Brain

Peak Voxel

Parameter Estimate

t Statistic Coordinates (x, y, z)

Size
Area (No. of Voxels)
L. precuneus 228
L. lingual G. 143
R. traverse temporal G. 71
R. postcentral G. 59

01 3.41 +0, +74, +52
.00 438 +3, +74, +4
—.00 -4.13 —42, 429, +13
—.00 -331 —60, +20, +40

Primary threshold p < .01, cluster-corrected to p < .01, df 29. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.

due to changes in effort/time expenditure versus RPEs
associated with monetary feedback. Previous research
has found that both types of reinforcers are processed by
the VS (Satterthwaite et al., 2012; Botvinick, Huffstetler, &
McGuire, 2009; though see Skvortsova, Palminteri, &
Pessiglione, 2014, for a dissociation between physical
effort RPEs and monetary RPEs).

To be specific, this task paradigm elicits different
types of prediction errors by having the subgoal unpre-
dictably jump to different points in space (as illustrated
in Figure 2). In Experiment II, similar to Experiment I,
two thirds of the trials featured a jump to a new loca-
tion, whereas in the remaining third the location of
the envelope did not change. However, in contrast with
Experiment I, all of the jumps were to the locations that
should putatively elicit both goal-related RPEs and
subgoal-related RPEs. We manipulated the displace-
ment of the jumps so that the magnitude of different
types of prediction errors was uncorrelated across the
experiment. We opted for a parametric design rather
than a categorical design because the categorical
manipulation of types and valence of prediction errors
would have resulted in a prohibitively high number of
conditions: four experimental conditions (Closer
Subgoal, Farther Subgoal, and equivalent conditions
changing goal-related RPE) and two control conditions
(Mirror Jump and No Jump trials), resulting in too few
trials per condition.

Methods
Participants

Forty-eight participants were recruited from the Princeton
University community, and eight participants were ex-
cluded, seven for having incidents of head movements
larger than 2.5 mm and one for failure to complete the
task inside the scanner (ages 18-27 years, M = 20 years,
15 men, 38 were right-handed and 2 were left-handed,
joystick was always held in the right hand). All partici-
pants received monetary compensation at a depart-
mental standard rate. In addition, participants received

two types of monetary bonuses, one is based on perfor-
mance and the other is a probabilistic “tip,” as described
below.

Materials, Task and Procedure

As before, the overall approach of RF2011 was used to
manipulate the subgoal- and goal-related RPEs in an inde-
pendent manner. The task consisted of three parts: a
short behavioral practice outside the scanner, for 12 tri-
als, using a joystick held in the right hand (Logitech
International); a 12-trial practice inside the scanner, using
an MR-compatible joystick (MagConcept) during struc-
tural scan acquisition; and a third phase of 132 trials
(six runs of 22 trials) for approximately 60 min (run du-
ration, M = 11.7 min, SEM = 0.3 min), where functional
data were collected. Each run started and ended with a
central fixation cross, displayed for 10,000 msec. At the
end of each run, participants were given a self-paced
break.

On each trial, the house occupied the same vertex as
in Experiment I (0, —200). The initial position of the
truck and the envelope, which were different than the
values used in Experiment I and in RF2011, were deter-
mined as follows. The initial position of the truck (=90,
320) was set so that it would be 150 pixels or three
optimal steps from a virtual line beyond which a jump
would be triggered. This line was parallel to the house—
envelope line and would go through the point (0, 200), a
point where the envelope is at the same distance to the
house and to the truck. This location was utilized for
convenience because it allows for equal variance in both
positive and negative prediction errors.

As in Experiment I and RF2011, when a jump was trig-
gered, a brief tone was played, the truck and the en-
velope flashed yellow, and joystick movements were
ignored for 900 msec. This pause event happened,
on average, after 5.6 steps (SEM = 0.1 steps). In one
third of the trials (44 trials), the envelope stayed in the
same location. In the remaining two thirds of the tri-
als (88 trials), it jumped to a new location (see the
following).
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Figure 4. Eliciting monetary prediction errors. In Experiment I, at the
end of each trial, participants would receive information about their
performance. A delivery yielded 150 points, and any additional step
from the shortest distance possible would be deducted from this rate.
In the example above, 30 points were deducted for extra steps. In
addition, a probabilistic outcome was introduced (+25). Unrelated to
their performance, participants would receive a bonus of 25 points,

0 points, or —25 points, with equal probability. Points accrued would
be exchanged for U.S. dollars at the end of the experiment.

In this experiment and in contrast to both RF2011 and
Experiment I, each jump generated a goal-related RPE
and a subgoal-related RPE. We applied a Monte Carlo ap-
proach to find a set of 88 jump locations for which the
goal-related RPE and subgoal-related RPE were minimally
correlated. Our sampling approach also minimized the

correlation between the nuisance variable displacement
distance (distance between old and new subgoal loca-
tions) and the variables of interest. This procedure was
done for each participant independently. In the observed
behavioral data, the average correlation between the
subgoal-related RPEs and the goal-related RPEs was .31,
the correlation between the subgoal-related RPEs and
the displacement distances was 0, and the correlation
between the goal-related RPEs and the displacement
distances was —.37.

As in Experiment I and RF2011, after the jump, the
participants were required to navigate toward the new
location of the subgoal. When the truck passed within
30 pixels of the envelope, the envelope moved to the
truck and remained there for the subsequent moves.
When the truck with the envelope passed within 30
pixels of the house, the truck with the envelope ap-
peared within the house. This image was displayed for
200 msec.

To encourage participants to pay attention to the
consequences of the change in the amount of effort ex-
penditure incurred by each displacement event, we
penalized deviations from the optimal path using a
point-based system. Note that this feature of the task
was not present in RF2011 nor in Experiment I.
Participants could attain a maximum of 150 points per
delivery, with a penalty of 0.1 points per excess pixel
traveled. At the end of each trial, the number of points
obtained was presented after the truck entered the
house (for 3000 msec; see Figure 4), accompanied by
the sound of cash register. At the end of experiment,
the sum of points was converted to U.S. dollars, up to
a maximum of $12.

As mentioned before, a secondary objective unique to
this experiment was to compare the neural correlates

Figure 5. Comparison of
unsigned responses across
Experiments I and II and
RF2011. For comparison,
only the positive clusters in
Experiment I are shown
(see Figure 1 for an image
with positive and

negative clusters).

Negative Subgoal-related RPE

Positive Subgoal-related RPE

Unsigned Goal-related RPE

RF2011

Exp. |

t value

Exp. Il
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Table 6. Unsigned Distance-driven Goal-related RPE. Experiment II. Whole Brain

Peak Voxel
Size
Area (No. of Voxels) Parameter Estimate t Statistic Coordinates (x, y, z)
L. cingulate G. 45 4.20 +1, =28, +29

Primary threshold p < .01, cluster-corrected to p < .01, df 39. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.

related to effort expenditure versus monetary reward. To
do so, after presenting the points feedback on each trial
(as described above), a probabilistic monetary reward,
in the same point currency, was delivered (Figure 4).
Unbeknown to the participants, outcomes were 25 points
(framed as a tip), —25 (framed as shortchange), or 0
points, randomly sampled with equal probability. To
ensure attentional capture, a sound was delivered si-
multaneously with presentation of this information (coin
sound for 25, a sad trumpet sound for —25, and a brief
tone for 0; all sounds 100-msec duration). This probabi-
listic monetary reward was displayed for 600 msec. The
trial was followed by intertrial interval with a fixation
cross that remained on screen for 700 msec.

Image Acquisition

Data were acquired with a 3-T Siemens Skyra MRI scan-
ner using a 16-channel head coil. High-resolution (1 mm?
voxels) T1-weighted structural images were acquired with
an MP-RAGE pulse sequence at the beginning of the
scanning session.

Functional data were acquired using a high-resolution
EPI pulse sequence (3 X 3 X 3 mm voxels, 35 contiguous
slices, 3-mm-thick, interleaved acquisition, repetition
time = 2000 msec, echo time = 30 msec, flip angle =
90°, field of view = 192 mm, aligned with the anterior
commissure—posterior commissure plane). The first five
volumes of each run were ignored.

Data Analysis

Data were analyzed using AFNI software (Cox, 1990).
The T1l-weighted anatomical images were aligned to
the functional data. Functional data were corrected

for interleaved acquisition using Fourier interpolation.
Head motion parameters were estimated and corrected
allowing six-parameter rigid body transformations, ref-
erenced to the initial image of the first functional run.
A whole-brain mask for each participant was created
using the union of a mask for the first and last functional
images. Spikes in the data were removed and replaced
with an interpolated data point. The data were spatially
smoothed with a 6-mm FWHM Gaussian kernel. Each
voxel’s signal was converted to percent change by normal-
izing it based on intensity.

General Linear Model Analysis

For each participant, we created a design matrix model-
ing experimental events and including events of no inter-
est. At the time of an experimental event, we defined an
impulse and convolved it with a hemodynamic response.
The following regressors were included in the model: (a)
an indicator variable marking the occurrence of all audi-
tory tone/envelope events; (b) an indicator variable
marking the occurrence of all jump events; (¢) a paramet-
ric regressor indicating the change in distance to subgoal
induced by each jump, mean-centered; (d) a parametric
regressor indicating the change in distance to goal in-
duced by each jump, mean-centered; (e and f) indicator
variables marking subgoal and goal attainment; (g) a var-
iable marking all periods of task performance, from the
initial presentation of the icons to the end of the trial;
(h) an indicator variable for delivery of monetary reward
(encompassing the positive, 25, negative, —25, and neu-
tral, 0, events); (i) an indicator variable for the positive
reward, 25; and (j) an indicator variable for the negative
reward, —25. Also included were head motion parame-
ters and first- to third-order polynomial regressors to

Table 7. Unsigned Subgoal-related RPE. Experiment II. Whole Brain

Peak Voxel
Size
Area (No. of Voxels) Parameter Estimate t Statistic Coordinates (x, y, z)
R. superior parietal lobule 278 .00 3.78 =28, +73, +47
R. culmen 59 .00 3.48 —13, +67, =6

Primary threshold p < .01, cluster-corrected to p < .01, df 39. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.
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Table 8. Pause Event. Experiment II. Whole Brain

Peak Voxel
Size
Area (No. of Voxels) Parameter Estimate t Statistic Coordinates (x, y, z)
R. superior frontal G. (cluster extends 9555 .40 6.00 -1, =37, +56
to anterior medial surface)
L. inferior parietal lobule 8646 —.46 —5.55 +46, +46, +53
L. superior frontal G. 1642 —.41 —0.60 +37, —40, +32
R. middle frontal G. 686 —.34 —3.84 —34, —43, +35
R. inferior frontal G. 684 —.28 —5.69 —49, —16, 0
L. cuneus 468 43 5.37 +1, 49, +5
L. inferior temporal G. 63 —.13 —4.19 +55, +58, =3

Primary threshold p < .01, cluster-corrected to p < .01, df 39. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.

regress out scanner drift effects. A global signal regressor
was also included. In additional analyses, instead of indi-
cator variables encompassing signed positive and nega-
tive events, we separated regressors for positive and
negative events or included them in an unsigned way,
with one regressor for the jump RPEs and one regressor
for the monetary RPEs. All parametric regressors were
mean-centered. The estimates from the general linear
model were normalized to Talairach space (Talairach &
Tournoux, 1988).

Group Analysis

For each regressor and for each voxel, we tested the sam-
ple of 40 participant-specific coefficients against zero in a
two-tailed ¢ test. We defined a threshold of p = .01 and
applied correction for multiple comparison based on
cluster size using Monte Carlo simulations based on esti-
mates of spatial autocorrelation function as implemented

Table 9. Displacement Distance. Experiment II. Whole Brain

in AFNI’s 3dClustSim (Version 2018). We report results at
a corrected p < .01.

ROI Analysis

We followed the same procedure as in Experiment 1.

Results
Bebavior

A trial lasted, on average, 19.81 steps (SEM = 0.40 steps).
A linear regression of types of prediction errors on
number of steps revealed a significant effect of goal-
related RPE (B = —1.52, p < .01), and no effect of
subgoal-related RPE (B = 0.18, p = .06). Average RT
was 1160 msec (SEM = 30 msec). The pause happened,
on average, at 5.57 steps (SEM = 0.08 steps). Average RT
for the first movement after pause events was 1460 msec
(SEM = 30 msec). A linear regression of RTs of pause

Size Peak Voxel

Area (No. of Voxels) Parameter Estimate ¢ Statistic Coordinates (X, y, z)
R. superior frontal G. 106 .00 2.90 —28, —4, +65

L. inferior parietal lobule 96 .00 4.26 +52, +43, +53

L. superior temporal G. 81 .00 2.86 —49, —10, +2

R. precuneus 71 .00 3.11 —1, +55, +47
L. postcentral G. 63 —.00 —3.33 +28, +31, +65

L. superior frontal G. 59 .00 3.55 +37, =52, +26
R. supramarginal G. 50 -.00 3.49 —61, +46, +29
R. superior temporal G. 49 —.00 —3.42 —52, +28, +14

Primary threshold p < .01, cluster-corrected to p < .01, df 39. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.
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Table 10. All Jumps. Experiment II. Whole Brain

Gise Peak Voxel
Area (No. of Voxels) Parameter Estimate t Statistic Coordinates (x, y, z)
R. precuneus 4438 43 5.41 —-10, +73, +53
L. precentral G. 925 —.14 —3.18 +58, —4, +5
L. middle frontal G. 758 .19 4.07 —-19, —10, +62
L. anterior cingulate 717 —.18 —3.43 +1, —16, —6
L. precentral G. 398 -.15 —5.06 +34, +19, +65
R. middle frontal G. 222 12 3.76 —31, —34, +41
L. inferior frontal G. 198 -.15 —-2.71 +43, —25, —12
L. uncus 194 —.11 —3.78 +16, +7, =21
R. transverse temporal G. 165 —.10 —3.59 —64, +13, +11
L. middle frontal G. 139 13 4.25 +40, —31, +38
L. declive 121 —.09 ~2.87 +13, +73, —15
L. caudate 119 .07 5.34 +16, —10, +8
L. parahippocampal G. 98 .07 5.52 +28, +46, —6
L. cingulate G. 89 -.07 —3.47 +1, +25, +41
L. postcentral G. 84 -.13 —3.38 +1, +49, +23
R. middle temporal G. 76 —.12 —-2.99 —61, +4, —21
R. inferior frontal G. 70 -.13 —-3.21 —40, =22, —12
R. parahippocampal G. 68 —.08 -291 -16, +4, =9
R. superior temporal G. 62 —.08 —2.86 -58, =1, +5
R. caudate 58 .04 4.76 -16, =7, +14
R. parahippocampal G. 53 .05 3.63 —31, +34, -9
L. precuneus 48 —-.07 —3.08 +1, +70, +23

Primary threshold p < .01, cluster-corrected to p < .01, df 39. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM
order. G. = gyrus; R. = right; L. = left.

Table 11. +25 and —25, Compared with +25, 0, and —25 Points (Unsigned Monetary Probabilistic Reward Independent of Delivery;
see Figure 6). Experiment II. Whole Brain

Sise Peak Voxel
Area (Voxels) Parameter Estimate t Statistic Coordinates (x, y, z)
R. superior temporal G. 149 .05 3.06 —67, +19, +5
L. anterior insula 106 .08 3.43 +34, —4, -9
L. middle occipital G. 96 -.07 —4.08 +49, +76, 0
R. superior temporal G. 60 A1 3.75 —61, +4, +2
R. fusiform G. 56 .10 4.00 —34, +43, —15
R. cuneus 52 —.04 —4.28 —10, +73, +23
R. middle frontal G. 49 .05 4.25 —34, —4, +32

Primary threshold p < .01, cluster-corrected to p < .01, df 39. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM
order. G. = gyrus; R. = right; L. = left.
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Figure 6. Eliciting positive RPEs with monetary outcomes. In
Experiment II, at the end of each trial, a third of trials participants would
get +25 delivery points, which would later be converted to U.S. dollars.
We observed left ventral putamen increases to tip, compared with
outcome (+25, 0, or —25). In addition, we observed bilateral decreases
in response in superior temporal gyrus and increases in fusiform gyrus.
p < .01, cluster-corrected (see Table 12 for coordinates).

events revealed a significant increase in RTs to jumps
(mean regression coefficient = 0.07, SEM = 0.02; £(39) =
3.28, p < .005, two-tailed ¢ test). The same regression
also revealed that RTs were significantly slower as dis-
placement distance increased (mean regression coeffi-
cient = 0.04, SEM = 0.01; £(39) = 4.22, p < .001). No
significant effect of subgoal-related RPE or goal-related
RPE on RT was observed (p = .15 and p = .78).

Mean accuracy across all steps was 71.68° (SEM =
0.21°), and for the step immediately after the pause
event, the accuracy was 35.69° (SEM = 1.1°). A linear re-
gression on the accuracy scores on the step succeeding
the pause event revealed a significant increase in devia-
tions from the optimal path in the jump condition (mean
regression coefficient = 0.08, SEM = 0.02; t(39) = 4.43,
p < .05). We also observed that the extent of deviation
from optimal path increased with displacement distance
(mean regression coefficient = 0.03, SEM = 0.01; £(39) =

2.11, p < .05). Similar to what we observed with RT data,
no significant effects of subgoal-related RPEs or goal-
related RPEs were observed (p = .25 and p = .11).

Whole-brain Analysis

We observed an increase in BOLD response in left mPFC
to distance-driven unsigned goal-related prediction
errors M = 1.0 X 1073, p < .01, cluster-corrected;
Figure 5 and Table 6). Surprisingly, in contrast with the
results of the previous experiment and our past study, no
response was observed to unsigned subgoal-related
RPEs, even at a liberal threshold (Table 7). Regression
models with signed regressors yielded results consistent
with the models with unsigned responses. Results for
control regressors are provided in Tables 8 to 10.

After each delivery, a probabilistic monetary reward
was delivered: +25, 0, —25, with equal probability. In
contrast with the unsigned distance-driven RPE and con-
trary to our expectations, we observed no medial pre-
frontal activity to signed or unsigned monetary RPEs
((+25, —25) compared with (+25, 0, —25)), even at lib-
eral thresholds (see Table 11). Positive monetary RPEs
(+25) yielded an increase in BOLD response in left puta-
men activity, on the border between ventral and dorsal
striatum (see Figure 6 and Table 12 for coordinates), rel-
ative to the common responses to all the possible mon-
etary outcomes, +25, 0, —25. This was matched by a
contralateral striatal cluster at a more liberal threshold.
In addition, we observed increased activity in bilateral
fusiform gyrus and decreased activity in bilateral superior
temporal gyrus.

ROI Analysis

No significant response was observed in anatomically de-
lineated VS to subgoal-related RPEs or distance-driven
goal-related RPEs (p > .05). Consistent with whole-brain
results, we did observe a significant response in the bilat-
eral putamen, on the border with VS, to monetary posi-
tive RPEs (p < .001).

Table 12. +25 Points (Monetary Probabilistic Reward Independent of Delivery; see Figure 6). Experiment II. Whole Brain

) Peak Voxel

Size
Area (No. of Voxels) Parameter Estimate t Statistic Coordinates (x, y, z)
L. superior temporal G. 367 —.24 —4.32 +064, +25, +14
R. superior temporal G. 352 —.27 —5.01 —064, +13, +8
R. fusiform G. 201 .09 2.81 —40, +49, =21
L. fusiform G. 94 08 5.69 +28, +49, —12
L. lentiform nucleus 41 .10 3.65 +16, —1, —6

Primary threshold p < .01, cluster-corrected to p < .01, df 39. Labels provided by Talairach Daemon. Coordinates in Talairach space and DICOM

order. G. = gyrus; R. = right; L. = left.
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We tested for unsigned RPEs in anatomically defined
amygdalar complex. We found no significant response
to distance-driven goal-related RPEs, subgoal-related
RPEs, or to monetary goal-related RPEs (p > .05).

DISCUSSION

Our previous study, RF2011, provided first evidence for
the involvement of the mPFC in the processing of
subgoal-related negative RPEs. However, that study left
open two important questions: How do the neural
correlates of positive RPEs compare with those of
negative RPEs? And, how do the neural correlates of
subgoal-related RPEs compare with those of goal-
related RPEs? We have presented two experiments
aimed at addressing these questions. Our experiments
yielded surprising results that impact our understand-
ing of the neural mechanisms of hierarchical reward
processing.

We examined these two questions using a spatial nav-
igation paradigm that explicitly incorporated goals and
subgoals. Importantly, in this paradigm, the level of effort
required to attain the subgoal and goal could be indepen-
dently manipulated. This feature allowed us to selectively
examine the neural correlates of positive and negative
subgoal-related RPEs, together with the neural correlates
of goal-related RPEs. Furthermore, the geometric fea-
tures of the task allowed us to ensure that our findings
were not driven simply by low-level perceptual or motor
factors (RF2011).

Concerning the first question, in Experiment I we
found an increase in BOLD response in mPFC to positive
subgoal-related RPEs. Given that RF2011 found an in-
crease in mPFC response to negative subgoal-related
RPEs, the combined results suggest that mPFC may signal
unsigned RPEs, rather than signed RPE per se. Unsigned
responses in mPFC have been found consistently to
RPEs, both in nonhuman electrophysiological and human
neuroimaging studies (Hyman et al., 2017; Roesch et al.,
2012; Bryden, Johnson, Tobia, Kashtelyan, & Roesch,
2011; Hayden et al., 2011). However, human electro-
physiological studies investigating ERPs find signed,
rather than unsigned, RPEs originating in the mPFC
(Sambrook & Goslin, 2015)—though analysis in the
time—frequency component associated with mPFC ac-
tivity find unsigned responses (Mas-Herrero & Marco-
Pallarés, 2014; Cavanagh, Figueroa, Cohen, & Frank,
2012). Our findings of unsigned subgoal-related RPEs
are broadly consistent with HRL but suggest a somewhat
different interpretation from the one considered in
RF2011. Namely, rather than constituting the reinforce-
ment term in RL models, these prediction errors could
be used to modulate learning from events based on their
saliency, as described in the attention to learning theory
(Pearce, Kaye, & Hall, 1982). Our findings suggest that
saliency-modulated learning extend to hierarchical set-
tings, in particular, to subtask performance.

It is worth noting that other theories of mPFC function
predict an unsigned response to prediction errors. In par-
ticular, two theories assign a central role to the finding of
unsigned prediction errors in mPFC: the predicted
response-outcome model (Alexander & Brown, 2011)
and the reward value and prediction model (Silvetti,
Seurinck, & Verguts, 2011). Other theories accommo-
date unsigned prediction errors as a byproduct of the
purported function of the mPFC, namely, theories re-
lated to HRL (Shahnazian & Holroyd, 2018) and to
the expected value of control (Shenhav, Botvinick, &
Cohen, 2013).

The second question we addressed was whether
goal-related RPEs and subgoal-related RPEs arise in
the same location. In Experiment II, we simultaneously
manipulated subgoal-related RPEs and goal-related
RPEs. In this setting, we expected mPFC to show un-
signed subgoal-related RPEs, in keeping with RF2011
and Experiment I, independently of unsigned goal-
related RPEs.

Yet, in contrast with Experiment I and RF2011, we only
observed the unsigned goal-related RPEs and no subgoal-
related RPEs. Although this failure to observe an effect
might stem from lack of experimental power (possibly
due to the moderate correlation between the two regres-
sors, ¥ = .31), these discrepant findings may also result
from differential task-related demands placed on the at-
tentional system. Specifically, the data suggest that the
RPE signals are generated based on the specific level of
task structure that is currently attended, as determined
by the specific contingencies of the task.

It could be that these effects were due to different task
designs. However, in our view, the most salient difference
between the task designs across the two experiments was
the simultaneous presentation of subgoal- and goal-
related RPEs, which may have drawn attention to the
goal. Moreover, these changes do not appear to have in-
troduced any confounding factors. Other than addition
of tip and shortchange, which occurs at the end of the
trial, all other aspects of the task were kept constant,
namely, the way the truck movements were inputted
by the joystick and the perceptual properties of a pause
event and a jump.

According to a selective hierarchical interpretation of
mPFC function, possibly due to attentional constraints,
mPFC processed subgoal-related information only in
the absence of competing information at the goal level.
This interpretation resonates with findings of learning
signals in mPFC that are selectively elicited by stimuli that
are attended to (Akaishi, Kolling, Brown, & Rushworth,
2016). Notably, in some hierarchical learning algorithms,
the agent attends with unequal priority to different levels
of hierarchy (e.g., see “recursive optimality” in Dietterich,
2000). In other words, learning simultaneously at all
levels of hierarchy is not a necessary condition of a hier-
archical agent. Therefore, our results could still be com-
patible with hierarchical decision-making.
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An alternative way to interpret the results of Experiment I
is that mPFC may track the distance of the subgoal to the
goal rather than the distance to the subgoal itself. Under
this interpretation, mPFC evaluates the proximity of the
subgoal to the goal. This would still be a hierarchical
account, given that prediction errors would be com-
puted with regard to a portion of the task and based
on a subgoal. In fact, such an interpretation resonates
well with another learning algorithm called skill chain-
ing (Konidaris & Barto, 2009) Both interpretations are
plausible given the data, and both implicate the mPFC
in HRL.

Overall, it is interesting to compare our findings with
the results of Diuk et al. (2013) where VS was sensitive to
simultaneous prediction errors at two different levels of
task hierarchy. In Diuk et al., the information pertinent to
task levels were presented explicitly as two different
stimuli, whereas in our study, this information must be
inferred by attending to the change in the relative ar-
rangement of stimuli resulting from jump displacement.
Taken together, the results of Diuk et al. (2013) and
Experiment II suggest that humans can be sensitive to
two sources of information simultaneously, provided that
these sources are presented separately.

In addition, we addressed whether the same regions
that process subgoal-related effort-driven RPEs would
process monetary RPEs. We found a dissociation between
mPFC and VS: Whereas the former was sensitive to effort-
driven RPEs (subgoal-related RPEs and goal-related RPEs,
Experiment I), VS was only sensitive to monetary goal-
related RPEs (Experiment II). The differential engage-
ment of mPFC and VS is compatible with the HRL theory
of mPFC function (Holroyd & Yeung, 2012), which con-
tends that mPFC is highly engaged in tasks that require
extended sequences of actions involving effortful be-
havior. Our spatial navigation task incorporates both
features.

In conclusion, our results are consistent with the idea
that mPFC processes prediction errors in hierarchical set-
tings. More specifically, we show that (1) mPFC signals
subgoal-related RPEs in an unsigned manner, (2) mPFC
signals RPEs related to superordinate goals similarly, (3)
whether mPFC’s BOLD response reflects subgoal- or
goal-related RPE is dependent on the specific task manip-
ulation and is presumably determined by attentional fac-
tors, and (4) RPE signaling differs between mPFC and VS.
We propose that such prediction errors are used to im-
prove behavior at the level of subtasks, which can then
be applied to different tasks. Given that ecological tasks
are hierarchically structured, mPFC can be instrumental
in extending reinforcement learning mechanisms to
ecological settings.

Reprint requests should be sent to Matthew Botvinick, DeepMind,
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