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Tensor-network approach to phase transitions in string-net models
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We use a recently proposed class of tensor-network states to study phase transitions in string-net models.
These states encode the genuine features of the string-net condensate such as, e.g., a nontrivial perimeter law
for Wilson loops expectation values, and a natural order parameter detecting the breakdown of the topological
phase. In the presence of a string tension, a quantum phase transition occurs between the topological phase and a
trivial phase. We benchmark our approach for Z2 string nets and capture the second-order phase transition which
is well known from the exact mapping onto the transverse-field Ising model. More interestingly, for Fibonacci
string nets, we obtain first-order transitions in contrast with previous studies but in qualitative agreement with
mean-field results.
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I. INTRODUCTION

Since its discovery in the late 1980s, topological order
aroused much interest in physics. The long-range entangle-
ment structure as well as the exotic quasiparticle excitations
associated with this order may prove essential in attempts to
achieve scalable fault-tolerant quantum computers or quantum
memories [1]. As such, it is of paramount importance to
understand how perturbations generate dynamics and interac-
tions between the anyonic excitations and induce a breakdown
of topological phases.

One of the most famous models hosting topological order
was proposed by Levin and Wen in 2005 [2]. The string-net
Hamiltonian allows to describe all doubled achiral topological
phases. Thus, it has been the starting point for many studies
concerning phase transitions [3–14]. Nevertheless, in the ab-
sence of local order parameter, the nature of these transitions
remains an open question in many cases since one cannot use
Landau’s theory of symmetry breaking.

Among all alternative methods developed to study these
topological phase transitions, a particularly versatile frame-
work for constructing variational states is provided by tensor
networks. In two dimensions, the projected entangled-pair
states (PEPSs) [15] are known to describe the string-net
ground states [16,17] and directly encode the topological
properties in the virtual symmetries of the local PEPS tensor
[18–20]. This feature has been exploited to detect possible
topological phase transitions and to identify the associated
anyon-condensation mechanism [13] in Abelian [21–24] and
non-Abelian [25,26] cases at the level of wave functions.
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However, variational PEPS calculations for concrete models
have so far been restricted to ZN toric codes [27–29] whose
excitations are Abelian anyons. Recently, a family of PEPS
based on perturbative expansions has been introduced to
describe different ground states across a phase transition [30].

For a given Hamiltonian that exhibits a phase transition,
the procedure to build these “perturbative PEPSs” can be
summarized as follows: (i) we start from a wave function
that describes the phase transition at the mean-field level;
(ii) we apply tensor-network operators which implement the
perturbative expansions in an extensive way to wave functions
on both sides of the transition; (iii) we promote the ad hoc
coefficients of these expansions to variational parameters. In
two dimensions, these perturbatively exact variational states
are still PEPSs and the tensor-network machinery [31,32] can
be used to perform an efficient variational optimization. In
Ref. [30], this method has been notably applied to the Z2

toric code perturbed with a string tension [33,34] for which
the virtual symmetry of the local PEPS tensor emerges as an
order parameter.

In this work, we go one step beyond and implement a
variational PEPS to study phase transitions in both Abelian
(Z2) and non-Abelian (Fibonacci) string-net models on the the
honeycomb lattice. For the Z2 case, we capture the second-
order quantum phase transition known from the mapping onto
the transverse-field Ising model on the triangular lattice [6]. In
the Fibonacci case, we only find first-order phase transitions,
in contrast to Ref. [7] but in agreement with the mean-field
results [35].

II. STRING-NET MODELS

We consider the two-dimensional string-net model intro-
duced by Levin and Wen [2] in the presence of a tension
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term. For simplicity, we focus on the simplest case where
the microscopic degrees of freedom, defined on the links of
a honeycomb lattice, can only be in two different states, 0 and
1 (when possible, we omit the ket notation to describe states).
The Hilbert space H is defined as the set of configurations
obeying the branching rules that stem from the fusion rules of
the theory considered [2].

In the present work, we discuss two different theories, Z2

and Fibonacci, whose fusion rules are given by

Z2 : 0 × a = a × 0 = a, 1 × 1 = 0, (1)

Fibonacci : 0 × a = a × 0 = a, 1 × 1 = 0 + 1, (2)

for a = 0, 1. As underlined in Ref. [2], there are actually
two different theories obeying Z2 fusion rules that give rise
to either a doubled Z2 (DZ2) or a doubled semion (Dsem)
topological phase. For the string tension considered thereafter,
phase diagrams are the same for both theories.

At each vertex of the honeycomb lattice, the fusion rules
must be satisfied [2], i.e., if two links are in states a and b the
third link must be in a state c ∈ a × b. Following Ref. [36],
one can compute the dimension of the Hilbert space. For any
trivalent graph with Nv vertices, one then gets

Z2 : dim H = 2Nv/2+1, (3)

Fibonacci : dim H = (1 + ϕ2)Nv/2 + (1 + ϕ−2)Nv/2, (4)

where ϕ = 1+√
5

2 is the golden ratio.
In order to analyze the breakdown of the topological phase

originating from the string-net model, we consider the follow-
ing Hamiltonian:

H = −Jp

∑
p

Bp − Jl

∑
l

Ll . (5)

The first term corresponds to the usual string-net Hamiltonian
introduced by Levin and Wen in Ref. [2]. Operators Bp’s are
mutually commuting projectors that “measure” the flux in the
plaquette p. The action of Bp on a given link configuration
depends on the theory under consideration through its F -
symbols [see Eq. (C1) in Ref. [2] for details]. The operator
Bp only modifies the six inner links of the plaquette p but
its action depends (diagonally) on the six outer links [2]. For
Jp > 0 and Jl = 0, all ground states are flux free and hence
characterized by Bp = 1 for all p, up to a topology-dependent
degeneracy.

The second term is also a sum of mutually commuting
projectors. Operators Ll ’s are diagonal in the canonical (link)
basis and act as Ll |a〉l = δa,0|a〉l , where |a〉l denotes the state
of the link l . For Jl > 0, this second term favors configurations
with links in the state 0 and penalizes strings of links in the
state 1, hence the name string tension.

For Jl > 0 and Jp = 0, the ground state is unique (trivial
phase) and given by the product state |0〉 = ⊗l |0〉l for both
Z2 and Fibonacci fusion rules. For Jl < 0 and Jp = 0, the
ground-state manifold depends on the fusion rules. Indeed,
for Fibonacci fusion rules, the product state |1〉 = ⊗l |1〉l is
allowed and is the unique ground state. By contrast, for Z2

fusion rules, this state is not allowed (since 1 × 1 = 0) and the

ground space is spanned by all allowed states with Nv links in
the state 1 and 1

2 Nv links in the state 0.

III. METHODOLOGY

The goal of this work is to analyze phase transitions from
the topological phase existing for Jp > 0 in the small |Jl/Jp|
limit to the trivial phases found in the large |Jl/Jp| limit. To
this aim, let us set Jp = cos θ and Jl = sin θ and consider
first the region where θ ∈ [0, π/2]. Following the variational
tensor-network approach introduced in Ref. [30], we consider
the state

|α, β〉 = N exp
(
β

∑
l

Ll

) ∏
p

(1 + αZp)|0〉, (6)

where Zp = 2Bp − 1, α and β are variational parameters, and
N is a normalization factor. According to Ref. [30], a better
description of the trivial phase would be obtained by adding
an extra term exp(−γ

∑
p Bp). However, it considerably in-

creases the complexity of the PEPS so that we do not consider
it in the following.

For β = 0, the state |α, 0〉 describes the phase transition
at the mean-field level [35] and the states |1, 0〉 and |0, 0〉
are the exact ground states for θ = 0 and θ = π/2, respec-
tively. Furthermore, the first-order contribution in α to |α, β〉
around (α, β ) = (0, 0) corresponds to the first-order pertur-
bative correction to the exact ground state around θ = π/2.
Likewise, the first-order contribution in β to |α, β〉 around
(α, β ) = (1, 0) corresponds to the first-order perturbative cor-
rection to the exact ground state around θ = 0 [30].

The state |α, β〉 can be interpreted as a PEPS, whose bond
dimension depends on the theory considered. The variational
energy per plaquette

e0(α, β ) = 1

Np

〈α, β|H |α, β〉
〈α, β|α, β〉 , (7)

can be efficiently computed using the VUMPS algorithm [31]
for contracting two-dimensional tensor networks in the ther-
modynamic limit. Note that the previous approach reproduces
the linear perturbative corrections up to second order both
near θ = 0 and θ = π/2. As explained in Ref. [30], additional
tensor-network operators can be added in order to reproduce
higher-order perturbative corrections.

The PEPS framework allows for a natural characterization
of the topological nature of the variational ground state.
Indeed, the topological properties of a PEPS are related to
the virtual symmetries of the local PEPS tensor [18]. In the
Fibonacci theory, this virtual symmetry is described by a
matrix product operator (MPO) [19,20]. Since, as shown in
the Appendix, the state |α, β〉 exhibits such a virtual MPO
symmetry only when α = 1, this parameter can be naturally
interpreted as an order parameter [30] to detect the transition
between the topological phase (α = 1) and the trivial one
(α < 1). Indeed, at α = 1, the expectation value of a Wil-
son loop operator changes from a trivial perimeter law for
β = 0 to a nontrivial perimeter law for β > 0, still indicating
deconfinement of the anyonic excitations, so that the state
remains in the topological phase. For α < 1, the Wilson loop
expectation value satisfies a nontrivial area law, indicating that
anyons are confined and the state is in the trivial phase.

245125-2



TENSOR-NETWORK APPROACH TO PHASE TRANSITIONS … PHYSICAL REVIEW B 100, 245125 (2019)

Yet, even in the presence of the virtual symmetry (α = 1),
the parameter β can drive the state into a trivial phase by a
spontaneous breaking of this symmetry, resulting in an area
law for the Wilson loop. This process was shown to occur at
β = 1

2 ln(1 + √
2) for the Z2 case [37]) and at β � 0.168 for

the Fibonacci case [25]. For the problem at hand, we checked
that there is no spontaneous symmetry breaking so that α can
be used as a bona-fide order parameter.

IV. RESULTS FOR THE Z2 THEORY

Let us first discuss the simplest theory and consider Z2

(Abelian) fusion rules. As discussed in Ref. [6], the Hamil-
tonian (5) for any theory obeying ZN fusion rules can be
exactly mapped onto the N-states Potts model in a magnetic
field on the dual lattice. Thus, for N = 2, H is equivalent to
the transverse-field Ising model on a triangular lattice where
Jp and Jl are the strength of the magnetic field and of the
spin-spin coupling, respectively. As a result, the sign of Jp

is irrelevant for this problem and we assume Jp > 0 in the
following.

In the antiferromagnetic case (Jl < 0), the Ising model
on a triangular lattice is highly frustrated. So, clearly, the
Ansatz |α, β〉 is not adapted to that situation since the ground
space has an extensive degeneracy for Jp = 0. In this region
θ ∈ [−π/2, 0], a critical point in the universality class of
the three-dimensional classical XY model was found for
θ � arctan(−1/65) � −0.545 [38].

Here, we rather aim at benchmarking our Ansatz with the
phase transition in the region θ ∈ [0, π/2] corresponding to
ferromagnetic interactions (Jl > 0). The phase diagram
in this region has been studied by high-order series
expansion and a second-order transition occurs at
θc � arctan(0.2097) � 0.207 [39], the critical point
belonging to the universality class of the three-dimensional
classical Ising model. Our results obtained from the
variational Ansatz (6) are summarized in Fig. 1 (top panel).
As already discussed in Ref. [35], for β = 0 (mean-field
approximation), one obtains a continuous transition at
θ = arctan(1/6) � 0.165 which is qualitatively correct but
about 20% off from θc. Remarkably, by adding β as a second
variational parameter, the transition remains continuous (no
jump of the order parameter α) and shifts to θ � 0.198
which is only 4% off from θc. Given that our variational
Ansatz has only short-ranged correlations [except for α = 1
and β = 1

2 ln(1 + √
2), which is not a variational optimum

for any value of θ ], and that the exact correlations decay
algebraically near θc, these results can be considered as
unexpectedly good. This can also be seen by comparing the
variational ground-state energy with the numerical results
obtained from exact diagonalization on a 25-plaquettes
system with periodic boundary conditions, as shown in Fig. 1
(bottom panel).

Note, finally, that for the Z2 theory, our Ansatz satisfies
|α, β〉 ∼ |α−1, β〉, such that the expansion of the energy
density e0(α, β ) around α = 1 + δα can only contain even
terms in δα. As a consequence, the way α deviates from 1
around the transition point is as |δα| = (θ − θc)1/2, both for
the mean-field Ansatz (with fixed β = 0) and for the Ansatz
where β is also optimized.

FIG. 1. Variational results for the Z2 theory obtained for β = 0
(red) and β 	= 0 (green). Top: order parameter α indicating a contin-
uous transition from a topological phase (α = 1) to a trivial phase
(α < 1). Bottom: ground-state energy per plaquette e0 compared
with exact diagonalization data (blue crosses) (see inset for a broader
range). Dashed lines give the position of the transition point obtained
from series expansions [39] (blue) and from the order parameter
behavior [red [35] and green (this work)].

V. RESULTS FOR THE FIBONACCI THEORY

The phase diagram of the Hamiltonian (5) for the Fibonacci
theory has already been computed by combining exact diag-
onalization results with high-order series expansions for the
ground-state and gap energies [7]. The doubled Fibonacci
(DFib) topological phase has been found to extend from
θ2 � −0.63 to θ1 � 0.255 identifying θ1 and θ2 as critical
points. Our variational results in this case are displayed in
Figs. 2 and 3 for θ ∈ [0, π/2] and θ ∈ [0,−π/2], respec-
tively.

In the region θ ∈ [0, π/2], the mean-field approach [35]
corresponding to β = 0 indicates a first-order transition for
θ = arctan ( 1+ϕ

6+3ϕ
) � 0.237. This result is qualitatively differ-

ent from the one proposed in Ref. [7] although the position
of the transition point is only 7% off from θ1. Since (i) there
is no prior reason to believe that the mean-field result is
exact [35] and (ii) higher-order series expansions need to be
extrapolated to provide reliable information about the nature
of the transition, it is interesting to see what the Ansatz (6) can
bring to the understanding of the transition. As can be seen in
Fig. 2, by adding β as variational parameter, one still obtains
a first-order transition characterized by a jump of the order
parameter, but the transition point is shifted to θ � 0.254,
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FIG. 2. Variational results for the Fibonacci theory (same con-
ventions as in Fig. 1). Blue dashed lines indicate the position of the
transition point computed from series expansions [7].

which is less than 1% off from θ1. This leads us to conclude
that in the region θ ∈ [0, π/2], there is a unique transition
point located near θ � 0.255 (in agreement with Ref. [7])
corresponding to a first-order transition with a small gap at the
transition point (weakly first order). Note that the proximity
of the transition points obtained by the two approaches could
suggest that the flux-flux correlation length is finite, which is a
favorable case for a PEPS description of the ground state and
justifies the relevance of our Ansatz.

In the region θ ∈ [−π/2, 0], we investigate the phase
transition by slightly modifying the Ansatz. Indeed, the state
defined in Eq. (6) is designed for interpolating between |1, 0〉
and |0, 0〉, that are the exact ground states at θ = 0 and
θ = π/2, respectively. However, for θ = −π/2, the ground
state of the Hamiltonian (5) is unique (topologically trivial
phase) and given by |1〉 = ⊗l |1〉l . Consequently, to study
the parameter range θ ∈ [−π/2, 0], we consider a variational
Ansatz

|α, β〉− = N exp
(
β

∑
l

Ll

)∏
p

(1 + αZp)|1〉, (8)

where, for simplicity, we kept the same notations as in Eq. (6).
The PEPS tensor encoding this state is described in the
Appendix. It is important to note that the “reference” states |0〉
and |1〉 are very different. Indeed, for β = 0, a key property
of the Ansatz (6) is the factorization property that reads

〈α, 0|
n∏

p=1

Bp|α, 0〉 = 〈α, 0|Bp|α, 0〉n, (9)

FIG. 3. Variational results for the Fibonacci theory (same con-
ventions as in Fig. 1). Blue dashed lines indicate the position of
the transition point computed from series expansions [7] which
coincides with the one obtained with the Ansatz (8), i.e., θ � −0.630.

for any set of n plaquettes. This identity does not hold for the
state (8) with β = 0, which can no longer be interpreted as
a mean-field Ansatz. Yet, by construction, it is perturbatively
exact near θ = 0 and it also matches the exact ground state at
θ = −π/2. As such, this Ansatz is a good candidate to capture
the transition between the DFib phase and the trivial phase.
As can be seen in Fig. 3, for β = 0, one obtains a continuous
transition at θ � −0.317 which is very far from the value
θ2 � −0.63 obtained in Ref. [7]. Interestingly, when including
β, we obtain a discontinuous transition located at θ � −0.630
which is in agreement with the extrapolated values of Ref. [7].
Thus, we face a situation similar to the previous case, where
the present variational study is in quantitative agreement with
the series expansions studies. We emphasize that the series
expansions in this region have to be resummed so that error
bars on θ2 are larger than for θ1. Regarding the nature of the
transition, the same arguments as before favor the first-order
scenario.

VI. CONCLUSIONS AND OUTLOOK

This work presents the first variational results based on
tensor networks for a topological phase transition out of a non-
Abelian topological phase. We have studied the transitions
between the topological and trivial phases of the Levin-Wen
Hamiltonian with string tension, both for Z2 and Fibonacci
fusion rules, by means of a simple two-parameters variational
Ansatz inspired by Ref. [30]. For the Z2 case, we recover
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the well-known second-order transition as predicted from the
mapping onto the transverse-field Ising model the triangular
lattice. For the Fibonacci case, our results are in quantitative
agreement with series expansions and exact diagonalizations
[7]. However, we only find first-order transitions (as in the
mean-field treatment [35]) whereas series expansions com-
bined with exact diagonalizations rather plead in favor of
second-order transitions [7]. This qualitative discrepancy is
likely due to the extrapolation of the series expansion and
finite-size effects in the exact diagonalizations, but we cannot
exclude that the present variational approach is not sufficient
to properly describe the transitions in this model. Going
beyond would require more sophisticated Ansätze that can
be systematically constructed by using the ideas developed in
Ref. [30]. Using recently developed contraction methods for
three-dimensional tensor networks [40], we stress that such an
approach can also be applied in three-dimensional systems, as
recently illustrated in Ref. [41].
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APPENDIX: CONSTRUCTION OF THE PEPS TENSOR

In the following section, we elaborate on the construction
of the PEPS tensors representing the Ansatz |α, β〉+ = |α, β〉
and |α, β〉−. It is sufficient to construct the PEPS for
the one-parameter Ansätze |α, 0〉±. The PEPS tensor for
|α, β〉± ∝ ∏

l exp (βLl )|α, 0〉± is then readily found by
applying the right operator on the physical level.

For simplicity, we will assume that quantum dimensions
d0 and d1 are non-negative real numbers, and that the F -
symbols are all real. Both models studied in this work satisfy
these assumptions (see Ref. [2] for details about Z2 and
Fibonacci theories). In the general case, where one relaxes
these assumptions, the construction of the PEPS can be done
in a similar fashion.

In order to simplify the calculations in the following sec-
tion, we will work with the states

|γ 〉± = |γ D2/(−2γ + 2 + γ D2), 0〉±. (A1)

To go back to the Ansatz used in the main body of the paper,
one can simply use

|α, 0〉± = |2α/(2α − αD2 + D2)〉±, (A2)

where D =
√

d2
0 + d2

1 is total quantum dimension.

1. Ansatz for θ ∈ [0, π/2]

The one-parameter Ansatz is given by

|γ 〉 = N
∏

p

(
1 + γ d1Op

1

)|0〉, (A3)

where |0〉 = ⊗l |0〉l , and N is a normalization factor. The op-
erator Op

i corresponds to inserting a i loop inside the plaquette
[2], and then resolving it into the lattice using F moves

(A4)

and the rule

(A5)

Contraction of a loop cannot happen across a plaquette; we
treat plaquettes as if they have a puncture in their center.
Applying these rules gives the full form of Op

i :

(A6)
Setting d̃0 = 1 and d̃1 = γ d1 one can write

|γ 〉 = N
∏

p

⎛
⎝∑

μp

d̃μpO
p
μp

⎞
⎠|0〉. (A7)

Using the graphical representation of the operators Op
i , |γ 〉

can be represented as

(A8)

The gray lines above are initially in the |0〉 state. To find the
state from this graphical notation, one has to resolve the loops
appearing in Eq. (A8) into the lattice. This is done in two
steps. First we fuse the neighboring loops along each edge,
using an F move:

(A9)
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The k appearing in the sum will be the physical degree of
freedom in every edge, once we are done resolving everything
into the lattice. The second step consists of using the following
equality in every vertex:

(A10)

where

Gi jk
λμν = 1√

didλ

F ν jλ
kμi = 1√

dνdk

(
F i jk

λμν

)∗
. (A11)

The PEPS tensor is obtained by splitting the factor
√

dk/dμdν

in Eq. (A9) evenly between the two adjacent vertices, while
splitting the factor d̃μp in Eq. (A7) evenly between all six
vertices appearing in plaquette p. The result is

(A12)
where i′, j′, and k′ represent the physical degrees of freedom.
Each virtual index is associated to two physical indices (ap-
pearing in the tensors at the vertices connected by that edge).
The first three δ functions in Eq. (A12) guarantee that these
two physical indices are always equal.

The PEPS tensor for the vertices with the inverse orienta-
tion is obtained by rotating Eq. (A12).

2. Ansatz for θ ∈ [−π/2, 0]

For θ ∈ [−π/2, 0], the Ansatz is defined similarly:

|γ 〉− = N
∏

p

(
1 + γ d1Op

1

)|1〉, (A13)

= N
∏

p

(∑
i

d̃iO
p
i

)
|1〉. (A14)

Note that we are now acting on the |1〉 = ⊗l |1〉l product state,
as opposed to the |0〉 state that we used for θ ∈ [0, π/2]. We

can use the same graphical representation of this state:

(A15)

where the gray lines are now in the |1〉 state initially. As done
for θ ∈ [0, π/2], we first fuse the loops along every edge:

(A16)

The vertices then look like

To finish resolving everything into the lattice, these objects
must be reduced to trivalent vertices. This is done by applying
Eq. (A10) multiple times:

(A17)
and analogously:

(A18)
By splitting the factors appearing in Eq. (A16) equally

between the two adjacent vertices, we obtain the following
PEPS tensors:
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(A19)

(A20)

Note that there is one more virtual leg per side compared
to Eq. (A12). This is due to the extra sum appearing in
Eq. (A16).

Although, for γ = 1, the physical states given in Eqs. (A3)
and (A13) are identical, the PEPS tensors representing these
two states have very different properties. Indeed, the double-
layer transfer matrix with PEPS tensors (A19) and (A20)
appears to be critical with a central charge which is twice that
of the three-state Potts model while the PEPS tensor given
by Eq. (A12) does not share this property. This observation
clearly deserves further investigation.

3. Reducing the bond dimensions

The PEPS tensor defined in Eq. (A12) has a bond dimen-
sion (both physical and virtual) of 23. However, the G-symbol
present in its definition imposes certain rules which need to
be met for the tensor to take a nonzero value. These rules
can be exploited to rewrite this tensor as one with a lower
bond dimension: for the Z2 theory (1), the bond dimension
can be reduced to 4, while for the Fibonacci theory (2) it can
be reduced to 5.

The structure of the PEPS tensor can also be exploited to
reduce the bond dimension of the double-layer transfer matrix
MPO tensors. Using the more efficient encoding of the tensor
we just mentioned, the double-layer bond dimension already
gets reduced from 64 to 16 for Z2 and to 25 for Fibonacci.
The Kronecker delta functions appearing in the right-hand
side of Eq. (A12) allow us to further reduce these to 8 and
13 respectively.

The same tricks can be applied to the tensors (A19) and
(A20) (note that we only use this Ansatz for the Fibonacci
theory). The virtual bond dimension can be reduced from 24

to 8, while the physical bond dimension can be reduced from
23 to 5. The bond dimension of double-layer MPO tensors can
be reduced from 28 to 34.

As mentioned in the main body of this paper, the varia-
tional energy per plaquette (7) is calculated using the VUMPS
algorithm. Due to memory constrains, the bond dimension of
the boundary MPS has to be limited to 100 for the Z2 model,
and for the Fibonacci model with θ ∈ [0, π/2]. Due to the
higher bond dimension of the double-layer MPO obtained
from Ansatz (A19) and (A20), the bond dimension of the
boundary MPS has to be limited to 60 for the Fibonacci model
with θ ∈ [−π/2, 0].
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