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Abstract— Carbon fiber reinforced polymer (CFRP) materi-
als, due to their specific strength and high consistency against 
erosion and corrosion, are widely used in industrial applications 
and high-tech engineering structures. However, there are also 
disadvantages: e.g. they are prone to different kinds of internal 
defects which could jeopardize the structural integrity of the 
CFRP material and therefore early detection of such defects can 
be an important task. Recently, local defect resonance (LDR), 
which is a subcategory of ultrasonic nondestructive testing, has 
been successfully used to solve this issue.  However, the drawback 
of utilizing this technique is that the frequency at which the LDR 
occurs must be known. Further, the LDR-based technique has 
difficulty in assessing deep defects. In this paper, deep neural 
network (DNN) methodology is employed to remove this 
limitation and to acquire a better defect image retrieval process 
and also to achieve a model for the approximate depth estimation 
of such defects. In this regards, two types of defects called flat 
bottom holes (FBH) and barely visible impact damage (BVID) 
which are made in two CFRP coupons are used to evaluate the 
ability of the proposed method. Then, these two CFRPs are 
excited with a piezoelectric patch, and their corresponding laser 
Doppler vibrometry (LDV) response is collected through a 
scanning laser Doppler vibrometer (SLDV). Eventually, the supe-
riority of our DNN-based approach is evaluated in comparison 
with other well-known classification methodologies. 

Keywords— Deep neural network, defect image retrieval, laser 
Doppler vibrometry, nondestructive testing, carbon fiber reinforced 
polymer. 

I. INTRODUCTION 

Composite materials including Carbon fiber reinforced 
polymer (CFRP) due to many advantages including low 
weight, low thermal expansion, and high physical and chemical 
resistance have turned to the fully used ones in industry and 
advanced structures such as aerospace industry and automotive 
engineering in which the low weight of construction while 
maintaining high resistance is vital. One of the disadvantages 
of using these materials is the possibility of occurring damage 
inside them and their high sensitivity to this damage; therefore, 
recognition and localization of such defects are essential to 
prevent them from being spread. Since defects are often 

invisible, nondestructive testing (NDT) is used for 
identification of defects that investigates the properties of a 
specimen without damaging it. NDT techniques include a vari-
ety of methods, one of which is ultrasonic. One of the newest 
approaches in ultrasonic NDT methods is making use of local 
defect resonance (LDR) to recognize different defects such as 
flat bottom holes (FBH), barely visible impact damage 
(BVID), etc. [1]. The behavior of LDR is very similar to the 
usual resonance behavior of stable structures. When a various 
range of frequencies of ultrasonic excitation waves applied to 
the specimen, some of them match with the resonance 
frequency of local defects, and therefore the vibration 
amplitude of defects will be increased considerably in 3 
dimensions (3D)s relative to the other parts of the specimen. 
There is an approximate relation between the resonance 
frequency and the size of the defect. For a circular FBH and a 
square FBH, the following equations can be raised to deter-
mine the resonance frequency [2, 3] 
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where ��
�and ��

� are resonance frequency of circular and square 
defects in order. Also, the material parameters E, �, and v are 
Youngs’s modulus, density, and Poisson number respectively. 
Also, H, R, and S are residual thickness, radius, and size of 
FBH defects, respectively. Fig. 1 depicts two circular and 
square FBH with different H, R, and S. In the traditional LDR 
technique, for predicting LDR frequencies of a FBH defect in 
the specimen, it is essential to have some approximate 
information about the shape of a defect such as H, R, and S.  

Due to the fact that we usually have no a priori information 
about the shape of defects, we use broadband vibrations for 
exciting the specimen. In this regards, a piezoelectric actuator 
is used to excite CFRPs. Then the locations of the defects are 
obtained from measuring the vibrational response by 3D 
infrared scanning Laser Doppler Vibrometer (SLDV). The data 
gathered in this way is called laser Doppler vibrometry (LDV) 
which includes both resonance and non-resonance frequencies 
of defects. 



Automated retrieval of location and depth of deep defects 
as well as complex damages is an arduous task in CFRP 
materials due to their particular structure. Therefore, the 
recently used signal processing technique such as Frequency 
Band Data (FBD) [4] may have problem to detect these kinds 
of defects with an acceptable accuracy. 

FBD is a signal processing method often used in data 
compression, while it could also be employed individually as a 
technique for defect localization. In brief, it computes the 
average amplitude of vibration for each point at location (x, y) 
over the entire measurement bandwidth. The FBD of a scan 
point is computed as follows: 

             ���(��, ��, ��, ��) =

                            (���� �� − ��⁄ ). ∑ ��(��, ��, �) ����(�)⁄��
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In (3), fres is the frequency resolution of the Fast Fourier 
Transform (FFT). f1 and f2 are the lowest and highest frequen-
cies of the frequency bandwidth which have been selected from 
a frequency response of excitation signal. Vz and Uexc are the 
representation of the out-of-plane (z-plane) velocity amplitude 
and the voltage amplitude of the excitation signal, respectively 
[4]. 

In this study, we firstly use Deep Neural Network (DNN) 
[5] for automated retrieval of the location of deep FBHs and 
BVID  in CFRPFBH,5 and CFRPBVID, respectively . Then another 
DNN is used to Estimate the depth of FBH defects. It should be 
noted that the FBD method cannot detect the deepest FBH at 
all. Ultimately, we compare the performance of our proposed 
models with FBD and some other well-known classification 
methodologies namely Support Vector Machine (SVM) [6], 
AdaBoost [7, 8], and  Shallow Neural Network (SNN) [5]. 

The paper is organized as follows: in Section II, we ex-
plain the formation of datasets. In Section III, DNN is intro-
duced, and the proposed DNN method is described in section 
IV. Then the experimental results are presented in section V, 
and finally we conclude the paper in Section VI. 

II. DATASET 

As depicted in Fig. 2, we use two datasets in this study 
where each of them is obtained from a different specimen. As 
shown in Fig. 2-a, the first sample is made from unidirectional 
CFRP laminate based on layup [(45/0/-45/90)]3s. The size is 
150×90×5.52 mm3, and it contains 5 FBHs with different re-
maining thickness H. The second sample is made from unidi-
rectional CFRP laminate based on layup [(0/90)]6s, and the 

size is 150×100×5.52 mm3, which is shown in Fig. 2-b. This 
CFRP plate contains BVID created by a 7.72 kg drop weight 
with 16 mm impactor-tip, based on the ASTM D7136 standard 
test method, whose measured impact energy is 6.3 J.  

A burst chirp signal from 5 kHz to 80 KHz is applied to the 
CFRP samples through a low power piezoelectric patch (type 
EPZ-20MS64W from Ekulit, with a diameter of 12 mm) 
which was bonded to the surface. Finally, the out-of-plane 
vibrational response is obtained using a 3D infrared scanning 
laser Doppler vibrometer (Polytec PSV-500-3D XTRA) and 
the FFT of them are computed using Hanning windows to 
avoid spectral leakage.  Because of using a SLDV with fres = 
25 Hz and a burst chirp signal with BW = 75 KHz, the out of 
plane (Z-axis) vibrational response is measured in K = 3001 
different frequency at each scan point. Thus two 3D LDV da-
tasets of sizes (106×194×3001) and (122×148×3001) are 
achieved for the CFRPFBH,5 and CFRPBVID respectively. The 
setup of this experiment is shown in Fig. 3. 

 

III. DEEP NEURAL NETWORK (DNN) 

 

Nowadays, Artificial Intelligence (AI) is one of the main 
causes of evolution in industries; a fast developing section of 
which is called deep learning, an approach of machine learn-
ing that enhances computer systems using experience and da-
ta. Deep learning architectures such as DNN, Deep Belief 
Networks (DBN) [9], Recurrent Neural Networks (RNN) [10], 
and Convolutional Neural Network (CNN) [10] have been 
utilized in vast fields including computer vision, speech and 

Fig. 3. Schematic diagram of LDV setup. The size of LDV data is M×N× K. 

 

  

 

a b  

Fig.2. (a) CFRP plate containing 5 FBHs (CFRPFBH,5) with different H as 
shown below the defects. The plate are divided into 6 regions by red dashed 
lines. The first four regions are used in training phase and the others are 
used in testing phase. (b) Back side of CFRP plate containing 6.3J BVID 
(CFRPBVID). The approximate defective area is diamond-shaped due to the 
shape of impactor-tip used in making this damage. 

 

 

 

 

a b  

Fig. 1. (a) Illustration of a shallow square FBH defect (defect1) and a deep 
circular FBH defect (defect2). (b) Cross-sectional view of defect1 and de-
fect2. H1 and H2 are the remaining thickness of these defects. S and R repre-
sent the size of defect1 and the radius of defect2. 

 



audio processing, natural language processing, robotics, mate-
rial properties, etc. It has immensely employed human 
knowledge experience and also the information about the 
human brain, especially in computer-aided design. Over the 
last few years, it has had broad advancement as a result of 
having more powerful computers, larger datasets, and 
techniques to train deeper networks [10].  

 A DNN is formed from multiple layers between the input 
and output layers  named hidden layers, and it finds a proper 
mathematical linear or non-linear relationship between the 
inputs and outputs. DNNs have a similar structure with SNN, 
but deeper (DNN has three hidden layers or more while SNN 
has just one or two), and it has a more  noticeable hierarchy 
structure. Hence DNN is more robust than SNN according to 
the discovery of the hidden relationships between inputs and 
outputs [12]. The general structure of a DNN with N-1 hidden 
layers and ny outputs is demonstrated in Fig.4. 

The inputs (x) and outputs (y) of the network are vectors of 
dimension nx and ny, respectively. The circles are the 
representation  of neurons, and the lines between them show 
their connections. Each hidden layer consists of the Nj neurons. 
In fact, each neuron consists two steps of computation. First, it 
calculates the weighted sum of its inputs, then it commonly 
applies a nonlinear transformation activation function (e.g. 
ReLU, sigmoid, etc.) to the weighted sum and sends the result 
out of the neuron . The parameters Wj (weights matrix) and bj 
(bias vectors) control the behavior of the DNN models by 
being adjusted repeatedly until the cost function reaches its 
minimum value [11]. 

Training DNN is a challenging task, and the problems of 
that include vanishing gradients, sticking in poor local optima, 
overfitting, and plateaus, all exist with adding more hidden 
layers which can make learning pretty slow. This is where that 
regularization methods such as l1 regularization [13], l2 regu-
larization [13], or dropout regularization [14], and new opti-
mization algorithms such as momentum [15], RMSprop [10], 
or Adam [16] can significantly contribute the learning algo-
rithm.  

 
 

IV.  PROPOSED METHOD 

A. Dataset division 

As mentioned before, the first aim of this study is the au-
tomated identification and retrieval of the location of 2 deep-
est defects in CFRPFBH,5. However, to prove that our model 
can properly detect another type of defects, we also try to lo-
calize the location of BVID defect in CFRPPBVID with the 
same model. Therefore, we split our datasets as follows: 

1) The first 4 regions shown in Fig. 2-a, including LDV 
data of the FBH defects 1, 2, 3, and their surrounding sound 
areas are chosen for the train set. 

2) Regions 4 and 5 shown in Fig. 2-a, including LDV data 
of the FBH defects 4, 5, and their surrounding sound areas 
are chosen for our first test set.  

3) The corresponding LDV data of CFRPBVID defects 
shown in Fig. 2-b is chosen as our second test set. 

Furthermore, as the second aim, we use FBH defects for 
depth estimation. In this regards, we form our train/test set as 
follows: 

1) 60% of vibrational response data of first dataset is used 
to train the second DNN. 

 

Fig. 4. Schematic diagram of N-1 hidden layers fully connected DNN [11]. 

 
  

TABLE I. DNN STRUCTURE FOR DETECTING THE LOCATION OF FBH 

AND BVID DEFECTS 

Hidden layer 
number 

Layer (type) 
Output 
shape 

Parameters 

1 
Dense layer 64 192128 

Leaky ReLU 64 0 

2 
Dense layer 64 4160 

Leaky ReLU 64 0 

3 
Dense layer 32 2080 

Leaky ReLU 32 0 

4 

Dense layer 32 1056 

Leaky ReLU 32 0 

Dropout (30%) 32 0 

5 

Dense layer 32 1056 

Leaky ReLU 32 0 

Dropout (30%) 32 0 

Output layer Dense layer 1 33 

 

TABLE II. DNN STRUCTURE FOR ESTIMATING THE DEPTH OF FBH 

DEFECTS 

Hidden layer 
number 

Layer(type) 
Output 
shape 

parameters 

1 
Dense layer 128 384256 

Leaky ReLU 128 0 

2 
Dense layer 128 15612 

Leaky ReLU 128 0 

3 
Dense layer 64 8256 

Leaky ReLU 64 0 

Output layer Dense layer 1 65 

 



2) Then we test our model on the remaning 40%. 

B. Proposed models  

In the first model used for detection the location of 2 deep-
est FBHs, the network consists of 5 hidden layers, the first and 
second hidden layer has 64 neurons, but the last 3 hidden lay-
ers have 32 neurons. In the proposed model, neurons are 
densely connected as each neuron receives input from all the 
neurons in the previous layer. A modified version of Rectified 
Linear Unit (ReLU), known as Leaky ReLU [17]1, is used as 
the activation function for each hidden layer except for the 
output layer, in which sigmoid function is used. Xavier initial-
ization [18] is used for initializing weights matrix, and bias 
vectors are initialized with zeros. In the case of Xavier initiali-
zation, the weights of each layer are initialized as random 
draws from a truncated normal distribution centered on 0 and 
variance as 

��� = 2 ��� + ����⁄ ,                               (4) 

where nin and nout are respectively the number of input and 
output units in the weight tensor. After initializing, we train 
DNN with Adam optimizer with constant learning rate 
of 10�� and exponential decay rates for the moment estimates 
of �� = 0.99 and �� = 0.999 [16]. Adam optimizer is planned 
for training deep networks, and in fact, it is a combination of 
RMSprop [10] and stochastic gradient descent with momen-
tum [15]. Dropout regularization [14] is used in the last 2 hid-
den layers, which is a popular technique that allows us to train 
on the bigger and deeper network by reducing overfitting pos-
sibility. It randomly selects some neurons and puts them aside 
of a layer during training. For loss function, binary cross-
entropy is used [10].  

For the second aim, a regression model is used for estimat-
ing the depth of defects. It is almost similar to the first model, 
although it consists of 3 hidden layers, the first and second 
hidden layer has 128 neurons and the last hidden layer has 64 
neurons. Also, linear activation function is used in the output 
layer and Mean Absolute Error (MAE) is employed as the loss 
function [10]. Tables I and II summarize our models. The pa-
rameters mentioned in the tables refer to the number of 
weights used in each layer of the networks. 

                                                        
1 Leaky ReLU has two advantages over ReLU: 1) It solves dying ReLU 

problem due to having none zero slope in negative domain, 2) It increases the 
speed of training due to having mean close to zero.  

In training phase, each model is trained with 10 different 
random seeds, and the maximum training epoch number is set 
to 1000 for each of them. We use keras [19] with tensorflow 
backend [20] for all calculations in this work. Finally, we em-
ploy hyperparameter optimization with GridSearchCV tool 
using sciket-learn [21] (python package) for both DNNs. 

V. RESULTS 

After training, we test first DNN model, designed for defect 
detection, on LDV scan points of regions 4 and 5 of CFRPFBH,5 

and  also CFRPBVID. For comparing the proposed model with 
other classification methodologies including AdaBoost, SVM, 
SNN (with 1 hidden layer), and DNN (with 3 hidden layers), 4 
types of evaluation metrics, including, accuracy, recall, 
precision, and f1_score are used. These evaluation metrics are 
given as below: 

�������� =
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����������������
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The mentioned classification methodologies which are used for 
the evaluation of our first DNN model are designed as follows: 
AdaBoost algorithm with SAMME.R [9] version is used, and 
SVM [7] with Radial Basis Function (RBF) is utilized. Hy-
perparameters of AdaBoost including n_estimators and learn-
ing_rate, and also hyperparameters of SVM including C and 
Gamma are fine-tuned with grid search algorithm. In addition, 
in order to show that our deep proposed model has better per-
formance than shallower networks, we compare the proposed 
model with a 1-hidden layer SNN consisting 64 neurons and a 
3-hidden layer DNN including 64 neurons in the first and sec-
ond hidden layer and 32 neurons in the last hidden layer. Also 
for comparing our models with FBD according to the above 
mentioned evaluation metrics, we need to apply a threshold to 
the results of FBD. This threshold is chosen in such a way as to 
achieve best results for FBD method. The estimated shapes of 
defects obtained by the mentioned methods are shown in 
Fig.5. Tables III and IV show the quantitative results of the 
proposed DNNs, FBD technique, and some well-known clas-

      
a-1 b-1 c-1 d-1 e-1 f-1 

      
a-2 b-2 c-2 d-2 e-2 f-2 

Fig. 5. Top row and bottom row show the results for CFRPFBH,5 and CFRPBVID datasets, respectively. From left to right: the corresponding output results of 
(a) FBD, (b) SVM, (c) AdaBoost, (d) SNN, (e) DNN with 3 hidden layers, (f) DNN with 5 hidden layers. The actual locations of defective areas in our test 
sets are shown by red dashed lines.  

 
 



sification methodologies for CFRPFBH,5 and CFRPBVID datasets, 
respectively.  

 As can be observed in Figs. 5(f-1) and 5(f-2), defects 4 and 
5 are estimated sufficiently with the proposed DNN model, 
while the FBD method is not able to detect these defects ac-
ceptably, especially defect 5 which is deepest. Besides, DNN 
model shows significant performance on CFRPBVID as well as 
CFRPFBH,5 , while they are two different types of defects . The 
two most important factors in Tables III and IV, which is 
important to show the strength of the model in defect detection, 
are f1_score and recall. The results as highlighted in the tables 
for f1_score and recall show DNN5 (with five hidden layers)  
is superior in detecting defects in comparison with other 
methods.  

Finally, as shown in Table V, using the DNN model de-
signed and developed for depth estimation, depth of all FBH 
defects is estimated acceptably. It is worthwhile to mention 
that the FBD method could not detect defects’ depth at all. 
FBD could just classify the first 3 defects while our second 
DNN could also classify 5 FBHs based on their depth properly 
as can be observed in Fig. 6. Also, we compare the perfor-
mance of our regression model quantitatively with a 1-hidden 
layer SNN (with 128 neurons) and a 2-hidden layer SNN (in-
cluding 128 neurons in the first and 128 neurons in the second 
hidden layer) based on Mean Square Error (MSE) criterion. 
This factor is computed as follows: 

��� = �1
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��×�
���  ,                   (9)                   

where M×N is the number of scan points. Pi and Oi are actual 
and estimated depth of scan points, respectively. Based on the 
results listed in Table VI, it can be concluded that DNN with 3 
hidden layers has better performance than SNNs in estimating 
depth of defects due to having less MSE. 

VI. CONCLUSION 

In this study, DNN method was used to localize the existed 
defects and then estimate the depth of defects in CFRP 
composites. Two CFRP coupons containing different types of 
damage were used as our datasets. Firstly, a DNN was 
designed for defects image segmentation of CFRPFBH,5 and 
CFRPBVID. The subjective and objective results indicated that 
the proposed DNN model outperforms the other classification 
methodologies specifically in detecting deep defects. Secondly, 
another DNN model was proposed for FBH defects depth 
estimation. Results showed that the obtained DNN model is 
able to approximate depth of FBH defects promisingly. Thus, 
DNN can be employed as a proper  method for detecting 
different kinds of damage especially deep defects and 
complicated damages in CFRP composites.  

Further study aims to detect the mentioned damages with 
the combination of FBD and DNN which could be considered 
as an unsupervised method. Also, due to the challenging size of 
LDV data, using the convolutional neural network to detect 
and classify FBH defects can be promising.  
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