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Abstract

Word associations have been used widely in psychology, but the validity of their

application strongly depends on the number of cues included in the study and the

extent to which they probe all associations known by an individual. In this work, we

address both issues by introducing a new English word association dataset. We

describe the collection of word associations for over 12,000 cue words, currently the

largest such English-language resource in the world. Our procedure allowed

subjects to provide multiple responses for each cue, which permits us to measure

weak associations. We evaluate the utility of the dataset in several different contexts,

including lexical decision and semantic categorization. We also show that measures

based on a mechanism of spreading activation derived from this new resource are

highly predictive of direct judgments of similarity. Finally, a comparison with

existing English word association sets further highlights systematic improvements

provided through these new norms.

Keywords: Word associations, mental lexicon, networks, similarity, spreading

activation
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The “Small World of Words” English word association norms for over 12,000 cue

words.

Introduction

The “word association game” is deceptively simple: you are presented with a word

(the cue), and you have to respond with the first word that comes to mind. Playing

the game feels effortless, automatic and often entertaining. Generating a word

associate is easy and indeed, responding with a word that is not the first thing that

comes to mind turns out to be quite difficult (Playfoot et al., 2016). The simplicity of

the task makes it an attractive methodological tool, and a remarkably powerful one:

word associations reveal mental representations that cannot be reduced to lexical

usage patterns, as the associations are free from the basic demands of

communication in natural language (Mollin, 2009; Prior & Bentin, 2008; Szalay &

Deese, 1978). As a technique, it is closely related to other subjective fluency tasks

like the semantic feature elicitation task (McRae, Cree, Seidenberg, & McNorgan,

2005; Vinson & Vigliocco, 2008) and various category fluency tasks (e.g. Battig &

Montague, 1969) in which participants list as many exemplars for a category such as

animals within a one-minute period. Relative to other tasks, however, the word

association technique provides us with a more general and unbiased approach to

measure meaning (Deese, 1965). This means that a variety of stimuli can be used as

cues, regardless of their part-of-speech or how abstract or concrete they are. Taken

together, these properties make word associations an ideal tool to study internal

representations and processes involved in word meaning and language in general.

In this paper we present a new and comprehensive set of word association norms

from the English Small World of Words project (SWOW-EN)1. The data were collected

between 2011 and 2018 and consist of +12,000 cue words and judgments from over

90,000 participants. This makes it comparable in size to a similar project in Dutch

(De Deyne, Navarro, & Storms, 2013b) and substantially larger than any existing

English language resource.

1See https://smallworldofwords.org

https://smallworldofwords.org
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The collection and usage of word association norms have a long history. One of the

most widely used resources comes from the University of South Florida norms (USF

norms, Nelson, McEvoy, & Schreiber, 2004). Although it first appeared in 2004, it

has been cited over 1,900 times and is still the most commonly used resource in

English. The collection of these norms started more than 40 years ago and involved

over 6,000 participants. They contain single word association responses from an

average of 149 participants per cue for a set of 5,019 cue words2. Another commonly

used resource is the Edinburgh Associative Thesaurus (EAT; Kiss, Armstrong, Milroy,

& Piper, 1973), a dataset collected between 1968 and 1971. It consists of 100

responses per cue for a total of 8,400 cues. More recently, British English word

associations have also been collected as part of the Birkbeck norms which contain 40

to 50 responses for over 2,600 cues (Moss & Older, 1996). Looking beyond English,

there are word association datasets with 1,000+ cues available in other languages

including Korean (3,900 cues; Jung, Na, & Akama, 2010) and Japanese (2,100 cues;

Joyce, 2005). The largest collection is available for the Dutch language (SWOW-NL)

for which the most recently released dataset consists of over 12,000 cues (De Deyne

et al., 2013b) and the latest iteration contains data for over 16,000 cues. This last

dataset uses the same procedure as the one described here.

The remainder of the paper consists of two parts. In the first part we describe the

new dataset and its properties. In the second part we evaluate the validity of these

data, focusing on measures of lexical centrality and semantic similarity. Doing so

allows us to demonstrate two ways in which we believe these data have broad

applicability in the field, capitalizing on its unique scale (in terms of number of

cues) and depth (in terms of number of responses).

Data Collection

The data described in this paper are part of an ongoing study to map the human

lexicon in major languages of the world. Across these different languages, we have

2Most of this work was done by hand, and a vivid account of this ordeal is available at http://

w3.usf.edu/FreeAssociation/Intro.html

http://w3.usf.edu/FreeAssociation/Intro.html
http://w3.usf.edu/FreeAssociation/Intro.html
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tried to keep the procedure as closely matched as possible. The original data

collection project began in 2003 in Dutch (De Deyne et al., 2013b; De Deyne &

Storms, 2008b), and since that time some minor changes have been implemented.

First, although the earliest data collection relied on pen and paper tasks, the majority

of the data collection for it (and all of the data collection for this project) has relied

on a web-based task. Over the time frame of the project we also implemented minor

cosmetic changes to the website to enhance readability and to accommodate changes

in web technology. Most notably, recent versions of the website have accommodated

a wider variety of devices, reflecting changes in internet usage in which more

people rely on mobile devices. In response to interest from other researchers, we

also decided to add a question about participant education levels at a point where

the study was already underway. Minor alterations notwithstanding, the core word

association task has remained unchanged throughout the project – one in which the

overriding consideration has been to keep the task short, simple, and inclusive.

Method

Participants. Participants were recruited online, using a crowd-sourced approach

that relied on social media, email and university websites. No restrictions were

placed on participating apart from the requirement that participants be a fluent

English speaker. People interested in participating despite a lack of English fluency

were referred to other languages in the Small World of Words project as appropriate

(currently 14 languages are included).

While there were no age restrictions, only data for participants aged 16 years and

above was used, as we were mainly interested in the representation of a mature

lexicon. The participants consisted of 88,72 volunteers, of whom 54,712 (62%)

identified as female, 33,710 (38%) identified as male, and 300 (<1%) responded using

the unspecified gender category. The average age was 36 years (SD = 16). Besides

gender and age, we also collected information about the native language of the

participants. This was done in two steps. First, we asked the participants to indicate
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whether they were a native speaker of English. Depending on their answer, they

were able to choose from a list of English speaking regions, or from a list with most

non-English languages spoken in the world. Most people (81%) were native

American English speakers (50%), with British (13%) Canadian (11%) and Australian

(5%) speakers as next three largest groups represented in the data. In 2013 we also

began collecting information about level of education, so these data are available for

40% of the participants. Most of our participants had at least a college or university

bachelor (81%) or master degree (37%). This suggests a fairly homogeneous sample

in terms of education, with some degree of selection bias evident.

Materials. Stimulus materials (cue words) were constructed using a snowball

sampling method, allowing us to include both frequent and less frequent cues at the

same time. The procedure also allowed us the flexibility to add cue words that were

part of other published studies, which we did over the course of seven different

iterations over the years. The final set consisted of 12,292 cues included all 1,661

primes and targets from the Semantic Priming Project of Hutchison et al. (2013), all

5,019 cues from the University of South Florida norms (Nelson et al., 2004) and most

of the cues that were part of previously published English word modality norms

(Lynott & Connell, 2013) and semantic feature production norms (McRae et al.,

2005).

Procedure. The study was approved by the KU Leuven Ethics Committee (ref.

G-2014 07 017), and the procedure was identical to the Dutch language data

(SWOW-NL) reported by De Deyne and Storms (2008b) and De Deyne et al. (2013b).

Participants were instructed that a word would appear on the screen and they were

asked to respond with the first three words that came to mind. If they could not

think of any further responses, they could indicate this by pressing the “No More

Response” button. If a word was unknown, they were asked to select the “Unknown

Word” button. They were also instructed to respond only to the word displayed on

top of the screen (not to their previous responses) and to avoid typing full sentences

as responses. Each participant was presented with a list of 14 to 18 stimuli. The
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stimuli presented were selected randomly from those cues with the fewest responses

in the current iteration. Each stimulus appearing on the screen was followed with a

form consisting of three text fields, one for the first (R1), second (R2) and third (R3)

response. Once a field was completed by pressing enter or clicking a button, that

entry could no longer be changed. The response remained on the screen but the

color of the response was changed from black to gray.

Data preprocessing

The data were normalized in a number of steps. We first removed tags, quotes, final

punctuation, and double spaces. In some cases, participants indicated unknown

words or missing responses literally rather than pressing the button. For example,

people sometimes typed unknown word, no response, or ? rather than pressing the

labeled buttons. These responses were recoded as “Unknown word” and missing

(“No more responses”) responses. Only unique responses were included, with

duplicate responses to a specific cue by the same participant recoded as missing

responses. This affected 3,222 responses. Next, a small number of cues were

recoded, which will be discussed in the coming paragraphs. In what follows, we will

focus on American English, as most of the participants spoke this variant. A basic

flowchart outlining the various steps of filtering the data is presented in Figure 1.

Exclusions. We excluded participants from the dataset if they did not meet our a

priori criteria. First, we excluded participants that used short sentences. This was

determined by counting the number of verbose responses (n-gram with n > 1) and

removing those participants where more than 30% of the responses consisted of

these n-grams (2,088 or 2.4% of participants).3 We excluded participants for whom

fewer than 80% of the responses were unique (i.e., they gave the same response to

many different cue words, 754 or 0.8% of participants). We also removed

participants with fewer than 60% of their responses appearing on an English word

3Participants might match multiple removal criteria simultaneously. The numbers reported here do

not consider overlapping matches, but report only the number of participant matching each criterion

separately.
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list. The word list was compiled by combining word forms occurring at least twice

in the English SUBTLEX (Brysbaert & New, 2009) combined with the spelling list of

American English extracted from the VarCon list (Atkinson, 2018) and a list of

spelling corrections used in this study (see infra). This removed 1,201 or 1.4% of the

participants. Finally, participants who indicated that they did not know more than

60% of their words were also excluded. This removed 1,815 (2.0%) of the

participants. Although the goal of data collection was to recruit 100 participants for

every cue word, the logistics of large scale data collection mean that there were some

cases in which this number was exceeded. For consistency, the current release of the

SWOW-EN dataset includes only 100 participants per cue. In those cases where

more than 100 responses were available for a cue, we preferentially included data

from fluent speakers from major countries in the English-speaking world (Australia,

Canada, Jamaica, New Zealand, Puerto Rico, United Kingdom, United States of

America, Republic of Ireland, and South Africa). As a result, a total of 177,120

responses are not further considered in this report and the final dataset then

consisted of 83,864 participants and 3,684,600 responses.

Canonical forms. Following pre-processing and participant screening, all

responses were recoded in a more canonical form. For nouns we removed both

indefinitive and definitive particles (a and the respectively). For verbs we removed

the infinitival particle to. Some responses suggest explicit word completions because

participants preceded their response with a hyphen (-) or ellipsis (...). To be able to

interpret these responses, we added the cue word as part of the response (e.g. if the

cue word was pot and the response was -ato it was recoded as potato). Similarly, we

corrected responses (and occasionally cues) that unambiguously referred to proper

nouns, but were spelled with lower case (e.g. lego becomes Lego). More generally, to

the best of our ability we manually spell-checked all responses occurring at least two

times and added proper capitalization in cases that were mostly unambiguous.

Multiple spellings. Our goal is to provide a resource which can be used in a

uniform way across a broad range of studies. One of the trade-offs we face is how to
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Spell-check and canonical cue forms

88,722 participants
12,292 cues 

4,069,086 responses

Raw Complete Data

88,722 participants
12,282 cues

4,069.086 responses

Score participants

Retain unique spellings

Removed participants

Unknown + Missing responses > 60%
1815 participants

Native English responses < 60%
1201 participants

n-gram (n > 1) responses > 30%
2088 participants

Non-unique responses < 80%
754 participants

Valid participants

84,396 participants
12,282 cues

3,863,520 responses

83,864 participants
12,282 cues

3,686,400 responses

3 x 100 responses

Final SWOW-EN dataset

Retain 100 R1, R2 and R3 
responses per cue word

83,863 participants
12,217 cues

3,665,100 responses

Figure 1. A simplified flowchart providing a schematic overview of how the preprocessing

steps affected the number of participants, cues and responses.

deal with regional variations in spelling found in UK, Australian, Canadian and

other forms of English besides American English. In the remainder of the article we

focus on American English (spell-checked) responses, leaving room to re-analyze

and further collect data in future work and making the raw uncorrected data

available as well, which might be of interest when studying spelling difficulties.

In practice this led to the following changes. There are a number of words that

appeared as cues in multiple forms corresponding to regional spelling variations

(e.g., odor and odour), and in such cases we included only the American English

variant. Accordingly, our analyses did not consider aeroplane, arse, ax, bandana,

bannister, behaviour, bellybutton, centre, cheque, chequered, chilli, colour, colours, corn-beef,

cosy, doughnut, extravert, favour, fibre, hanky, harbour, highschool, hippy, honour, hotdog,

humour, judgment, labour, light bulb, lollypop, neighbour, neighbourhood, odour,

oldfashioned, organisation, organise, paperclip, parfum, phoney, plough, practise, practise,

programme, pyjamas, racquet, realise, recieve, saviour, seperate, smokey,theatre, tresspass,
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tyre, verandah, whisky, WIFI, and yoghurt. These cue words and their responses were

removed and only the American cue variant was retained. Some cues also occurred

with or without spaces or dashes (e.g., bubble gum and bubblegum). We replaced black

out, break up, breast feeding, bubble gum, cell phone, coca-cola, good

looking,goodlooking,good looking,hard working,hard-working, lawn mower, seat belt and

tinfoil with blackout, breakup, breastfeeding, bubblegum, cellphone, Coca Cola,

good-looking,hardworking,lawnmower, seatbelt and tin foil. For consistency, we also

replaced two cues that only occurred with British spelling, aeon and industrialise,

with their American counterparts, eon and industrialize. Finally, we changed bluejay,

bunk bed, dingdong, dwarves, Great Brittain, lightyear, manmade, miniscule, and pass over

to blue jay, bunkbed, ding dong, dwarfs, Great Britain, light year, man-made, minuscule

and passover. Along the same lines, for the purposes of analysis, we Americanized

all non-American spellings in the response data. The resulting dataset reduced the

original 12,282 cues 12,218 cue words.

Distributional properties of cues and responses

Our initial look at the data examines how responses are distributed across cues: how

often do people produce idiosyncratic “hapax legomena” responses? How does the

number of types (unique words) increase as a function of the number of tokens

(unique responses) in the data? How often are people unable to produce a response?

Types and tokens. Aggregating across all three responses, there were 133,762

distinct word forms (types) produced in the dataset, of which only 76,602 appeared

only once. If we restrict ourselves to the first response, there are 64,631 types, of

which 33,410 words occurred only once. Those responses that occur only once are

referred to as hapax legomena responses. While these are sometimes removed (Nelson

et al., 2004), our approach is to retain these, in line with the Dutch SWOW data from

De Deyne et al. (2013b). This approach reflects the view that these are not unreliable

responses but simply reflect the long tail of the frequency spectrum. Of the first

responses (R1), 2.8% of the total number of response tokens and 51.7% of response
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Figure 2. Vocabulary growth curve comparing the empirical or observed growth with the

estimates from a finite Zipfian Mandelbrot (fZM) model (Evert & Baroni, 2007). The curves

show how the number of different types (y-axis) increase as a function of the number of

response tokens (x-axis). The vertical lines indicate the total number of observed tokens for

R1 and R123. The productivity of human language is evident in the fact that regardless of

the sample size, new word types are continuously produced. This effect is greatest when

including second and third responses (R123) rather than only first responses (R1).

types were hapax legomena; when we consider all three responses (R123), the

percentages are similar (2.3% of tokens and 57.3% of types).

In natural language, the number of word types is boundless, as new words are

coined all the time. This is captured by Herdan’s law which describes an empirical

exponential relation between the number of distinct words and the size of the text

(the so called type-token ratio). According to Herdan’s law we might expect that the

number of distinct responses in the word association task also increases as we collect

more data, although the number of new responses will gradually drop as the dataset

gets larger (Herdan, 1964).

To provide a sense of how the number of distinct cue-response pairs (types)

increases as a function of the total number of responses tokens, we estimated
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vocabulary growth curves for the first response data (R1) and the complete dataset

(R123). The results are shown in Figure 2, which plots the number of types observed

as a function of the number of tokens examined for the empirical data (solid lines).

Because there are three times as many responses in R123 as in R1, we fit a finite

Zipfian Mandelbrot model to both datasets using the zipfR package (Evert & Baroni,

2007). Perhaps unsurprisingly, the model fit curves (dashed lines in Figure 2 show

that the number of new types steadily increases as a function of the number of

tokens collected. The continued growth in the curve highlights the productive

nature of human language: there appears to be no adequate sample size to capture

all words in a language. More interesting perhaps is the fact that the rate with which

new types are added is higher for the R123 data than for the R1 data, reflecting the

fact that the second and third responses do not merely constitute more data, they

also elicit different responses from R1. As we will see in later sections, this increased

response heterogeneity results in denser networks that produce better estimates of

various kinds of language-related behavior.

Missing and unknown responses. Recall that participants pressed either

“Unknown word” upon presentation of the cue (which we classify as an unknown

response) or “No more responses” after a first responses was given (which we

classify as missing). How often did this occur? This question is interesting because it

provides a window into the breadth and depth of shared lexical knowledge. Overall,

the average percentage of cue words which people marked as unknown was 2.5%.4

For the second association (R2), 4.3% of responses were missing, and for the third

association (R3) this number increased to 9.2%. This suggests that most cues were

well-known and the procedure was not too difficult, insofar as most people were

able to provide at least three responses per cue.

4The range was between 0% and 52% per cue, remembering that we excluded anyone who gave

60% or more of these responses. Only 1,815 people (i.e., 2% of the full dataset) were excluded on that

basis.
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Network components and lexical coverage

A common application of word association data is to create a semantic network, and

with that in mind we report statistics for the SWOW-EN dataset that are relevant to

such applications. As usually formulated, an association network is a graph in

which each node corresponds to a word, and an edge connects nodes i and j if any

person produces word j as a response when presented with word i as a cue (see for

instance De Deyne, Navarro, Perfors, & Storms, 2016; De Deyne & Storms, 2008a;

Dubossarsky, De Deyne, & Hills, 2017; Steyvers & Tenenbaum, 2005). There is some

variation in how these networks are constructed. Sometimes the edges are directed,

reflecting the fact that word associations are often asymmetric, while other studies

do not use this information. Similarly, edges are sometimes, but not always,

weighted, in order to reflect the frequency with which word j appeared as a

response to word i. It is also commonplace to include only those words that

appeared as cues within the network, which produces loss of data which might bias

other quantities derived from this network (for instance, the number of incoming

links; see De Deyne, Voorspoels, Verheyen, Navarro, and Storms (2014)). Finally, it is

typical to retain only the largest strongly connected component. This ensures that

only those words that have both ingoing and outgoing edges are retained and that

there is a path connecting all possible pairs of words in the graph.

In this section we make use of two different graphs based on the maximal strongly

connected component. The first graph, GR1, was constructed using only the first

response data (R1), whereas the second graph GR123 was based on all responses

produced (R123). It turns out that almost all words form part of the maximal

strongly connected component and therefore only a few of the cue words were

removed for either graph. For GR1, the maximal component consisted of 12,176

vertices, with only 41 words missing from this component.5 For GR123, the maximal

5These were anchovy, anisette, aorta, artichoke, bad weather, beekeeper, bouillon, bunkbed, CAD, campsite,

cayman, chervil, cobweb, demi, drove, eggy, endive, full moon, hissing, industrialize, intoxicate, nectarine,

newsstand, nightingale, patella, percolator,poach, professions, resentment, seahorse, shadowy, sideburns, situate,
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Figure 3. Density plot of the coverage based on single (R1) and continued responses

(R123), where coverage in this context refers to the proportion of responses (to a

specific cue) that belonged to the set of cue words in the strongly connected

component. The proportion of responses retained for each cue is indicated by the

x-axis and shows that most cues retain about 90% of their responses.

component consisted of 12,217 vertices; only one vertex (anisette), was not included.

How much data was lost by adopting this network representation? That is, given

that we reduced the raw data R1 and R123 to graphs GR1 and GR123 that are defined

over a set of 12,176 and 12,216 words respectively, it is natural to ask what

proportion of participant responses are “covered” by this reduced representation. To

calculate the coverage, we computed the average number of response tokens for

each cue when only responses that are part of the strongly connected component are

considered. Overall coverage was high. The average coverage for GR1 was 0.89 with

a median of 0.91 and the total distribution is shown in Figure 3. The proportion of

word associations retained within the graph differed as a function of the cue word,

ranging from 0.11 (pituitary) to 1 (ache). The average coverage for GR123 equaled 0.87

with a median of 0.88, with values ranging from 0.41 (Homer) to 0.99 (ache). These

numbers show that in both the single response and in the multiple response case the

coverage is quite high: most responses that are generated by the participants were

also part of the set of cues, and therefore were retained.

spilling, striptease, synthesizer, teaser, thicken, ticklish, tomahawk and tribune.
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Response chaining

The use of a continued response paradigm makes it possible to investigate the

possibility that people engage in response chaining – using their own previous

response as a cue or prime for their next response to the same word.6 One effect of

response chaining would be to increase the heterogeneity of the overall response

distribution. In the (arguably unlikely) event that the later responses are completely

unrelated to the original cue, this heterogeneity might be detrimental to the overall

quality of the data. Alternatively, if the chained responses are still related to the

original cue, the increased heterogeneity might be beneficial in eliciting additional

knowledge possessed by participants, especially for cues that have a very dominant

response. As an example, consider the cue word brewery for which the response beer

occurs in 85% of R1. In this case, it seems likely that beer is dominating or blocking

other strongly associated responses, and in such cases the continued procedure

enables us to assess the full response distribution. In this section we investigate the

extent to which response chaining is present, and what lexical factors at the level of

the cue or the preceding response determine the amount of chaining.

Evaluating chaining. A simple way to test for response chaining is to compare the

conditional probability of making a specific R2 response given that a particular R1

response was either made or not made. For instance, consider the example shown in

Table 2. In this example the cue word was sun, and we are interested in determining

whether a participant is more likely to give star as their second response if their first

response was moon. To do so, we exclude all cases where a participant gave star as

their first response, and then construct the 2x2 contingency table for R1 against R2

for all remaining participants. In this table the first responses are categorized as

moon or ¬moon and the second responses are categorized as star or ¬star. If the first

6In this paper we do not discriminate between direct chaining (e.g., sibling cues brother, and brother

cues sister), versus a “latent variable” account that views multiple responses as the outcome of a hidden

concept (e.g., extremity cues “body extremity” and “body extremity” cues both arm and leg). Although

direct and hidden chaining may indeed represent different response processes, the data do not allow

us to distinguish between them.
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response does not act as a prime for the second response, there should be no

association in this table. To test this we adopted a Bayesian approach for the analysis

of contingency tables (Gunel & Dickey, 1974; Jamil et al., 2017), assuming a joint

multinomial sampling model. For the sun – moon – star example, the resulting Bayes

factor was 6.53× 106 in favor of an association, with an odds ratio of -3.88 (95% CI:

-5.97 to -2.45). In other words, in this example, we find very strong evidence for a

chaining effect.

More generally, we calculated the corresponding Bayes factor (BF) for all possible

cue – R1 – R2 triples. In approximately 1% of cases we found strong evidence (Bayes

factor > 10) for response chaining. Examples of such cue – R1 – R2 triples are

presented in Table 3. Moderate evidence (3 < BF < 10) was found for 19% of cases.

Some care is required when interpreting the “moderate evidence” cases, as the

Bayes factor analysis yields moderate evidence anytime the R2 being tested never

appeared as an R1, and as a consequence many of these weaker results may simply

reflect the increased heterogeneity in R2. While a more sophisticated approach

could be adopted that incorporates R3, for the sake of brevity we simply note the

possibility that a modest amount of response chaining exists in the data.
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Table 1

The ten most frequent response words, calculated using the first response (R1) data only or

aggregating over all three responses (R123). In the “types” column, frequency is defined as

the total number of cue words for which the response was produced at least once. That is, the

types-based measure ignores the strength of the association and merely looks at the number of

cues to which the response is associated, whereas the tokens-based measure is sensitive to the

number and strength of the associations. For the “tokens” columns, frequency is measured as

the total number of times that the response word was produced.

Types Tokens

R1 R123 R1 R123

money money money money

food water food water

water food water food

car red car car

love love music music

work work old green

bad bad sex red

good fun love love

man good dog work

me man bird old
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Table 2

Contingency table for the cue sun and the mediating effect of R1 = moon on R2 = star. Note

the sampling without replacement correction in the cell indicated with (*) obtained by

removing the occurrences of star as R1.

R2

R1 star ¬ star Total

moon 13 12 25

¬ moon 1 74* 75

Total 14 86 100

Table 3

Top 10 mediated R2 responses for a specific cue and preceding response R1 together with

their Bayes factor and probability compared to no chaining.

Cue R1 R2 log(BF10) Probability

gender male female 16.31 1.00

siblings brothers sisters 14.29 1.00

sibling sister brother 13.65 1.00

hop skip jump 12.98 1.00

parents mother father 12.77 1.00

extremity arm leg 12.53 1.00

condiments salt pepper 11.80 1.00

Korea North South 11.73 1.00

commence begin start 11.68 1.00

sex male female 11.64 1.00
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Using association frequency to predict lexical processing

The first half of this paper described a number of properties of the SWOW-EN

dataset itself. In order to check the validity of the data, in the next part we examine

how well the SWOW-EN data function as a predictor of other empirical data relative

to other corpora. For example, it is typically assumed that response frequency (i.e.,

the number of times word j is given as a response to cue word i) is related to the

strength of the association between words i and j, and as such should correlate

reasonably well with other measures of semantic relatedness. Moreover, if we

aggregate over all cues within the SWOW-EN, and simply consider the frequency

with which word j appears as a response, we should expect this to serve as a

measure of the lexical centrality. That is, the frequency of a response provides us

with an idea about which words are central or salient in the lexicon and might

determine how efficiently lexical information can be retrieved.

To verify this, we used the response frequencies in the SWOW-EN data to predict

three relevant behavioral measures. The first two measures were taken from the

E-lexicon project (Balota et al., 2007, http://elexicon.wustl.edu/). They consisted of

lexical decision and naming latencies for over 40,000 English words. The last

measure was taken from the Calgary Semantic Decision (CSD) project (Pexman,

Heard, Lloyd, & Yap, 2017), in which participants performed a binary concrete /

abstract judgment for 10,000 English words.

We computed correlations to the SWOW-EN response frequencies using both the R1

data and the R123 data. For comparison purposes, we computed the same

correlations for two additional word association norms (the USF norms and the EAT

norms). Because the number of responses per cue varied in the USF data (mean =

144, range = [39,203]), we sampled 100 responses per cue and removed 90 cues that

had fewer than 100 responses. This reduced the total set of cues from 5018 to 4928.

Moreover, as word frequencies are one of the most powerful predictors of word

processing speed (Brysbaert & New, 2009) in a variety of tasks like lexical decision

and naming, we also computed the correlation for the SUBTLEX-US norms, as these
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norms captured more variance than previously used word frequency norms

available (Brysbaert & New, 2009).7

Analysis and results

In keeping with previous studies (Balota et al., 2007; Brysbaert & New, 2009), we

used the z-transformed response times for the lexical decision data and the naming

latency data. Additionally, in order to reduce skewness we log-transformed both the

dependent and independent variables in our analyses. To do so, the z-scores were

transformed to positive quantities by adding the minimum of the obtained z-scores;

for centrality scores, a constant of 1 was added.

The results of the correlation analyses are depicted graphically in Figure 4 (red

bars). The correlation of the lexical decision time and naming tasks is slightly higher

for word frequencies (SUBTLEX-WF) than for any of the four word association

datasets. This is not surprising insofar as the activation of semantic information in

these tasks is limited. In contrast, for the semantic categorization task correlations

were of similar size.

Given the broadly similar performance of word association response frequency and

word frequency as predictors in these tasks, a natural question to ask is whether the

word association data encode any additional information not captured by word

frequency. To that end we also calculated partial correlations between the association

measures, after controlling for the word frequency information in SUBTLEX-WF

(and vice versa). The results are shown in pink in Figure 4, and show a similar

pattern as before, with only modest differences between the four word association

norms. More importantly, they all show that a significant portion of the variance is

not captured by word frequency. Curiously, the inverse relation does not necessarily

hold, as can be seen in the far right of Figure 4: while word frequency does contain

unique information for the lexical decision and naming tasks, it is almost entirely

unrelated to semantic categorization after controlling for word association.

7The frequency norms were based on word forms, since Brysbaert and New (2009) also reported

that the advantage in terms of variance accounted for lemmas was minimal.
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Figure 4. Pearson correlations rxy and 95% confidence intervals for naming and LDT

data from the E-lexicon project and semantic decision latencies from the Calgary

Semantic Decision (CSD) project (correlations multiplied by -1 for readability).

Three different word association datasets (EAT, USF and SWOW-EN) and one

language based measure of frequency derived from SUBTLEX are included. For the

word association datasets the partial correlations, indicated as rxy·z, are calculated

given word frequency based on z = SUBTLEX-WF; for SUBTLEX-WF, the partial

correlation rxy·z removes the effect of the word association datasets.

Taken together, these results suggest that the response frequencies in a word

association task do provide a valid index of lexical processing, and one that

contributes considerable information over and above word frequency. In addition,

we find that their usefulness depends on the nature of the task: word association

norms may be better suited as predictors (relative to word frequencies) for semantic

tasks than for purely lexical tasks. Moreover, the fact that the results for SWOW-EN

were at least as good as older norms is reassuring. It suggests that our

continued-response procedure, combined with the larger cue set, did not strongly

affect the validity of the association response counts, and that our more

heterogeneous participant sample did not strongly affect the nature of the response

frequencies.
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Using word associations to estimate semantic similarity

In the previous section we sought to validate the SWOW-EN norms in a somewhat

simplistic fashion, focusing on the overall response frequency for each word,

aggregated across cues. It is reassuring that the aggregated data behave sensibly, but

our expectation is that many interesting applications of SWOW-EN norms would

rely on the specific patterns of cue-response association. To illustrate how the

SWOW-EN norms can be used in this fashion, we now consider word associations as

measures of semantic similarity.8 The focus on similarity reflects the importance that

it plays within the psychological literature. Similarity is a central concept in many

cognitive theories of memory and language. In priming, similarity between cue and

target predicts the latency to process the target and the size of the priming effect

depends on how similar the prime is9. In various memory-related tasks like free

recall, word associations are strong predictors of intrusion and recall performance

(Deese, 1959). Representational similarity as measured by voxel analysis is also

becoming increasingly important in neuro-imaging approaches that try to uncover

the structure of semantic memory. Across a range of studies, the fMRI evidence

indicates that the pattern of activation across different areas of the brain when

reading common words (Mitchell et al., 2008) can be predicted from distributional

lexico-semantic models (Schloss & Li, 2016). Against this backdrop, it seems sensible

to consider how the SWOW-EN norms might be used to measure semantic

8In the literature, “similarity” is often used as a more narrow term than “relatedness”. In this

article, we use the term relatedness to identify an existing association (i.e., a direct path) between a

cue and target and use the term similarity to indicate the overlap in either direct or indirect neighbors

they have (see further).
9A systematic study of priming would bring together both the notion of association (forward and

backward), spreading activation and distributional overlap. A full evaluation of semantic priming is

beyond the scope of this article as it depends on many properties such as the inter stimulus interval or

the nature of the task (naming or lexical decision. However,a preliminary analysis using data from the

Semantic Priming Project (Hutchison et al., 2013) suggests that the findings for priming match those

of lexical centrality and similarity where the performance of the new continued norms is as good or

better than previously used norms.
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similarity.

Three measures of semantic similarity

This section outlines three ways to estimate semantic similarity between a pair of

words. These three measures vary systematically in terms of the amount of

information they use – in the simplest case we consider only the direct neighbors

between two words, whereas in the most sophisticated case we consider the overall

structure of the semantic network. We chose these three measures to highlight a

tension in how word associations are used. For instance, the direct associative

strength (i.e., association frequency) is often treated as a nuisance variable – in the

case of priming, tests of semantic facilitation are often addressed by controlling for

associative strength, while manipulating the semantic relatedness between two

words (see Hutchison, 2003, for an extensive overview). In our view this is an

unnecessarily limited approach, especially now that large datasets such as the

SWOW-EN norms are available: as an alternative perspective, we suggest the

association data themselves provide a strong indication of the similarity (and thus

the meaning) of a word. Indeed, this point was highlighted in the seminal work of

Deese (1965, p vii), who argued that

“The interest of psychologists in associations has always been misguided

because the whole classical analysis of associations centered around the

circumscribed and uninteresting problem of stimulus - response, of what

follows what.”

By focusing solely on the direct stimulus-response relationship between a pair of

words, we end up ignoring the rich pattern of relationships that span the entire

lexicon. It is this idea that we explore with the aid of our three measures of

similarity. Each of these measures reflect the number of paths shared between a cue

and a target. The most common case is that where only the neighbors shared by

cues and targets are considered. In this scenario, two words have a similar meaning

if they share many neighboring nodes and we will use cosine similarity.
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However, it is quite straightforward to extend the notion of relatedness to

incorporate indirect paths connecting cues and targets as well, to capture a more

global measure of relatedness. In the following section we will address both

scenarios.

Associative strength. The simplest possible measure of semantic relatedness is to

use the associative strength measure, p(r|c), the probability of responding with

word r when given word c as a cue. In this case, the relatedness is expressed as a

weighted edge between cue and target. Since for most pairs of words such a path

does not exist, the use of this measure is limited. Instead, we focus on “local”

similarity based on the neighboring nodes they share. Given two cues, a and b and a

total of N different nodes, we measure their similarity S as the cosine between them:

S(ca, cb) =
∑N

i=1 p(ri|ca)p(ri|cb)√
∑N

i=1 p(ri|ca)2
√

∑N
i=1 p(ri|cb)2

(1)

This cosine similarity measure reflects the shared neighbors between a and b and

consists of a dot product of the associative response strengths in the numerator and

divided by the L2-norm in the denominator. In contrast to other distance metrics

such as Euclidean distances the denominator normalizes the magnitude of each

vector, which makes both words comparable even when the amount of information

for them differs.

We include local similarity based on strength primarily as a baseline measure of

performance against judged similarity data when comparing it to global similarity

measures derived from random walks which we will introduce in the next section

Pointwise mutual information. It has long been recognized that the simple

frequency of response p(r|c) is not an ideal measure of semantic similarity (see p 10,

Deese, 1965). In recent years, an information theoretic measure based on the full

distribution of responses to cue word c – the positive pointwise mutual information

(PPMI) – has been shown to predict the behavior in various language processing

tasks (e.g. Recchia & Jones, 2009). We calculated the PPMI measure as follows:
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PPMI(r|c) = max
(

0, log2

(
p(r|c)
p(r)

))
PPMI(r|c) = max

(
0, log2

(
p(r|c)

∑i p(r|c)p(c)

))
PPMI(r|c) = max

(
0, log2

(
p(r|c)N
∑i p(r|c)

)) (2)

In the second line of the equation, the denominator takes into account how often a

response is given for all cues i. In the last line of the equation we observe that the

p(c) is identical for all c and equals 1/N where N corresponds to the number of

cues (or vertices) in the graph. This way, responses that are given very frequently for

many cues are considered less informative than responses that are given for only a

small number of cues. In contrast to associative strength, this mutual information

measure thus considers distributional information derived from the entire graph. In

line with our previous work (De Deyne et al., 2016; De Deyne, Perfors, & Navarro,

2016), we apply point-wise mutual information to the forward associate strengths.

In light of the typical results in text-corpus based studies, we expect this approach to

positively affect the performance in semantic tasks (Bullinaria & Levy, 2007). After

weighting the responses according to Equation 2, we again calculated local

similarity as the cosine overlap between two words.

A random walk measure. The PPMI measure of relatedness extends the simple

associative strength measure by taking into account the full distribution of responses

to a particular cue word, but it is still a “local” measure of similarity in the sense

that it only considers the responses to that specific cue. Taking a more “global”

network perspective, it is easy to see that similarity reflects more than just the

immediate neighbors of a word, and could equally consider indirect paths or

neighbors of neighbors as well, consistent with a spreading activation mechanism

(Collins & Loftus, 1975). In contrast to local similarity, a global similarity measure

also considers the similarity among the neighbors themselves, leading to a recursive

interpretation based on the idea that a node activates not only its neighboring

nodes, but also the neighbors of these neighbors, though one would expect that
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these indirect relations contribute less to the overall similarity than the more salient

direct relationships.

A formal implementation of this principle relies on a decaying random walk process

(see Abott, Austerweil, & Griffiths, 2015; Borge-Holthoefer & Arenas, 2010;

De Deyne, Navarro, Perfors, & Storms, 2012; Griffiths, Steyvers, & Firl, 2007) and is

closely related to measures referred to as the Katz index, recurrence and the

Neumann kernel (Fouss, Saerens, & Shimbo, 2016) in other domains than

psychology. In this paper we adopt the approach described in De Deyne et al. (2016),

and assume that the similarity between pairs of words is captured by the

distributional overlap of the direct and indirect paths they share (Borge-Holthoefer

& Arenas, 2010; De Deyne, Verheyen, & Storms, 2015; Deese, 1965). For each node,

this distributional representation constitutes a weighted sum of paths. More

formally, consider a walk of a maximum length r = 3, where I is the identity matrix

and the damping parameter α < 1 governs the extent to which similarity scores are

dominated by short paths or by longer paths (Newman, 2010):

Grw
(r=1) = I,

Grw
(r=2) = αP + I,

Grw
(r=3) = α2P2 + αP + I,

.

(3)

During each iteration, indirect links reflecting paths of length r are added to the

graphs. Longer paths receive lower weights because of the exponent r of α. In the

limit, we arrive at a simple representation based on the inverse of the transition

matrix:

Grw = ∑∞
r=0(αP)r = (I− αP)−1. (4)

A common problem is that such a walk will also be biased toward nodes that are

highly connected (Newman, 2010). To address this, the matrix P is constructed by

applying the PPMI transformation to the raw association data and normalizing the
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values to sum to 1. Finally, like the local measure of similarity, we then take the

cosine of the PPMI row-normalized Grw distributions to calculate the similarity of

two words.

Benchmark data

To evaluate these measures of similarity, we rely on seven existing datasets in which

participants judged the similarity of word pairs. We briefly describe these data (see

also De Deyne et al., 2016). In one study, SimLex-999 (Hill, Reichart, & Korhonen,

2016), subjects were explicitly asked to judge the similarity between words ignoring

their potential relatedness. In the remaining studies participants were asked to

judge the relatedness of word pairs using rating scales. These include the

WordSim-353 relatedness dataset (Agirre et al., 2009), the MEN data (Bruni, Boleda,

Baroni, & Tran, 2012), the Radinsky2011 data (Radinsky, Agichtein, Gabrilovich, &

Markovitch, 2011), the popular RG1965 dataset (Rubenstein & Goodenough, 1965),

the MTURK-771 data (Halawi, Dror, Gabrilovich, & Koren, 2012) and Silberer2014, a

large dataset consisting of mostly concrete words (Silberer & Lapata, 2014).

Because the SWOW-EN dataset contains capitalization, proper capitalization was

restored in a number of evaluation sets. Similarly, we checked the occurrence of

proper nouns among the EAT and USF cues and applied capitalization where

appropriate. We also checked the spelling mistakes and variants and corrected

mistakes or converted to American English to ensure maximal overlap between the

datasets.

Results and discussion

The performance of all three similarity measures is shown for each of the seven

studies Figure 5 and in Table A1, which tells a very consistent story. Regardless of

whether the measures are computed using R1 data or R123 data, the PPMI measure

always outperforms the simpler associative strength measure, and the random walk

model always performs at least as well as the PPMI measure, but usually performs

better.
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Figure 5. Pearson correlations and confidence intervals for judged similarity and

relatedness across seven different benchmark tasks. Predictions are based on either

local similarity using associative strength, PPMI, or global similarity based random

walks (RW). Graphs including the first responses (GR1) and all responses (GR123)

show how similarity interacts with the density of the graph.

For the associative strength and (to a lesser extent) PPMI measures, the larger

dataset based on R123 leads to better predictions than the first response only data in

R1, though this effect is almost completely attenuated for the random walk measure.

There are some differences among the various datasets – most measures performed

worst on the SimLex-999 dataset, in which participants were explicitly trained to

ignore relatedness when judging word pairs – but even in this case the same pattern

of performance is observed.

Extending this analysis, we repeated the procedure above for the USF norms, the

EAT norms, and an aggregated dataset that pooled the USF norms with the

SWOW-EN norms. The results are shown in Figure 6 and Table A2. For reasons of

conciseness, this table only presents the (micro-)averaged correlation across all seven

datasets. The pattern of results is similar, despite that only half of the similarity

pairs were present in all three word association datasets. In general, measures of

similarity based on EAT, USF and the R1 data from SWOW-EN perform similarly,
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while the larger R123 data from SWOW-EN yields somewhat better performance.

Finally, there is no evidence that combining the USF and SWOW-EN R123 norms

together improves performance, as the red curves in Figure 5 illustrate.
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Figure 6. Comparison between two existing datasets (EAT and USF) and SWOW-EN

in predicting human similarity and relatedness judgments. Pearson correlations and

confidence intervals reflect micro-averaged judgments across seven benchmark

tasks. Predictions are based on either local similarity using associative strength,

PPMI, or global similarity based random walks (RW). In addition to the three

association datasets, a combination of USF and SWOW-EN (red curves) is included

as well showing that adding more data does not markedly improve the results.

Overall, the results strongly favor the random walk approach, especially when

sparsity of the data is an issue. The findings are in line with our previous work

examining how people make judgments about very weakly related words (De Deyne

et al., 2016) and with other recent approaches that show how indirect paths

contribute to semantic similarity (Kenett, Levi, Anaki, & Faust, 2017). Returning to

Deese’s (1965) comments quoted earlier, the central intuition – namely that the

simple stimulus-response contingencies are the least interesting aspect to word

association data – seems to be borne out.

General Discussion

In this article, we have presented a new dataset for English word associations. It was

constructed to capture a large portion of the mental lexicon by including over 12,000
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cue words and 300 associations for each of these cues. It includes the cues of the

USF dataset, which will facilitate further replications of previously obtained results,

but doubles the number of available responses per cue. Because the total number of

cues is considerably larger than previous datasets, it is possible to derive an accurate

semantic network based on cue words only. The biggest advantage of this is that it

opens up a variety of new analyses that take into account the overall structure of the

cue-based semantic network, some of which we have briefly outlined in this paper.

The importance of rich association networks

One of the main points we have emphasized throughout is the importance of

considering association in context. This was especially evident when using word

associations to predict semantic relatedness. As we have seen, the predictive power

of the norms varies considerably depending on the density of the word association

networks used, and the amount and weighting of the information encoded in the

entire network. There is an enormous difference between the worst performing

measure and the best. When a random walk measure is based on the SWOW-EN

R123 data, we obtain good predictions about semantic relatedness (r = .81).

Moreover, it is possible to produce good predictions when a more sophisticated

model (random walk) is applied to comparatively impoverished data such as the

EAT (r = .73), and similarly, it is possible to get by with simplistic measures

(associative strength) when given rich data like SWOW-EN R123 (r = .64). However,

when the data are less rich (EAT) and the measure is based on distributional overlap

based on simple associative strength, the predictive power declines drastically, and

the overall correlation with semantic relatedness is a mere r = .46.

The ability to produce quantitatively better predictions matters in a number of areas.

Many categorization accounts predict prototypicality by considering how similar

category exemplars are to each other. Word associations offer a way to estimate such

prototypicality (De Deyne et al., 2008). Likewise, estimates of similarity are also the

key component in predicting other aspects of word meaning such as connotation
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based on valence, arousal and potency, concreteness or even age-of-acquisition. In

these cases as well, our findings suggest that word associations often out-perform

predictions based on the most recent text models (De Deyne et al., 2016;

Vankrunkelsven, Verheyen, Storms, & De Deyne, 2018; Van Rensbergen, De Deyne, &

Storms, 2016) using a very sparse representation. More generally, we expect that

these findings will be useful across a range of studies about psychological meaning,

including priming studies and patient studies where semantic effects might be small

and go undetected when the relatedness reflects distributional properties in external

language.

Comparison to other measures and approaches

It is unlikely that word association measures will always provide the best tool for

studying semantic representation, and some comments about the relationship to

other approaches are worth making. For instance, we found that association

response frequency correlates only moderately with word frequency (r = .54), and

while word association data seem well suited to semantic categorization and

semantic relatedness, word frequency measures (based on the SUBTLEX-US data)

performed better as predictors of lexical decision times and naming (but see

further). That being said, in contrast to other subjective techniques to elicit meaning,

the information captured by an unconstrained word association task does seem to

capture the right kind of meaning; meaning that is not limited by defining,

characteristic, or entity features, but meaning that reflects mental representations

that include properties about connotation, scripts and themes, properties notably

absent from other subjective measures such as feature norms (De Deyne et al., 2008;

McRae et al., 2005).

To verify if this indeed the case, we performed an additional analysis comparing

similarity benchmark data introduced earlier and two publicly available feature sets:

the McRae feature norms for 541 nouns (McRae et al., 2005) and the CSLB feature

norms for 637 words (Devereux, Tyler, Geertzen, & Randall, 2014). For conciseness,
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we only compared them to the similarity estimates of SWOW-EN using all

responses with spreading activation strengths. Since most of these norms are

collected for concrete norms, only two studies, Silberer2014 and MEN, had sufficient

overlap with the stimuli in the feature norms. Similarity was calculated in a

standard way, using the cosine overlap of the feature vector, where each entry

corresponds to the number of participants that gave the feature for the concept.

Using the McRae norms the results were r(65) = .64, CI = [.47, .77] for MEN and

r(2392) = .77, CI = [.75, .79] for Silberer2014. For SWOW-EN the results were

r(65) = .85, CI = [.76, .90] and r(2392) = .85, CI = [.84, .86] for the same datasets.

For the CSLB norms we found r(132) = .70, CI = [.60, .78] for MEN and

r(3126) = .80, CI = [.79, .81] for Silberer2014. Again, the correlations were higher for

SWOW-EN, r(132) = .90, CI = [.86, .93] and r(3126) = .86, CI = [.85, .86] for MEN

and Silberer2014 respectively. In short, these findings suggest that concept feature

norms only partly capture meaning involved similarity judgments as well. More

generally, it suggests that word association norms provide a more reliable

alternative for concept feature norms for a wide variety of words and potentially the

best semantic measure available to date.

Looking beyond measures based on experimental tasks, there are many

lexico-semantic models that rely on naturalistic text corpora as their input data,

typically using some form of dimensionality reduction to extract a semantic

representation (see Jones, Willits, Dennis, & Jones, 2015, for an overview). Here as

well, word associations outperform text-based semantic models. Previous work

using largely the same benchmarks presented here showed that the best performing

text-model resulted in a correlation of r = .69, which was significantly lower than

that of the best performing word association model, r = .82 (De Deyne et al., 2016).

Apart from their ability to predict, it is also important to consider what kind of

theoretical contribution subjective measures of meaning can make, especially as

improved objective measures of language from corpora are becoming available.

Some researchers have argued that word association measures correspond to empty
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variables (as discussed in Hutchison, Balota, Cortese, & Watson, 2008). The

underlying idea is that the processes involved in generating them are likely to match

other processes in commonly used tasks such as priming or similarity ratings. If so,

this might explain their good performance in comparison to objective text-based

measures (e.g. Jones, Hills, & Todd, 2015). At the same time, researchers have

criticized word associations to be underpowered as well, because they only capture

the most dominant responses, whereas the amount of text that can be encoded in

text-based models is virtually limitless which allows for the explicit encoding of

weak co-occurrence relations (Roelke et al., 2018).

Our findings speak to both of these conjectures. First of all, we agree that when

causal claims about the nature of semantic cognition are the objective, the question

of circularity should be taken seriously. Even so, it is far for clear whether circularity

through shared processes leads to better predictions. Assuming that some processes

might be shared across different subjective tasks there are many reasons why

prediction might be suboptimal. Specific biases (e.g. a frequency bias) might mask

the content of representations, or the subjective judgments might be idiosyncratic or

fail to capture weak connections. Furthermore, a priori it is not clear whether the

type of responses found in associations are appropriate, and perhaps more

restrictive subjective tasks such as concept feature generation are more predictive

when in comes to tasks tapping directly into word meaning. What we find is that

strength measures typically provide a poor account of relatedness or similarity, and

preliminary analyses on priming. However, measures that incorporate indirect

informative relations systematically outperform simple strength-based measures. As

noted earlier, this was clearly demonstrated when comparing the current norms

with USF, where we found that spreading activation almost completely compensates

the fact that only dominant responses are encoded explicitly.

Apart from the conclusions that can be drawn from inference using very little data,

there might be a more important factor underlying the success obtained using word

associations. A recent study found that the performance of word associations was
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mainly due to the fact that for concrete concepts word associations provide more

grounded representations than do text models. The same study also evaluated

emotional grounding in abstract words. There as well, a sizable advantage of

associations relative to text-based representations can be explained because word

associations accurately capture crucial emotive factors such as valence and arousal

in abstract words, which make up the majority of the words in our lexicon

(De Deyne, Navarro, Collell, & Perfors, 2018).

Altogether, this suggests that studying word associations can reveal properties about

both the processes and nature of the representations involved in semantic cognition.

While understanding the formation of word associations itself is an aspirational goal

(and supported by the convergent validity provided in our findings), it would

involve a perceptual (and emotional) grounded model, where modal specific

representations are notoriously hard to obtain in an unsupervised or objective

fashion. For example, the best performing multimodal models are supervised

learning models trained on human on naming data (e.g., Bruni, Tran, & Baroni,

2014; Silberer & Lapata, 2014). For now, even the most recent text-based

lexico-semantic models provide only weak to moderate correlations with word

associations. A representative example is a recent study by Nematzadeh, Meylan,

and Griffiths (2017) in which the highest correlation obtained across a variety of

text-based models (including topic and word embedding models) were used to

product word associations was .27.

As text-based approaches of semantic cognition continue to improve, it is also

becoming increasingly clear that more stringent criteria to evaluate them are needed.

One of the challenges is that very larger amounts of text might be over-fitting the

behavioral data leading to erroneous conclusions about what kind of representations

language contributes to. An example is the capacity of extremely large text-models

to encode some modal-specific representation (Louwerse, 2011). Apart from the

issue whether their size is appropriate, this example also illustrates the difficulty to

prove the unique (causal) contribution given the overlap with abundantly available
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modal-specific perceptual information that is also contributing to our mental

representations through processes of perceptual simulation or imagery. In areas

such as these, both subjective internal and objective external measures can

contribute to our understanding of word processing and semantic cognition and

taking a dialectic approach of comparing internal and external language

representations might provide a way forward towards understanding the nature of

our mental representations.

On differences between norms

Throughout the paper we have observed small but consistent differences between

the older USF and EAT norms and the newer SWOW-EN dataset. In many cases, the

differences are simply a matter of scale: the SWOW-EN dataset is much larger than

earlier norms, and in some cases this may provide an advantage. However, it is

worth noting some of the other differences between the dataset. The current sample

is without doubt more heterogeneous than the EAT and USF samples, which were

collected predominantly among college students.

It is very likely that performance will be higher in studies in which there is a close

match in participant demographics with any given word association dataset. For

example, we expect that the associations in USF will provide a good match when the

participants are American college students. Besides demographic differences and the

obvious difference between our continued response task and the more traditional

single response task there are other differences that need to be pointed out as well.

One notable difference lies in the task instructions. The instructions we used were

designed to elicit free associations in the broadest possible sense, whereas in the

USF norms Nelson et al. (2004) participants were asked to write down the first word

that came to mind that was “meaningfully related or strongly associated to the

presented cue word.” The fact that participants were asked to give a meaningful

response might affect the type of responses that are generated. There is some

indication that this indeed might have resulted in a different type of responses, for
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example by considering the number of times participants make reference to proper

nouns (names of people, movies, books, etc), which are not that common in the USF

norms. The selection of cue words itself is likely to have contributed to this as well,

as the current set also included a small number of proper nouns, which might have

indicated to the participant that such words were also valid responses. When we

consider the EAT, the differences in methodology and sample are somewhat more

pronounced. Not only are the EAT data older, they were collected from British

speakers that differed on other demographic measures also (students between 17

and 22, of which 64 percent were male). The instructions for EAT asked participants

to write down for each cue the first word it made him or her think of, working as

quickly as possible (Kiss et al., 1973).

Perhaps it comes as a surprise that in light of all these differences, the three datasets

often produce similar levels of performance. It is especially noteworthy that

measures of semantic relatedness based on a “spreading activation” measure proved

to be highly robust to differences in the datasets, again highlighting the value of

using a method that incorporates information about the global structure of the

semantic network.10

A final point to make when comparing different norms – one that we have not

focused on in this paper – is to consider the differences between the English

language data (SWOW-EN) and the Dutch language data reported previously

(SWOW-NL). The literature on word processing shows a strong English-language

bias and some effects might be language specific. While we have previously

investigated Dutch word associations and found similar results for relatedness

(De Deyne et al., 2016, 2015), centrality effects in lexical processing were better

predicted by association response frequencies in Dutch, even though external word

10To further illustrate this point, we correlated the predicted relatedness for the stimulus pairs of

the seven studies described in the previous section and compared how similar these predictions were

among models and found a correlation of .90 between the USF and the comparable SWOW-EN norms

using the global random walk measure based on the first response. whereas the correlation was lower

for the local similarity measures: .84 for associative strength weights, .78 for PPMI.
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frequency norms were also based on SUBTLEX subtitles in Dutch (De Deyne et al.,

2014). There might be a number of factors underlying this observation, such as

systematic language differences, demographic differences or even differences in the

quality of the word frequency predictors. However, without further systematic

research, any claims in this area remains largely speculative.

Future work

While we have focused our comparison mostly on previous English word

associations, one of the goals of the current project is to collect these data for the

most common languages in the world. So far the largest resource is the Dutch

SWOW-NL, which currently contains over 16,000 cue words and good progress is

made on a similar Mandarin Chinese project, for which we collected at least 50

participants generated three associates to each cue, for over 8,500 cues.

In future research, we plan on extending the English database along two major lines.

First, we have omitted the discussion of response latencies for word associations.

Although these are now standard collected across the different SWOW projects, a

full treatment of the use and properties of these latencies derived from the

continued word association task would be beyond the scope of this article. Second,

it would be good to keep extending the words included, especially as new words are

introduced in the language. However, our results indicate diminishing returns for

adding a large number of new cues that are likely low frequency. Instead, it might

be useful to further elaborate on the different English variants (e.g. British and

American) or supplement them with age-balanced data. We also expect that better

methods and models could further enhance the use of word associations. For

example, in the current work a subject’s primary, secondary and tertiary responses

were simply added, which in some cases might introduce a bias. Other ways of

calculating associative strength over multiple responses by non-linearly weighting

responses and considering sampling without replacement for secondary and tertiary

responses might be better suited (De Deyne, Navarro, & Storms, 2013a; Maki, 2008).
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As demonstrated in the current work, some degree of response chaining will need to

be considered as well.

Finally, in most research based on subjective or language corpora, we assume that

the language or responses averaged over a large sample of speakers captures

representations at the individual level as well. Evidence across a wide range of

studies with different speakers suggests this is indeed the case. While language, and

its communicative role might be special in providing a pressure to align our

linguistic representations between different individuals, many interesting questions

about individual differences remain unanswered. Partly, this has to do with the

difficulty to collect large samples of language from an individual. However, recent

work suggests that studying individual networks might be feasible (Austerweil,

Abbott, & Griffiths, 2012; Morais, Olsson, & Schooler, 2013) and ongoing work to

extend this approach is currently ongoing.

Altogether, we cannot help but agree with the closing paragraph by Nelson et al.

(2004, p. 406) in the context of the USF norms: “Difficult as they are to collect, such

norms offer better maps for predicting performance in certain cognitive tasks, and if

anything, more norms are needed.”
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Appendix A

Supplemental Tables
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Table A1

Pearson correlation for seven judged relatedness and similarity studies, using three theoretical

measures of similarity (strength, PPMI and random walk) constructed using either R1 or R123

responses from SWOW-EN. The “micro-averages” across datasets adjust for sample size by

standardizing the ratings in each study and then correlating pooled data with theoretical predictions.

SWOW-EN R1

Strength PPMI RW

Dataset N r CI r CI r CI

MEN 2706 .48 .45 .51 .64 .62 .66 .79 .78 .81

MTURK-771 716 .43 .37 .49 .62 .57 .66 .76 .73 .79

Radinsky2011 158 .39 .24 .51 .62 .51 .71 .77 .70 .83

RG1965 53 .60 .38 .74 .77 .62 .86 .90 .82 .94

Silberer2014 6404 .61 .59 .62 .73 .72 .74 .82 .81 .83

SimLex-999 988 .33 .27 .38 .54 .49 .58 .64 .60 .67

WordSim-353 311 .38 .28 .47 .54 .46 .61 .72 .66 .77

Micro AVG 11336 .53 .52 .54 .68 .67 .69 .79 .78 .80

SWOW-EN R123

Strength PPMI RW

Dataset N r CI r CI r CI

MEN 2706 .61 .58 .63 .74 .72 .76 .81 .79 .82

MTURK-771 716 .56 .51 .61 .72 .68 .75 .77 .73 .79

Radinsky2011 158 .54 .42 .64 .71 .63 .78 .77 .70 .83

RG1965 53 .74 .58 .84 .86 .76 .92 .92 .86 .95

Silberer2014 6404 .69 .67 .70 .80 .80 .81 .84 .83 .85

SimLex-999 988 .45 .40 .50 .67 .64 .70 .68 .64 .71

WordSim-353 311 .51 .43 .59 .64 .57 .70 .74 .68 .78

Micro AVG 11336 .63 .62 .64 .77 .76 .77 .81 .80 .81
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Table A2

Pearson correlation based on micro-averages over N = 5, 202 items of seven datasets

involving similarity judgments and relatedness derived from EAT, USF and SWOW-EN.

The columns refer to the role of weighting (associative strength or positive point-wise mutual

information or PPMI) and spreading activation using random walks (RW). The last two

rows show the results for combined datasets through the intersection of cues found and single

responses from USF and SWOW-EN.

N = 5202 Strength PPMI RW

Dataset r CI r CI r CI

EAT .45 .43 .47 .62 .61 .64 .73 .72 .75

USF .45 .43 .47 .65 .63 .66 .77 .76 .79

SWOW-EN R1 .46 .44 .48 .65 .64 .67 .78 .77 .79

SWOW-EN R123 .58 .56 .60 .75 .74 .76 .80 .79 .81

USF + SWOW-EN R1 .48 .46 .50 .70 .69 .72 .79 .78 .80

USF + SWOW-EN R123 .54 .52 .56 .76 .75 .77 .79 .78 .80
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Appendix B

Terms of use and online materials

Fair use and referencing the data

The data can be used for research purposes only. It is subject to a Creative

Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License and can not

be redistributed or repackaged without explicit consent from the first author. When

using these data please refer to them as the SWOW-EN2018 word association data

and unless needed, use the corrected version for consistency. This project is a work

in progress so if you find these data useful, please consider sharing our study:

https://smallworldofwords.org/

Available resources

Original and processed data. The main resources made available at

https://smallworldofwords.org/project/research/ consist of files with the

original and processed data as used in this manuscript.. The original unprocessed

data file contains both participant and response information. It consists of the

complete raw uncorrected responses and cues. These data might be useful for those

interested in spelling mistakes or would like to experiment with other ways of

normalizing responses. Each row in the file consists of participant and response

data. The participant data include a unique participant identification number, age,

gender, education, city and country details, native language and test date and time.

The response data consist of the cue, the first response (R1), the second response

(R2) and the third response (R3). For each of the three responses, the original and

spell-checked responses are included.

The second file is derived from the raw data and consists of spell-checked cues

and responses after removing participants that did not meet selection criteria. In

contrast to the previous file, each cue has exactly 100 R1, R2 and R3 responses. As

described in the text, the responses were also Americanized. We propose to use

these data as much as possible to facilitate comparison between results and refer to

https://smallworldofwords.org/
https://smallworldofwords.org/project/research/
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this dataset as the SWOW-EN2018 data.

In addition, we also provide a list with manually annotated spelling errors and

welcome any suggestions to further extend this list. The scripts to process the data

and calculate the measures reported in this paper can be obtained from

https://github.com/SimonDeDeyne/SWOWEN-2018.

https://github.com/SimonDeDeyne/SWOWEN-2018
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