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Abstract—Nowadays composite materials such as carbon 

fiber reinforced polymers (CFRP)s have been widely used in 

industrial applications. But, they are susceptible to impact 

damage and subsequent fatigue cracking and delamination 

which in long term lead to some negative consequences such as 

erosion and also breaking the material. Due to the inability to 

visually observe such defects and also the high sensitivity of 

industrial components to invasive inspections, non-destructive 

testing (NDT) techniques are used to deal with the aforemen-

tioned problems. In this regards, an ultrasound-based NDT 

technique called Local defect resonance (LDR) leads to re-

markable results for detecting various types of defects in 

CFRPs. In LDR technique, high frequency acoustical vibra-

tions are used to get a localized resonant activation of a defec-

tive region such that these excitation frequencies lead to a sig-

nificant increase of the vibration amplitude in the defective 

area relative to the sound area. The problem which arises is 

that in order to properly localize the defect, the defect reso-

nance frequency must be known which is practically impossi-

ble. In this paper, a new defect imaging methodology is pro-

posed, which can localize the defects without any prior 

knowledge about their location and resonance frequencies. 

Experiments are performed on a CFRP sample with flat bot-

tom hole (FBH) defects and the proposed method has been 

quantitatively validated through the experiments by using the 

signal-to-noise ratio (SNR) criterion. The results show the su-

periority of our method over some well-known algorithms. 

Keywords—Carbon fiber reinforced polymer (CFRP), non-

destructive testing (NDT), Local defect resonance (LDR), flat 

bottom hole (FBH), Defect image enhancement. 

I. INTRODUCTION 

Composite materials such as carbon fiber reinforced 

polymers (CFRPs), due to their high strength and resistance 

to fatigue and corrosion, are widely used in the industrial 

applications and advanced engineering structures. A com-

mon problem of using such materials is highly possible aris-

ing of internal defects. Thus, it is important to evaluate pro-

gress of defects through detection and sizing of them for 

further evaluation of their expanding and avoiding subse-

quence damages to the systems. Due to the high sensitivity 

of CFRPs, non-destructive testing (NDT) techniques, with-

out any deteriorative effect, are used to detect defects in 

such systems.  

NDTs consist of a variety of methods, among which the 

ultrasound-based techniques can be mentioned as a common 

approach [1]. One of the most recent approaches in ultra-

sound-based NDT is known as local defect resonance (LDR) 

[2, 3]. This technique leads to impressive results in dealing 

with various types of defects, such as flat bottom holes 

(FBH) [4, 5], inserts [6], disbonds [7], and barely visible 

impact damage (BVID) [8, 9]. 

In general, LDR behaves very similar to the solid struc-

tures’ resonance. When the frequency of the ultrasound-

induced excitation wave is matched to the LDR frequency 

of the defect, the vibration amplitude of a defect will signif-

icantly increase in three dimensions compared to other spec-

imen’s regions under investigation [10], which is sufficient-

ly concentrated around the defective area [2]. 
There is a relationship between the size of the defect and 

its resonance frequency. Solodov et al showed that this rela-
tion is also proportion to the geometry of the corresponding 
defect. In this regards, for cylindrical [11] and quadratic 
shapes [12] defects, the following LDR frequencies can be 
obtained respectively, 

𝑓0
𝑐 ≈ (1.6.

𝐻

𝑟2) . √𝐸 12𝜌(1 − 𝜐2)⁄                  (1)  

𝑓0
𝑠 ≈ (4𝜋.

𝐻

3𝑠2) . √𝐸 6𝜌(1 − 𝜐2)⁄                    (2) 

where 𝑓0
𝑐 and 𝑓0

𝑠  are resonance frequency of circular and 

square defects respectively. The material parameters E, 𝜌 

and v respectively are Youngs’s modulus, density and Pois-

son number. Also, H, r or s are residual thickness, radius or 

side of FBH defects, respectively. 

Since we usually have no a priori information about the 

geometry of the defects, 𝑓0  cannot be obtained explicitly.  

Hence, as depicted in Fig. 1, for proper defect localization, a 

frequency spectrum using a low power piezoelectric PZT 

patch is applied to excite the specimen under investigation. 

Then, to obtain the LDR data, the vibrational response of a 

defected specimen surface is measured using a scanning 

laser Doppler vibrometer (SLDV) [13].  

In order to better capture the variations of the raw LDR 

data received by the SLDV system as well as to increase the 

robustness of the signal to noise, we firstly transformed it 

into the frequency domain using fast Fourier transform 

(FFT). The entire subsequent processing is then applied to 

the obtained FFT coefficients [14]. 

Frequency band data (FBD) is one of the most common 

FFT-based LDR data processing methods [15], which is 

known and used as a data reduction technique but can also 

be useful for defect detection purpose through averaging of 

frequency response functions (FRF)s. For each scan point in 

the location (𝑥𝑖 , 𝑦𝑖) of the specimen, this method computes 

the mean of total vibration amplitude as below, 

𝐹𝐵𝐷(𝑥, 𝑦, 𝑓) =

                (∆𝑓 𝑓2 − 𝑓1)⁄ ∑ 𝑉𝑧(𝑥, 𝑦, 𝑓) 𝑈𝑒𝑥𝑐(𝑓)⁄𝑓2
𝑓=𝑓1

        (3) 
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Fig.2. Comparsion of aveage of FRFs (black), nodal FRF in a sound (red), 

and defect (blue) area. 
 

 
  

 

Fig.4. Image representation (ODS) of 𝑉𝑍(𝑥, 𝑦, 𝑓) (a) first defect’s LDR 

frequency (𝑓 =27 KHz) (b) second  defect’s LDR frequency (𝑓 =44 

KHz)  (c) third defect’s LDR frequency (𝑓 =66 KHz) and (d) 3D view 
of (c) 

 

where ∆𝑓 is the frequency resolution of the LDR data, and 

also  𝑓1 ,  𝑎𝑛𝑑 𝑓2  are the lower and upper frequency bands 

which is within the frequency band under investiga-

tion.  𝑉𝑧(𝑥, 𝑦, 𝑓) is the out-of-plane velocity amplitude and 

𝑈𝑒𝑥𝑐(𝑓) is the voltage amplitude of excitation signal pro-

duced by piezoelectric.  

Also, a modified version of the FBD, which is named 

power spectral density (PSD) [13], has recently been intro-

duced that achieves better results in comparison to the con-

ventional FBD. This method uses the following equation for 

imaging of each scan point 

𝑃𝑆𝐷(𝑥, 𝑦, 𝑓) =  
1

𝑓2−𝑓1
∫ (

 𝑉𝑧(𝑥,𝑦,𝑓)

𝑈𝑒𝑥𝑐(𝑓)
)

2

𝑑𝑓
𝑓2

𝑓=𝑓1
           (4) 

Since the vibrational amplitude at LDR is relatively high, 

√𝑃𝑆𝐷 are used to demonstrate the resulting images. But, the 

major problem of both FBD and PSD methods is their 

weakness in detecting deep defects.  

On the other hand, through an empirical manner, it can 

be concluded that the FRF of each scan point in a defective 

area can be significantly differs from the sound areas which 

contain most part of the specimen under investigation. 

Therefore, as can be seen as an example in Fig. 2, the mean 

of the all scan points’ frequency responses can be used as an 

initial and approximate criterion to separate defective areas 

from the sound areas. 

 In this work, we try to develop a simple but efficient de-

fects detection methodology by introducing an approach 

only based on received FFT-based LDR data from SLDV 

and without using any prior knowledge about the locations 

and/or resonance frequencies of defects. To aim this goal, 

we firstly calculate the amplitude of the FRF for each under 

investigation scan point and consider the number of fre-

quencies that their amplitudes exceed a given threshold to 

determine whether any scan point belongs to defective or 

sound area. Then, if there are a sufficient number of such 

frequencies, the scan point under investigation is considered 

as a candidate for the defective region. Finally, the number 

of these frequencies (instead of the amplitude of the varia-

tions) is used as a factor in the representation of the defect 

image (Method #1).  

In the next attempt (Method #2), we extract the frequen-

cies which belong to the 𝑛 first peaks of each candidate scan 

point. Then a geometric mean filter is used to obtain the 

image for each scan point. Finally, they are averaged to-

gether to achieve a unique image.  

The rest of paper is as follows: in Section II, we explain 

LDR setup, datasets and problem statement. In Section III, 

we described our proposed methods. Then, the comparison 

of the proposed methods with other methods is presented in 

section IV and finally we conclude the paper in section V. 

II. EXPERIMENT AND PROBLEM STATEMENT 

We use a CFRP plate with a circular FBHs (see Fig. 3), 

which is a popular type of artificial defect which gives a 

clear LDR operation. The sample dimension is 150 × 90 ×
5.52 mm3 and is manufactured from unidirectional carbon 

fiber with layup [−45/0/45/90]3𝑠. The FBHs has a diame-

ter (d) of 15 mm and residual thicknesses (H) of 1.02, 1.84, 

2.98, 3.84, and 4.69 mm.  

The specimen is suspended using elastic bands and ex-

cited using low PZT patches (type EPZ-20MS64W from 

Ekulit, with a diameter of 15 mm) fixed to the back of the 

plate. A burst chirp signal (i.e. fast swept sine wave fol-

lowed by a zero signal for 10% of the total signal length) is 

used as the excitation source. This input signal is amplified 

by a gain of 50 using a Falco system WMA-300 amplifier to 

 
Fig.1. Schematic of LDR set-up. The size of LDR data in FFT domain is  

M × N × K. 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
  

 

Fig.3. CFRP plate containing 5 FBHs (CFRPFBH) with different has shown 

near of each defects and constant diameter (d=15) 

 

  



 

Fig.5.  graphical chart of the perposed methods 

 
  
increase the entry energy. The front side of the sample is 

scanned using a 3D infrared SLDV (polytec PSV-500-3D 

XTRA) and the out-of-plane vibrational responses (𝑉𝑧) is 

obtained. We adjusted the excitation signal for measurement 

as 𝑓𝑚𝑖𝑛 = 5  KHz, 𝑓𝑚𝑎𝑥 = 80  KHz and 𝑉𝑝𝑝 =  2 ∗ 50 =

 100 V.  

Then, the FFT of LDR data is calculated with sampling 

frequency ∆𝑓= 25 Hz, which is followed by the Hanning 

window to avoid spectral leakage. The bandwidth in this 

measurement is set to 75 kHz, and therefore for each scan 

point, we have 3001 frequency samples. For the ability to 

represent and process in the image domain, we also need to 

convert the nodal 2D-measurement data to a 3D M×N data 

array. Finally, the total number of 𝑉𝑧s for the specimen are 

M×N=106×194 scan points and the total number of data are 

M×N×K =106×194×3001. 

In the FFT domain, we can access to each frequency 

slice that contains all values of the vibration amplitude for 

that particular frequency. Based on what is shown in Fig. 4, 

for each defect, there is a given slice that shows the best 

representation of it which is called LDR frequency, this can 

be achieved using FRFs and operational deflection shape 

(ODS) [13]. For defects 1, 2, and 3, respectively, the LDR 

frequencies are 27, 44 and 66 kHz. It should be noted that in 

44 kHz and 66 kHz, the first defect is also visible. The rea-

son for this phenomenon is that the defect regions are vibrat-

ing at all frequencies and because of their lower stiffness 

compared to the sound region, the amplitude of vibration is 

higher, and also at LDR frequency of each defect region the 

intensity of vibrating is impressively higher than other re-

gions. Since H is high in deep defects, the measured vibra-

tions associated with the LDR frequencies of these defects 

can be the same as the shallow ones, even less than them, 

which make it difficult to find deep defects in this field. 

Also, finding defect 4 and 5, which are the deepest defects, 

are still remained challenging. In fact, these defects are not 

detectable by using classical methods.  

On the other hand, since previous presented procedures 

need a prior knowledge about the resonance frequencies of 

defects and also are time-consuming, they cannot be consid-

ered as an efficient defect detection methodology. To over-

come this deficiency, we present a method to detect defects 

in an automatic manner without directly utilizing the defect 

LDR frequency.  

III. PROPOSED METHODS 

Fig. 5 shows the general procedure of the proposed 

method, where the LDR data firstly is transformed to the 

frequency domain which is followed by a normalization 

step. In fact, for the frequencies 𝑓 ∈ [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥]  of each 

scan point, we have  

𝑉(𝑥, 𝑦, 𝑓) =  
 𝑉𝑧(𝑥,𝑦,𝑓)

𝑈𝐸𝑥𝑐(𝑓)
                              (5) 

𝑉𝐴𝑚(𝑥, 𝑦, 𝑓) =  
𝑉(𝑥,𝑦,𝑓)− min (𝑉(𝑥,𝑦,𝑓))

max(𝑉(𝑥,𝑦,𝑓))−min (𝑉(𝑥,𝑦,𝑓))
             (6) 

where 𝑥  and 𝑦  are the spatial coordinates of the scan 

points, 𝑉𝑧(𝑥, 𝑦, 𝑓) ,  𝑈𝐸𝑥𝑐  (𝑓) and 𝑉𝐴𝑚(𝑥, 𝑦, 𝑓)  respectively, 

represent the out-of-plane velocity amplitude,  the voltage 

amplitude of the excitation signal supplied to the piezoelec-

tric actuator and normalized velocity amplitude for the 

𝑓𝜖[𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥].  

A. Method 1(M#1) 

Based on an example illustrated in Fig. 6, for each scan 

point, 𝑉𝐴𝑚(𝑓) of the LDR frequency and its harmonics cor-

responding to defective area is greater than its surrounding 

(sound) areas. Thus, it can be concluded that, in the defect 

areas, the number of peaks in the FRF with high 𝑉𝐴𝑚  is 

more than the sound ones. As depicted in Fig. 6, the number 

of peaks with high 𝑉𝐴𝑚(𝑓)  in the corresponding FRF 

demonstrates a meaningful difference compare to the sound 

areas. Hence, this can be useful for detecting and separating 

defect from the sound areas.  

 

Fig.6. Comparison of the number of  𝑁𝛼(𝑥, 𝑦) in defect area with an 

arbitrary sound area with three diferent thersholds.  

𝛼 = 7.86,  𝑁𝛼(𝑖, 𝑗) = 253 , 𝑁𝛼(𝑖, 𝑗) = 10, 

𝛼 = 4.71,  𝑁𝛼(𝑖, 𝑗) = 478 , 𝑁𝛼(𝑖, 𝑗) = 28 

𝛼 = 1.57,  𝑁𝛼(𝑖, 𝑗) = 1837 , 𝑁𝛼(𝑖, 𝑗) = 240 

  



In order to separate frequencies with high 𝑉𝐴𝑚(𝑓),  a 

threshold level is suggested as follows, 

𝜀𝛼 =
𝛼

𝑀×𝑁×𝐾
∑ ∑ ∑ 𝑉𝐴𝑀(𝑥, 𝑦, 𝑓)𝑓𝑚𝑎𝑥

𝑓=𝑓𝑚𝑖𝑛

𝑁
𝑦=1

𝑀
𝑥=1          (7) 

where 𝛼  is a constant coefficient and empirically set to 

achieve the best 𝜀𝛼 

 In the next step, we consider the frequency sequence of 

each scan point (𝑥, 𝑦), and find the number of frequencies 

which satisfy the following condition 

𝑓𝛼(𝑖, 𝑗) = {𝑓 ∈ [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥]|𝑉𝐴𝑀(𝑥, 𝑦, 𝑓) > 𝜀𝛼}     (8) 

where for each scan point at coordinate (𝑥, 𝑦), 𝑓𝛼(𝑥, 𝑦) is a 

set that includes all the frequencies that their 𝑉𝐴𝑚(𝑓)  is 

higher than 𝜀𝛼.Finally, the number (num) of 𝑓𝛼(𝑖, 𝑗) is given 

by,  

𝑁𝛼(𝑥, 𝑦) = 𝑛𝑢𝑚(𝑓𝛼(𝑥, 𝑦))                          (9) 

where 𝑁𝛼(𝑥, 𝑦) points to the number of frequencies for each 

scan point at coordinate (𝑥, 𝑦) which satisfy eq. (8). 
Since the data have been normalized in the previous 

step, thus it can be stated that for instance 𝜀𝛼 = 0.1 means 

10% of the highest vibration amplitude of all scanned 

points. Roughly speaking, the optimal range of 𝛼 ∈
[1.57: 7.86].  Fig. 6 also shows the results of 𝑁𝛼(𝑥, 𝑦) in a 

random scan point of defect number 1 area and a random 

selected scan point of sound area for 𝛼 =
1.57, 4.71 and 7.86. Finally, 𝑁𝛼(𝑥, 𝑦) can be used to 

demonstrate the defects image. 

 

B. Method 2(M#2) 

According to the results obtained from Method #1, if  

𝑁𝛼(𝑥, 𝑦) is bigger than of a given threshold, the possibility 

of being defect for this scan point is intuitively high. Here, 

we define a new threshold level as follows, 

𝑁𝛽 =  
𝛽

𝑀×𝑁
∑ ∑ 𝑁𝛼(𝑥, 𝑦)𝑁

𝑦=1
𝑀
𝑥=1                   (10) 

where 𝛽is a constant coefficient and empirically set to 

achieve the best 𝑁𝛽. The optimal value of 𝛽 is inversely 

proportional to 𝛼 (i.e. for 𝛼 = 1.57, the best value of 𝛽 =
1.5, for 𝛼 = 4.71, the best value of 𝛽 = 1.25 and for 𝛼 =
7.86 the best value of 𝛽 = 1.23). The condition 𝑁𝛼(𝑥, 𝑦) ≤
𝑁𝛽 means that the scan point under investigation is most 

likely belongs to the sound area and no further processing 

need to perform on it, and hence, we return to the second 

step of the algorithm and selecting next scan point. On the 

other hand, for 𝑁𝛼(𝑥, 𝑦) > 𝑁𝛽, the  scan point under inves-

tigation is a candidate of defective area and this scan points 

will be separated as follows,  

𝑉𝐶
𝛽(𝑖, 𝑗, 𝑓) = 

  {𝑉𝐴𝑀(𝑥, 𝑦, 𝑓)│(𝑖, 𝑗) ∈ (𝑥, 𝑦) & 𝑁𝛼(𝑥, 𝑦) > 𝑁𝛽}      (11) 

where 𝑉𝐶
𝛽(𝑖, 𝑗, 𝑓)  is the 𝑉𝐴𝑀(𝑥, 𝑦, 𝑓)  of a candidate scan 

point with coordinates (𝑖, 𝑗). In the next step, we try to find 

the peaks of the corresponding 𝑉𝐶
𝛽(𝑖, 𝑗, 𝑓)  using zero-

crossing approach [16],  

𝑓𝑝(𝑖, 𝑗) =  𝑃𝑒𝑎𝑘𝑠 {𝑉𝐶
𝛽(𝑖, 𝑗, 𝑓)}                 (12) 

where 𝑓𝑝(𝑖, 𝑗) is a vector of peaks which can be achieved for 

each scan point at coordinate (𝑖, 𝑗). Example of these peaks 

is shown in fig. 6 as solid black circles on the blue color 

FRF.  

Once this is done, we sort these peaks in a descending 

(des) manner and store the first 𝑛  elements of them, and 

finally, in the following way, we select the frequencies that 

these peaks occur,  

𝑓𝑎𝑟𝑔(𝑖, 𝑗, 𝑛) = 𝑎𝑟𝑔 𝑠𝑜𝑟𝑡𝑑𝑒𝑠 (𝑓𝑝(𝑖, 𝑗))        (13) 

In the next step, to better remove the effect of the sound 

area, we use a geometric mean of those slices which are 

belong to the mentioned vector as below and this gives us an 

image for the under investigation scan points, 

𝐼𝐶𝑖𝑗
(𝑥, 𝑦) =  √∏ 𝑉𝐴𝑀(𝑥, 𝑦,𝑛

𝑙=1 𝑓𝑎𝑟𝑔(𝑖, 𝑗, 𝑙))𝑛
          (14) 

In (14), 𝑛 is the number of selected peaks, 𝑓𝑎𝑟𝑔(𝑖, 𝑗, 𝑙) is the 

frequency of 𝑙th peak, and 𝐼𝐶𝑖𝑗
(𝑥, 𝑦) is the image obtained 

from corresponding candidate scan point. This geometric 

mean filter gives us an image that potentially represents the 

defect of that region under investigation. One advantage of 

such filtering is the smoothed background which subse-

quently leads to detect deep defects. Because in these cases, 

the contrast between the sound area and a given deep defect 

is poor, thus, geometric mean of such regions can lead to a 

final smoothed image. Also, for better contrast and reducing 

the computational cost, we usually drop the nth root opera-

tion. 

Same procedure mentioned above applies to all candidate 

defects scan points, and finally, by averaging the obtained 

images, we reach a unique output image. Fig. 7 shows the 

results of (14) for five candidate scan points in five defec-

tive areas.  

Figs. 7a to 7e show the output images of (14) for 5 candi-

date scan points in defects 1 to 5 area, respectively. Fig. 7f 

shows result of merging the aforementioned images. 

Then, to reach a unique image, average all obtained im-

ages are calculated as follows,  

𝐼(𝑥, 𝑦) =
1

𝑁𝑐
∑ 𝐼𝐶𝑖𝑗

(𝑥, 𝑦)(𝑖,𝑗)∈Ω𝑐
                         (15) 

 

Fig. 7. Results of using (14) for five candidate scan points in defect (a) 1, 
(b) 2, (c) 3, (d) 4, and (e) 5 areas respectively. Also, we merge them in (f) 

for a complete representation of detected defects in the mentioned sub-
regions. 

 

 

 
  



where the set Ω𝑐 consists of the candidate defect scan points 

which satisfy the condition  𝑁𝛼(𝑖, 𝑗) > 𝑁𝛽  and also their 

total number is 𝑁𝑐. 

IV. RESULTS  

Due to the fact that the vibrational amplitude in shallow 

defects (i.e. defects 1 and 2) is relatively high, thus, for bet-

ter visual representation, the effects of these defects are ig-

nored by masking them. Figs. 8, 9, 10 and 11 show the re-

sults of FBD [15], PSD [13] and proposed methods M#1 

and M#2 respectively. In these Figs., for better visualization 

of deeper defects, the effects of the first defect, the first two 

defects, and the first three defects are masked respectively. 

As shown in Figure 8, FBD method has been successful in 

finding the first and second defects but, in dealing with 

deeper defects, it does not lead to the desired results. For the 

results of PSD method which is shown in Fig. 9, it can be 

seen that the first and second defects are well detected, and 

the third one is also detected but with low contrast. Howev-

er, the last two deep defects are detected with a very poor 

contrast and therefore they are hard to identify.  

Fig. 10a shows the output image of M#1 where the value 

of 𝛼 is empirically set to 4.71, in which the defects 1 and 2 

have been clearly detected and defects 3 to 5 (deepest de-

fects) have been detected by masking effects of shallow 

ones. Notice that, the resulted image of this figure has much 

smoother background compared to Figs. 8 and 9, but still 

there is not enough contrast to detect deep defects in a con-

venience manner. 

 

Fig.8. Results of FBD method (a) for a bandwidth 75 KHz from 𝑓𝑚𝑖𝑛 =
5 𝐾𝐻𝑧 up to 𝑓𝑚𝑎𝑥 = 80 𝐾𝐻𝑧 and results after masking the defects (b) 1 
(c) 1 and 2 (d) 1, 2 and 3. 

 
  

 

Fig.9. Results of PSD method (a) for a bandwidth 75 KHz from 𝑓𝑚𝑖𝑛 =
5 𝐾𝐻𝑧 up to 𝑓𝑚𝑎𝑥 = 80 𝐾𝐻𝑧 and results after masking the defects (b) 1 (c) 

1 and 2 (d) 1, 2 and 3. 

 

 
  

 

Fig.11. Results of M#2 (a) without any masking, and  with masking the 

defects (b) 1 (c) 1 and 2 (d) 1, 2 and 3. 

 

  

 

Fig.10. Results of M#1 (a) without any masking, and  with masking the 
defects (b) 1 (c) 1 and 2 (d) 1, 2 and 3 

  

 

Fig.12. Results of M#2 with 𝑛 = 7  (a) without any masking, and  with 

masking the defects (b) 1 (c) 1 and 2 (d) 1, 2 and 3 

  



Fig. 11 illustrates the results of M#2 for 𝛼 = 4.71, 𝛽 =
1.25, and 𝑛 = 1: 10. It can be seen that in these images for 

all 𝑛 there is a good contrast between the first two defects 

and the sound areas, and consequently these defects are easi-

ly recognizable. In the case of the three deep defects (defect 

3 to 5) for low value of 𝑛, the contrast between defects and 

sound areas is poor, especially at 𝑛 = 1; where the defects 4 

and 5 are not detectable and the third one is not well-

detected. For 𝑛 = 3: 5, there is a relatively good contrast 

between these three deep defects and sound areas, which 

leads to good detection results for them. For 𝑛 = 6:8, good 

contrast is achieved that makes it suitable for detecting of 

deep defects. For 𝑛 > 8, the contrast is gradually decreas-

ing, Because, when the number of frequency layers in-

creased, the probability of belonging to the LDR frequency 

and its harmonics decreases.. As a conclusion, we can em-

pirically state that for 𝑛 = 4: 8 the results are acceptable for 

all defects. In this regards, we use 𝑛=7 for the rest of the 

experiments. Finally, the representation of all defects which 

are detected by M #2 is presented in Fig. 12. 

 

Now to validate the proposed methods quantitatively, we 

use signal to noise rate (SNR) criterion, which is defined as 

below 

𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10 |
𝑀𝑑𝑒𝑓𝑒𝑐𝑡 −  𝑀𝑠𝑜𝑢𝑛𝑑

𝜎𝑠𝑜𝑢𝑛𝑑
|                           (9) 

where 𝑀𝑑𝑒𝑓𝑒𝑐𝑡is the mean of the defect area, 𝑀𝑠𝑜𝑢𝑛𝑑  is the 

mean of the sound area, and 𝜎𝑠𝑜𝑢𝑛𝑑 is the standard deviation 
of the sound area. Table I shows the SNR results for 5 
defects in different methods. 

Table I summarizes the SNR results for 5 defects in 
different methods. As can be seen the M#2 has superior 
results over other methods for all five defects. 

V. CONCLUSIONS 

In this paper, a new LDR-based methodology is present-

ed, in which the defects can be detected without directly 

using the location and LDR frequency of the defects in the 

specimen under investigation. In the proposed methods, the 

contrast between the defects and sound areas is high enough 

that is suitable for defect detection. Our methods also show 

appropriate performance in detecting deep defects. To vali-

date the proposed method, we performed some experiments 

on a CFRP sample with 5 FBH defects. Furthermore, our 

experiments quantitatively confirmed that the proposed 

method is superior in comparison with several well-known 

algorithms. The proposed methods consist of some free pa-

rameters (𝛼 ,  𝛽  and 𝑛 ) that automatically determining the 

optimum values of them is the authors’ future research ef-

fort. 
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TABLE I.  COMPARISON OF THE SNR VALUES FOR DIFFERENT METHODS. 

THE BOLDED VALUES SHOW THE BEST RESULTS. 

Method 

SNR for defects 

Defect 

# 1 

Defect 

# 2 

Defect 

# 3 

Defect 

# 4 

Defect 

# 5 

FFT 44.81 34.04 22.70 5.47 − 

FBD 45.79 31.39 26.46 9.26 − 

PSD 47.68 33.33 27.52 10.86 3.83 

M#1 72.31 51.52 32.75 10.73 12.03 

M#2 160.62 122.50 70.14 27.88 22.29 

 

 

 
  


