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Abstract 36 

Forest edges are interfaces between forest interiors and adjacent land cover types. They are important 37 

elements in the landscape with almost 20 % of the global forest area located within 100 m of the edge. 38 

Edges are structurally different from forest interiors, which results in unique edge influences on 39 

microclimate, functioning and biodiversity. These edge influences have been studied for multiple 40 

decades, yet there is only limited information available on how forest edge structure varies at the 41 

continental scale, and which factors drive this potential structural diversity. Here we quantified the 42 

structural variation along 45 edge-to-interior transects situated along latitudinal, elevational and 43 

management gradients across Europe. We combined state-of-the-art terrestrial laser scanning and 44 

conventional forest inventory techniques to investigate how the forest edge structure (e.g. plant area 45 

index, stem density, canopy height and foliage height diversity) varies and which factors affect this 46 

forest edge structural variability. Macroclimate, management, distance to the forest edge and tree 47 

community composition all influenced the forest edge structural variability and interestingly we 48 

detected interactive effects of our predictors as well. We found more abrupt edge-to-interior gradients 49 

(i.e. steeper slopes) in the plant area index in regularly thinned forests. In addition, latitude, mean 50 

annual temperature and humidity all affected edge-to-interior gradients in stem density. We also 51 

detected a simultaneous impact of both humidity and management, and humidity and distance to the 52 

forest edge, on the canopy height and foliage height diversity. These results contribute to our 53 

understanding of how environmental conditions and management shape the forest edge structure. Our 54 

findings stress the need for site-specific recommendations on forest edge management instead of 55 

generalized recommendations as the macroclimate substantially influences the forest edge structure. 56 

Only then, the forest edge microclimate, functioning and biodiversity can be conserved at a local 57 

scale.  58 



1. Introduction 59 

The interface between forest and adjacent land is gaining research relevance as it represents a 60 

substantial area; almost 20 % of the global forested area is positioned within 100 m of a forest edge 61 

(Haddad et al., 2015). The total surface area of forest edges continues to increase as forests are 62 

becoming more and more fragmented (Riitters et al., 2016; Taubert et al., 2018). According to Riitters 63 

et al. (2016), the loss of forest interiors is at least two times higher than the net loss of forest area, 64 

which results in an accumulating number of forest edges.  65 

Forest edges help to preserve the biodiversity in the forest interior from the adverse conditions that 66 

predominate outside forest interiors and provide suitable habitat conditions for a variety of both forest 67 

specialists and generalist species (Honnay et al., 2002; Melin et al., 2018; Wermelinger et al., 2007; 68 

Govaert et al.,2019). Secondly, in addition to biodiversity, also carbon, nutrient and water cycling are 69 

altered inside forest edges (Schmidt et al., 2017). In comparison with forest interiors, forest edges are 70 

characterized by higher levels of atmospheric nitrogen deposition (Weathers et al., 2001; De Schrijver 71 

et al., 2007; Remy et al., 2016) and higher influx of herbicides and fertilizers from adjacent arable 72 

lands (Correll, 1991; Kleijn and Snoeijing, 1997). A third important characteristic of forest edges is 73 

that their microclimate is different from the forest interior (Young and Mitchell, 1994; Chen et al., 74 

1995; Saunders et al., 1999; Schmidt et al., 2019). Forest microclimates are increasingly considered 75 

in climate-change research and imperative for the conservation of shade-tolerant forest specialists 76 

(Lenoir et al., 2017; De Frenne et al., 2019; Zellweger et al., 2019b).  77 

Forest edges are not similar everywhere but differ in their structure, composition and functioning. 78 

Together with edge history, orientation, climate and management (Matlack, 1994; Strayer et al., 2003; 79 

Esseen et al., 2016), the adjacent, often intensive, land-use management practices will strongly impact 80 

the forest edge structure and composition. Species composition itself could further shape the edge 81 

structure as trees differ in their architecture and ability to react to the increased light availability near 82 

an edge (Mourelle et al., 2001; Niinemets, 2010). For instance, shade-tolerant trees have a higher 83 

branching density and a more voluminous crown (Mourelle et al., 2001). Finally, patch contrast, the 84 



difference in composition and structure between forest and non-forested land, is another determinant 85 

of the forest edge structure (Harper et al., 2005). Patch contrast, and in particular the contrast in 86 

canopy height, is related to forest edge characteristics and composition but also to climate, since this 87 

affects the productivity. In productive ecosystems (e.g. at lower latitude and elevations), patch 88 

contrast in canopy height is expected to be higher (Esseen et al., 2016). Understanding how these 89 

factors affect the structure and composition of forest edges is important, as ultimately the structure 90 

will modify the edge functioning and habitat availability, making edges significantly different from 91 

the forest interiors (Harper et al., 2005). 92 

Both the three-dimensional structure as well as the tree species composition of forest edges can be 93 

used as descriptors to better capture the biodiversity, nutrient cycling and microclimate in forest 94 

edges. Complex edges with structurally diverse vertical layers provide shelter and different food 95 

resources for a variety of species (Lindenmayer et al., 2000; Wermelinger et al., 2007). Hence, they 96 

may thus act as local hotspots or potential refugia, on a longer term, for biodiversity (Goetz et al., 97 

2007; Zellweger et al., 2017; Melin et al., 2018). In terms of the understorey vegetation, Hamberg et 98 

al. (2009) found that side-canopy openness, tree species composition and distance to the forest edge 99 

were the main structural metrics affecting the understorey vegetation. Additionally, it has been 100 

demonstrated that gradually building up the vertical complexity of forest edges (e.g. fringe, mantle 101 

and shrub layer) mitigates the negative effects of atmospheric deposition (Wuyts et al., 2009). Finally, 102 

forest edge structure and tree species composition also partly control the microclimatic differences 103 

between the exterior and interior condition, and thus the establishment of a typical forest microclimate 104 

(Young and Mitchell, 1994; Didham and Lawton, 1999; Davies-Colley et al., 2000; Schmidt et al., 105 

2019). From an open area onwards, gradients in temperature, light, humidity and wind are mediated 106 

by the presence of a forest edge leading towards a moderate climate subject to less variability inside 107 

the forest (Davies-Colley et al., 2000; Ewers and Banks-Leite, 2013). For example, organisms living 108 

under a denser canopy layer experience lower maximum temperatures (Greiser et al., 2018; De Frenne 109 

et al., 2019; Zellweger et al., 2019a) and higher minimum temperatures (Chen et al., 1999; Saunders 110 



et al., 1999; De Frenne et al., 2019; Zellweger et al., 2019a) than organisms living near edges and in 111 

fully open conditions. The main determinants of the forest microclimate are canopy openness and 112 

cover (Ehbrecht et al., 2019; Zellweger et al., 2019a). In addition, structural metrics associated with 113 

old growth forest (i.e. a tall canopy, vertical heterogeneous structure and high biomass) are known to 114 

contribute to a higher buffering capacity (Frey et al., 2016; Kovács et al., 2017). 115 

The forest edge provides many ecological processes that are directly associated and beneficial to 116 

adjacent land uses and its structure influences the depth and magnitude of the edge influence on 117 

ecosystem processes (Harper et al., 2005; Wuyts et al., 2009; Schmidt et al., 2019). Yet, large-scale 118 

studies analysing the variation of the structure and tree composition of forest edges are lacking. 119 

However, Esseen et al. (2016) studied the variability in forest edge structure across Sweden and 120 

detected variation in multiple forest edge structural variables associated with edge origin, land use, 121 

climate and tree species composition. Most of the other studies focusing on forest edge structure are 122 

often system specific and performed at local scales, covering restricted spatial extents (Cadenasso et 123 

al., 2003). To our knowledge, no continental-scale assessment of forest edge structure has been 124 

undertaken so far. This is surprising, not only due to their importance, but also due to the high 125 

plausibility that forest edges strongly vary in space and time (Schmidt et al., 2017).  126 

Moreover, to date, when studying forest edges, most authors have only provided a relatively limited 127 

description of the structure (Schmidt et al., 2019) which makes it hard to compare edge influences on 128 

forest structure and composition (Harper et al., 2005). The development of new methods such as state-129 

of-the-art 3D terrestrial laser scanning (TLS, also referred to as terrestrial light detection and ranging 130 

(LiDAR)) have made it possible to assess the vegetation structure in unprecedented nearly millimetre-131 

level accuracy (van Leeuwen and Nieuwenhuis, 2010; Liang et al., 2016). TLS is also beneficial due 132 

to its rapid, objective and automatic documentation and more importantly the possibility to extract 133 

non-conventional forest metrics (Dassot et al., 2011; Liang et al., 2016). Doing so, the vertical 134 

distribution of plant material can be determined in high detail, which is an important characteristic of 135 

the forest and edge structure and a significant driver of microclimate (Wang and Li, 2013; Frey et al., 136 



2016), habitat availability and biodiversity (Goetz et al., 2007; Melin et al., 2018). Therefore, TLS is 137 

increasingly used for inventorying a large number of sites in a comparable way, but very few studies 138 

have collected local TLS-data in a replicated design covering a large spatial extent (i.e. continental 139 

extent).  140 

Here we quantified structural variation using conventional forest inventory techniques and state-of-141 

the-art terrestrial laser scanning across 45 edge-to-interior transects in deciduous broadleaved forests 142 

along latitudinal and elevational gradients across Europe. Our major objective was to study the 143 

variation in forest edge structural metrics. We studied how large environmental gradients, driven by 144 

temperature and humidity, affected the edge structure (i.e. canopy cover, canopy openness, total basal 145 

area, stem density, mean diameter at breast height (DBH), the coefficient of variation of the DBH, 146 

plant area index, canopy height, the peak in plant material density and the height of this peak and 147 

finally the foliage height diversity). We expected to find structurally different forest edges across 148 

Europe, resulting from changes in the macroclimate (light, temperature and precipitation) similar to 149 

the global patterns in vegetation structure and composition (Aussenac, 2000; Quesada et al., 2012). 150 

A decrease in temperature and/or water availability could limit the productivity and thereby reduce, 151 

for instance, stem density, canopy height and the amount of plant material. Yet, even on a smaller 152 

spatial scale, the microclimate, could affect the vegetation structure and therefore we assumed to 153 

detect a changing forest structure from forest edge to interior. Additionally, we assessed what the 154 

effects of forest management were within the different regions via a replicated design covering 155 

contrasting management types per site. We assumed that management would shape the forest edge 156 

structure on a local scale. For example, intensive management (e.g. intensive thinnings) will reduce 157 

canopy cover, stem density and the amount of plant material but will increase the canopy openness. 158 

This could negatively affect the forest edge’s capacity to reduce the impact of the surrounding land. 159 

Finally, we took the influence of tree species composition on the forest edge structure into account. 160 

We expected that more shade-tolerant species would form denser edges with a higher plant area index 161 

and vegetation cover and a lower canopy openness.   162 



2. Material and methods 163 

2.1 Study design and area  164 

We studied forests along a latitudinal gradient from central Italy (42 °N) to central Norway (63 °N), 165 

crossing the sub-Mediterranean, temperate and boreonemoral forest biomes of Europe. This 166 

approximately 2300 km wide transect captures macroclimatic variation across Europe (∆ mean annual 167 

temperature ~ 13 °C). Along this south-north gradient, nine regions were selected (Figure A1): (1) 168 

Central Italy, (2) Northern Switzerland, (3) Northern France, (4) Belgium, (5) Southern Poland, (6) 169 

Northern Germany, (7) Southern Sweden, (8) Central Sweden and (9) Central Norway.  170 

In three regions, i.e. Norway, Belgium and Italy, the study design was replicated along an elevational 171 

gradient covering low, intermediate and high elevational sites to include the climatic variation 172 

resulting from elevational differences (21 - 908 m above sea level, m a.s.l) with an expected ∆ 173 

temperature ~ 5.76 °C (ICAO, 1993). For the six remaining regions, only lowland transects were 174 

studied (between 8 and 450 m a.s.l.). 175 

In all 15 sites (i.e. nine lowland, three intermediate and three high-elevation sites), we collected data 176 

in three forest stands with a distinct management type. The first type was always a dense and vertically 177 

complex forest with a well-developed shrub layer, since it had not been managed for more than 10 178 

years and in general not thinned for at least three decades. A high basal area and canopy cover 179 

characterized this type of forest stands, hereafter always referred to as ‘dense forests’. A second type, 180 

‘intermediate forests’, comprised stands with a lower basal area and canopy cover, resulting from 181 

regularly thinning (last time approximately five to 10 years ago). The shrub layer in these stands was 182 

sparse or absent. The third management type represented ‘open forests’ with a low basal area and 183 

higher canopy openness. These forests were intensively thinned in the recent past (one to four years 184 

before sampling). Therefore, these forests were structurally simple with no shrub and subdominant 185 

tree layer. The studied forests thus represent a ‘chronosequence’ of forest management types along 186 

the typical gradient of a management cycle of managed ancient deciduous forests in Europe.  187 



We focused on mesic deciduous forests on loamy soils, in general dominated by oaks (mainly 188 

Quercus robur, Quercus petraea or Quercus cerris) because these are hotspots for biodiversity, 189 

constituting an ecologically important forest type and represent a substantial portion of the deciduous 190 

forests across Europe (Bohn and Neuhäusl, 2000; Brus et al., 2012). Other important tree species 191 

were Fagus sylvatica, Betula pubescens, Populus tremula, Ulmus glabra, Alnus incana and Carpinus 192 

betulus. One up to ten different tree species were present per forest stand. All forests were larger than 193 

4 ha, and ancient (that is, continuously forested and not converted to another land use since the oldest 194 

available land use maps which is typically at least 150-300 years). We selected the three forest stands 195 

that best matched the list of selection criteria after multiple field visits (Appendix A1), often with 196 

assistance from local forest managers, who had knowledge of the area and the historical land-use. 197 

2.2 Edge-to-interior transects 198 

In each forest, we studied a 100 m-long edge-to-interior gradient. In total, 45 edge-to-interior transects 199 

(15 sites and 3 replicates covering the management types per site, Table A1) were established, all 200 

starting at a southern forest edge to standardize the edge orientation. The studied edges were bordered 201 

by arable land or grassland, as is common in highly fragmented landscapes in Europe, and all plots 202 

were at least 100 m away from any other forest edge. Each transect encompassed five 3 × 3 m² plots 203 

(thus resulting in 225 plots), all at a fixed distance perpendicular to the edge according to an 204 

exponential pattern. The centre of the first plot was located at a distance of 1.5 m from the outermost 205 

line of tree trunks, followed by plots centred at 4.5 m, 12.5 m, 36.5 m and 99.5 m from the forest edge 206 

towards the interior. If a forest trail was present, we slightly moved the plot away from the trail to 207 

avoid effects on the vegetation structure (this was the case in only six plots and never in the two plots 208 

closest to the edge).  209 

2.3 Forest structure characterisation 210 

The forest structure was quantified between May and July 2018 (leaf-on conditions). Characterisation 211 

of the forest structure in each plot was done both via a conventional forest inventory survey and via 212 

state-of-the-art TLS. 213 



2.3.1 Conventional forest inventory survey 214 

The species-specific percentage cover of all shrub (1 – 7 m) and tree (> 7 m) species was 215 

visually estimated (resolution 1 %) within each 3 × 3 m² quadrat. The total vegetation cover 216 

was calculated as the cumulative sum of each of the individual tree and shrub species co-217 

occurring within a given quadrat, thus allowing the total cover to exceed 100 % due to overlap 218 

as is common in forests (Zellweger et al., 2019a). Next, the centre of each quadrat served as 219 

the centre of a larger circular plot with a radius of 9 m. An ultrasound hypsometer (Vertex IV, 220 

Haglöf, Sweden) was used to determine the plot dimensions. In these plots, we measured the 221 

diameter at breast height (DBH, 1.3 m) of all trees (with DBH ≥ 7.5 cm) with a caliper via 222 

two DBH measurements per stem perpendicular to each other. We then calculated the mean 223 

DBH per plot and its coefficient of variation (CV). Further, total basal area and stem density 224 

per hectare were calculated at plot level. As part of the first and second circular plots extended 225 

beyond the forest edge and measurements stopped at the edge (due to the obvious absence of 226 

trees), the total basal area and stem density were recalculated for the fraction of forested area. 227 

Finally, canopy openness was determined with a convex spherical densiometer (Baudry et al., 228 

2014). Canopy openness at plot level was calculated as the average of three readings: one in 229 

the plot’s centre and two at a distance of 4.5 m left and right of the centre (following a line 230 

parallel to the forest edge), respectively. In sum, we derived six response variables via the 231 

conventional field inventory: total vegetation cover, mean DBH, the CV of the DBH, total 232 

basal area, stem density and canopy openness. 233 

2.3.2 Terrestrial laser scanning  234 

At each plot, we carried out a single-scan position TLS using a RIEGL VZ400 (RIEGL Laser 235 

Measurement Systems GmbH, Horn, Austria) to map the complex three-dimensional structure 236 

of the forest plot. The instrument has a beam divergence of nominally 0.35 mrad and operates 237 

in the infrared (wavelength 1550 nm) with a range up to 350 m. The pulse repetition rate at 238 

each scan location was 300 kHz, the minimum range was 0.5 m and the angular sampling 239 



resolution was 0.04°. Scanning from one single independent location, instead of processing 240 

multiple scanning positions, ensures an objective and holistic observation of forest stand 241 

structure while being less time consuming compared to multiple scanning positions (Calders 242 

et al., 2014; Seidel et al., 2016). The scanner was mounted on a tripod (1.3 m above the 243 

ground) and placed in the centre of each plot, where one upright and one tilted scan (90° from 244 

the vertical) were taken. These two scans were co-registered, and their data was merged to 245 

one point-cloud making use of matrices calculated in the RISCAN Pro software and six 246 

reflective targets placed around each of the plots before scanning. The reflectors were used to 247 

link and merge the upright and tilted scan as they represent exactly the same locations in both 248 

images. Based on the resulting raw point cloud data, a local plane fit was executed to correct 249 

for topographic effects. Two adjustments were made to the method described by Calders et 250 

al. (2014). Firstly, for the topography correction with TLS plane fitting, a reduced grid (10 m 251 

by 10 m) around the scan position was applied. Herein, the lowest points (i.e. ground points) 252 

were selected with a 1 m spatial resolution. Secondly, the iterative reweighted least squares 253 

regression, accustomed to weight and thus correct for scanner distance of the ground points, 254 

was omitted. After performing a local plane fit, vertical profiles of plant area per volume 255 

density (m2 m-3) (PAVD) as a function of the height were constructed for each plot from the 256 

adjusted point cloud. These profiles were based on the gap fraction or the gap probability that 257 

represents the probability of a very narrow beam to miss all scattering elements in the forest 258 

and escape through the canopy without being intercepted by foliage or wood. Calculation of 259 

the gap probability and subsequently the vertical plant profiles is explained in Calders et al. 260 

(2014) and was executed in Python making use of the Pylidar library 261 

(http://www.pylidar.org/en/latest/). Subsequent calculations to derive the respective variables 262 

were done in R (R Core Team, 2019). PAVD-profiles illustrate the plant canopy structure and 263 

are often used to study the vertical organisation of plant material from the forest floor to the 264 

top of the canopy (Calders et al., 2014). Based on the profiles, we extracted several forest 265 



structural metrics. Firstly, we determined the plant area index (PAI), which is the total area of 266 

woody (e.g. branches and stems) and non-woody biomass (i.e. leaves) per unit of surface area. 267 

The PAI was determined at plot level as the integral of the PAVD over the canopy height. 268 

Secondly, a canopy related structural metric, namely canopy top height was extracted. Canopy 269 

top height was based on the 99 % PAVD-percentile to remove atmospheric noise. 270 

Consequently, the peak in PAVD or thus the maximum density and its height were derived 271 

from the profiles. We also quantified the vertical heterogeneity in plant material along the 272 

profile, namely, the foliage height diversity (FHD). The FHD was calculated as the Shannon-273 

Wiener index for diversity, sensu MacArthur and MacArthur (1961): 274 

𝐹𝐻𝐷 =  − ∑ 𝑝𝑖  × log 𝑝𝑖
𝑖

 275 

With pi representing the proportion of plant material in the 𝑖𝑡ℎ 1 m vertical layer (i.e. PAVD 276 

for a given 1 m vertical layer). 277 

A vertically simple profile will receive a low FHD-value while the value will increase with 278 

increasing heterogeneity of the FHD. Lastly, canopy openness was calculated as the average 279 

percentage of gap fraction across the angle 5-70°. In total, six TLS-based response variables 280 

were extracted: PAI, canopy top height, the peak in PAVD, the height of this peak, FHD and 281 

canopy openness. 282 

2.4 Macroclimatic predictor variables 283 

Meteorological data were downloaded from CHELSA (version 1.2, average climatic conditions over 284 

the period 1979-2013 at a spatial resolution of 30 arc sec, equivalent to approximately a 0.5 km2 285 

resolution at 50 °N) (Karger et al., 2017). We extracted the mean annual temperature (MAT, °C) and 286 

the mean total annual precipitation (MAP, mm/year) for each site. Subsequently, we calculated the 287 

de Martonne Aridity Index (DMI), a drought index based on the MAP divided by the MAT plus 10 288 

°C (de Martonne, 1926). High values express a high humidity while areas with water stress are 289 

characterized by low values.  290 



2.5 Data analysis 291 

Variation in forest edge structural metrics across Europe was analysed in R (R Core Team, 2019) 292 

making use of linear mixed-effect models (Zuur et al., 2009) and the lmer function in the R-package 293 

lme4 (Bates et al., 2015). In all models, region and transect nested within region were added as 294 

random effect terms (i.e. random intercepts, as 1│region/transect in R syntax) to account for spatial 295 

autocorrelation due to the hierarchical structure of the data; three up to nine unique transects were 296 

nested within each region and thus tend to be more similar than transects from another region.  297 

In a first set of models, the fixed effects were our four design variables (i.e. latitude, elevation, 298 

management type and distance to the edge), including all two-way interactions. Finally, also the 299 

community-weighted mean shade tolerance of each plot was added to each model as a covariate. 300 

At the local scale, both tree species richness and composition differed across the transects and sites 301 

and this could affect the forest structure since tree species differ in their architectural characteristics 302 

(Mourelle et al., 2001; Niinemets, 2010). To better account for differences in tree species community 303 

composition and their effect on the forest structure and to avoid the detection of patterns in edge 304 

structure that are only related to tree species identity or forest development stage, the tree community-305 

weighted mean shade tolerance was used as a predictor. The shade tolerance index (Niinemets and 306 

Valladares, 2006) ranges between one and five and describes the tolerance of tree and shrub species 307 

to grow in the shade. Very shade-intolerant species (e.g. Betula pubescens), requiring high levels of 308 

light (> 50 %) to grow, receive a low value (minimum 1) while the opposite (maximum 5 for a 2-5 % 309 

light availability) is true for very shade-tolerant species (e.g. Fagus sylvatica) (Niinemets and 310 

Valladares, 2006). Even though shade tolerance is mainly determined on juveniles, the relative 311 

ranking amongst co-existing species stays overall very similar for adults (Grubb, 1998; Niinemets 312 

and Valladares, 2006). The shade tolerance was calculated at the plot level and was based on all tree 313 

species in the plot weighted by their respective cover in the conventional inventory. The equation 314 

below summarises our first set of mixed-effect models, whereby x represents the twelve forest 315 

structural metrics. 316 



𝑥 ~ (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) +  (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 ) + (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒)317 

+  (𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 × 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) + (𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒)318 

+  (𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒) + 𝑠ℎ𝑎𝑑𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 + (1|𝑟𝑒𝑔𝑖𝑜𝑛/𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡) 319 

 320 

To achieve a more profound understanding of the patterns and their drivers, two additional sets of 321 

models were constructed where latitude and elevation were substituted first by the MAT and secondly 322 

by the DMI. Each time management type, distance to the edge and the community-weighted mean 323 

shade tolerance of the tree layer were retained as fixed effects and region and transect nested within 324 

region as random effects. Two-way interactions were allowed between substitutes and design-325 

variables as well as amongst design variables.   326 

 327 

Since the distribution of our plots follows an exponential pattern, the distance to the edge was log-328 

transformed prior to the analyses. All continuous predictor variables were standardized (z-329 

transformation) to allow for a better-standardized comparison of model coefficients. Two response 330 

variables, canopy openness derived via TLS and canopy openness derived via the densiometer, had 331 

right-skewed distributions and were log transformed prior to the analyses. For each of the above-332 

mentioned combinations of response variables and models, a backward model selection was executed 333 

whereby non-significant effects and/or interaction terms were removed using the step-function of the 334 

R-package lmerTest (Kuznetsova et al., 2017). After model selection, restricted maximum likelihood 335 

was employed to assess the model parameters and finally, we corrected our p-values for multiple 336 

comparison testing making use of false discovery rates (FDR). The FDR is the estimated proportion 337 

of Type 1 errors or thus the proportion of comparisons that are wrongly called significant (Pike, 338 

2011). Throughout the text, we will always refer to the corrected p-values but asterisks in all tables 339 

indicate original p-values. The proportion of the explained variance by the fixed effects only (i.e. 340 

marginal R2) and the combination of fixed and random effects (i.e. conditional R2) determined the 341 

model fit. To better understand how strong variables at the edge differed from those at the interior, 342 

the magnitude of edge influence (MEI) was calculated as well. The MEI was estimated as (edge – 343 



interior)/ (edge + interior) for all response variables but separately per management type. The 344 

resulting value fluctuates between -1 and 1 whereby 0 represents no edge influence (Harper et al., 345 

2005). Finally, potential associations between predictor variables as well as amongst response 346 

variables were identified with Pearson correlations.   347 



3 Results 348 

An overview of the twelve response variables and their mean and standard deviation in each region 349 

can be found in Table 1. For almost all variables, there was a high variability between and within 350 

regions, as indicated by the differences in mean values and standard deviations, respectively. For 351 

instance, there were large differences in stem density; in Norway, the average stem density was the 352 

highest whereas France had the lowest stem density. The average basal area on the other hand, was 353 

highest in Switzerland and Southern Sweden. In Germany, average canopy cover was the highest and 354 

canopy openness the lowest whereas the opposite, the lowest canopy cover and highest canopy 355 

openness was found in France. Average canopy openness determined with TLS was also the highest 356 

in France but lowest in Switzerland and Germany. Variation between regions and between 357 

management types were visualised in the PAVD-profiles (vertical plant profiles form which most of 358 

our TLS-variables were derived) in Figure B1 and Figure 1 as well. Further, between- and within-359 

site variability in the dominant tree and shrub species was found (Table A1). Oaks dominated most 360 

of the transects but the species differed between regions (e.g. Quercus cerris in Italy whereas in 361 

Belgium Quercus petraea and Quercus robur were the most dominant). In Norway, the dominant tree 362 

species were Alnus incana, Ulmus glabra and Betula pubescens.  363 

Our first set of models, including the four design variables latitude, elevation, management type and 364 

distance to the edge in addition to the mean community-weighted shade tolerance of the tree layer 365 

(Table 2) showed that the forest structure varied strongly with the distance to the edge. Interestingly, 366 

in a few cases, these edge-to-interior gradients depended on one of the other design variables; we 367 

found significant interactive effects of the distance to the forest edge with latitude, elevation and/or 368 

management. For instance, for the PAI and stem density, we found an interaction effect of distance 369 

to the forest edge with management and latitude, respectively. Dense forests exhibited an extended 370 

and gradual increase in PAI from the edge to the interior, whereas this increase was weaker in open 371 

forests (p = 0.090) and significantly more abrupt and shorter in intermediate forests (p = 0.022, Table 372 



2 and Figure 2). This results in a flatter and quicker saturated edge-to-interior gradient for 373 

intermediate forests. 374 

375 

Figure 1: Vertical profiles of plant area per volume density (PAVD) (m2 m-3) at different distances from the edge 376 

(1.599.5 m) for three management types. The profiles were averaged across all regions and elevations (n = 15) with 377 

management type shown in different colours. Figure B1, in the appendix, shows the PAVD-profiles for the nine regions, 378 

averaged across all management types and elevations. 379 



Table 1: Overview of the response variables per region (mean ± standard deviation). PAVD = plant area volume density. 380 

 Variables from the conventional forest inventory Variables from TLS 

Region Total cover (%) Canopy 

openness (%) 

Total basal 

area (m2 ha-1) 

Stem density 

(ha-1) 

Mean DBH 

(cm) 

Coefficient of 

variation DBH 

Plant area 

index 

Canopy 

height (m)  

Maximum  

PAVD 
(m2m-3) 

Height peak 

PAVD (m) 

Canopy 

openness (%) 

Foliage 

height 
diversity 

Central 

Italy 

106.6 ± 37.5 12.5 ± 6.9 24.3 ± 11.7 923 ± 661 18.8 ± 6.6 46 ± 16 3.79 ± 0.81 19.7 ± 5.1 0.25 ± 0.11 10.1 ± 6.2 7.96 ± 4.76 2.72 ± 0.33 

Northern 

Switzerland 

136.0 ± 44.4 5.0 ± 2.1 47.0 ± 24.2 582 ± 268 29.2 ± 11.11 63 ± 21 5.09 ± 1.21 29.6 ± 3.8 0.23 ± 0.11 8.7 ± 8.6 2.49 ± 1.77 3.25 ± 0.23 

Northern 

France 

89.0 ± 72.9 29.4 ± 32.4 28.7 ± 12.4 280 ± 269 41.6 ± 17.8 66 ±26 3.43 ± 2.43 33.6 ± 3.8 0.12 ± 0.09 14.3 ± 11.8 24.34 ± 27.26 3.35 ± 0.13 

Southern 

Poland 

108.7 ± 36.1 12.0 ± 5.7 25.2 ± 11.4 575 ± 246 22.1 ± 6.5 41 ± 12 4.22 ± 1.11 24.9 ±2.2 0.21 ± 0.06 13.5 ± 8.0 5.95 ± 5.57 3.00 ± 0.11 

Belgium 121.1 ± 38.1 5.3 ± 4.6 34.0 ± 23.1 579 ± 449 27.9 ± 15.2  59 ± 24 4.57 ± 1.62 24.5 ± 3.6 0.23 ± 0.10 10.4 ± 7.0 6.03 ± 9.08 2.99 ± 0.22 

Northern 

Germany 

153.9 ± 41.4 1.7 ± 2.1 37.9 ± 15.7 402 ± 224 33.8 ± 12.3 56 ± 16 5.22 ± 1.31 25.1 ± 1.6 0.27 ± 0.08 13.9 ± 9.9 2.91 ± 4.36 3.01 ± 0.12 

Southern 

Sweden 

128.0 ± 68.9 6.2 ± 5.0 46.3 ± 31.0 386 ± 209 34.7 ± 10.3 60 ± 34 5.30 ± 0.96 25.3 ± 3.1 0.28 ± 0.10 12.3 ± 9.8 4.08 ± 5.71 3.00 ± 0.11 

Central 

Sweden 

113.5 ± 40.3 3.7 ± 3.2 38.1 ± 31.1 348 ± 200 41.9 ± 37.5 50 ± 28 3.61 ± 1.29 25.4 ± 1.7 0.17 ± 0.07 9.4 ± 7.1 7.95 ± 5.34 3.03 ± 0.07 

Central 

Norway 

115.0 ± 39.7 7.8 ± 8.5 32.8 ± 15.6 1528 ± 849 15.4 ± 3.3 47 ± 17 3.68 ± 1.37 15.2 ± 4.3 0.26 ± 0.09 7.4 ± 4.8 11.50 ± 16.88 2.48 ± 0.32 

 381 

Table 2: Summary of the results (after model selection) of the first set of models where we tested the impact of the four design variables (e.g. latitude, elevation, management and 382 

distance to the forest edge). Variables derived via conventional forest inventory techniques are depicted above the double line, while the TLS-based variables are shown below the 383 

double line. Both estimates and p-values including false discovery rate correction (FDR) of the parameters are shown, original p-values before FDR-correction are shown as asterisks 384 

between brackets (p < 0.05*, p < 0.01**, p < 0.001***). Dense forests were used as the reference management type. The proportion of variance explained by the random factors, the 385 

marginal R2, and the proportion of the variance explained by both random and fixed effects, the conditional R2, are also shown. 386 

Response variable Latitude  Elevation  Distance to 

the edge 

Inter-

mediate 

Open Shade 

tolerance 

Lat. × 

Distance  

Elev. × 

Distance 

Inter-

mediate × 

Distance 

Open × 

Distance 

Elev. × 

Inter- 

mediate 

Elev. × 

Open 

Marginal 

R2 

Conditional 

R2 

Total cover Estimate 
   

-14.05 -31.65 
       

0.08 0.41 

p-value 
   

0.908 
 

0.051 (**) 
         



Canopy 

openness 

 

Estimate 
   

0.15 0.68 -0.45 
      

0.14 0.59 

p-value 
   

0.992 < 0.001 

(***) 

< 0.001 

(***) 

        

Total basal 

area  

Estimate 3.44 -1.19 -7.76 2.36 -8.30 4.63 
 

2.31 
    

0.27 0.38 

p-value 0.078 (*) 0.777 < 0.001 

(***) 

0.777 0.078 (*) 0.005 (**) 
 

0.078 
      

Stem density  Estimate 193.91 87.89 -162.40 -22.79 -361.37 
 

-115.25 -68.19 
    

0.21 0.75 

p-value 0.443 0.443 < 0.001 
(***) 

1.000 0.055 (*) 
 

< 0.001 
(***) 

0.015 (**) 
      

Mean DBH  Estimate 
 

-1.80 -0.94 
    

1.95 
    

0.03 0.50 

p-value 
 

0.960 0.907 
    

0.081 (*) 
      

Coefficient 

of variation 

DBH 

Estimate -0.77 
 

0.45 
   

2.83 
     

0.02 0.33 

p-value 1.000 
 

1.000 
   

0.131 (*) 
       

Plant area 

index 

Estimate 
 

-0.22 0.65 0.15 -0.92 0.25 
 

-0.12 -0.37 -0.27 
  

0.30 0.66 

p-value 
 

0.190 < 0.001 

(***) 

0.888 0.029 (*) 0.022 (**) 
 

0.089 (*) 0.022 (**) 0.090 
    

Canopy 

height  

Estimate 
 

0.28 0.64 0.14 0.46 0.48 
    

-3.04 -0.84 0.10 0.91 

p-value 
 

1.000 < 0.001 

(***) 

1.000 1.000 0.103 (*) 
    

0.089 (*) 1.000 
  

Maximum 

PAVD  

Estimate 
 

0.01 0.02 
    

-0.01 
    

0.05 0.45 

p-value 
 

1.000 0.001 (***) 
    

0.187 (*) 
      

Height peak 

PAVD  

Estimate -1.33 -1.40 2.30 3.86 1.15 
       

0.17 0.34 

p-value 0.142 0.139 (*) < 0.001 

(***) 

0.079 (*) 0.945 
         

Canopy 

openness  

Estimate 
 

0.23 -0.16 0.01 0.87 -0.33 
 

0.11 
    

0.29 0.62 

p-value 
 

0.110 0.007 (**) 1.000 0.010 (**) < 0.001 

(***) 

 
0.079 (*) 

      

Foliage 

height 

diversity 

Estimate 
 

-0.08 0.02 
         

0.06 0.84 

p-value 
 

0.220 0.156 (*) 
           

 387 



 388 

Figure 2: Plant area index (PAI; mean and 95 % predictions intervals) as a function of the distance to the forest edge (m) 389 

for three management types. The lines show the model predictions of the interaction between distance to the edge and 390 

management. Different colours represent the shade tolerance of the tree layer (values close to one denote low shade 391 

tolerance; values close to five a high shade tolerance). Dots indicate the raw data points; a small amount of noise was 392 

added along the X-axis to improve clarity. 393 

Moreover, we detected a decrease in stem density from edge to interior, but this decrease was stronger 394 

at northern latitudes and flattened out towards southern Europe (p < 0.001, Figure 3, Table 2). 395 

Furthermore, a higher community-weighted mean shade tolerance was found under closed canopies 396 

(densiometer and TLS, p < 0.001 for both) and basal area (p = 0.005) and the PAI (p = 0.022, Figure 397 

2) were higher when shade tolerance increased (Table 2). For canopy openness, we found no edge-398 

to-interior gradients when assessed by means of the densiometer, whereas these gradients were 399 

significant when quantified with TLS (p = 0.007, Table2). 400 



 401 

Figure 3: Stem density (mean and 95 % prediction intervals) as a function of distance to the edge (m) for three 402 

management types. The lines represent the model predictions of the interaction between distance to the edge and latitude; 403 

the colours illustrate the influence of a varying latitude. Elevation was set at its median value when plotting the lines. The 404 

dots show the raw data points; a small amount of noise was added along the X-axis to improve clarity. 405 

For our second set of models, where the MAT replaced elevation and latitude to assess macroclimate 406 

temperature effects, we found a significant interaction between MAT and the distance to the forest 407 

edge (p < 0.001, Table B1) for stem density. As in the first model, there was a strong decrease in 408 

stem density from edge to interior in cold regions whereas the decrease was less distinct in warm 409 

regions (Figure B2, Table B1). The results for the PAI were analogous to the first model as well. 410 

Edge-to-interior gradients in PAI were significantly weaker in intermediate forests (p = 0.019) in 411 

comparison with dense forests (Table B1). Additional significant distance to edge effects were found 412 

for the TLS derived canopy openness (p = 0.01) (not for canopy openness determined with the 413 

densiometer), basal area (p < 0.001), canopy height (p < 0.001), the peak in PAVD (p = 0.001) and 414 

the height of the peak in plant material (p < 0.001).  415 



In a final set of models, we replaced the MAT by the DMI (de Martonne Aridity Index, Table B2) to 416 

assess macroclimate drought effects. After model selection, DMI was retained as a predictor of the 417 

stem density, canopy height and FHD. For the stem density, DMI showed one significant interaction, 418 

namely with distance to the edge (p < 0.001, Table B2); in areas with a higher humidity, stem density 419 

decreased more sharply from edge to interior than in regions with a lower DMI (Figure B2, Table 420 

B2). For both canopy height and FHD there were marginally significant interaction effects between 421 

DMI and the distance to the forest edge. The increase in canopy height (p = 0.070, Figure 4, Table 422 

B2) and FHD (p = 0.057, Figure B3, Table B2) from forest edge to interior was more pronounced in 423 

very humid areas. 424 

Besides a marginally significant interaction with distance to the forest edge, an interaction effect 425 

between DMI and forest management was found for both canopy height and FHD. Open forests had 426 

a higher canopy height and higher foliage height diversity (that is, higher complexity) in drier areas 427 

in comparison to intermediate or dense forests. In regions where there was a very high water 428 

availability, the opposite was found, namely a higher canopy height and FHD for the dense and 429 

intermediate forests (p = 0.044 for canopy height, Figure 4, Table B2 and p = 0.067 for FHD, Figure 430 

B3, Table B2). Finally, the PAI and canopy openness were not affected by the DMI. However, for 431 

the PAI we found a more or less similar interaction effect of management and distance to the forest 432 

edge as in the previous two models (Table 2, B1 and B2).  433 

Similar results were found for the magnitude of edge influence (MEI). The MEI varied across 434 

management types and depended on the studied variable (Figure B4). Total basal area and stem 435 

density show a high positive MEI, whereas for the PAI the MEI is negative. The average MEI for the 436 

PAI was shorter in intermediate than in open or dense forests. For some variables (e.g. total cover, 437 

canopy openness determined with the densiometer, mean DBH and FHD), the MEI was close to zero.  438 



439 

Figure 4: Canopy height (mean and 95 % prediction intervals) in function of the distance to the edge (m) for three 440 

management types. The lines show the model predictions of the interaction between water availability (DMI) and 441 

management, as well as between water availability and distance to the edge. Colours illustrate the impact of the DMI. 442 

Shade tolerance was set at its median value when plotting the lines. The dots show the raw data points; a small amount 443 

of noise was added along the X-axis to improve clarity.  444 



4 Discussion 445 

We found that the macroclimate, distance to the edge, forest management and tree species 446 

composition all influenced the forest edge structure across Europe. However, we also detected 447 

interactive effects of our predictor variables; latitude, mean annual temperature, humidity and 448 

management affected edge-to-interior gradients in the forest structure. In addition, we showed that 449 

management and humidity simultaneously influenced the forest edge structure.  450 

4.1 The plant area index 451 

The PAI increased towards the forest interior, independent of latitude, MAT or DMI, but was affected 452 

by management. The PAI was the lowest in the interiors of open forests (recently thinned forests) and 453 

increased towards dense forests. Forest management practices, directly via the removal of stems or 454 

indirectly via, for instance tree damage and mortality after management practices (Esseen, 1994; 455 

Laurance et al., 1998; Harper et al., 2005; Broadbent et al., 2008), can of course reduce the amount 456 

of plant material, followed by a subsequent recovery through increased productivity and regeneration 457 

in forest gaps. More interestingly, the interactive effects between management and distance to the 458 

forest edge were also significant. The build-up of the biomass towards the interior was more abrupt 459 

and quicker saturated in intermediate forests whereas more gradual edges were found both in dense 460 

and in open forests. Additionally, the average MEI was also shorter in intermediate forests. A possible 461 

explanation for this flatter edge-to-interior gradient in intermediately dense forests can be that there 462 

is an enhanced productivity of the remaining trees especially near the forest edge due to a higher 463 

resource availability (Smith et al., 2018), weakening the gradual increase in PAI as observed in dense 464 

forests or as seen in the first years after harvest (open forests).  465 

Tree species composition could further influence these patterns. Our results support a positive effect 466 

of shade tolerance on the PAI. Shade-tolerant species (e.g. Fagus sylvatica, shade tolerance index of 467 

4.56 ± 0.11) can cope with more shade (Niinemets and Valladares, 2006) and have a different crown 468 

geometry with a more voluminous crown (Canham et al., 1994; Mourelle et al., 2001) and a higher 469 



branching density (Mourelle et al., 2001), creating a more filled and denser canopy. Progressively 470 

increasing shade tolerance from edge to interior could therefore create an even smoother and gradual 471 

forest edge. 472 

4.2 Stem density and basal area 473 

Higher stem densities at the edge might be due to better regeneration in response to the increased 474 

light availability (Palik and Murphy, 1990). Especially noteworthy is that the decreasing trend is 475 

stronger in northern than in southern Europe. This may result from the lower solar angles at northern 476 

latitudes, which particularly increases light availability at the southern forest edge (Hutchison and 477 

Matt, 1977; Harper et al., 2005). In the south, however, the received solar energy per surface unit is 478 

higher and differences between edge and interior are less distinct. Here we noticed almost no 479 

difference in stem density between edge and interior. Stronger decreases in stem density were also 480 

detected in colder regions and regions with a higher water availability due to a strong negative 481 

correlation between latitude and MAT and a strong positive correlation between latitude and DMI 482 

(Figure B5).  483 

In response to a lower tree density, we can expect an increased light availability resulting in higher 484 

diameter increments (Harrington and Reukema, 1983; Ginn et al., 1991; Aussenac, 2000). Based on 485 

the mean DBH or its CV, however, we did not find an impact of management. As a result of the 486 

combined impact of a decreasing stem density and a more or less constant DBH, basal area decreased 487 

towards the forest interior as previously described by Young and Mitchell (1994). 488 

4.3 Canopy openness 489 

Remarkably, results of canopy openness assessed via TLS and via the densiometer were slightly 490 

different. The main difference was that TLS-based canopy openness depended on the distance to the 491 

forest edge, whereas no edge impact was found for the densiometer-based openness. Densiometer 492 

measurements are visual estimates and are therefore prone to biases related to observer errors, 493 

differences amongst operators and a poor resolution (Jennings et al., 1999; Baudry et al., 2014). In 494 



addition, the difference between the two approaches might be caused by scale issues as the scale of 495 

the two measurements differed. The densiometer measurements had an intermediate angle of view (< 496 

60°) (Baudry et al., 2014) while TLS-derived canopy openness took into account a larger field of 497 

view (5 – 70°), possibly giving a more detailed representation of the openness and leading to the 498 

detection of edge-to-interior-patterns (i.e. a decrease in canopy openness with increasing distance to 499 

the forest edge). TLS derived canopy openness might thus be a better tool to study the canopy 500 

openness in a more detailed and objective way. Likewise, Seidel et al., (2011) state that especially 501 

TLS is recommended when high-resolution canopy information is required. 502 

4.4 Canopy height and the FHD 503 

Canopy height was slightly lower at the forest edge. This could be attributed to an increased wind 504 

speed near forest edges, resulting in canopy damage and a reduced canopy height (Laurance et al., 505 

1998; Magnago et al., 2015). Nevertheless, we found that this edge-to-interior gradient in canopy 506 

height was affected by gradients in water availability; under conditions of low water availability 507 

forests had a lower canopy height likely due to competition for resources. Previous research showed 508 

that thinning can reduce canopy height due to a lower competition and the redistribution of nutrients 509 

to lateral branches or the trunk (Harrington and Reukema, 1983; Aussenac, 2000). We found such a 510 

lower canopy height with management, except in forests with a lower water availability. In drier 511 

regions, open, recently managed, forests had a higher canopy height than dense forests. In areas with 512 

a higher humidity, the opposite pattern was observed. One possible reason might be that a heavy 513 

thinning in a drier area could cause a strong reduction in competition, a drop in total water use and 514 

an increased throughfall. Hence, an increase in water availability might benefit the canopy height of 515 

the residual trees (Stogsdili et al., 1992; Aussenac, 2000).  516 

Alternatively, canopy heights might be underestimated in dense forests due to shading by a higher 517 

number of stems and branches in the lower canopy layers (Watt and Donoghue, 2005; Liang et al., 518 

2016; Muir et al., 2018). This means that the detection of the top of the canopy could be more accurate 519 

in drier and open forests, potentially leading to a higher estimated canopy height. Occlusion, the 520 



inability to detect remote plant material due to dense vegetation close to the scanner, is especially an 521 

issue when using a single scan position and can be reduced by using multiple scanning positions, 522 

which is more time consuming and therefore not done in our study (van Leeuwen and Nieuwenhuis, 523 

2010; Liang et al., 2016; Wilkes et al., 2017).  524 

When tree height increases, the amount of plant material rises and so does the vertical heterogeneity 525 

(Müller et al., 2018). We indeed found a strong positive correlation between canopy height and FHD 526 

(Figure B5) and similar predictors for the FHD and canopy height were retained in our third model. 527 

We found that the FHD in open forests was lower than in dense forests in regions with a high water-528 

availability, whereas the opposite was found for areas with a lower humidity. This could be due to a 529 

higher canopy in drier and open forests, and thus a higher number of vertical layers in the calculation 530 

of the FHD. A potential solution could be to select an equal number of height classes for all canopies 531 

instead of working with 1 m bins. However, in our case, this was considered too complicated due to 532 

the large range of canopy heights present in the dataset (9.5 up to 39 m) and because, up to now, there 533 

is no generally accepted method for the delineation of height classes in the FHD-calculation 534 

(McElhinny et al., 2005). Another downside of using the FHD as a metric of complexity is its 535 

dependency on the relative amount of plant material in each layer. A high FHD does not always mean 536 

a high complexity per se, but could result from a uniform filling of the vertical layers and not of a 537 

heterogeneous canopy (Seidel et al., 2016). 538 

4.5 Management and ecological implications 539 

Our results demonstrate that the geographical position and macroclimate affect the forest edge 540 

structure. Southern forests and forests in regions with a high MAT could be more susceptible to 541 

influences from the non-forest environment (e.g. an increased atmospheric deposition and influx of 542 

fertilizers and herbicides but also a larger impact of the macroclimate). They have a lower basal area 543 

and lack the sharp increase in stem density towards the edge that is present in northern forests, which 544 

helps buffering the forest from the exterior. Similarly, edge influences in drier forests could also be 545 

underestimated. This means that in these forests, the spatial extent of edge influences of the adjacent 546 



land might be more extended and larger buffer zones are required to protect the microclimate, forest 547 

specialists and nutrient cycling in the forest interior. Since macroclimate variation over space 548 

influences the forest edge structure in our study, climate change and more frequent extreme heat and 549 

drought events (Meehl et al., 2007) might also impact the forest edge structure as predicted by higher 550 

MAT and lower DMI-values.  551 

Understanding the impact of the above-mentioned factors is important, even though one can hardly 552 

control them. Via management and species composition, we can shape the forest edge structure to 553 

buffer the interior. Considering species composition, we found a positive impact of shade tolerance 554 

on PAI, FHD, canopy height and basal area and a negative impact on canopy openness. Selecting 555 

more shade-tolerant species could thus improve the thermal buffering capacity of forests, as old-556 

growth forest characteristics (e.g. high canopy, biomass and complexity) are associated with a higher 557 

macroclimatic buffering (Frey et al., 2016; Kovács et al., 2017). This is of vital importance in the era 558 

of climate change (De Frenne et al., 2019). However, it is also known that mixing tree species with 559 

complementary characteristics generates a dense and filled canopy (Pretzsch, 2014; Jucker et al., 560 

2015; Sercu et al., 2017). If we focus on management, thinning leads to canopy opening, a reduced 561 

basal area, stem density and biomass and more abrupt gradients in biomass. These management 562 

practices in turn, can increase the impact of edge influences from the adjacent land in the forest 563 

interior. If we want to protect the forest interior, dense and gradual forest edges, on the other hand, 564 

can be beneficial since they reduce both the magnitude and depth of edge influences (Harper et al., 565 

2005). Gradual edges are, for instance, less susceptible to atmospheric nitrogen deposition (Wuyts et 566 

al., 2009) while a dense edge with a high canopy cover is important for the establishment of the forest 567 

microclimate and the reduction of maximum temperatures (Zellweger et al., 2019a). On the other 568 

hand, an increase in canopy openness, due to the harvest of trees, can locally increase the temperature 569 

and the impact of macroclimate warming (Zellweger et al., 2019a). 570 

We further show that the impact of management practices in the different regions is not static, but 571 

influenced by the time since management (e.g. PAI increases from open to dense forests and edge-572 



to-interior gradients in PAI are modified by the management type). Such dynamics are at present 573 

often ignored when studying microclimates or ecosystem functions such as carbon sequestration near 574 

edges as most research focusses on static edges (Smith et al., 2018). Not taking into account such a 575 

dynamic behaviour could, similarly to disregarding the large-scale variation in forest edge structure, 576 

underestimate the impact of the buffering capacity of the forest interior. 577 

4.6 Implications for future research 578 

Even though we sampled in three management types and thereby a large variability in forest 579 

complexity and openness, not the whole range of possible forest edge types was sampled. Therefore, 580 

for instance, we lack natural and unmanaged edges, which are less abrupt but more complex (Esseen 581 

et al., 2016). Extending the range of edge types in addition to a random selection of forest edges could 582 

improve our insights on the impact of management on the forest edge structure. Further, since we 583 

only investigated deciduous forests generally dominated by oaks, additional research on the impact 584 

of macroclimate, management and distance to the forest edge in other forest types could render new 585 

information. In coniferous forests, a more abrupt, less variable edge structure is to be expected as 586 

their capacity to respond to gaps in the canopy or edge formation is limited in comparison to 587 

deciduous trees (Esseen et al., 2016). Therefore, these edges probably receive a higher atmospheric 588 

deposition and are less capable of buffering the impact of the macroclimate. Research by Renaud and 589 

Rebetez (2009), for instance, already showed that buffering of maximum temperatures is linked to 590 

canopy closure and therefore more pronounced in broadleaved and mixed forests than in forests 591 

dominated by conifers.  592 

The use of TLS in forest inventories is beneficial due to its objectivity and accuracy. Probably, the 593 

most important advantage of TLS is the possibility to study metrics nearly impossible to quantify 594 

with conventional forest inventory techniques (Dassot et al., 2011; Liang et al., 2016), such as the 595 

vertical structural variability. However, this technique is still costly and especially time-consuming. 596 

Even when using single-scan TLS, reducing the data acquisition time, the data processing remains 597 

time-consuming. Conventional forestry techniques, on the other hand, are easy applicable and require 598 



less data processing. Therefore, traditional methods to extract, for instance, stem density and basal 599 

area do still have their advantages over TLS. A conventional forestry inventory can thus provide the 600 

researcher with a profound basis on the forest structure, though if enhanced or very detailed forest 601 

measurements are required (e.g. vertical variability), conventional techniques and TLS can be very 602 

complementary.  603 



5. Conclusions 604 

We studied differences in forest edge structure and their predictors for deciduous oak-dominated 605 

forests, subject to different management types along a large latitudinal gradient (2300 km) covering 606 

various macroclimatic zones in Europe. Macroclimate, forest management, distance to the forest edge 607 

and tree species composition all affected the forest edge structure. We found that edge influence could 608 

currently be underestimated in forests at lower latitudes, with a high MAT or lower water availability. 609 

Additionally, forest management interventions could negatively affect the edge quality (i.e. lower 610 

canopy cover and stem density and a higher canopy openness). This tends to reduce the microclimate 611 

buffering capacity of the forest and makes the edge more susceptible to atmospheric depositions. In 612 

drier regions, on the other hand, there might be positive effects of an intensive management (i.e. 613 

higher canopy height and FHD in open forests). We also found an impact of species composition on 614 

the forest edge structure. Selecting species with a higher shade tolerance could further increase the 615 

buffering capacity of the edge. Results on edge influences and management guidelines on forest edge 616 

structure can thus not be extrapolated or generalised across Europe, since both management and 617 

location matter.  618 

Further research should focus on other factors that we did not quantify, such as variation in 619 

topography, soil properties, nitrogen deposition or biotic interactions with herbivores, with a potential 620 

influence on the forest edge structure. If we want to reduce edge influences due to forest 621 

fragmentation, more research is necessary to understand this large-scale variability in forest edge 622 

structure, to come up with proper region- and context-specific management guidelines.  623 
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