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Abstract—Often in the design process of an engineer, the design
specifications of the system are not completely known initially.
However, usually there are some physical constraints which are
already known, corresponding to a region of interest in the design
space that is called feasible. These constraints often have no
analytical form but need to be characterised based on expensive
simulations or measurements. Therefore, it is important that the
feasible region can be modeled sufficiently accurate using only a
limited amount of samples.

This can be solved by using active learning techniques that
minimize the amount of samples w.r.t. what we try to model.
Most active learning strategies focus on classification models
or regression models with classification accuracy and regression
accuracy in mind respectively. In this work, regression models of
the constraints are used, but only the (in)feasibility is of interest.

To tackle this problem, an information-theoretic sampling
strategy is constructed to discover these regions. The proposed
method is then tested on two synthetic examples and one
engineering example and proves to outperform the current state-
of-the-art.

Index Terms—active learning, feasible region, Gaussian Process

I. INTRODUCTION

In a lot of practical engineering problems, the designing
process depends on simulations and prototypes. These sim-
ulations have become increasingly important over the last
decades, because of their low cost and the increasing available
computational power. However, because of the increasing
precision of these simulators, one simulation sometimes can
take hours to days [1]. This computational cost can be a large
bottleneck during the design process.

This restriction ignited the birth of surrogate-based design-
ing, which uses a data-efficient machine learning model that
is cheap to evaluate and mimics the original system (whether
it be a simulation or measurements), called a surrogate model.
This surrogate model is constructed using only a limited
amount of evaluations of the original system, which makes
it computationally faster. This model can be used for different
purposes like optimization, sensitivity analysis and domain
exploration of the system under study.

The choice of surrogate model depends on the availability of
data, the type of data and the desired properties of the model.
Examples of surrogate models include Random Forests [2],
Support Vector Machines, Least-Squares Support Vector Ma-
chines [3], Multi-Layer Perceptrons (MLPs) [4; 5], Bayesian
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Fig. 1. Flowchart of active learning

Neural Networks [6], Gaussian Processes (GPs) [7; 8] and
linear regression. The GP will be used here because of its
flexibility and predictive distribution.

The training data can be chosen according to different
methodologies. For example, the samples can be chosen all
at once at the start. Without any prior knowledge this leads
to a space-filling design which is not very efficient as no
information about the problem is taken into account. It is
impossible to know upfront if there are too few samples to
obtain an accurate model, or too many samples such that it is
not efficient. On top of that there will be too many samples in
regions where the system does not have an interesting behavior
and too few in regions where it does. An alternative to this
approach is Active Learning (AL), which intelligently and
sequentially extends the dataset to suit the desired properties
of the model (e.g., high accuracy).

In Bayesian AL the sampling, the sampling strategy is of
paramount importance and usually depend on an acquisition
function. The location of the maximum of this acquisition
function determines the next sample. Depending on the pur-
pose of modeling there are different choices of acquisition
functions. For example when one is merely interested in
the optimum of the function, the paradigm of AL is also
called Bayesian Optimization (BO) and acquisition functions
like Entropy Search (ES), Expected Improvement (EI), Upper
Confidence Bound (UCB) and Probability of Improvement
(PI) can be used. If information about the class regions in



a classification problem is of interest one can use Bayesian
Active Learning by Disagreement (BALD). When the model
will be used for extensive future studies, the global accuracy
is more crucial and sampling can be done at the location with
the largest predictive variance.

In this paper, a slightly different problem will be studied.
Often in engineering design, initially the objectives that need
to be optimized are not yet clearly defined. Often, however, it
is already clear that some quantities have to be within certain
ranges. These ranges define feasible regions, i.e., regions in
which the function f at hand takes on admissible values
a < f(x) < b. It is useful to know these regions in order to
limit the size of the design phase. To gain information about
this region, often simulations have to be done, which are com-
putationally expensive. In this work, an efficient AL method
is developed that maximizes the information about this region
using information-theoretic sampling employing GP modeling,
extending optimization sampling schemes like [9; 10; 11]. This
method is evaluated using benchmark functions and proves to
perform well.

II. GAUSSIAN PROCESSES

There are a wide variety of supervised regression models
that can be used as a surrogate model. The most important
ones are Neural Networks [6], Kriging [12; 13], Gaussian
Processes (GP) [7; 8] and Least Squares Support Vector
Machines (LS-SVM) [3]. The latter three surrogate models
are kernel-based regression methods, for which the prediction
is a linear combination of kernel evaluations between the test
and data points.

In data-efficient machine learning the most frequently used
surrogate model is the Gaussian Process. This GP automati-
cally guards against overfitting [7], is analytically tractable and
provides a predictive distribution for any given point. The latter
is important for active learning, since it provides a measure of
model uncertainty, which makes it straightforward to explore
the space taking the data into account. More formally, GPs are
a powerful non-parametric Bayesian model which represents
a distribution over functions f : X → R. A Gaussian process
is completely defined by a mean function m : X → R and
a covariance function k : X × X → R in the sense that
every finite set of function values [f(x1), f(x2), ..., f(xN )]
is distributed according to a multivariate Gaussian with mean
m and covariance Kxx, where mi = m(xi) and (Kxx)ij =
k(xi,xj). We write this as f ∼ GP(m, k). In this work, a
mean function which is zero everywhere is used. The hyper-
parameters θ of the GP are optimized using the Maximum
Likelihood Estimation (MLE):

θ̂ = arg max
θ

log p(f |θ) (1)

= arg max
θ
−1

2

(
log |2πKxx|+ fTK−1xx f

)
(2)

When considering the prediction of the model for new test
points X? = [x?1, ...,x?N? ] some notation conventions for the

kernel matrices will be used:

(Kxx)ij = k(xi,xj), (3)
(K?x)ij = k(x?i,xj), (4)
(K??)ij = k(x?i,x?j). (5)

Once the optimal hyperparameters have been determined the
predictive distribution for new testing inputs X? can be calcu-
lated and becomes a Gaussian distribution with the following
moments [14]:

µ(x) = E(f?|X?,Dn) = K?xK
−1
xx yn, (6)

σ2(x) = Var(f?|X?,Dn) = K?? −K?xK
−1
xxK

T
?x. (7)

All the kernels in this work are Squared Exponential (SE)
also known as Radial Basis Function (RBF) kernels, which
are of the following form:

k(x,x′) = σ2
k exp

(
−

D∑
d=1

(xd − x′d)
2

2`2d

)
. (8)

This is the Automatic Relevance Detection (ARD) [7] version
of the kernel, which means there is a separate lengthscale
for every dimension. It is used to eliminate irrelevant input
features, as the lengthscales increase for irrelevant dimensions
[7].

III. ACTIVE LEARNING

A flowchart of the sequential sampling approach is given
in Figure 1. First, the function of interest f is evaluated for
an initial set of input points. This initial exploratory set of
input points is selected to be as space filling as possible, as
this will give an idea of the general behavior of the function.
There are different possible choices of initial design such as
factorial designs [15] and (optimal) Latin Hypercube designs
[16].

In the next step a surrogate model is constructed, using the
evaluated data Dn = {xi, yi}Ni=1. This surrogate model mim-
ics the behavior of the real, expensive-to-evaluate function,
and thus provides a cheap alternative. GPs are arguably the
most standard surrogate model.

Next, it is checked if our goal is reached, like having an
accurate enough model, or having reached an optimal value.
If the goal is not reached more data has to be gathered by
running the simulator. To determine which data point has to be
evaluated, a sampling strategy or acquisition function α has to
be constructed. The next sampling location is then determined
by the maximum of this acquisition function. This sampling
strategy depends on the quantity that one is interested in as will
be discussed later. The location where the acquisition function
is maximum is used as an extra sample and evaluated. This
data point is added to the original dataset the process can be
repeated.



IV. INFORMATION-THEORETIC SAMPLING FOR
FEASIBILITY

In Bayesian active learning a possible approach is to max-
imize the loss in entropy of the posterior distribution of the
quantity of interest g [17]:

α(x) = H(p(g|Dn))− Ep(f |Dn,x)(H(p(g|Dn ∪ {(x, f)}))).
(9)

As this can be seen as the mutual information between g and
f given Dn, and the mutual information is symmetric this can
also be written as [18]:

α(x) = H(p(f |Dn,x))− Ep(g|Dn)(H(p(f |Dn,x, g))). (10)

This concept has been used in active learning for purposes like
preference learning [18], classification [18], single-objective
optimization [11; 19; 20] and multi-objective optimization
[10].

In this particular problem statement, the goal is to maximize
the information about the regions of feasibility and infeasi-
bility. A novel acquisition function is introduced that uses
the information about each of the three regions defined by
b < f(x), a < f(x) < b and f(x) < a. Using Equation 10,
this becomes:

α(x) = 3H(p(f |Dn,x))−H(p(f |Dn,x, f > b))

−H(p(f |Dn,x, a < f < b))

−H(p(f |Dn,x, f < a)). (11)

p(f |Dn,x, f > b), p(f |Dn,x, a < f < b) and p(f |Dn,x, f <
a) are all truncated Gaussian distributions, for which the
entropy can be calculated analytically using straightforward
properties of normal distributions. Hence, in general a single
entropy term in Equation 11 becomes:

H(p(f |Dn,x, α < f < β)) (12)

=H
(

1

Z
N (f |µ(x), σ2(x))I(α < f < β)

)
(13)

= log
(√

2πeσ2(x)Z
)

+
1

2Z
((α− µ(x))N (µ|α, σ2(x))

− (β − µ(x))N (µ|β, σ2(x))). (14)

Z is a normalization constant equal to Φ
(
β−µ(x)
σ(x)

)
−

Φ
(
α−µ(x)
σ(x)

)
, where Φ(·) is the standard normal cumulative

density function. The introduction of this acquisition function
is the main contribution of this paper. It has a closed form
expression, rather than using many approximations, often used
in information-theoretic optimization approaches [9; 10].

An example is shown in Figure 2 with a simple benchmark
function. Initially, with a small amount of samples the acqui-
sition function is smeared out more in space, which enhances
exploration. The next evaluated sample is determined by the
maximum of the acquisition function. After evaluating more
samples, the model has a smaller predictive variance, which
means that the acquisition function is more centered along the
boundaries of the feasible region.
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(b) N = 20
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(c) N = 35

Fig. 2. Proposed acquisition function with different amount of samples N .
The red crosses represent the sampled data. The function under consideration
is f(x1, x2) = x21 + x22, while the upper and lower boundary of the feasible
region are 0.7 and 0.04 respectively.



This is logical since intuitively maximizing the information
about the (in)feasible regions, means finding the border of the
region rather than exploring the region itself [21].

V. EXPERIMENTS

The experiments start out with a Latin hypercube of size 6 as
initial design. An RBF kernel with ARD is used for modeling
the problem. The acquisition function and optimization process
are implemented using GPflowOpt [22].

The results are compared to a state-of-the-art sampling
strategy [21] using surrogate models that samples the inner
region of the feasible region, this method will be referred
to here as Probability of Feasibility (PoF). All the discussed
examples are taken from [23], which uses Active Expansion
Sampling (AES). The experiments are replicated 10 times with
different random seeds and the median and the 98% confidence
interval are shown.

The metric to evaluate the models is the F1 score, which is
used to account for class imbalance:

F1 = 2
precision · recall

precision + recall
, (15)

where

precision =
true positives

true positives + false positives
(16)

and

recall =
true positives

true positives + false negatives
. (17)

The F1 score always lies between zero and one, the best
score being one. These are evaluated using a test set of 1000
points that is drawn uniformly from the problem domain.

A. Branin

The first test function under consideration is the Branin
function, often used in optimization and surrogate modeling
benchmarks [13], and has a 2-dimensional input of domain
[−9, 14]× [−7, 14]:

f(x1, x2) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

10

(
1− 1

8π

)
cos(x1) + 10. (18)

An upper bound is defined for the feasible region, which is 8
[23], which results in 3 disconnected feasible sub-regions, as
seen in Figure 3(a).

The results are shown in Figure 3(b), and show that almost
in the entire process, the proposed entropy method is superior.
The problem is fairly easy to model and therefore does not
show very large improvement.
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Fig. 3. Branin example: a two-dimensional example where the feasible region
consists of 3 disconnected areas of approximately the same size.

B. Hosaki

A second example is the Hosaki example [23]. Different to
the Branin example the two disconnected feasible regions are
of different size here. The domain is two dimensional [0, 10]×
[0, 10] and the upper boundary of the feasible region is −1.

f(x1, x2) =

(
1− 8x1 + 7x21 −

7

3
x31 +

1

4
x41

)
x22e
−x2 (19)

This problem is more complex to model using an RBF
kernel and hence the difference is larger, shown Figure 4(b).
The entropy method performs considerably better than PoF,
since it only samples at the borders.

C. Nowacki Beam

The last example that is discussed is the Nowacki beam
example [24], which is a real engineering problem. The
problem involves a beam of length l and a load F that is
exerted on the end of the beam. The design variables are
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Fig. 4. Hosaki example: a two-dimensional example where the feasible region
consists of 2 disconnected areas of different size.

the breadth b and the height h. There are several feasibility
constraints in this problem [23]:
(a) the area must be limited: bh ≤ 0.0025m2,
(b) there is a maximum tip deflection: δ = Fl3/(3EIY ) ≤

5mm,
(c) there is a maximum blending stress: σB = 6Fl/(bh2) ≤

σY ,
(d) there is a maximum shear stress: τ1.5F/(bh) ≤ σY /2,
(e) the load has to be smaller than the critical buckling force:

Ff ≤ 4/l2
√
GITEIZ/(1− ν2) .

Here, IY = bh3/12, IZ = b3h/12, IT = IY + IZ and f
is a safety factor. And σY ,E,ν, and G represent the yield
stress, Youngs modulus, Poissons ratio, and shear modulus
respectively. Their values are summarized in Table I.

Since there are multiple constraints, each constraint is mod-
eled independently from each-other. The acquisition function
that is used is equal to the sum of the acquisition functions
corresponding to each constraint individually. More advanced
approaches could be taken here, like modeling the constraints

TABLE I
VALUES ASSOCIATED WITH THE NOWACKI BEAM PROBLEM

σY 240MPa
E 216.62GPa
ν 0.27
G 86.65GPa
l 0.5m
f 2
F 5kN

jointly [25], resulting in a joint distribution at test time, but
are not discussed in this work. This problem has a connected
feasible region as shown in Figure 5(a).
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Fig. 5. Nowacki Beam example: a two-dimensional engineering example
considering a beam subject to a load. The feasible region is connected.

In Figure 5(b) is shown that the entropy approach performs
better than PoF. The F1 score seems to saturate at a value of
0.88, like reported in [23]. This source using AES, however,
claims that it only saturates when using 250 samples.

VI. CONCLUSION

A novel active learning approach for feasible region discov-
ery was introduced based on information theoretic principles.



It is benchmarked on two synthetic problems and one engi-
neering problem, on which it shows superiority to Probability
of Feasibility [21] and Active Expansion Sampling [23]. When
using more than one constraint, the constraints are modeled
independently, which can be improved in future work.
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