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SUMMARY



Summary

Temperate forests are considered as one of the most important ecosystems in the world, since they
constitute an important source of biodiversity and provide a wide range of ecosystem services that
are important to human well-being. Yet, their composition and functioning is being altered by
several human-induced global environmental changes, most importantly climate change,
atmospheric deposition of acidifying and fertilizing compounds, and land-use changes. Research
on the impact of global environmental changes on forests has expanded over the last decades, but
the majority of studies focused on the effect of single drivers over short time periods. Moreover,
studies that do consider multiple drivers often do not account for land-use legacies, despite its
demonstrated importance for explaining the contemporary structure and function of forests. This
limits our ability to make accurate and robust predictions about the effects of global change on the

future composition and functioning of forests.

Here, we aimed to disentangle the impact and importance of different environmental changes that
are simultaneously affecting forests: (i) climate change (temperature and precipitation), (ii) nitrogen
deposition and (iii) land-use changes (comprising forest management and land cover changes). We
zoom in on a very important but often overlooked part of the forest: the herb layer (also called
‘the understorey’), which contains the majority of plant biodiversity in temperate forests and plays
a crucial role in forest functioning. In this PhD, we addressed the following main research
question: are impacts of multiple global-change drivers on forest understorey community
changes over time dependent on the land-use history? Specifically, we asked whether there
were different responses to environmental change in ancient and recent forests. Ancient forests
are forest sites without any known agricultural use, since at least 1810, while recent forests are
forest sites on abandoned agricultural land. Furthermore, we addressed methodological questions
related to the quantification of two of the major drivers of herb layer dynamics, i.e. canopy

characteristics (reflecting light availability at the forest floor) and land-use history.

We performed vegetation resurveys in 192 plots spread across nineteen regions within the
European temperate deciduous forest biome. This spatio-temporal study design allowed us to
determine long-term temporal shifts in community composition across multiple regions spanning
gradients in environmental change factors. Within each region, we aimed at maximizing differences
in land-use history between plots by sampling in ancient vs. recent forest. We assessed both
biodiversity-related and functional aspects of the herb layer composition, including species
richness, Shannon diversity, species evenness, beta diversity, mean indicator values for the light-
and nutrient requirements of the community, herb layer productivity, and the community weighted

mean values of plant height and specific leaf area.
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Summary

Our findings clearly demonstrated that responses in herb layer composition to changes in climate,
nitrogen deposition and light availability depend on the land-use history of the forests. In general,
light availability was the most important driver for compositional changes in the herb layer,
suggesting that forest management — a rather straightforward tool to control light levels at the
forest floor — could be used for forest adaptation to (future) consequences of global change.
Importantly, time lags should be taken into account, meaning that the present-day herb layer
composition might be more related to past (e.g. a few decades ago), rather than current, light levels
at the forest floor. Moreover, herb layers in recent forests were less responsive to altered light
levels than herb layers in ancient forests. Similarly, the sensitivity of the herb layer to increased
temperatures and nitrogen deposition depended on the land-use history, as increased temperatures
caused decreases in the total cover of the herb layer in recent forests, but not in ancient forests,
while increased nitrogen deposition only caused herb cover decreases in ancient forests. These
findings clearly demonstrated the importance of land-use legacies from former agricultural use.
Importantly, legacies were not only reflected by expected differences in soil nutrient contents, but

also by unexpected differences in canopy composition.

In addition, we addressed one of the main challenges associated with land-use history related
research: the quantification of past land-use changes. We proposed a generally applicable
modelling framework, which could assist future forest research to go beyond simplistic land-use
history classification (such as ancient vs. recent forests) and include all available details on the past
land use when predicting herb layer changes. Our framework is based on the idea that past land
use affects current (and future) ecological properties through altering past resources and conditions

that are the driving variables of ecosystem and community responses.

In sum, this PhD showed the complexity of forest dynamics in response to different local and
regional environmental drivers. We specifically highlighted the importance of considering the land-
use history of forests in order to make robust and accurate predictions for the future development

of forests, their biodiversity and functional role, under global change.
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Samenvatting

Gematigde bossen behoren tot één van de belangrijkste natuurlijke ecosystemen ter wereld. Ze
zijn een belangrijke bron van biodiversiteit en voorzien de mens van een waaier aan cruciale
ecosysteemdiensten. De samenstelling en het functioneren van deze bosecosystemen is momenteel
echter in verandering door menselijk veroorzaakte globale milieuveranderingen (global change), zoals
klimaatverandering, atmosferische depositie van verzurende en bemestende stoffen, en
veranderingen in landgebruik. Onderzoek naar de impact van globale milieuveranderingen op
bossen is de afgelopen decennia enorm toegenomen, maar de meerderheid van deze studies
focuste op de effecten van alleenstaande global-change drivers (“oorzaken”) over korte tijdsintervallen.
Bovendien houden studies die wel rekening houden met het simultaan optreden van meerdere
Global-change drivers vaak geen rekening met de geschiedenis van het landgebruik, ondanks het
bewezen belang ervan voor het verklaren van de huidige structuur en functie van bossen. Dit

beperkt ons vermogen om nauwkeurige en robuuste voorspellingen te doen over de effecten van

globale milieuveranderingen op de toekomstige samenstelling en het functioneren van bossen.

De doelstelling van deze thesis was om de impact en het belang van verschillende
milieuveranderingen die tegelijkertijd bossen beinvloeden, te ontrafelen: (i) klimaatverandering
(temperatuur en neerslag), (if) stikstofdepositie en (iif) veranderingen in landgebruik (bosbeheer en
verandering van landbedekking). We zoomen in op een zeer belangrijk, maar vaak over het hoofd
gezien deel van het bos: de kruidlaag, die de meeste plantenbiodiversiteit in gematigde bossen
bevat en een cruciale rol speelt in het functioneren van bossen. In dit doctoraat hebben we de
volgende hoofdonderzoeksvraag behandeld: zijn de effecten van meerdere global-change
drivers op temporele veranderingen in de samenstelling van de kruidlaag afhankelijk van
de geschiedenis van het landgebruik? We vroegen specifick of de kruidlaag verschillend
reageert op milieuveranderingen in oude en recente bossen. Oude bossen zijn bosgebieden zonder
enig bekend landbouwgebruik, sinds minstens 1810, terwijl recente bossen bosgebieden zijn op
verlaten landbouwgrond. Verder hebben we methodologische vragen behandeld met betrekking
tot de kwantificering van twee van de belangrijkste factoren voor de dynamiek van de kruidlaag,
zijnde de karakteristieken van de boom- en struiklaag (representatief voor de lichtbeschikbaarheid

op de bosbodem) en de geschiedenis van het landgebruik.

We deden vegetatie heropnames in 192 proefvlakken verspreid over negentien regio's binnen het
bioom van Europees gematigd bladverliezend bos. Deze combinatie van het ruimtelijk en
temporeel aspect stelde ons in staat om veranderingen over de tijd in de kruidlaaggemeenschap op
lange termijn te bepalen langsheen een ruimtelijke gradiént in omgevingsfactoren. Binnen elke
regio streefden we naar het maximaliseren van verschillen in landgebruik geschiedenis tussen

percelen door bemonstering in oud versus recent bos. We analyseerden zowel
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biodiversiteitsgerelateerde als functionele aspecten van de kruidlaagsamenstelling, waaronder
soortenrijkdom, Shannon diversiteit, species evenness (de mate waarin elke soort een gelijkaardige
abundantie heeft), bétadiversiteit, gemiddelde indicatorwaarden voor de licht- en
nutriéntenbehoefte van de gemeenschap, kruidlaagproductiviteit en de gemiddelde planthoogte en

specifiek bladoppervlak.

Onze bevindingen hebben duidelijk aangetoond dat veranderingen in de kruidlaag samenstelling
veroorzaakt door veranderingen in het klimaat, de stikstofdepositie en de lichtbeschikbaarheid
afhankelijk zijn van de geschiedenis van het landgebruik. Over het algemeen was
lichtbeschikbaarheid de belangrijkste driver voor veranderingen in de samenstelling van de
kruidlaag, wat suggereert dat bosbeheer - waarbij lichtniveaus op de bosbodem kunnen
gemanipuleerd worden - kan worden gebruikt om bossen aan te passen aan de (toekomstige)
gevolgen van global change. Daarbij is het belangrijk om rekening te houden met de typisch trage
dynamiek van de kruidlaag, waardoor deze als het ware ‘achter komt” in de tijd, wat betekent dat
de samenstelling van de huidige kruidlaag mogelijk meer bepaald wordt door lichtniveaus in het
verleden (bijvoorbeeld enkele decennia geleden), dan door de huidige lichtniveaus op de
bosbodem. Bovendien was de kruidlaag in recente bossen minder gevoelig voor veranderende
lichtniveaus dan de kruidlaag in oude bossen. Ook was de gevoeligheid van de kruidlaag voor
verhoogde temperaturen en stikstofdepositie athankelijk van de geschiedenis van het landgebruik,
aangezien verhoogde temperaturen leidden tot een afname in de totale bedekking van de kruidlaag
in recente bossen, maar niet in oude bossen, terwijl een verhoogde stikstofdepositie enkel leidde
tot een afname in de totale bedekking van de kruidlaag in oude bossen. Deze bevindingen toonden
duidelijk aan dat het belangrijk is om de voorgeschiedenis van het landgebruik van bossen in
rekening te brengen. We vonden immers dat deze voorgeschiedenis niet alleen — zoals verwacht —
een effect had op de nutriéntenbeschikbaarheid in de bodem, maar ook een — minder verwacht —

effect op de samenstelling van de boom- en struiklaag.

Daarnaast hebben we een van de belangrijkste uitdagingen aangepakt die gepaard gaan met
onderzoek naar landgebruik geschiedenis: de kwantificering van voormalige veranderingen in
landgebruik. We ontwikkelden een algemeen toepasbaar modelleringskader, dat toekomstig
bosonderzoek kan helpen om verder te gaan dan de simplistische landgebruiksclassificaties (zoals
oude versus recente bossen) en alle beschikbare details over het voormalige landgebruik in
rekening te brengen bij het voorspellen van veranderingen in de vegetatiesamenstelling. Het
voorgestelde modelleringskader is gebaseerd op het idee dat landgebruik in het verleden de huidige
(en tockomstige) eigenschappen van ecosystemen beinvloedt door het veranderen van de resources

en condities in het verleden.
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Kortom, dit doctoraat toonde de complexiteit van bosdynamiek aan als reactie op verschillende
lokale en regionale milieufactoren. We benadrukten specifick het belang van het in rekening
brengen van de geschiedenis van het landgebruik van bossen om robuuste en nauwkeurige
voorspellingen te doen voor de toekomstige ontwikkeling van bossen, hun biodiversiteit en hun

functioneren, onder global change.
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Chapter 1
11. HUMAN-INDUCED GLOBAL CHANGE

Human-induced global change drivers are causing ecosystem changes across the globe. The most
important direct drivers of change in ecosystems are habitat change (land-use change), overexploitation,
invasive alien species, pollution and climate change (Millennium Ecosystem Assessment, 2005). Warming
of the climate system is unequivocal, and since the 1950s, many of the observed changes are
unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow
and ice have diminished, sea level has risen, and the frequency of extreme weather and climate events
(such as heat waves and heavy precipitation events) has increased. The atmospheric concentrations of air
pollutants such as carbon dioxide (CO,), methane (CH,), and nitrous oxide (N2O) have increased to the
highest levels recorded during the past 800,000 years. The heat-trapping effects of these greenhouse gases

have been the main cause of the observed warming since the mid-20" century (IPCC, 2014).

It is extremely likely (at least 95 % probable) that human influence has been the dominant cause of the
observed warming since the 1950s (IPCC, 2014). In fact, evidence that human activities are causing
climate change has reached a ‘gold standard’ level of certainty, meaning that scientists are 99.999 % sure
(Santer et al., 2019). Fossil fuel combustion and land-use changes (mainly deforestation) are the main
drivers of increased CO, concentrations. Sectors that emit large amounts of CH, include animal
husbandry, waste/landfills and agticulture. Agriculture (soil and animal manure management) is also the
main anthropogenic source of N.O (IPCC, 2014). Despite the overwhelming evidence of the potentially
irreversible human impact on our environment (e.g. ‘World scientist’s warning to humanity: a second
notice’ - Ripple et al. (2017)), economic systems as well as political decisions are lagging behind in their
efforts to avoid major global environmental change (Hulme, 2016; International Energy Agency, 2017,

Lockwood, 2013; Rogelj et al., 2016).
1.2. FORESTS AND GLOBAL CHANGE

Forests cover roughly 40 million km? which is 30.6 % of the global land area (FAO, 2016), and are
considered as one of the most important ecosystems in the world, since they constitute an important
source of biodiversity and provide a wide range of ecosystem services that are important to human well-
being (Brockerhoff et al., 2017). Importantly, forests have the ability to mitigate global change. They can
reduce greenhouse gas concentrations as they absorb roughly 2 billion tonnes of CO; equivalent each
year (FAO, 2018). Moreover, forests sustain the hydrological cycle through evapotranspiration, which
cools climate through feedbacks with clouds and precipitation (Bonan, 2008). Forests can further
contribute to global change protection through offering environmental (e.g. erosion protection,

biodiversity conservation) and socio-economic (e.g. sustainable wood production, recreation) benefits

(Canadell & Raupach, 2008; Nabuurs et al., 2007).
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While having great potential to mitigate climate change, forests are also threatened by anthropogenic
activities and the associated environmental changes. Below, we discuss how the three most important
anthropogenic threats to temperate forests, i.e. climate change (2.1), increased atmospheric deposition of
nitrogen (2.2), and land-use change (2.3) (Bonan, 2008), and possible interactions between past land use
and environmental changes (2.4) can affect forests and their functioning. In this PhD, we zoom in on a
very important but often overlooked part of the forest: the herb layer (also called ‘the understorey’).
Although trees are the dominant feature of forests, the herbaceous layer typically contains a much higher
number of species. For example, in temperate forests in Europe, the ratio between the species richness
of the herb layer and that of the overstorey tree layer varies between 2.0 and 10.0 (median, 5.1) (Hermy,
2015). Similatly, the herbaceous layer contains the majority of plant biodiversity in North American
temperate forests (Gilliam, 2007). Furthermore, the herb layer plays a crucial role in several aspects of
forest functioning, such as litter production, nutrient cycling, evapotranspiration, tree regeneration,

pollination and pathogen dynamics (Landuyt et al., 2019).
1.2.1. Climate change

Human activities are estimated to have caused approximately 1.0°C (£ 0.2°C) of global warming above
pre-industrial levels (1850-1900) (IPCC, 2018). Under the best-case scenario', future temperature
increases for Central and Western Europe are projected between 1-1.5°C for 2081-2100 relative to 1986-
2005; for the worst-case scenario’, this would be 4-5°C (IPCC, 2014). Besides global warming, climatic
changes are also reflected in altered precipitation levels, but here, future projections for Central and
Western Europe are more uncertain and depend on the assumed scenario (e.g. +0-10% for the best-case
scenario, -10 to +30% for the worst-case scenario, for 2081-2100 relative to 1986-2005) (IPCC, 2014).
In general, precipitation is likely to increase in winter but decrease in summer in Central Europe
(Christensen et al., 2007). Finally, an increase in the frequency of extreme weather events, such as heat

waves, droughts, cyclones and heavy precipitation events can be expected IPCC, 2014).

Climate change is driving latitudinal and altitudinal shifts in species distribution worldwide, leading to
novel species assemblages (Bertrand et al,, 2011; Parmesan & Yohe, 2003). Such shifts have been
demonstrated to occur in the forest understorey, among other ecosystems. For example, with increased
temperatures, cold-tolerant plants are replaced by warmth-preferring species, a process described as
thermophilization (De Frenne, Rodriguez-Sanchez, et al., 2013). Similarly, more frequent heat waves and

droughts may favour drought-tolerant species (Helm et al., 2017). Climate change can also affect the herb

1'The best-case scenario (RCP2.0) is a stringent mitigation scenario that aims to keep global warming likely below
2°C above pre-industrial temperatures, and is characterized by substantial net negative emissions by 2100, with
CO»-equivalent concentrations of 425 ppm (IPCC, 2014).

2 The worst-case scenario (RCP8.5) is a scenario without additional efforts to constrain emissions, resulting in
CO»-equivalent levels of more than 1200 ppm by 2100 (IPCC, 2014).



Chapter 1

layer composition indirectly, through altering canopy characteristics. For example, tree mortality because
of disturbances such as extreme summer droughts (Archaux & Wolters, 2006; Peterken & Mountford,
1996) and storms (Seidl et al., 2017) result in canopy gaps and increased light availability at the forest
floor. Such disturbances pave the way for immigration of new herb layer species that are better adapted
to higher light levels (Helm et al., 2017). Moreover, alterations in the canopy structure and composition
can reduce microclimatic buffering effects, as was shown by De Frenne et al. (2015), who found that
increased light availability accelerated the thermophilization of understorey communities in forests. All
this reshuffling in herb layer communities due to these direct and indirect effects of climate change will
strongly influence herb layer biodiversity and functioning. In general, forest plant species are likely to be
vulnerable to changing environmental conditions, as they are adapted to the stable environmental
conditions of forests (Hermy, Honnay, Firbank, Grashof-Bokdam, & Lawesson, 1999; Verheyen,
Honnay, Motzkin, Hermy, & Foster, 2003). They usually have low migration rates, which may prevent
them following the current rate of climate change, making them vulnerable to (local) extinction (Van Der

Veken et al., 2004).
1.2.2. Atmospheric nitrogen deposition

Since the agricultural and industrial revolutions, atmospheric concentrations of reactive nitrogen (N,)
have increased tremendously. N; includes all biologically active, chemically reactive and radiatively active
N compounds in the atmosphere and biosphere of the Earth, thus comprising inorganic reduced forms
(e.g. NHs, NH,"), inorganic oxidized forms (e.g. NOy, HNO;, N,O, NO3), and organic compounds (e.g.
urea, amines, proteins) (Bobbink et al., 2010). Major anthropogenic sources of N, are combustion of
fossil fuels and biomass and emissions from fertilizer and manure (Dentener et al., 2000). Several studies
indicate substantial further increases of N, emissions toward 2050 and 2100, with increasing food and
energy requirements of a growing human population (Dentener et al., 2006; Galloway et al., 2004;

Lamarque et al., 2005).

The majority of the N, emitted to the atmosphere is deposited to the Earth’s surface following transport
through the atmosphere, causing multiple impacts on the biodiversity of the receiving ecosystems
(Bobbink et al., 2010). Accumulation of N compounds, resulting in higher N availabilities and changes
of plant species interactions ultimately leads to changes in species composition, plant diversity, and N
cycling. Furthermore, inputs of nitrogen compounds can lead to soil acidification, increased leaching of
base cations, increased concentrations of potentially toxic metals (e.g. Al’"), a decrease in nitrification,
and an accumulation of litter (Bobbink et al., 2010; de Vries, Reinds, & Vel, 2003; Ulrich, 1991). Levels
of N deposition received by the understorey may be higher compared with other vegetation types due to
the high filtering effect of the canopy, with its high aerodynamic roughness and large intercepting surface

(Fowler et al., 1999). In general, we would expect increased N deposition to cause drastic shifts in species
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composition and reduce herb layer biodiversity, as N-efficient species will disappear in favour of a few
dominant nitrophilic species (Gilliam, 2006). While several studies, both experimental and observational,
confirm these expectations (see Bobbink et al. (2010) for a review), other studies did not find clear
evidence of diversity losses and community restructuring driven by N deposition (e.g. a meta-analysis by
De Schrijver et al. (2011)). Understanding the impact of increased N deposition on the forest herb layer
is complicated by interactions with other system properties, such as light availability and background soil
nutrient availability (Perring, Diekmann, et al., 2018). In forest ecosystems that are nitrogen-limited, small
increases in nitrogen availability may cause large changes in community composition (Hedwall & Brunet,
2016). Moreover, P-limitations may hamper plant growth responses to increased nitrogen availability
(Hedwall & Brunet, 2016). Verheyen et al. (2012) observed an apparent resistance of forest understorey
communities to species losses with chronic N additions, due to simultaneous chronic decreases of light
availability, but warn that opening up the forest canopies may change this resistance as light becomes a
less limiting resource. In general, several studies have highlighted that other limiting factors, such as soil

phosphorus and light availability, can mediate vegetation responses to N deposition.
1.2.3. Land-use changes

Land-use changes involve land cover and management intensity changes (Foley et al., 2005). On a global
scale, a net deforestation took place between 1990 and 2015 (-1.29 million km? FAO, 2015). The largest
forest area losses occurred in the tropics, while forest area increased in the temperate zone (FAO, 2016).
Temperate forests, particularly in Europe, have a very long history of human use (Bengtsson et al., 2000,
Gossner et al,, 2014; Rackham, 2003). An increasing proportion of today’s European forests has
developed on land that has been cleared for other, mainly agricultural, land uses in the past (Flinn &
Vellend, 2005). In addition, during recent decades, management intensity has generally decreased in
European temperate forests due to (i) a more protected status (e.g. under the EU Habitat Directive) for
many semi-natural deciduous forests because of their conservation values, and (ii) large-scale
abandonment of coppice or coppice-with-standards management in favour of high forest management
(Kirby & Watkins, 1998; McGrath et al., 2015). A common feature of many forest plants is their long life
span (Ehtlén & Lehtild, 2002), and therefore, impacts of past land-use changes may be delayed and are
still to come (Hermy, 2015).

1.2.3.1. Impact of management changes on the herb layer

Forest management affects herb layer composition mainly though altering light availability at the forest
floor, which is a key resource for the growth and survival of forest understorey plant species (Plue et al.,
2013). Compared to other environmental drivers of the forest understorey, such as climate change and

atmospheric depositions, light availability acts on a very local scale, and can vary strongly within a single



Chapter 1

stand (Perot et al., 2017). Coppicing (i.e. a management system in which (some) trees and shrubs are
regularly cut (2-30 years) (den Ouden et al., 2010)) leads to cyclic light variations at the forest floor (Ash
& Barkham, 1976). The abandonment of this management practice reduces long-term average light
availability, favouring shade-tolerant herbaceous species (Baeten, Bauwens, et al., 2009). Several studies
have demonstrated that the abandonment of coppicing reduces species richness, as light demanding
species characteristic for cyclic coppicing regimes disappear (Baeten, Bauwens, et al., 2009; Kopecky,
Hédl, & Szabo, 2013; Millerova, Hédl, & Szabo, 2015; Van Calster et al., 2007). Next to light availability,
forest management activities can affect the forest understorey composition by altering the soil conditions
through compaction of the soil or changing nutrient cycles (Ampoorter et al., 2011; Brunet et al., 2010;

Godefroid et al., 2005; Godefroid & Koedam, 2004; Wagner et al., 2011).
1.2.3.2. Impact of past agricultural use on the herb layer

A history of agricultural use can have long-term consequences on plant species assemblages up to 2000
years after afforestation (Dupouey et al., 2002). Former agricultural use potentially affects vegetation both
directly, by locally eliminating plants and propagules of forest species, and indirectly, by altering
environmental conditions (Flinn & Vellend, 2005). Soils of post-agricultural forests (in this PhD referred
to as ‘recent forests’) generally have higher pH and nutrient concentrations and lower organic matter
content than soils of ancient forests (i.e. forest sites without a history of agricultural use since at least
1810; Hermy et al,, 1999) (Flinn & Vellend, 2005; Koerner, Dupouey, Dambrine, & Benoit, 1997;
Verheyen, Bossuyt, Hermy, & Tack, 1999). These altered soil conditions might hamper community
recovery through recruitment limitations of ancient forest species (Hermy & Verheyen, 2007). In
addition, dispersal limitations might be present, as ancient forest species are typically slow colonizers
(Verheyen et al., 2003). Ancient forest plots are not necessarily richer in herb species than recent forests,
but Peterken (1974) showed that ancient forest species are quality indicators and their diversity is a means
to estimate the nature conservation value of forests (Hermy & Verheyen, 2007), because many of these

ancient forest species’ existence depends on the continuity of ancient forests on particular sites.
1.2.3.3. The challenge of quantifying past land use

Simple classifications, such as the ancient vs. recent forest distinction, can be used to characterize clear
changes in land cover. However, if we want to account for more subtle land-use changes, such as shifts
in management regime or intensity, more complex classification schemes or indices are needed. Again,
qualitative, categorical definitions can be used, such as unmanaged vs. managed, or coppice (with
standards) vs. high forest (e.g. da Silva et al., 2008; Miiller et al., 2007; Paillet et al., 2010). Different
quantitative approaches for assessing land-use and specifically forest management intensity have also

been suggested, based on different aspects, such as the output of the system (e.g. yield or harvests), the
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invested input (e.g. human efforts, materials), and the deviation of the system from a natural reference
state (primary forests) (see Schall and Ammer (2013) for a review). For example, Kahl and Bauhus (2014)
propose a Forest Management Intensity index (ForMI) based on inventory data of the living stand,
stumps and dead wood. While their index was found to be applicable to a wide range of forest
management types, it has the disadvantage that it can only assess management intensity for the last 30 to
40 years, depending on decay rates of stumps and dead wood. In general, most indices or classification
schemes only consider contemporary land-use intensity, and do not capture past land-use changes
(Luyssaert, Hessenmoller, Von Lipke, Kaiser, & Schulze, 2011; Schall & Ammer, 2013). Hence, despite
the growing awareness that past land use should be taken into account when predicting current and future
herb layer composition (Perring et al., 2016), a quantitative measure of (changes in) pastland-use intensity

is currently lacking.

1.2.4. Interactions between land-use legacies and other

environmental changes

Several recent studies have highlighted the importance of land-use legacies (i.e. the system properties
resulting from past land use) in determining future ecosystem properties (Foster et al., 2003; Perring et
al., 2016). Past land use has steered plant communities onto trajectories of change, through altering the
resource availability and growing conditions that determine the community composition (Landuyt et al.,
2019; Perring et al., 2016). These trajectories may be modulated by contemporary environmental changes
such as climate change, nitrogen deposition and management changes (Perring et al., 2016). Therefore,
this PhD focusses on potential interactions between the former agricultural land use of the forest and

the ongoing environmental changes on the herb layer community dynamics.

Although specific studies that consider land-use legacies when projecting the effects of multiple
environmental changes on future forest herb layer properties are rare, the literature provides insights in
the interactive effects of resource alterations as key agents of ecological change. In general, the availability
of water, nutrients and light will mainly determine the structure and functioning of plant communities
(Craine et al., 2012). Understanding the combined role of these resources, and how land-use history and
environmental changes simultaneously alter their availability, can help to predict how plant communities
will evolve under global change. For instance, increased nitrogen (N) availability may promote plant
growth in systems that have sufficient phosphorus (P) (such as many recent forests), while it may not
enhance plant growth in P-limited systems (such as many ancient forests) (Hedwall et al., 2017, although
note Treseder et al., 2001). Additionally, the availability of water for plants might be altered with climate
change and changing light levels affecting evapotranspiration (Rind et al., 1990), but the drought-
sensitivity of the system might depend on the land-use history: ancient forests typically have better

developed organic soil layers than recent forests, improving their water storage capacity, and thus their



Chapter 1

ability to mitigate the effects of a severe drought (Greiffenhagen et al., 2006; Von Oheimb et al., 2014).
Another mechanism where interactions can occur is soil acidification: as ancient forests typically have a
lower pH than recent forests, it can be expected that these soils enter the toxic aluminium buffer range
(pHmo < 4.2 sensu Ulrich, 1991) sooner than recent forests in response to acidification. Furthermore,
differences in nutrient availability between ancient and recent forest can lead to different responses to
changing light levels, as the shade-tolerance spectrum of plants is wider on nutrient-rich sites than on
nutrient-poor sites (Coomes, Kunstler, Canham, & Wright, 2009; Ellenberg, 1939; Heinken, 1995). This
is consistent with the hypothesis that species cannot be simultaneously tolerant to multiple environmental

stress factors (Niinemets & Valladares, 2006b).

1.3. RESURVEY STUDIES TO ASSESS TEMPORAL CHANGES IN
THE HERB LAYER

To predict future plant responses to global-change drivers, many studies apply a so-called space-for-time
substitution, using contemporary data on plant communities across spatial gradients in environmental
drivers (Blois et al., 2013; De Frenne, Graae, et al., 2013). However, “time-for-time substitutions” (sensu
De Palma et al.,, 2018), i.e. forecasting ecological changes based on past temporal changes may provide
more realistic insights of ecosystem dynamics under global change (De Lombaerde et al., 2018).
Therefore, the scientific value of long-term historical vegetation records is being increasingly recognized
(Dornelas et al.,, 2013). Relocating and resurveying previously surveyed vegetation plots can provide
valuable insights in temporal vegetation changes, particularly in systems that exhibit slower dynamics,

such as plant communities in temperate forests (Kapfer et al., 2017; Verheyen et al., 2017).

The foundation of this PhD is a large dataset of vegetation resurveys, allowing us to assess actual zemporal
changes in both compositional and functional properties of the forest herb layer, such as different

biodiversity metrics and community weighted mean indicator values and functional traits.
14. STUDY DESIGN

We selected 19 regions along spatial environmental gradients of atmospheric nitrogen deposition and
climatic conditions (temperature, precipitation) within the European temperate deciduous forest biome
(Table 1.1, Fig. 1.1). We then selected on average 10 forest plots per region, with a few exceptions (see
Table 1.1 and Box 1.1), resulting in a dataset of 192 study plots. The orthogonality of the study design
(Fig. 1.1) allowed us to try and disentangle the separate effects of multiple environmental drivers on the
response variables under study, using multilevel analyses with ‘region’ as a grouping variable. In multilevel
modelling, a trade-off between sample sizes at different levels is often necessary, but in general, a large

number of groups (here ‘regions’) is more important than a large number of individuals (here ‘plots’) per
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group for accuracy and high power (Gelman & Hill, 2007; Hox et al., 2018). Therefore, our choice of

selecting 19 regions, and 10 plots within each region, seems defendable.

The main plot selection criteria were the existence of prior understorey vegetation surveys (preferably at
least 20 years ago, but we included one region with 17-19 year old vegetation data) and information on
land-use history. Within the constraints of plot selection, we tried to minimize differences in parent
material and topography among plots and regions. We aimed at maximizing differences in land-use
history between plots within regions by sampling in ancient vs. recent forest, although this was not
possible for all regions (Table 1.1). We define ancient forests as continuously forested since at least 1810,
whereas recent forests have been afforested after 1810 (Hermy et al., 1999). Within the 57 recent forest
plots, 31 plots were on former arable land, while 26 plots were on former grassland, but they were

grouped to obtain a more balanced study design, given there were 135 plots located in ancient forests.

In May/June 2015/2016, we revisited all 192 plots. Local researchers (which were in some cases the
original surveyor of the vegetation plot) assisted us on the field, mainly with plot relocation and
determination of local plant species. Plots were either rectangular or circular, and varied in size between
50 and 2500 m? (Table 1.1). With a minimum of two people, to minimize observer errors (cf. Verheyen
et al., 2018), we performed a vegetation survey, i.e. for each structural layer (tree, shrub and herb) we
visually estimated the cover (%) of each species. To assure comparability between our survey and the
original survey, we followed the original definitions of the vegetation layers, which differed among
regions. Next to the vegetation resurvey, where temporal comparability was the main objective, we
collected additional samples and data in a standardized way across all plots, to assure spatial comparability
of (i) general plot characteristics, (ii) soil structure and chemical properties, (iii) litter quality and quantity,
(iv) stand structure and composition, and (v) individual tree growth using tree increment cores. We
followed a detailed field protocol, provided in Appendix Al.1. To characterize the land-use history across
all plots in a standardized way, we asked the regional contact persons to investigate the plot history
through maps and literature (e.g. management plans), oral interviews, and expert knowledge, and to report

their findings in a questionnaire.
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Figure 1.1. Study design. Geographical distribution of the 19 forest regions where we collected data (A) and the
environmental gradients covered by these regions (B). Mean annual temperature (°C), averaged over the 10 years
prior to our sampling (in 2015/2016) and nitrogen (N) deposition in the year 2000 (kg ha'’ yr') are plotted, with the
symbol size reflecting the mean annual precipitation (mm) averaged over the 10 years prior to our sampling.
Pearson correlation coefficients between N deposition and temperature, precipitation and temperature, and
precipitation and N deposition are respectively 0.42 (p = 0.075), 0.01 (p = 0.968) and -0.24 (p = 0.320),
demonstrating the orthogonality of the design. The labels refer to Table 1.1.
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Table 1.1. Overview of the 19 forest regions where we collected data. The first column shows the abbreviation of
each region, which will be used consistently throughout this PhD. At indicates the number of years between the
original vegetation survey, and our resurvey (in 2015/2016). LUH (land-use history) shows the number of plots on
ancient forest (AF) and recent forest (RF) in each region.

ID Region, Country At (yr) LUH Plot size (m?)
BI Bialowieza, PL 31-50 15 AF 50-400

BS Braunschweig, GE 24-25 5AF,5RF 625

BV Binnen-Vlaanderen, BE 35 4 AF,5RF 150

CcO Compiegne, FR 47 10 AF 200-2000
DE Devin, CZ 52-62 3 AF,7RF 100-600
GO Gottingen, GE 48-60 10 AF 100-400
KO Koda, CZ 58 10 AF 400

LF Lyons-la-forét, FR 43 10 AF 300-1000
MO Moricsala, LV 88 5 AF, 3 RF 1250-2500
PR Prignitz, GE 17-19 5AF,5RF 120-300
SH Schleswig-Holstein, GE 29-31 5AF,5RF 64-400
SK Slovak Karst, SK 32-40 10 AF 500

SKA Skine, SW 31 8 AF, 2 RF 500

SP Speulderbos, NL 57-59 5AF,5RF 100

B Tournibus, BE 48 5 AF, 5 RF 100

W Wales, UK 45 5 AF, 5 RF 200

WR Warburg Reserve, UK 41 5 AF, 5 RF 100

WW Wytham Woods, UK 41 5 AF, 5 RF 100

ZN Zvolen, SK 51-52 10 AF 500

All plots comprised closed-canopy deciduous forests (mean canopy closure of 82 %, Fig. 1.2) with a
variable tree and shrub layer composition, but we focused on plots predominantly composed of
broadleaved species, although a higher occurrence of coniferous species in the easternmost regions with
a hemiboreal climate (Moricsala (MO) and Bialowieza (BI)) was unavoidable. The canopies at the time
of our sutvey consisted mainly of Quercus robur/petraca (110/192 plots), Fagus sylvatica (78/192 plots),
Fraxcinus exccelsior (69/192 plots), Carpinus betulus (64/192 plots) in the tree layer and Corylus avellana (71/192
plots) in the shrub layer (see Appendix Al.2 for an overview of the shrub and tree layer composition of
all plots). Overall, the plots covered rather mesic site conditions, i.e. habitats with a moderate supply of
moisture when compared with the full range encountered in temperate European forests (mean Ellenberg

Indicator Value (EIV) of soil moisture of 5.4) (Leuschner & Ellenberg, 2017).
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Figure 1.2. (adapted from Maes, 2019) Distribution of the main environmental change drivers excluding land-use
history (mean annual temperature and precipitation, and nitrogen deposition), and several important local
resources and conditions in the study plots (canopy closure, mean Ellenberg Indicator Value (EIV) of soil moisture,
PH(KCI), and C/N-ratio). The axis limits of each variable are the full ranges encountered in temperate European
forests, according to the following studies: Bobbink, Ashmore, Braun, Fltickiger, & Den (2017); Dreiss & Volin (2014);
FAO (2000); Leuschner & Ellenberg (2017); Weil & Brady (2017).

Box 1.1. Skane — a unique dataset within the PASTFORWARD project

For Skine (Southern Sweden), one of the 19 regions from our main dataset, we collected data following
our standard protocol (Appendix Al.1) from 35 plots instead of only 10. For an additional 27 plots,
vegetation resurvey data, chemical soil properties and land-use history and management information were
available from another study. This resulted in a unique dataset containing three vegetation surveys (in
1983, 1993/94 and 2014), extensive soil data (1983 and 2014) and notes on forest management and past
land use for 62 permanent plots in oak forest in Southern Sweden. In the early medieval period, a so-
called infield-outland agricultural system emerged in the region, resulting in a distinction between plots
on former outland, managed for grazing, and plots on former infields, intensively manured for crop
production and hay (Emanuelsson, 2009; Emanuelsson et al., 2002). Hence, in this region, past land-use
changes are defined as the distinction between former infields (nutrient-enriched) and former outland
(nutrient-depleted), rather than the classical ancient/recent forest distinction. Chapter 2 of this PhD is
entirely based on the Skane dataset, as regional environmental change drivers are not yet assessed in this
chapter. In the following chapters, a selection of 10 plots from the Skdne dataset is included in the larger
dataset of 192 plots across 19 regions, to obtain a balanced design. For this subset, we selected 10 plots
with similar site conditions (soil texture) with a good spatial distribution across the region, for which

detailed historical maps were available to allow reconstruction of the past land use.
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1.5. MAIN OBJECTIVES AND OUTLINE

This PhD was built upon the main postulate of the PASTFORWARD project, i.e. changes in herb layer
communities are driven primarily by past land use, but can be modulated by atmospheric deposition,
climate warming and forest management. Hence, the main objective of this PhD was to assess the
interactive effects between former agricultural land use and climate change, nitrogen deposition
and forest management intensity on temporal changes in the herb layer composition. In Chapter
2 and 3, we focus on this objective through assessing both biodiversity-related and functional aspects of
the herb layer composition, which is important to obtain a complete understanding of the impact of
future global change on plant communities, especially as several studies report a disconnect between
biodiversity and functional changes (Li & Waller, 2017; Perring, Bernhardt-Rémermann, et al., 2018).
Biodiversity measures included species richness, Shannon diversity, species evenness, and beta diversity.
Measures of functional change in the herb layer included (i) mean indicator values for the light- and
nutrient requirements of the community — because we expect that the considered environmental drivers
will mainly act on the availability of light and nutrients — (i) herb layer productivity (reflected as the total
cover of the herb layer) — for its overall importance for several functions of the herb layer (Landuyt et
al., 2019) — and (ii1) the community weighted mean values of plant height and specific leaf area - which
are both related to resource acquisition and expected to respond strongly to environmental changes (De
Frenne et al., 2015; Dubuis et al., 2013). Then, the following two chapters (Chapter 4 and 5) are
methodological studies that are not directly focussed on investigating the impact of multiple global-
change drivers on the understorey composition, but address methodological questions related to the
quantification of two of the major drivers of herb layer dynamics, i.e. canopy characteristics (reflecting

light availability at the forest floor) and past land use.

Specifically, in Chapter 2, we focus on only one forest region (Skine, Southern Sweden; see box 1.1),
and assess the interactive effects of past agricultural land use and forest management intensity on the
herb layer composition. In this region, forest plots on former infields (nutrient-enriched) can be
distinguished from former outlands (nutrient-depleted), and plots across both past land-use types also
differed in the level of management intensity they experienced since the original vegetation survey. This
crossing of past land use with a two-level management intensity factor allowed us to investigate both
their main and interactive effects on the composition and diversity of the forest understorey community

over a period of three decades.

In Chapter 3, we expand our dataset to the full range of 19 regions and 192 plots across Europe, allowing
us to also exploit a gradient in climate change and nitrogen deposition. Here, we can assess the interactive

effects of land-use history (ancient vs. recent forest) with both local scale drivers of change (i.e. canopy
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characteristics, controlling light availability at the forest floor) and regional scale drivers of change (i.e.

climate change and nitrogen deposition) on compositional changes in the herb layer.

In Chapter 4, we zoom in on what we found to be one of the main factors controlling the herb layer
composition, i.e. light availability. We investigate how well both structural and compositional attributes
of the canopy can predict the herb layer light signature. This can be of particular interest with regard to
vegetation resurvey studies, as it can provide insights in past light levels when shrub and tree layer data

were also recorded during the original vegetation survey.

In Chapter 5, we address one of the main challenges associated with land-use history related research:
the quantification of past land-use changes. We propose a generally applicable modelling framework,
which could assist future forest research to go beyond simplistic land-use history classification (e.g.
ancient versus recent forests) and include all available details on the past land use when predicting herb
layer changes. Our framework is based on the idea that past land use affects current (and future)
ecological properties through altering past resources and conditions that are the driving variables of
ecosystem and community responses. We illustrate the application of the framework with a case study
on a subset of 29 plots in three regions from our larger dataset. With this case study, we assess the
importance of past forest management practices, affecting past light levels, for the contemporary herb

layer composition.

In Chapter 6, we summarize and integrate the main findings of this PhD, highlighting the key
environmental driver(s) affecting understorey community changes over time and the dependency of these
effects on past land use. Furthermore, we will discuss how our findings can contribute to management
recommendations to mitigate potential negative effects of future global change, and we will provide

suggestions for future research avenues.
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Chapter 2

2.1. ABSTRACT

Past agricultural land use and forest management have shaped and influenced the understorey
composition in FEuropean forests for centuries. We investigated whether understorey vegetation
assemblages are affected by (i) legacies from a historical infield/outland agticultural system (i.e. a system
with nutrient-enriched vs. nutrient-depleted areas), (ii) recent management intensity (i.e. thinning/felling
activities), and (iii) the interaction of recent management and potential legacies. We use three vegetation
surveys (1983, 1993/94 and 2014) and notes on management and land-use history, available for 62
permanent 500 m? plots in oak forests in Skane, south Sweden. We conducted linear mixed effect
modelling to detect both main and interactive effects of past land use and recent management on
understorey diversity measures and vegetation indicator values for light and fertility. We combined
nonmetric multidimensional scaling (NMDS) with permutational multivariate analysis of variance
(PERMANOVA) and indicator species analysis to detect compositional differences caused by past land
use and/or recent management. We found that understorey diversity was mainly affected by management
activities, but the former infield/outland agticultural system was an important determinant of understorey
composition. Understorey composition of former infields reflected higher nutrient availability and lower
light availability compared to former outland. Past land use and recent management had interactive effects
on light-related understorey variables: for the less intensively managed plots, the outland plots contained
more light-demanding species than the infield plots, while for the more intensively managed plots, the
light-demanding signature’ of the understorey was similar for infield and outland plots. We concluded
that different intensities of past land use as well as recent forest management influenced the composition
of the forest understorey, and interactions were present. Therefore, careful consideration of both the
long-term land-use history and the more recent disturbances due to forest management are necessary

when making future predictions of understorey composition and diversity.

2.2. INTRODUCTION

Forests worldwide, as well as most other ecosystems, have been dominated, shaped and influenced by
human activities for centuries and more (Birgi & Gimmi, 2007; Williams, 1993). Hence, the European
forests that we know today were created by a long history of human land-use changes, and only very few
forests exist free of legacies from former human influence (Bengtsson et al., 2000; Gossner et al., 2014).
Human activities affecting forests are very diverse (Foster et al., 2003), comprising episodes of

deforestation and agricultural use (Foster et al., 1998), wood harvesting with different levels of intensity

3 The term ‘light-demanding signature’ is used throughout this PhD-thesis as an overarching term representing
one or more measures (e.g. Ellenberg indicator value for light) to indicate whether a community of plant species
has high or low light requirements.
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(Gossner et al., 2014), manipulation of animal populations (Foster et al., 2003), litter collecting (Biirgi &
Gimmi, 2007), and grazing by domestic animals (Bengtsson et al., 2000). Understanding how both past
and present anthropogenic disturbances influence biodiversity and species assemblages is essential for
conservation. Here, we focus on two aspects of anthropogenic disturbances that are common in
European forests, but which rarely have been studied in combination, namely different intensities of both
past agricultural land use and current forest management practices for wood harvesting. We assess their
effects on the forest understorey layer, which represents the majority of plant species richness in
temperate forests (Gilliam, 2007). This layer is most likely to reflect land-use legacies because it exhibits

slow dynamics and is less easily manipulated (by e.g. plantation) compared to the overstorey.

Most present-day European forests occur on lands that at some point in history were used for agriculture,
and many studies have demonstrated that these forests still bear imprints of their past land use, which
we call land-use legacies (Blondeel et al., 2019; Emanuelsson, 2009; Flinn & Marks, 2007; Hermy &
Verheyen, 2007; Perring et al., 2016; Vellend, 2003). Land-use legacies are often found in forest
understoreys, due to a limited dispersal and recruitment capacity of typical forest species (De Frenne,
Baeten, et al., 2011; Verheyen et al., 2003). As a result, forest understorey compositions may depend on
environmental conditions that no longer occur in a forest stand (Jonason et al., 2014). Land-use legacies
affect the understorey directly, by past elimination of plants and their diaspores, as well as indirectly, by
altering environmental conditions such as soil pH, soil nutrient concentrations, soil organic matter
content and light availability (Flinn & Marks, 2007; Hermy & Verheyen, 2007). Several studies found that
forest soils on former arable land are still richer in nutrients and hence more productive as a result of
past fertilization practices, compared to so-called ancient forests without a history of agricultural use
(Falkengren-Grerup, Ten Brink, & Brunet, 2006; Koerner et al., 1997; Naaf & Kolk, 2015; Verheyen et
al., 1999). These higher nutrient contents in post-agricultural forests can influence the composition of
the established vegetation after abandonment of cultivation, due to a dominance of competitive species
which hamper the establishment of slow-colonizing herbs (Baeten, Hermy, & Verheyen, 2009; Koerner
et al., 1997).

In addition, most European temperate forests are or have been managed for timber production, fire
wood production and/or grazing, with vatying levels of intensity (e.g. clear-cuts, shelterwood systems,
coppicing, single tree selection) (Gossner et al., 2014; McGrath et al., 2015). Extracting timber changes
the tree age structure, composition of tree species and vertical stratification, causing changes in the soil,
litter and microclimatic conditions. This results in the alteration or disappearance of microhabitats (e.g.
dead wood, cavities, root plates or mature trees) that host forest biodiversity (Chaudhary et al., 2016).
According to a meta-analysis by Chaudhary et al. (2016), forest management generally induces an overall
decrease in local species richness (i.e. alpha diversity), but the effect of forest management differs between

taxonomic groups (such as vascular plants, birds, fungi, beetles), and depends on the management type
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and intensity. For understorey vascular plants in particular, forest management can affect their diversity
and composition through altering the light regime by creating canopy gaps at variable points in time, as
well as the soil conditions, through compaction of the soil or changing nutrient cycles (Brunet et al., 2010;
Godefroid et al., 2005; Godefroid & Koedam, 2004; Vangansbeke et al., 2015; Wagner et al., 2011).
Importantly, one has to consider that the impact of forest management on biodiversity at a larger scale
and within the context of heterogeneous landscapes may be different than plot-scale effects (Chaudhary
etal., 20106). For example, Schall et al. (2018) showed that landscape-scale biodiversity responds positively
to forest management, if silviculture creates a variety of environmental conditions at the regional scale.
In general, we should keep in mind that the impact of forest management on plant biodiversity is a
complex matter, depending on a range of biodiversity measures (e.g. local-scale vs. landscape-scale) and

a range of management strategies (Schulze et al., 2016).

Here, we are interested in how both recent forest management and past land-use intensity differences
may have interactive effects on understorey assemblages and their trajectories over time. Reasons to
believe such interactions are present arise from a study by Huston (2004), pointing out the importance
of the disturbance-productivity interaction as a determinant of species richness. Within this framework,
we consider the intensity of forest management as the disturbance factor, and different intensities of past
agricultural land use as a proxy for the productivity factor. Several other studies argue that diversity may
be a function of the interaction between disturbance and productivity, and therefore the productivity
effects on diversity can only be assessed when they are stratified by disturbance regimes (e.g. Kondoh,
2001; Huston, 2014). For example, Proulx and Mazumder (1998) demonstrated that plant species richness
increases with increasing disturbance (in this case grazing pressure) in a nutrient-rich environment, but
decreases in a nutrient-poor environment. Furthermore, several studies highlight the occurrence of
interactions between legacies of past land use with natural disturbance processes such as forest fires,
hurricanes and droughts (Chazdon, 2003; Comita et al., 2010; Foster et al., 2003; Hogan, Zimmerman,
Thompson, Nytch, & Uriarte, 2016). We believe that forest management actions can have similar effects
on the forest vegetation as natural disturbances, and hence can interact with land-use legacies as well.
Several studies indeed showed possible interactions between past land-use changes and alterations in
present conditions through management practices on species richness and composition (e.g. Janssen et

al., 2018; Kelemen, Krivan, & Standovar, 2014).

In this study, we use a unique dataset containing three vegetation surveys (in 1983, 1993/94 and 2014),
extensive soil data (1983 and 2014) and notes on forest management and past land use for 62 permanent
plots in oak forest in Southern Sweden. Our aim is to assess the combined effects of both past land use
and recent disturbances due to management on understorey composition and diversity. In the early
medieval period, a so-called infield-outland agricultural system emerged in the region, resulting in a

distinction between plots on former outland, managed for grazing, and plots on former infields,
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intensively manured for crop production and hay (Emanuelsson, 2009; Emanuelsson et al., 2002). In
addition, plots across both past land use types also differed in the level of management intensity they
experienced since the first survey in 1983. This crossing of past land use with a two-level management
intensity factor allowed us to investigate both their main and interactive effects on the composition and
diversity of the forest understorey community over a period of three decades. In contrast to previous
studies on interactions between past land use and recent management (e.g. Janssen et al., 2017; Kelemen
et al., 2014; Kolb & Diekmann, 2004), we are defining past land-use change as a distinction between
former infields (nutrient-enriched) and former outland (nutrient-depleted), rather than the classical
ancient/recent forest distinction. Furthermore, we have the opportunity to investigate trajectories of
change in the understorey communities, thanks to the availability of three vegetation surveys over a time

span of three decades.
Specifically, we investigated the following research questions:

@) Are legacies from the former infield/outland agricultural system reflected in the community
composition and diversity of the understorey? Have these land-used legacies changed over
time?

(i) Does recent forest management intensity affect the community composition and diversity of
the understorey?

(i) ~ Have recent disturbances due to forest management interacted with land-use legacies, causing
changes in the dynamics of the understorey composition and diversity between 1983 and

20142

2.3. MATERIAL AND METHODS

2.3.1. Study area: past land use and recent management

The study area comprises the south Swedish province of Skine, an area of ca 11 000 km* and ca 1.3
million inhabitants. The border between the central-European sedimentary bedrock area (here mainly
limestones and clay shales) and the Fennoscandian shield of Precambrian crystalline rocks (granite and
gneiss) crosses the province from southeast to northwest, resulting in a gradient from the more densely
populated southwest with fertile agricultural soils to the northeastern part dominated by forests on less
productive soils (Fig. 2.1, including forest distribution). Most soils have not developed directly upon
bedrock but originate from Quaternary deposits formed during and after the latest (Weichselian)

glaciation which completely covered Skane with its icesheet.
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We sampled 62 permanent forest plots, situated in forests dominated by oak (Qwercus robur and in some
cases Quercus petraea) and hornbeam (Carpinus betulus) in the tree layer. Distances between study plots
varied strongly, ranging from 15 m to 111 km, with a median value of all distances between plots of 41

km.

To characterize the past land use of each plot, we distinguished between former infields and outland
(Emanuelsson, 2009). A permanent infield-outland system emerged in the early medieval period when
villages became sedentary. Infields were located close to settlements or farm-houses, and were intensively
manured. The infields were either used for crop production or managed as semi-open wooded meadows
which produced hay, small-dimension wood products from coppice, as well as some timber trees. The
outland was situated further from villages, and was managed jointly by the village for grazing, timber and
other wood-based products. The manure from grazers was then applied on the infield lands. The infield-
outland system was functional until ca. 1800-1850 (Emanuelsson et al., 2002). Outland area gradually
reduced in extent with the increasing demand for arable land due to continuous population increase since
the 1700s. Based on cadastral maps (mainly spanning the period 1730-1870) at the final phase of this land
use system, (https:/ /historiskakartor.lantmateriet.se/historiskakartor/search.html), we classified 23 plots
as ‘Outland’ (i.e. plots on former outland), and 39 plots as ‘Infields’ (i.e. plots on former infields)
(Appendix A2.1). According to the cadastral maps, none of the infield plots has been used as arable field
since at least ca. 1800. The majority of the stands are semi-natural, and developed from semi-open
conditions to closed stands when livestock grazing (outland) or wooded meadow/coppice management
(infield) ceased. In some sites (both infield and outland), oak was planted after felling of the previous
stand. The evidence of continuous presence of trees on the historical maps varies, but all plots have been
wooded since at least 1900. In this region, 43 plots would be classified as ancient forest, according to our
definition of being continuously forested since at least 1810, and 12 plots as recent forest. For 7 plots in
the region, there was insufficient historical data to determine the land-use history in terms of the

ancient/recent classification.
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Figure 2.1. (a) Geographical location and distribution of the 62 study plots. The number of plots in each land use
category, which is the combination of past land use and recent management intensity, is shown in the legend. (b)
Mean cover (%) of the three most dominant tree species, as well as the total tree layer in each survey year. (c) Mean
cover of the dominant tree species in 1983 for infield and outland plots. (d) Mean cover of the dominant tree species
in 1983 for plots with high and low recent management intensity.

In the area, forests are or have been managed for timber production, comprising felling practices with
different levels of intensity. In this study, we made a rough distinction between 31 plots that were more
intensively managed over the period 1983-2014 (referred to as ‘High’ management), and 31 plots that
were less intensively managed (referred to as ‘Low’ management). We combined the different
management classification approaches applied during the three surveys to reach this final management
category (Appendix A2.2). We gave the most weight to the 1993 classification, because (i) it had a higher
level of detail as the surveyors were explicitly interested in vegetation responses to management, and (ii)
management intensity in the area was at its highest level around 1993, so differences between more and
less intensively managed plots should have been most clear during this survey. Counts of the number of
stumps, available in a subset of 35 plots in 2014, confirmed our management classification, as we found
significantly (p=0.005) more stumps in the more intensively managed plots (17.97 stumps on average),

compared to the less intensively managed plots (6.17 stumps on average) (see Appendix A2.1 and A2.2).
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2.3.2. Soil and overstorey characterization

During the 1983 and 2014 surveys, samples were taken from the upper 5 cm of the mineral soil (i.e. after
removal of the litter layer). For 1983, we have data on clay content and pHxa (see previous studies, such
as Brunet et al., 1996, Diekmann et al., 1999) for details on soil sampling and chemical analyses). For
2014, we have data on soil total carbon (C), nitrogen (N) and phosphorus (P) (see Appendix A2.3 for
details on soil sampling and chemical analyses in 2014). Plots on former infields had a higher clay and
total P content in the soil, compared to former outland. Since texture is an intrinsic property of the soil,
the differences in clay content suggest that when the infield-outland agricultural system was established,
richer and more clayey soils were often chosen deliberately for infield use, given their potential for higher
yields. The higher total P concentrations in former infields are likely a result of their fertilization history,
which can leave imprints for at least a few thousand years after abandonment of agricultural use
(Compton & Boone, 2000; Dupouey et al., 2002; Fraterrigo et al., 2005; Koerner et al., 1997). Overall,
the differences in soil chemistry between infield and outland plots are probably partly related to an initial
preference for richer clay soils for infield use (Flinn et al., 2005), after which the more intensive land use
on infields has probably reinforced the higher fertility and productivity that these soils exhibit. Plots with
a lower recent management intensity had significantly higher soil pH values and total P content, likely
caused by a higher degree of protection of richer oak forests, which are therefore less intensively
managed. There were no significant differences in total C and N content between either the recent

management ot the past land-use categories (see Appendix A2.4 for soil data).

Regarding the overstorey characterization, plots with high and low intensity management had similar tree
cover values in 1983 and 2014, while more intensively managed plots had a significantly lower tree cover
during the intermediate survey in 1993, reflecting the peak in forest management activity in the region at
the time of the intermediate survey. Dominant tree species were Quercus robur (or Quercus petraea in a few
cases), Carpinus betulus and Corylus avellana (Fig. 2.1b). At the time of the first survey (1983), both former
infield plots and less intensively managed plots were characterized by more Carpinus betulus and Corylus
avellana in the tree layer, and less Quercus robur/ petraea, compared to former outland and more intensively
managed plots respectively (Fig. 2.1c/d). The shade-casting ability (SCA) of the tree layer (i.e. a cover
weighted average of the SCA scores per species, listed in Appendix A2.5, adapted from Ellenberg (1996)
and complemented with expert knowledge of prof. Kris Verheyen) was similar between infield and
outland plots within the more intensively managed plots, but clearly higher for infield than outland plots
within the less intensively managed plots (see Appendix A2.6). We keep these soil and overstorey

characteristics in mind when interpreting the results.
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2.3.3. Vegetation surveys

In July-August 1983, 135 permanent plots were established by Professor em. Germund Tyler to study
the relationships between soil, macrofungi and tree and herb layer species (e.g. Tyler, 1989). All these
plots were resurveyed a first time in July-August 1993/1994 (further referred to as 1993) and a second
time in August 2014, although only 62 of the plots were relocated at that time. All plots were 500 m? (20
m x 25 m). Criteria for the original plot selection in 1983 included no current livestock grazing and no
thinning during approximately the five years prior to surveying (Brunet et al., 1996; Diekmann et al.,
1999). Vegetation data were expressed as an estimated cover percentage for each individual species
present. Two vegetation layers were distinguished: the #nderstorey and the #ree layer, respectively comprising
all vascular plants below 5 m and above 5 m height (see Appendix A2.7 for details on the vegetation
data).

2.3.4. Response variables

For each plot at each survey time, we characterized the understorey diversity by calculating the Shannon
diversity (i.e. plot-level diversity), and the Bray-Curtis dissimilarity (Bray & Curtis, 1957) (i.e. diversity
among plots). We quantified the Bray-Curtis dissimilarity of each plot by creating a pairwise dissimilarity
matrix and calculating for each plot the mean of the dissimilarities to all other plots. To further enhance
our understanding of the processes and mechanisms behind possible changes in understorey composition
and diversity due to differences in past land use and recent management intensity levels, we investigated
plot characteristics related to the soil and light conditions. As a proxy of the prevailing plot-specific soil
properties and light conditions, we calculated mean Ellenberg indicator values for soil fertility (IN)
and light (L), based on presence/absence using the individual species’ indicator values (Ellenberg &
Leuschner, 2010). We based our calculations of indicator values on species’ presence/absence rather than
abundances, because this is the recommended approach when vegetation surveys are done by different

observers, as inter-observer differences in cover estimation may distort the analysis (Diekmann, 2003).

2.3.5. Statistical analyses

To test how contemporary management intensities interact with past land use to alter the plot
characteristics over time, we conducted linear mixed effect modelling with four response variables related
to the understorey (and described above): Shannon diversity, Bray-Curtis dissimilarity, Ellenberg N, and

L mean values. We confirmed that each response variable is normally distributed, using histograms.

We found the optimal model for each response variable according to the approach described by Zuur,

Ieno, Walker, Saveliev, and Smith (2009), starting from the beyond optimal model (Equation 2.1).
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Response variable ~ PastlandUse + Management + Year + PastLandUse:Management +
PastlandUse:Year + Management:Year + (1| PLOT ID) Equation 2.1

We added the variable Yearto the model as a fixed effect, because we are interested in how each response
variable has changed over time. We modelled Yearas a factor with three levels (i.e. 7983, 1993 and 2014),
rather than a continuous variable, to detect possible shifts in trends between the first period (1983-1993)
and the second period (1993-2014). Management (High or Low) and Past Land Use (Infield or Outland) were
both factors with two levels. To account for temporal pseudoreplication, given the fact that each plot
was surveyed three times, we added PLLOT ID to the model as a random intercept. We added the
interaction between past land use and management to the model, to investigate whether the effect of
recent management practices on the response variables is dependent on the past land use category. For
both past land use and management, we also added the interaction with Year to the model; to study
whether the response variables exhibit different temporal trends for different past land use or recent
management categories. To detect possible multicollinearity among the explanatory variables, we
calculated variance inflation factors (VIF) according to Zuur et al. (2009). VIF values were very low

(<1.1), indicating low collinearity.

Next, we performed backwards elimination of the explanatory variables using maximum likelihood-fitted
models at a 5% level of significance (Zuur et al., 2009), leading to the optimal model. For each response
variable, we refitted the optimal model with restricted maximum likelihood (REML). For the final
(optimal) model of each response variable, we inspected model diagnostic plots to check validity; all were
satisfactory. For each model, we calculated the marginal and conditional R?, representing the variance
explained by fixed factors and the variance explained by both fixed and random factors, respectively
(MubMIn package; (Nakagawa & Schielzeth, 2013)). Given the high number of parameters in the beyond
optimal model, compared to a sample size of 62 plots, there is a possibility of overfitting. Therefore, we
also performed a model comparison based on information criteria (AIC), which resulted in the same final
(optimal) model for each response variable (Appendix A2.8). Additionally, we repeated the backwards
elimination procedure for separate models for each year, which reduces the number of explanatory
variables and thus the risk of overfitting. This additional analysis led to identical qualitative findings for
all response variables except Ellenberg N, where an effect of recent management was identified in 2014

that was absent in other analysis approaches (Appendix A2.9).

To evaluate differences in understorey community composition in each survey year, between former
infield plots and former outland plots, and between plots with high and low levels of management
intensity, we conducted a permutational multivariate analysis of variance (PERMANOVA; vegan package;
Anderson, 2001) using Bray-Curtis dissimilarities with 999 permutations (based on abundance data; Bray
& Curtis, 1957). A significant PERMANOVA can result from differences among groups in their mean

(centroid) values or the dispersion (i.e. spread) of values around the centroid of each group (Anderson et
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al., 2006; Brudvig et al., 2013). The Bray-Curtis dissimilarity as described above (and used in the linear
mixed effect modelling) on the other hand, only contains information on the dispersion. Hence, a
PERMANOVA analysis can reveal compositional differences among groups resulting from differences
in their mean (centroid) values, which would be overlooked when only focussing on the Bray-Curtis
dissimilarity. We followed the PERMANOVA with a test for homogeneity of multivariate dispersion
(PERMDISP), which evaluates the mean distance of each plot to the group centroid (Brudvig et al.,
2013). We used nonmetric multidimensional scaling (NMDS) to visualize the compositional differences
in the understorey vegetation. To identify species that typified the different plot groups (i.e. former
infields vs. outland, and high vs. low intensity management), we also conducted an indicator species
analysis (Dufréne & Legendre, 1997) for the understorey data in each survey year, with the infield/outland
and the high/low management distinction as classification vatiables (function multipatt, indicspecies
package; Ampoorter et al., 2015; De Caceres & Legendre, 2009). We performed t-tests to compare the

mean Ellenberg N and L values of the indicator species.

To visualize changes in the understorey composition over time, for the different land-use and
management categories, we made a NMDS plot showing the mean and standard error of the NMDS
coordinates of the plots for each of the 12 plot groups, i.e. all possible combinations of survey year, past
land use and recent management. To facilitate interpretation, we added the following variables to the
NMDS-plot: Ellenberg N and L, tree cover, shade-casting ability, soil total P and clay content, and soil
pH. All data analyses were performed in R version 3.4.3 (R Core Team, 2017).

24. RESULTS

For all four models, marginal R* (R*m) was quite low (between 0.06 and 0.17) (Fig 2.2; Appendix A2.10),
suggesting that the fixed effects Year, Past Land Use and Disturbance only explained a small part of the
variance. Values for conditional R* (R*c) were higher (between 0.48 and 0.86), indicating that a high
proportion of the variance can be explained by the random effect PLOT ID. This suggests that other
(unmeasured or unmodelled) variables could be important. We did not investigate such variables as the
focus of our study was to detect main and interactive effects of past land use intensity and recent

management.
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Figure 2.2. Temporal changes in mean values (and standard errors) of the four response variables representing
understorey diversity and composition. The level of recent disturbance by forest management is indicated by the line
color (red = high, blue = low), while the past land use category is indicated by the line type (continuous = infield,
dotted = outland). Below each graph, the significant predictors that were retained in the final model of the response
variable are shown, with their level of significance ("***' for p<0.001; ** for p<0.01; *' for p<0.0.5). Interactions
between predictors are indicated with *’. The marginal and conditional R? (R2m and R2c respectively) for the final
model of each response variable are also given. See Appendix A2.10 for the full model results.

For both the Bray-Curtis dissimilarity (beta diversity) and the Shannon diversity (alpha diversity), the only
significant predictor that was retained after model selection was the factor Year (Fig. 2.2; Appendix
A2.10). Hence, these diversity measures changed significantly over time, but the changes were not related
to either the past land use or recent management category. The Shannon diversity index increased
significantly between 1983 and 1993 (+0.27 on average), but then decreased again to a level not
significantly different from the original 1983 level. Bray-Curtis dissimilarity only started to increase

significantly after the second survey, but the increases were minor (+0.042 on average between 1993 and

2014).

Ellenberg N values were significantly affected by past land use, with values being 0.46 units higher in
former infield plots compared to former outland plots. In addition, during 1983-2014, we observed a
small (+0.16) but significant increase in Ellenberg N values (Fig. 2.2; Appendix A2.10); there was no

evidence for interactions.
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We observed a small but significant increase in Ellenberg L. values (+0.14) between 1983 and 1993. After
1993, Ellenberg L values decreased again to a level not significantly different from the original 1983 level.
Over the entire period, we found a significant interactive effect between past land use and recent
management disturbances on Ellenberg L values. For the plots with low recent management, Ellenberg
L values were on average 0.48 units higher in outland compared to infields. For the plots with more

intensive recent management, Ellenberg L. values of infield and outland plots were closer to each other

(Fig. 2.2; Appendix A2.10).

With PERMANOVA, we found a significant difference in the understorey composition between infield
and outland plots in each survey year (Fig. 2.3). The permutational test for homogeneity of multivariate
dispersion (PERMDISP) indicated that this difference was driven by different mean multivariate
composition between infield and outland plots, and not the degree of multivariate dispersion (Fig. 2.3).
This explains why no significant effects of past land use on the Bray-Curtis dissimilarity were found with
the linear mixed effect modelling approach. Differences in the understorey composition between plots
with high and low levels of management intensity were also significant in each survey year, although
significance was often marginal and R? values were lower compared to the infield/outland
PERMANOVA tests (Fig. 2.3). Differences in community composition between infield and outland
plots can be related to the richer clay soils and the higher tree cover and SCA found in infield plots,
compared to the outland plots (Fig. 2.3). Compositional differences between less and more intensively
managed plots can also be related to the richer clay soils and the higher tree cover and SCA, which occur

in the plots with lower management intensity.
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Figure 2.3. NMDS of understorey composition for each survey year. In the upper row, red dots represent former
infield plots and the species in red are the indicator species of infield plots; blue dots represent former outland plots
and the species in blue are the indicator species of outland plots. In the lower row, red dots represent plots with high
levels of management intensity and their respective indicator species are shown in red; blue dots represent plots with
low levels of management intensity and their respective indicator species are shown in blue. The arrows indicate the
variables characterizing the soil and overstorey of the plots, i.e. soil pH, soil clay and total P content, tree cover, and
shade-casting ability. Species are abbreviated with the first four characters of the genus and species name. The
following species occur on the figure: Acer platanoides, Acer pseudoplatanus, Aegopodium podagraria, Agrostis
capillaris, Anthriscus sylvestris, Athyrium filix-femina, Avenella flexuosa, Betula pendula, Betula pubescens, Carex
pilulifera, Convallaria majalis, Dryopteris carthusiana, Fagus sylvatica, Festuca ovina, Fraxinus excelsior, Hepatica
nobilis, Hypericum perforatum, Juncus effusus, Juniperus communis, Luzula pilosa, Lysimachia europaea, Melica
nutans, Mercurialis perennis, Picea abies, Poa nemoralis, Polygonatum multiflorum, Ribes uva-crispa, Prunus
padus, Rubus idaeus, Rubus saxatilis, Salix caprea, Scrophularia nodosa, Silene dioica, Stellaria holostea, Stellaria
media, Taraxacum vulgare, Tilia cordata, Ulmus glabra, Veronica officinalis (see Appendix A2.11).

Typical species on former infields were Convallaria majalis and Poa nemoralis, while typical former outland
species included Dryopteris carthusiana, Juncus effusus and Carex pilulifera (but these species were not
indicators in 2014). Mercurialis perennis, Melica nutans and Hepatica nobilis (not in 2014) were indicative of a
less intensive management, while Beula pubescens/ pendula was indicative of a higher management intensity
(Fig. 2.3, Appendix A2.11). The following commonly prevailing herbaceous species seemed indifferent
for both past land use and recent management intensities, and were found in all plot groups: Oxalis

acetosella, Maianthemum bifolium, V'iola spp., Rubus idaens, and Galegpsis spp.. Comparison of mean Ellenberg
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N and L values between indicator species groups only revealed significant differences in Ellenberg N

values in 1983 (infield indicators: 6.14; outland indicators: 3.71; .05 = 2.69; p = 0.023).
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Figure 2.4. (a) Mean and standard error of the NMDS-coordinates for each survey year and for each plot category
(resulting in 12 possible combinations of year, past land use and recent management level). The level of recent
disturbance by forest management is indicated by the line colour (red = high, blue = low), while the past land use
category is indicated by the line type (continuous = infield; dotted = outland). The black arrows visualize the
trajectories of the understorey compositions over time. (b) Correlation of relevant plot characteristics (orange arrows:
soil clay and total P content, soil pH, cover and shade-casting ability (SCA) of the tree layer) and community
descriptors (green arrows: mean Ellenberg N and L values) with the plot positions on the NMDS ordination figure.
The length of the arrows indicates the degree of correlation.

For all outland plots, and for the infield plots with high management intensity, the direction of
compositional change indicated by the mean NMDS (Fig. 2.4) showed similar patterns, first going down
along the second axis, and then going up along the same axis. For the infield plots with low management
intensity, we observed an initial small upwards shift along the second axis between 1983 and 1993,
followed by a bigger shift in the same direction between 1993 and 2014. The understorey compositions
of more intensively managed infield and outland plots are converging over time, compared to the less
intensively managed plots. As Ellenberg L. values are negatively related to the second axis of variation, it
seems that the compositional shift over time is partly related to an initial increase in light-demanding
species between 1983 and 1993, followed by a decrease in these species after 1993. All former outland
plots had negative means along the first axis of variation, while means for former infields were centred
around zero or had positive values. This shows that compositional differences between former infields

and outland can mainly be seen along the first axis. Also, the first axis of variation was strongly correlated
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with Ellenberg N and to a lesser extent shade-casting ability and tree cover, which indicates that more
nutrient-demanding understorey species and more shade casting overstorey species have a higher affinity

for infields compared to outland.

2.5. DISCUSSION

This is the first study, to our knowledge, investigating both the main and interactive effects from legacies
of a historical infield/outland system and recent management intensity levels on contemporary
understorey compositions and their trajectories over time. We found that plot-level understorey diversity
(i.e. alpha diversity) depended mainly on recent management intensities, and not on past land use. Higher
levels of disturbance due to management positively affected alpha diversity. We found dissimilarities in
species composition (i.e. beta diversity) among plots with different past land uses, and (to a lesser extent)
different recent management intensities. Legacies from the former infield/outland agticultural system
clearly persisted in the nutrient-demanding signature of the understorey. Interestingly, we also found an
indirect effect of past land use on the light levels at the forest floor, through its effect on the soil nutrient
availability. The more nutrient-rich soils of former infields seemed to result in forest canopies casting a
deeper shade. However, recent management activities overruled this effect of past land use on the light-
demanding signature of the understorey, resulting in similar indicator values for light regardless of past

land use when plots were intensively managed.

2.5.1. Research question 1: Land-use legacies in the understorey

We found clear compositional differences in the understorey between former infields and former outland
(Fig. 2.3). Compositional differences in the forest understorey due to past land use have been consistently
reported in the literature (e.g. Brudvig et al., 2013; Hermy & Verheyen, 2007), and can be related to
fragmentation, dispersal limitations, and recruitment limitations due to differences in soil properties
(Baeten et al., 2009). While fragmentation and dispersal limitations are outside the scope of this study,
we present evidence that at least part of the compositional differences in our study plots are related to
differences in soil characteristics due to past land use. Both the direction of the environmental variables
on the NMDS-plots (Fig. 2.3) and the significantly higher amount of nutrient-demanding species in the
understorey of former infields suggest that not only the higher clay content (resulting from an initial
preference for clayey soils for infield use), but also the higher nutrient availability in infield plots drives
compositional differences between infield and outland plots. Similar findings have been noted where
more extreme land use comparisons (i.e. ancient vs. recent forest) have been made (e.g. Dupouey et al.,

2002; Koerner et al., 1997).
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2.5.2. Research question 2: impact of recent management on the

understorey

We found that different levels of recent management intensity affected the community composition of
our study plots, in terms of their mean position in the ordination figures. We also observed an increase
in plot-level diversity between 1983 and 1993, followed by an overall decrease between 1993 and 2014
across all past land use/management combinations. These changes are probably related to the overall
management intensity trajectory for the entire region. Overall management intensity in the region
increased after the ratification of the Swedish Broadleaves Act in 1984, which presctibed that oak/hornbeam
stands larger than 0.5 ha must not be converted to coniferous plantations, but regenerated with oak or
other temperate hardwoods, and which stimulated interest in active management of hardwood forests.
After 1993, management intensity decreased again due to changes in the Swedish forest policy that now
gave more importance to the environmental goal of forests whereby biodiversity was to be secured and
ecosystems conserved (Simonsson et al., 2015). This suggests that management intensity and alpha
diversity are positively correlated. Several other studies reported similar findings, where forest
management has a positive effect on species richness of the understorey vegetation (e.g. Brunet,
Falkengren-Grerup, & Tyler, 1997). The dissimilarity in species composition among plots increased
slightly between 1993 and 2014, and displayed the opposite trend to alpha diversity. This result can be
explained by the dependence of the Bray-Curtis index on alpha diversity, where both measures are
inversely correlated due to the multiplicative definition (alpha x beta = gamma) (Jost, 2007). Hence, a
decrease in alpha diversity due to the disappearance of some species can result in plots becoming more

dissimilar and thus an increase in beta diversity.

Studies on conversion of coppice-with-standards forests to high forest systems with less frequent
disturbances, have often shown an overall increase in plot-level diversity, and an associated decrease in
dissimilarity in species composition (beta diversity), suggesting biotic homogenization across stands
(Hermy, 2015; Van Calster et al., 2007, 2008). These findings seem to contradict our results, as we found
a decrease in alpha diversity and increase in beta diversity when management intensity decreased again
after 1993. Of course, this decrease in management intensity in our study region was merely a decrease
in harvesting frequency/intensity, and might therefore not be comparable to an actual change in

management regime from coppicing to high forest.

The level of recent management intensity, according to our classification, did not affect the nutrient-
demanding signature of the understorey. However, we observed an overall eutrophication signal over
time since 1983 over all plot groups. This can be attributed to the closing of the canopy related to an
overall decrease in management activities after 1993 as well as (but probably to a lesser extent) increased

atmospheric N depositions (Verheyen et al., 2012).
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The light-demanding signature of the understorey was affected by both the overall change in management
intensity over time due to the Swedish forest policy and the more subtle management differences between
plots. The overall increase in light-demanding species during 1983-1993 is likely the result of the increased
management activity, creating more canopy openings (see Fig. 2.1b), followed by an overall decrease in
light-demanding species once management activity started decreasing again. Additionally, the significant
main positive effect of management intensity on the light requirement of the understorey reflects our
distinction between plots with high and low management intensity. This effect can be related to the higher
share of Carpinus betulus and Corylus avellana in the less intensively managed plots, which cause higher

shade levels at the forest floor (see 2.3.2. Soil and overstorey characterization’).

2.5.3. Research question 3: interactive effects of past land use and

recent management on the understorey

We found a clear interactive effect between past land use and recent management levels on the light
requirement of the understorey. Within the less intensively managed plots, infield plots had fewer light-
demanding species than outland plots. This decline is likely associated with the higher soil nutrient
content in infield plots, resulting in a denser (sub)canopy and lower light availability at the forest floor
compared to the less nutrient-rich outland plots. Indeed, when characterizing the overstorey of the study
plots (see 2.3.2. Soil and overstorey characterization’) we found that former infield plots had a higher
share of Corylus avellana and Carpinus betulus in their (sub)canopy, which can cause high shade levels. Similar
examples of lower light transmission on richer soils, potentially due to a denser layer of subcanopy trees,
have been reported in other parts of the world (e.g. Coomes & Grubb, 1996; Coomes et al., 2009; Tilman,
1988). Within the more intensively managed plots however, the understorey light requirements of infield
and outland plots were similar, indicating that recent disturbances in the tree and shrub layer due to
management practices have caused similar light levels at the forest floor, regardless of soil fertility, and
thus regardless of the past land use. In other words: recent management disturbances might have
‘overruled’ differences in light availability due to past land use. We also observed an overruling effect of
recent management disturbances for compositional differences among plot groups. Across both land-
use intensities, the intensively managed plots have become more similar over time, while this was not the
case for the group of less intensively managed plots, where communities on former infield and outland
are still very distinct from each other in 2014. These findings contrast with Jonason et al. (2016), who
observed that clear-cutting sustained legacies from former use as meadowland. However, they observed
only small differences in soil nutrients between land-use types (i.e. forest history vs. meadow history),
while soil nutrient content was an important driver behind land-use legacies (resulting from infield vs.

outland use) in our study.
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2.6. CONCLUSION

Recent forest management intensity had a positive effect on plot-level diversity. The former
infield/outland agricultural system was an important determinant of both the nutrient- and light-
demanding signature of the understorey composition. The level of disturbance intensity due to recent
management practices interacted with this past land-use effect, but only on the light-demanding signature
of the understorey, where differences resulting from past land use had disappeared in the more intensively
managed plots. Our results differ from previous studies, where disturbances were found to preserve

legacies from past land use (e.g. Hogan et al., 2016; Jonason et al., 2016).

Our findings suggest that while increasing the management intensity could increase plot-level diversity,
it might reduce diversity in community composition. Especially with regard to light-demanding species,

understoreys in infield and outland plots will become more similar when management intensity increases.
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3.1. ABSTRACT

A central challenge of today’s ecological research is predicting how ecosystems will develop under future
global change. Accurate predictions are complicated by (i) simultaneous effects of different drivers, such
as climate change, nitrogen deposition, and management changes; and (ii) legacy effects from previous
land use. We tested whether herb layer biodiversity (i.e. richness, Shannon diversity and evenness) and
functional (i.e. herb cover, specific leaf area (SLLA) and plant height) responses to environmental change
drivers depended on land-use history. We used resurvey data from 192 plots across nineteen European
temperate forest regions, with large spatial variability in environmental change factors. We tested for
interactions between land-use history, distinguishing ancient and recent (i.e. post-agricultural) forests, and
four drivers: temperature, nitrogen deposition and aridity at the regional scale, and light dynamics at the
plot-scale. Land-use history significantly modulated global-change effects on the functional signature of
the herb layer (i.e. cover, SLA and plant height). Light availability was the main environmental driver of
change interacting with land-use history. We found greater herb cover and plant height decreases and
SLA increases with decreasing light availability in ancient than in recent forests. Furthermore, we found
greater decreases in herb cover with increased nitrogen deposition in ancient forests, while warming had
the strongest decreasing effect on the herb cover in recent forests. Interactive effects between land-use
history and global change on biodiversity were not found, but species evenness increased more in ancient

than in recent forests.

Synthesis: Our results demonstrate that land-use history should not be overlooked when predicting forest
herb layer responses to global change. Moreover, we found that herb layer composition in semi-natural
deciduous forests is mainly controlled by local canopy characteristics, regulating light levels at the forest
floor, and much less by environmental changes at the regional scale (here: warming, nitrogen deposition
and aridity). The observed disconnect between biodiversity and functional herb layer responses to
environmental changes demonstrates the importance of assessing both types of responses to increase our

understanding of the possible impact of global change on the herb layer.

3.2. INTRODUCTION

Global environmental changes can strongly modify forest ecosystems and their plant communities
(Gilliam et al., 2016; Hedwall & Brunet, 2016; Perring et al., 2016). While there is already a good
understanding of variation in plant community properties across spatial environmental gradients,
knowledge of long-term temporal changes in ecosystems across environmental gradients remains limited
(Amatangelo et al., 2014; Bjorkman et al., 2018; Dwyer et al., 2014). Understanding temporal changes in
plant communities, and the role of global change, is complicated by the simultaneous effects of different

drivers, such as climate change, atmospheric deposition of eutrophying and/or acidifying compounds,
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and management changes (Bernhardt-Rémermann et al., 2015; Hedwall & Brunet, 2016; Perring,
Bernhardt-Romermann, et al., 2018). In addition, legacy effects of past land use are often present in plant
communities with slow dynamics (Birgi et al., 2017; Perring et al., 2016). Hence, disentangling the
combined and possibly interactive effects of land-use history and different environmental drivers on
temporal community dynamics is key to predict how plant communities will be altered under future

global change.

Plant communities can exhibit both biodiversity and functional changes in response to environmental
change (Closset-Kopp et al., 2019; Maytield et al., 2010). Assessing both types of changes is important to
obtain a complete understanding of the impact of future global change on plant communities, especially
as several studies report a disconnect between biodiversity and functional changes (i & Waller, 2017,
Perring, Bernhardt-Romermann, et al., 2018). We focus our study on herb layer communities in temperate
forests. The forest herb layer contains the majority of plant diversity (Gilliam, 2007) and plays a key role
in forest functioning (Landuyt et al., 2019). Understanding how future environmental changes will affect
the herb layer is key to make informed management decisions for sustaining forest biodiversity and
functioning. In this study, biodiversity changes refer strictly to the ‘compositional component’ of
biodiversity (Maes, Fontaine, Rongé, Hermy, & Muys, 2011). We measured biodiversity changes as
changes in species richness, Shannon diversity and species evenness. We define functional changes as
changes in the functional signature of the herb layer, which represents a combination of functional
ecological features at the community level. We assessed functional changes through evaluating changes
in the total herb layer cover, which can be considered a measure for herb layer productivity. Several
functions of the herb layer largely depend on this productivity, including nutrient and carbon cycling,
evapotranspiration and tree regeneration (Landuyt et al., 2019). In addition, we assessed functional
changes through evaluating changes in two important functional traits (those properties that characterize
the ecological strategies of species), i.e. plant height and specific leaf area (SLA), which are both related

to resource acquisition and expected to respond strongly to environmental changes (De Frenne et al.,

2015; Dubuis et al., 2013).

Global-change drivers have the potential to alter herb layer communities by altering resource availability
and growing conditions at the forest floor that control herb layer community composition (Landuyt et
al., 2019). The simultaneous occurrence of different drivers, potentially causing interactions, complicates
understanding the magnitude and direction of shifts in resources and conditions, and the consequent
response of the herb layer community to these shifts. Here, we focus on interactions between land-use
history on the one hand, and ongoing environmental changes (i.e. climate change, enhanced nitrogen
deposition, and changing canopy cover and composition) on the other hand. To account for land-use
history, we compared post-agricultural forests (further on referred to as ‘recent forests’) with ancient

forests (i.e forest sites without any known agricultural use, since at least 1810). We expect that alterations
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in resources and conditions engendered by previous land use have steered communities and their
constituent traits onto trajectories of change, which may then be modulated by contemporary

environmental changes (Perring et al., 2016).

Although specific studies that consider land-use legacies when projecting the effects of multiple
environmental changes on future forest herb layer properties are rare, the literature provides insights in
the (interactive) effects of resource alterations as key agents of ecological change. In general, the
availability of water, nutrients and light will mainly determine the structure and functioning of plant
communities (Craine et al., 2012). Understanding the combined role of these resources, and how land-
use history and environmental changes simultaneously alter their availability, can help to predict how
plant communities will evolve under global change. For instance, increased nitrogen (N) availability may
promote plant growth in systems that have sufficient phosphorus (P) (such as many post-agricultural
forests), while it may not enhance plant growth in P-limited systems (such as many temperate ancient
forests (e.g. Gress et al., 2007)) (Hedwall et al., 2017, although note Treseder et al., 2001). N deposition
rates have a direct effect on N availability, but warming and changes in light regimes can also affect N
availability, as higher temperatures and light levels can increase mineralization rates (KKoch et al., 2007,
Van Calster et al., 2007). Additionally, climate change and altering light levels can affect the water
availability through altering evapotranspiration (Rind et al., 1990). Moreover, the drought-sensitivity of
the system might depend on the land-use history: forest sites without previous agricultural use (e.g.
ancient forests) typically have better developed organic soil layers than post-agricultural forest sites,
improving their water storage capacity, and thus their ability to mitigate the effects of a severe drought

(Greiffenhagen et al., 2006; Von Oheimb et al., 2014).

Resurvey data with a long time period (typically multiple decades) between surveys are ideally suited to
assess changes in systems that exhibit slower dynamics, such as plant communities in temperate forests
(Dornelas et al., 2013; Kapfer et al., 2017). In the present study, we use a combined temporal and spatial
approach to test for interactions between land-use history (i.e. former agricultural use) and environmental
changes (i.e. climate change, enhanced nitrogen deposition, and changing canopy cover and composition)
on biodiversity and functional changes in temperate forest herb layer communities. We use herb layer
resurvey data from 192 plots across nineteen European temperate forest regions, where we can exploit
large spatial variability in environmental change factors (Verheyen et al., 2017). The timing of
afforestation of the recent forest sites ranged from 1810 to 1970, but with the majority (47/57) afforested
before 1930. We complement our resurvey study with direct characterisation of soil and canopy
properties through 77 situ measurements, which allows us to account for differences in soil type and

canopy structure and composition at the plot-scale in our analyses.

We tested the following hypothesis:
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The herb layer’s biodiversity and functional signature will respond to environmental changes, but
these responses depend on land-use history. When assuming that herb layer communities are
mainly shaped by resource availability, we expect to see stronger herb layer responses to
environmental changes in the recent forests, which are typically less P-limited due to former

fertilization practices.

This hypothesis was based on two expectations, which we checked prior to testing our main hypothesis:
(i) we expect that several decades after afforestation, legacies from former agricultural land use are mainly
reflected in the soil nutrient levels, with higher phosphorus levels in recent forests due to former
fertilization practices. This expectation was based on previous analyses by Maes et al. (2019) on the same
set of study plots, which showed that soil P content was the only soil variable significantly affected by
past land use; (ii) we expect that differences in species pools due to dispersal limitations will be less
important than nutrient availability in shaping herb layer communities, as the land-use change happened

in the distant past and species already had time to colonize the recent forests.

3.3. MATERIAL AND METHODS

3.3.1. Study sites

We selected 19 regions along spatial environmental gradients of atmospheric nitrogen deposition and
climatic conditions (temperature, precipitation) within the European temperate deciduous forest biome
(Fig. 1.1A). The main selection criteria were the existence of prior understorey vegetation surveys
(preferably at least 20 years ago, but we included one region with 17-19 year old vegetation data) and
information on land-use history. In addition, we tried to minimize differences in parent material and
topography between plots and regions. We aimed at maximizing differences in land-use history between
plots within regions by sampling in ancient vs. recent forest, although this was not possible for all regions
(Table 3.1). We define ancient forests as continuously forested since at least 1810, whereas recent forests
have been afforested after 1810 (Hermy et al., 1999). Within the 57 recent forest plots, 31 plots were on
former arable land, while 26 plots were on former grassland. Within fifteen out of nineteen regions, all,
or all but one, plots were on the same soil type (Table 3.1). In addition, all plots are situated in ‘mesic’

forests, with a moderate supply of moisture (Table 3.1).

All plots comprised closed-canopy forests with a variable tree and shrub layer composition, but we
focused on plots predominantly composed of broadleaved species, although a higher occurrence of
coniferous species in the easternmost regions with a hemiboreal climate was unavoidable. The canopies
at the original survey consisted mainly of Quercus robur/ petraea (104/192 plots), Fraxinus excelsior (67/192
plots), Fagus sylvatica (65/192 plots), Carpinus betulus (64/192 plots) in the tree layer and Corylus avellana
(76/192 plots) in the shrub layer.
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Table 3.1. Ecological details of the 19 regions where we did vegetation resurveys. At = time interval between original and new survey (in years); LUH = land-use history; AF =
ancient forest; RF = recent forest; EIV-F = Ellenberg indicator value for soil moisture,; S = Sand, ClayC = Clay with carbonates; ClayNC = Clay with no carbonates; AMAT = rate of
change of mean annual temperature; AAridity = rate of change of De Martonne aridity index; Ndep = average annual rate of nitrogen deposition; se = standard error.
AManagement indicates in how many plots management intensity has decreased (|), increased (1) or stayed the same (=) over time (Appendix |). See text for a detailed description
of the variables. For AMAT, AAridity and Ndep, mean values + standard error across all regions are shown at the bottom of the table, as well as a p-value to indicate whether
the mean value is significantly different from zero.

Plot size Mean Olsen P Mean EIV-F

LUH (range) (range) (range) AMAT AAridity Ndep AManagement
ID Region, Country At(y)  (135AF,57RF) m? mg kg1 Soil type °Cy? mm °Cltyrl  kghalyl (1124, 65=, 151)
BI Bialowieza, PL 31-50 15AF 50-400 36 (10.4-100.5) 5.4(5.1-6.0) S +0.029 -0.028 13.75 10=,54
BS  Braunschweig, GE 24-25 5AF,5RF 625 33.3(5.7-82.8) 5.1(4.7-56) S +0.035 -0.101 17.22 4=6
BV Binnen-Vlaanderen, BE 35 4 AF, 5 RF 150 34.1(10.8-53.3)  6.0(5.5-6.4) 5(8), ClayC(1) +0.033 +0.069 22.12 55,4
co Compiegne, FR 47 10 AF 200-2000 17.6 (6-40.6) 5.1(4.5-6.0) S +0.026 -0.015 15.66 5=5¢
DE Devin, CZ 52-62 3 AF,7RF 100-600 34.4 (10.2-75.3) 4.6 (3.7-6.2)  ClayC(5), ClayNC(5) +0.024 -0.028 16.45 10 ¢
GO Gottingen, GE 48-60 10 AF 100-400 14.3 (6.6-53.4) 5.5(5.1-5.9) ClayC(6), ClayNC(4) +0.017 -0.010 17.75 7=34¢
KO  Koda, CZ 58 10 AF 400 28.7 (7.7-58.6) 4.6(4.3-4.9) ClayC(1), ClayNC(9)  +0.021 +0.003 16.32 35,74
LF Lyons-la-forét, FR 43 10 AF 300-1000 15.5(10.2-26.9) 5.3(5.0-5.7) ClayNC(9), S(1) +0.030 -0.030 16.23 01t

MO  Moricsala, LV 88 5 AF, 3 RF 1250-2500 11.4(6.4-26.4) 5.0 (4.6-5.4) ClayNC(1), S(7) +0.013 +0.008 5.2 7510




PR Prignitz, GE 17-19 5AF,5RF 120-300 19.3(7.3-32.8)  5.6(5.1-6.0) S +0.030 -0.042 16.33 55,50
SH  Schleswig-Holstein, GE  29-31  5AF,5RF 64-400 37.9(9.7-154.9) 5.1(4.9-53) S +0.045 -0.050 18.68 10 =
SK  Slovak Karst, SK 32-40 10 AF 500 10.9 (3.5-49) 4.8 (4.5-5.0) ClayNC +0.024 -0.037 11.57 10 L
SKA  Skéne, SW 31 8 AF, 2 RF 500 30.4 (9.6-95) 5.3(4.7-5.8)  ClayNC(6), S(4) +0.026 +0.080 12.88 4=,64
SP  Speulderbos, NL 57-59  5AF,5RF 100 52.7 (24.9-92) 5.2(5.06.0) S +0.019 -0.009 31.11 4=64
TB  Tournibus, BE 48 5 AF, 5 RF 100 11.8 (6.3-24) 5.3(4.6-5.9) ClayNC +0.027 -0.092 18.6 10 L
W  Wales, UK 45 5 AF, 5 RF 200 44.2(18.3-91.1) 5.8(5.2-6.4) ClayNC +0.018 +0.088 8.93 10 ¢
WR  Warburg Reserve, UK 41 5 AF, 5 RF 100 19.5(14.2-23.7)  5.4(4.9-5.8) ClayC(9), ClayNC(1)  +0.025 +0.026 15 55,50
WW  Wytham Woods, UK 41 5 AF, 5 RF 100 13.2(6.7-19.9)  6.0(5.3-6.3)  ClayNC(7), S(3) +0.022 +0.032 12.39 50,51
ZV  Zvolen, SK 51-52 10 AF 500 35.5(6.5-111.7) 4.7 (4.2-5.2) ClayNC +0.024 -0.027 12.64 1594
Mean * se across regions:
-0.009 +
+0.026 + 15.70 +
0.012
0.002 1.22
(p<0.001) (p=0.47) (p<0.001)
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3.3.2. Data collection

In 2015 and 2016, we revisited 192 plots across 19 regions in temperate Europe that were established
and surveyed at least 17 years ago (Fig. 1.1A, Table 3.1). The year of the original survey varied between
1928 and 1998 (Table 3.1). Depending on the region, plot relocation was based on one or more of the
following properties: permanent markings in the field, GPS coordinates, physical maps, plot descriptions,
drawings, photographs, and the original composition of the canopy layer (Appendix A3.1). Plots were
either rectangular or circular, and varied in size between 50 and 2500 m? (Table 3.1). To assure
comparability between our survey and the original survey, we followed the original definitions of the
vegetation layers, which differed among regions (Appendix A3.2). A vegetation survey comprised a
division of all vascular plants into three layers: herb layer, shrub layer and tree layer. The herb layer
typically comprised all herbaceous species and the woody species (e.g. tree and shrub seedlings) below a
threshold ranging from 0.25 to 1.3 m (threshold differed between regions; see Appendix A3.2). For each
layer, we visually estimated the cover (%) of each species, as well as the total cover of the layer. When
cover values of the old survey were reported in different cover-abundance scales (e.g. Braun-Blanquet,

1964), we converted these to percentages (Appendix A3.2).

In addition to vegetation surveys, we collected samples of the mineral topsoil in each plot (a composited
sample from five locations within the plot). We analysed the 0—10 cm samples for pHkc, proportion of
exchangeable base cations, total and Olsen phosphorus (P) concentration (mg kg™), organic and inorganic
carbon (C) and total nitrogen (N) concentration (%), and soil organic matter (%), and the 10-20 cm
samples for soil texture (% Clay, % Silt, % Sand). We also collected a 0-10 cm soil sample with a Kopecky
ring at the centre of each plot to determine the whole-soil bulk density (see Maes et al. (2019) for further

details on soil analyses and properties).

3.3.3. Response variables

We derived six plant community descriptors for both the plots in the old (o) and new (n) surveys. To
assess the biodiversity of the herb layer, we used species richness (SR), Shannon diversity (DIV), and
species evenness (EVEN). Species richness is the number of species present within the plot. Shannon
diversity is a combined measure of species richness and evenness, which weights species by their
abundance (Shannon, 1948). Species evenness is the distribution of abundance among species. It ranges
from zero to one, with one representing a perfectly equal distribution of all occurring species. We
followed Smith and Wilson (1996) to calculate evenness based on the variance in species’ abundances

(see Appendix A3.3 for details).

To assess the functional composition of the herb layer, we used community weighted mean (CWM)

values for the two traits ‘plant height’ (height) and ‘specific leaf area’ (SLA), and the total cover of
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the herb layer species (COVER). We gathered trait data from different databases including LEDA
(Kleyer et al., 2008) (Appendix A3.4). The total herb cover is the sum of the visually estimated cover of
each species in the herb layer. Each response variable was based on the ‘strict’ herb layer, containing only
the herbaceous species, and excluding seedlings and shrub species for three reasons: (i) tree and shrub
species do not remain structurally part of the herb layer throughout their life cycle, (ii) many recorded
trait values are representative for adult trees, shrubs and climbers and not the juvenile state found in the
understorey, and (iif) seedlings were not always included in the original surveys (see Appendix A3.5 for

species lists). Nomenclature was standardized manually based on The Plant List (2013).

We used the change in community descriptors between surveys as response variables, calculated as
response ratios (RR):
Xn
InGz )

RRy = A Equation 3.1

where X is one of the community descriptors, ‘n’ and ‘o’ refer to the new and old survey, and At is the
number of years between surveys. These response ratios are further denoted as RRsr, RRprv, RReven,
RRueicur, RRsia and RReover. The use of In(X,/X,) instead of X,./X, has the advantage that increases
and decreases in X ate treated symmetrically: In(X,/X,) is zeto in case of equality (Xa=X,), and if X, is k
times greater than X,, the In-ratio is equidistant from zero as in the situation where X, is k times greater

than X,.

To improve our understanding of what could be driving the changes in these six main response variables,
we evaluated the changes (again calculated as log response ratios) in two additional variables related to
the herb layer composition: the proportion (%) of the herb layer cover occupied by (i) forest specialists
(RRrs) and (if) graminoids (RReram) (Appendix A3.6). Forest specialists are the species most strongly
associated to closed forests, following (Heinken et al., 2019), who provides a comprehensive list of
vascular plant species occurring in forests for 24 geographical regions across Western, Central and
Northern Europe, assigning each species to one of four different groups with different degrees of
association with forests (i.e. as an indication for the habitat preference). The forest specialists (1.1
species’) are the species most strongly associated to closed forests. We used the regional species
classification relevant for each study region, as some species are classified as ‘forest specialist’ in some
regions, but not in others. The reason to consider graminoids as well, is that in some regions of our
dataset, earlier studies have found that herb cover decreases over time were largely caused by decreases

of graminoid species, related to changes in management.
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3.3.4. Explanatory variables

3.3.4.1. Site conditions

We included land-use history (LUH) as a categorical variable, distinguishing plots in ancient forest
(forested since at least 1810) and recent forest (former arable land/grassland forested after 1810) (Table
3.1). We did not apply a further distinction between recent forests on former arable land and recent
forests on former grassland to avoid a too unbalanced study design (with 135 ancient forest plots and
only 31 former arable land plots and 26 former grassland plots). As different effects on the understorey
dynamics might be expected between both recent forest categories, due to the lower nutrient-enrichment
and soil disturbance on former grasslands compared to former arable land, we compared the effect of
the former land use within the recent forests on the six main response variables (see 3.3.3. Response
variables) with a Welch Two Sample t-test. We found no significant differences (alpha = 0.05) in the
response variables between former grassland plots and former arable land plots. Similarly, this t-test
revealed no significant differences in Olsen P contentration at the time of the new survey between both

types of recent forest plots.

Soil type was also a categorical variable with three groups, obtained with cluster analysis based on soil
texture (% Clay, % Silt, % Sand) and carbonate or inorganic carbon concentration (%) (see Maes et al.
(2019) for details of this analysis). ‘ClayCarbonate’ soils represent silty-clay-carbonate soils with high
inorganic carbon concentration and high pHka, but low C/N-ratio and litter mass (i.e. faster
mineralization). The ‘ClayNoCarbonate’ soils represent silty-clay soils without the presence of carbonates
(low inotganic carbon concentration) and intermediate pHkea, C/N-ratio and litter mass. The ‘Sand’ soils
represent poor sandy soils with a low inorganic carbon concentration and high C/N-ratio and litter mass

reflecting higher acidity and lower nutrient concentration (Table 3.1).

Since Olsen P was not correlated with the soil type groups, and because it is an important nutrient for
plant growth that is expected to be affected by past land use (De Keersmaeker et al., 2004), we included
the Olsen P concentration (mg kg') measured at the new survey as a separate predictor (Maes et al.,
2019). We expected soil moisture to affect community traits (Schaffers & Sykora, 2000) and therefore
included a community weighted mean Ellenberg Indicator Value score for soil moisture (EIVE) from
the plot’s herbaceous community at the old survey (Table 3.1). EIVs for moisture range from 1 (species

occurs on dry soils) to 9 (species occurs on wet soils) (Diekmann, 2003).

Lastly, we included plot size (m?) (Table 3.1) as an explanatory variable. We expect plot size to affect
community property changes as larger plots have more chance of including infrequent species, which

may also be more likely to appear or disappear between surveys.
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3.3.4.2. Plot-scale drivers of change

At the plot-level, we expect changes in the cover and composition of the canopy (including both shrub
and tree layer) to be the main driver of changes in the herb layer community. Canopy changes between
surveys can be the result of changes in the type and intensity of forest management, successional
trajectories of the forest canopy and natural disturbances. We included the response ratios (see Equation
3.1) of the canopy cover (RRcc), the canopy’s shade-casting ability (RRsca) and the litter quality
(RRyq) as explanatory variables in our analysis. To calculate the overall canopy cover, we combined cover
estimates of all species in the tree and shrub layer using the formula developed by Fischer (2015), which
accounts for overlap between species and between layers. We calculated the shade-casting ability (SCA)
and litter quality (LQQ) as a cover weighted average of, respectively, ordinal SCA and LQ scores (listed in
Appendix A3.7, respectively adapted from Ellenberg (1996) and Hermy (1985) and complemented with
expert knowledge of prof. Kris Verheyen), ranging between 1 (very low SCA and very low decomposition
rate, respectively) and 5 (very high SCA and very high decomposition rate, respectively)(see also Van
Calster et al., 2008; Verheyen et al., 2012).

Across all regions, both SCA and litter quality increased significantly, while canopy cover did not change
(Appendix A3.8). We expected these canopy variables (SCA, litter quality and cover) to be related to
management changes, and checked this through assigning a ‘management change category’ to each plot
(Table 3.1, Appendix A3.9), based on management history data obtained via local experts. Only the
changes in canopy cover clearly differed among the management intensity categories, with the strongest
canopy cover increases where management intensity decreased (Appendix A3.9). Inspection of the
changes in frequency and cover of the ten most frequent tree and shrub species in the new survey revealed
that the increasing importance of shade-casting species is mainly due to the increases of Acer
pseudoplatanus, Carpinns betulus and Fagus sylvatica. The increased litter quality is mainly related to increases
of Acer campestre (Appendix A3.8). These four tree species are all shade tolerant late successional species,
which indicates that SCA and litter quality increases are probably related to processes of natural

succession with time.

3.3.4.3. Regional-scale drivers of change

At the regional scale, we were interested in the effect of two global climatic drivers and a eutrophication
driver on the herb layer composition. We calculated the rate of change of mean annual temperature
(AMAT) and De Martonne aridity index (AAridity) as the difference between the new and the old
survey, divided by the number of years between surveys. To derive the mean annual temperature and
aridity index at both survey times, we averaged annual values for the 10 years preceding the survey (as

per Bernhardt-Romermann et al.,, 2015; Perring, Bernhardt-Romermann, et al., 2018). We extracted
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temperature and precipitation data from the Climate Research Unit (CRU TS v. 4.02; 0.5° resolution)
(Harris et al., 2014). The De Martonne aridity index is one of the best known and widely used aridity
indices in applied climatology (Croitoru et al., 2013; Hrnjak et al., 2014), and is calculated as follows (De
Martonne, 1925):

Prec

AridityDM = m

Equation 3.2

with ‘MAT’ the mean annual temperature (°C) and ‘Prec’ the annual amount of precipitation (mm). A
lower value of Ariditypm represents drier conditions. The mean annual temperature increased in all
regions in between surveys, with an average increase of 0.026°C (£ 0.002) per year across all regions
(Table 3.1). The De Martonne aridity index increased in some and decreased in other regions, with no

significant overall trend across regions (Table 3.1).

We compiled data on nitrogen (N) deposition for the year 2000 from the EMEP database
(http://www.emep.int), which allows deposition data for the whole of Europe to be derived with a
resolution of 50 km x 50 km. We applied correction factors from Dupre et al. (2010) to obtain N
deposition values for each year in between surveys, and then calculated the average annual rate of
nitrogen deposition (Ndep) as the cumulative amount of N deposition in between surveys divided by
the number of years between surveys. We used the mean value across plots per region for each global-
change driver for our analyses. The average N deposition rate between surveys was 15.70 kg N ha' (&

1.22) per year (Table 3.1).

3.3.5. Statistical analyses

We performed all statistical analyses and visualizations in R version 3.6.0 (R Core Team, 2019) with the
packages ‘vegan’, ‘nlme’, ‘MuMIn’, ‘ggplot2’, and ‘sjPlot’ (Barton, 2019; Liidecke, 2019; Oksanen et al.,
2019; Pinheiro et al., 2019; Wickham et al., 2019).

To check our expectation that initial species pools (at the time of the first survey) between ancient and
recent forests were similar, we conducted a permutational multivariate analysis of variance
(PERMANOVA) using Bray-Curtis dissimilarities with 999 permutations (based on abundance data; Bray
& Curtis (1957)). We visualized the compositional differences in the herb layer with nonmetric

multidimensional scaling (NMDS).

To check our expectation that Olsen P concentrations differed between ancient and recent forest plots,
we performed linear mixed-effect modelling, including land-use history as a fixed effect and region as a

random effect.

We used linear mixed-effect modelling to test which explanatory variables are significantly affecting the

chosen response variables. We standardized (scaled and centred) all continuous explanatory variables
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prior to analysis to enable comparison of their effect sizes. We applied a logarithmic transformation on
‘Olsen P’ and ‘Plot size’ to improve normality. To detect possible multicollinearity among the explanatory
variables, we calculated variance inflation factors (VIF) according to Zuur et al. (2009). VIF values were

very low (<2), indicating low collinearity.

For each response variable, we fitted a linear mixed-effect model with the following explanatory variables

as fixed effects (see 3.3.4. Explanatory variables’ for abbreviations):

Response variable ~ LUH + Soil type + In(Olsen P) + EIVe + In(Plot size) + RRec + RRsea + RRig +
AMAT + AAridity + Ndep + LUH:RRcc + LUH:RRsca + LUH:RR + LUH:AMAT + LUH:AAridity
+ LUH:Ndep + (1| Region) 3)

where ‘(1| Region)’ represents the inclusion of a random effect term ‘region’ with varied intercepts only
to account for the hierarchical structure of the data. We also incorporated ‘region’ as a weights term, i.e.
we controlled for heterogeneity in residual spread. With ANOVA, we confirmed that both the random
effect term and the weights term significantly (alpha = 0.05) improved the model for each response
variable. All models were fit with restricted maximum likelihood (REML). We found no clear patterns in
the residuals for each model, based on graphical evaluation (Zuur et al., 2009). We report estimates and
95% confidence intervals for each explanatory variable in each model. We calculated the marginal and
conditional R? for each fitted model, representing the variance explained by fixed factors and the variance

explained by both fixed and random factors, respectively (MuxMIn package; Nakagawa et al., 2013).

3.4. RESULTS

3.4.1. Land-use legacies

Species pools at the original survey time were similar for ancient and recent forests in most regions. We

only found significantly different species pools in two regions (Skane and Wales) (Appendix A3.10).

Overall, Olsen P concentrations were significantly higher in recent forests than ancient forests (p = 0.040)
(Appendix A3.11), but there were unexpected trends for some regions (Tournibus, Wales and Wytham
Woods), with higher Olsen P levels in ancient than recent forests (although not significant). These regions
with unexpected patterns in P soil concentrations are characterised by a low P nutrient supply in

agriculture (Bomans et al., 2005), so that we can assume a low agricultural intensity in these regions.

The canopy’s shade-casting ability was significantly higher in ancient forests than in recent forests, both

at the time of the original (p = 0.004) and the new survey (p = 0.004) (Appendix A3.14).
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3.4.2. Biodiversity and functional changes

For species richness and Shannon diversity, we observed significant increases or decreases over time in
a few regions, but no overall trend across the regions (Fig. 3.1A and 3.1B). Species evenness on the other
hand, increased significantly across all regions, with decrease observed only in one region (Fig. 3.1C).
The total cover of the herb layer decreased significantly between surveys in 14 out of 19 regions and
across all regions (Fig. 3.1D). We found no significant temporal trends across regions for the community
weighted mean trait values of plant height and specific leaf area (SLA) (Fig. 3.1E and 3.1F), although it
seems that for plant height, the lack of an overall trend is mainly caused by one region (Warburg Reserve)
(Fig. 3.1A). Excluding the plots in Warburg Reserve from the dataset resulted in an overall significant
increase in plant height across regions. The response ratio of species richness was positively correlated
with both the response ratio of Shannon diversity (r, = 0.71; p < 0.001) and total herb cover (r, = 0.53;
p < 0.001). The response ratios of evenness and total herb cover were negatively correlated (r, = -0.67;

p < 0.001) (see Appendix A3.12 for overview of correlations between response variables).

3.4.3. Potential (interactive) drivers of biodiversity and functional

changes

We found no significant interactive effects for the three biodiversity measures (Fig. 3.2). Olsen
phosphorus (P) was the only significant predictor for both the changes in species richness (RRsr) and
Shannon diversity (RRpwv), with a positive effect on both response variables (Fig. 3.2). For the changes
in species evenness (RReven), we found that land-use history and the shade-casting ability (RRsca) of the
canopy were significant predictors. The response ratio of species evenness was higher in ancient forests

than in recent forests, and in plots with higher response ratio of the canopy’s shade-casting ability (Fig.

3.2).

For the change in the total herb cover (RRcover), we found significant interactive effects between land-
use history and four drivers of change, i.e. the rate of N deposition (Ndep) (p < 0.001), the rate of change
in mean annual temperature (AMAT) (p = 0.0006), the response ratio of canopy cover (RRcc) (p = 0.0006),
and the response ratio of shade-casting ability (RRsca) (p = 0.015) (Fig. 3.2). In ancient forests, the
response ratio of the total herb cover (RRcovrr) was negatively affected by Ndep, RRcc and RRsea (Fig.
3.3A, 3.3C and 3.3D), but it was not affected by AMAT (Fig. 3.3B). In recent forests, Ndep, RRec and
RRsca had no or a slightly positive effect on RRcover (Fig. 3.3A, 3.3C and 3.3D), while AMAT had a
negative effect on RRcover (Fig. 3.3B).

For the change in community weighted mean plant height (RRuricnr), we found significant interactive

effects between land-use history and the response ratio of canopy cover (RRcc) (p < 0.001) (Fig. 3.2). In
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ancient forests, RRcc had a negative effect on RRugiur, while no clear effects were found in recent forests

(Fig. 3.3E).

For the change in community weighted mean SLA (RRsia), we found significant interactive effects
between land-use history and the response ratio of canopy cover (RRcc) (p = 0.020), the response ratio
of shade-casting ability (RRsca) (p = 0.001) and AAridity (p = 0.045) (Fig. 3.2). In ancient forests, RRcc
and RRsca had a positive effect on RRsia. In recent forests, RRec had no effect on RRsia, and RRsca had a
negative effect on RRsia (Fig. 3.3F and Fig. 3.3G). Differences in RRsia responses to AAridity between
ancient and recent forests were very minor (Fig. 3.3H), and therefore, this only just significant interactive

effect will not further be discussed.

The amount of variation explained by the model (reflected by marginal R? (R*?m) values; Fig. 3.2) was
low for the response ratios of species richness (0.16), Shannon diversity (0.11), species evenness (0.13)
and total herb cover (0.17), but quite high for the response ratios of the functional traits ‘height’ (0.41)
and ‘specific leaf area’ (0.30). The conditional R* (R%*c) was generally much higher than R’m (see Fig.
3.2), indicating that much of the variation in the response variables can be explained by the random effect

term ‘region’.
3.4.4. Forest specialists and graminoids

Across all regions, both the proportion of forest specialists (FS) and graminoids (GRAM) did not
significantly change between surveys. RRgs increased with increasing canopy cover, but on/y in ancient
forests, while no relation was found in recent forests. RRgram decreased with higher Olsen P and

decreased with higher Ellenberg indicator values for soil moisture (Appendix A3.6).
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Figure 3.1. Temporal shifts in observed: species richness (SR) (A), Shannon diversity (DIV) (B), species evenness (EVEN)
(C), total herb layer cover (COVER) (D), community-weighted mean (CWM) plant height (HEIGHT) (E) and community-
weighted mean (CWM) specific leaf area (SLA) (F) across all regions (red triangle) and for the 19 regions separately
(black dots). Mean (+ 95 % confidence interval) log response ratios (RR = In (Xnew/Xoig)/At) are shown based on the

observed plot values in the old (Xois) and new (Xnew) Survey. “*' indicates a significant change, with confidence intervals
excluding zero. The region labels refer to Table 3.1.

RRygiaur £ 95% C.I.
RRgLa + 95% C.I.
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Biodiversity changes

Functional changes
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RRLQ # RR Species evenness
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R2m=0.11 ;R%=0.36
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P RR Specific leaf area
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RR Herb cover
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Estimates Estimates

Figure 3.2. Estimates and 95% confidence intervals for each explanatory variable in the six models that were fitted
for the six different response variables listed in the legend. Non-significant effects (with confidence intervals including
zero) are transparent. Marginal R? (R?m) and conditional R? (R%c) of each model are provided in the legend. RR = log
response ratio (In (Xnew/Xo1a)/At), LUH = land-use history; RF = recent forest; Ndep = nitrogen deposition; MAT = mean
annual temperature, CC = canopy cover; SCA = shade-casting ability of the canopy; LQ = litter quality, EIV-F =
Ellenberg indicator value for soil moisture. See Appendix A3.13 for table with full model results.
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Interactive effects on herb cover changes
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Figure 3.3. Interactive effects on total herb cover change (RRcover) (A-D) between land-use history and rate of nitrogen
deposition (A), rate of change in mean annual temperature (B), canopy cover change (RR canopycover) (C) and shade-
casting ability change (RRsca) (D). Interactive effects on community-weighted mean (CWM) plant height change
(RRueirt) between land-use history and canopy cover change (E). Interactive effects on CWM specific leaf area (SLA)
change (RRs.s) (F-H) between land-use history and canopy cover change (F), shade-casting ability change (G), and De
Martonne aridity index change (H). Fitted values (dots) and average model estimates of the effects (full lines) with
95% confidence intervals (shading), in which the values of the other continuous variables were set at their observed

mean and the factor ‘soil type’ was set at its reference level (‘ClayCarb’), are shown.
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3.5. DISCUSSION

Our results confirmed the first part of our hypothesis, i.e. biodiversity and functional herb layer responses
to environmental changes depend on land-use history. The second part of our hypothesis, i.e. herb layers
in recent forests respond more strongly to environmental changes likely because of higher phosphorus
availability, was only confirmed for warming, which mainly affected the herb cover in recent forests. In
contrast, ancient forest herb layers were more sensitive to decreased light availability and increased
nitrogen deposition than recent forests. Overall, canopy cover and composition seemed to be the main
factors controlling herb layer changes over time. Not only differences in P levels, but also differences in
the canopy’s shade-casting ability between ancient and recent forests played a key role in explaining the

dependencies of the herb layer responses on land-use history.

3.5.1. Land-use history and light availability interactions drive

biodiversity and functional responses of the herb layer

Across our study regions, the total cover of the herb layer decreased over time, likely indicating lower
understorey biomass production, which can affect several functions of the understorey, such as nutrient
cycling through decreased retention of nutrients (Landuyt et al., 2019). Petzold et al. (2018) attributed
their findings of decreased herb cover to a reduced management intensity. In ancient forests, our findings
conform with Petzold et al. (2018), as increasing canopy cover due to reduced management intensity, as
well as increasing shade-casting ability resulted in a decrease in total herb cover, which can be explained
by a lower light availability and possibly also an increased belowground competition for nutrients and
water (Ammer & Wagner, 2002). Surprisingly, in recent forests, stronger increases in cover and shade-
casting ability of the canopy seemed to have no effect on cover changes of the herb layer, or even slightly

reduced the intensity of cover decline.

In the ancient forests, we could relate the stronger decreases in herb cover with increasing canopy cover
to an increase in the share of forest specialists (Heinken et al., 2019) in the community (Appendix A3.6).
Hence, herb cover losses in ancient forests were mainly caused by the disappearance of species that
typically occur in forest openings and cannot withstand very dark closed forest conditions. This
observation is in accordance with findings of Penone et al. (2019), who found a negative effect of
increased canopy cover on vascular plant abundance in the understorey, but a positive effect on
specialisation. In the recent forests however, there were no clear shifts in the share of ‘closed forest
species’ with increasing canopy cover or shade-casting ability. Hence, those species that disappeared in
the ancient forest plots that became darker seemed to survive in recent forest plots despite the increased
shade levels, suggesting that nutrient availability can alter plant species responsiveness to light availability.

Ellenberg (1939) already showed that many herb layer species need a higher nutrient supply to compete
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successfully with other species under darker conditions. Also Heinken (1995) observed an interaction
between nutrient and light availability on the herb layer cover, with nutrient-rich sites having similar herb
cover, regardless of light availability, while nutrient-poor sites had much lower cover values under darker
conditions. In a recent study, Gilliam (2019) also demonstrated the interaction between nutrient and light
availability in the herb layer of temperate forests, where he found that increased nutrient availability
caused a shift in factors controlling herb layer dynamics from variation in soil resources to variation in

canopy structure.

The idea that the shade-tolerance spectrum of plants is wider on nutrient-rich sites than on nutrient-poor
sites was also suggested by Coomes et al. (2009), and is consistent with the hypothesis that species cannot
be simultaneously tolerant to multiple environmental stress factors (Niinemets & Valladares, 2006b).
Hence, species in recent forest plots, with higher nutrient availability, are potentially more tolerant to
darker conditions. A possible mechanistic explanation for this phenomenon is that on richer soils, plants
need to allocate fewer resources to roots and below-ground processes when nutrients are plentiful and
can therefore allocate more nutrients to their leaves (Tilman, 1988; Whitehead et al., 2002), resulting in a
higher photosynthetic capacity (Field & Mooney, 1986) and allowing plants to grow under lower light
levels. In addition, belowground competition for nutrients, which is expected to increase with canopy
cover (e.g. Ammer & Wagner, 2002), could also explain the higher tolerance of the herb layer to increased

canopy cover in the recent forests, where nutrient availability is higher compared to ancient forests.

Coomes et al. (2009) also relate nutrient-rich soils to increased plant species richness, because such soils
can support both fast-growing light-demanding species and slow-growing species that tolerate deep
shade, resulting in a greater range of shade-tolerance niches among species on nutrient-rich soils. This
might explain the positive effect of Olsen P concentration on both species richness and Shannon diversity
that we found. For these biodiversity measures, land-use history was however not important, which
suggests that the interactive effects of land-use history and light-availability on the herb cover might
additionally be related to other differences (other than nutrient availability) between ancient and recent
forests. One such difference is the overall lower shade-casting ability in recent forest plots. Hence, it
could be that in recent forests, although shade-casting ability increased in general, shade levels have not
yet reached threshold levels at which herb cover starts to decline, because of the lower starting levels of

shade-casting ability.

The higher overall shade-casting ability values in ancient forests compared to recent forests could also
explain the observed interactions between climate warming and land-use history on the herb cover: cover
declines in response to warming were only found in recent forests. The forest canopy can buffer plant
responses to macroclimate warming (De Frenne, Rodriguez-Sanchez, et al., 2013), with stronger
microclimatic cooling effects beneath canopies with higher shade-casting ability (Zellweger et al., 2019).

The lower water holding capacity typically found in recent forest soils, in contrast to the well-developed
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ancient forest soils with thicker O- and A-horizons, could reinforce the susceptibility of the recent forests’
herb layer to climate warming (Greiffenhagen et al., 2006; Von Oheimb et al., 2014), as warming decreases
water availability through enhanced evapotranspiration (Rind et al., 1990). Moreover, following the
optimal resource partitioning theory, in which plants allocate less carbon to roots with increasing nutrient
availability, we can expect plants in recent forests to develop less roots and therefore be more sensitive

to the drier conditions associated with climate warming (Mausolf et al., 2018; Thornley, 1972).

Reduced light availability because of increased shade-casting ability was also correlated with the overall
increase in species evenness. Lower light levels at the forest floor reduces the dominance of fast-growing,
competitive, light-demanding species (Honnay et al., 2002). Therefore, evenness can be expected to
increase with increasing shade, as the limited availability of light will reduce competitive exclusion by a
few dominant light-demanding species, and will favour more shade tolerant species. This shade-induced
loss of dominant competitive species with typically high cover values also explains the negative
correlation between total herb cover and evenness. Litter quality was never an important predictor in the
models, supporting our idea that canopy changes are mainly affecting the herb layer composition through
altering light availability (controlled by canopy cover and shade-casting ability) rather than soil conditions

(controlled by litter quality).

Across our 19 study regions, neither the community weighted mean (CWM) values for plant height nor
specific leaf area (SLA) exhibited a clear directional change between surveys (although plant height would
show a general increase when excluding one region, i.e. Warburg reserve (WR)). The investigated
functional traits did not show relationships with climate change and increased N deposition. Instead, the
functional composition of the herb layer again seemed to be mainly driven by interactions between land-
use history and changes in canopy cover (reflecting management changes) and shade-casting ability. In
ancient forests, we could relate increased shade to herb layer communities with lower mean plant height
and higher mean specific leaf area (SLA), characteristics associated with the shade tolerant forest
specialists that gained importance in ancient forests. As these forest specialists did not increase in recent
forests, the absence of clear height and SLA responses to increased shade in these forests is not surprising.
Another compositional feature of the herb layer that we assessed was the share of graminoids in the
community, as we expected this to be related to SLA changes given the typically lower SLLA of graminoids
compared to forbs (Scharfy et al., 2011; Vile et al., 2005). The importance of graminoids did however not
change significantly across our study regions, and a correlation between graminoid cover proportion and
SLA was not confirmed. In contrast to previous studies across spatial gradients at a single point in time
(e.g. De Frenne, Graae, et al., 2013), we did not find an increasing importance of taller plants with lower
SLA with increasing temperatures, likely because the increased shade levels can attenuate herb layer

responses to warming (De Frenne et al., 2015).
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When resurveying quasi-permanent plots, observer and relocation errors are non-negligible, (Verheyen
et al., 2018). However, changes in community properties can still be detected when a sufficiently large
number of plots are combined, as in our study. Moreover, Kopecky and Macek (2015) demonstrated that
resurveys are robust to uncertainty in original plot location and, when done propetly, provide reliable
evidence of decadal changes in plant communities. To minimize the observer error, we performed all
resurveys with a team of minimum two researchers (Verheyen et al., 2018). Relocation errors might be
present in regions where plots were not permanently marked, although for many regions, the available
maps and coordinates were supplemented with photographs, schemes and elaborate field descriptions
(Appendix A3.1), which should minimize these relocation errors. In addition, whenever possible, we

received help from the original surveyor with plot relocation.

3.5.2. Herb covers of ancient and recent forests differ in their

sensitivity to warming and N deposition

Increased N deposition was related to decreased herb cover, but only in ancient forests, while stronger
warming was related to decreased herb cover only in recent forests (Fig. 3.3A and 3.3B). This suggests
that herb layers in ancient forests are more sensitive to N deposition, while herb layers in recent forests
are more sensitive to warming. As explained above, the stronger response of recent forest herb covers to
warming is likely related to the lower microclimate buffering by canopies with lower shade-casting ability,
compared to ancient forests. The loss of herb cover with increased N deposition is typically related to
the acidifying effect of nitrogen, which is detrimental for the survival of many (herb) species (Tian &
Niu, 2015). This can however not explain the distinct herb cover responses to N deposition between
ancient and recent forests, as pH values were very similar for both land-use categories, and hence we
would not expect ancient forest soils to enter the toxic aluminium buffer range (pHizo < 4.2 sensu Ulrich,
1991) sooner than recent forests. Further (experimental) research is required to understand and confirm

the underlying mechanism(s) to these, and our other, observations.

3.5.3. Relating biodiversity and functional changes

Our results suggest that there is neatly no overlap in potential drivers of biodiversity and functional
responses of the herb layer. Only the response in total herb cover and species evenness (independent
from species richness) share one potential driver, i.e. shade-casting ability. Indeed, we also found negative
correlations between these two response variables (total herb cover and species evenness). Over time,
the total herb layer cover has declined in the temperate European forests that were studied, and the
communities have become more even in the abundance of their species. This suggests that the decline in
cover is mainly related to a reduced cover of one or more dominant species, and the overall decreased

shade-casting ability seems to be the main potential driver of this observation.
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3.6. SYNTHESIS

Herb layer community changes in response to environmental alterations differed between ancient and
recent forests. These observations confirm our idea that land-use history should not be overlooked in
global change studies. Light availability, related to canopy cover and composition, was the most important
environmental driver for functional changes and changes in species evenness in the herb layer. Increased
shade had the strongest effect on herb layers in ancient forests, where shade-tolerant forest specialists
gained importance, while light-demanding competitive species disappeared, resulting in lower cover,
higher species evenness, increased specific leaf area and decreased plant height. In recent forests, effects
of increased shade on the herb layer were smaller, which we attribute to: (1) higher shade tolerance of
light-demanding species when nutrient levels are higher as a legacy of former agricultural use, and (ii)
lower initial shade levels in recent forest, which therefore might not yet have reached critical light levels
at which communities start responding. On the other hand, the herb layer cover in recent forests was
more responsive to increased temperatures, compared to ancient forests, which we could again relate to
canopy properties: communities in ancient forests are likely more buffered to macroclimate warming due

to the overall higher shade-casting ability of the canopy.

In general, there seems to be a disconnect between biodiversity and functional responses of the herb
layer to environmental changes, and therefore, assessing both types of responses is key to get a more

complete understanding of the possible impact of global change on the forest herb layer.
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Evaluating structural and compositional
canopy characteristics to predict the light-
demanding signature of the forest
understorey in mixed, semi-natural

temperate forests
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Chapter 4

4.1. ABSTRACT

Light availability at the forest floor affects many forest ecosystem processes, and is often quantified
indirectly through easy-to-measure stand characteristics. We investigated how three such characteristics,
basal area, canopy cover and canopy closure, are related to each other in structurally complex mixed
closed-canopy forests, and how well they can predict the light-demanding signature of the forest
understorey (estimated as the mean Ellenberg indicator value for light (‘EIViicur’) and the proportion of
‘forest specialists’ within the plots (“%FS’)). Furthermore, we asked whether accounting for the shade-

casting ability of individual canopy species could improve predictions of EIViigur and %FS.

In 192 study plots from nineteen temperate forest regions across Europe, we measured stand basal area
(all stems > 7.5 cm diameter), canopy closure (with a densiometer) and visually estimated the % cover of
all plant species in herb (<1m), shrub (1-7m) and tree layer (>7m). We used linear-mixed effect models
to assess the relationships between basal area, canopy cover and canopy closure. We performed model
comparison, based on R* and AIC, to assess which stand characteristics can predict EIViigur and %FS

best, and to assess the importance of the canopy’s shade-casting ability.

Canopy closure and cover were weakly related to each other, but showed no relation with basal area. For
both EIViicur and %FS, canopy cover was the best predictor. Including the share of high shade-casting

species in both the basal area- and cover model improved the model fit for EIViigur, but not for %FES.

The typically expected relationships between basal area, canopy cover and canopy closure were weaker
or even absent in structurally complex mixed closed-canopy forests. In these forests, easy-to-measure
structural canopy characteristics were weak predictors of the understorey light signature, but accounting

for compositional characteristics could improve predictions.

4.2. INTRODUCTION

Light availability at the forest floor is a crucial environmental factor for many forest ecosystem processes.
Light is a key resource for the growth and survival of forest understorey plant species (Plue et al., 2013),
and affects conditions and processes including the forest microclimate (Gray et al., 2002; Ritter et al.,
2005), plant community assembly and diversity (Bartemucci et al., 2006; De Frenne et al., 2015; Jelaska
et al., 2000), tree regeneration (Beaudet & Messier, 1998; Kobe et al., 1995; Lin et al., 2014), and litter
decomposition (Hobbie et al., 2006). Several studies, focusing on forest understorey trajectories under
global change in temperate forests, concluded that light availability has a major impact on the understorey
composition (e.g. De Frenne et al., 2015). In a full-factorial experiment on herbaceous communities,
Blondeel et al. (2020) found that light, rather than global-change drivers (nitrogen deposition and

warming) or past land use, determined development trajectories of forest understorey communities over
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a period of three years. In our resurvey study in temperate oak forests in South Sweden (Chapter 2), we
concluded that light dynamics due to management practices play a key role in shaping the understorey

composition development.

This clear importance of light availability for the forest understorey composition suggests that forest
management, affecting stand structural attributes, may play a crucial role in controlling understorey
development in times of global change. Therefore, in our study, we aim to relate stand structural attributes
to the ‘light-demanding signature’ of the understorey. Stand structural attributes are widely used in forest
ecology as proxies for light availability (see Angelini et al. (2015) for a review), especially because direct
measurements of light availability at the forest floor are typically costly and time-consuming (Brown et
al., 2000). In addition, in vegetation resurvey studies, which provide a unique opportunity to estimate
vegetation and environmental changes over the past decades (Kapfer et al, 2017), values of light
availability at the forest floor in the past (e.g. at the time of the original survey) are typically not available,
and light levels need to be estimated from stand or tree characteristics that were recorded. The light-
demanding signature of the understorey can, for instance, be quantified through calculating the
community’s mean Ellenberg indicator value for light availability. Ellenberg indicator values indicate
species preferences in their fundamental niche, which may characterize the environment in the absence
of directly measured variables (Diekmann, 2003). Alternatively, other indicators such as the relative
abundance of species restricted to forests vs. species also occurring in the open landscape could provide

insight in the light-demanding signature of the understorey (e.g. Heinken et al., 2019).

We focus on three easy-to-measure stand characteristics that can provide indirect estimates of light
availability at the forest floor (Parker, 2014). The first one is stand basal area, which can be obtained
through various methods, such as field measurements of tree diameter at breast height (e.g. Balandier et
al., 2006; Sonohat et al., 2004), measurements with an angle prism (Parker, 2014), and LiDAR techniques
(light detection and ranging) (Thomas, Oliver, Lim, & Woods, 2008). Secondly, canopy cover, defined as
the proportion of ground surface covered by the vertical projection of tree crowns, can be obtained from
visual estimation with or without instruments (e.g. a sighting tube), or from aerial photographs (Jennings
et al., 1999). Thirdly, canopy cosure is defined as the proportion of the sky hemisphere obscured by
vegetation when viewed from a single point (Jennings et al., 1999). Canopy closure in forests is typically
measured with hemispherical photography (e.g. Jelaska et al., 2006; Sercu et al., 2017, Gray et al., 2002).
A commonly used alternative is the use of a spherical densiometer (Lemmon, 1957), a handheld device
where the number of open squares on a convex mirror surface is recorded (e.g. Lieffers et al., 1999; Plue
et al., 2013). Several studies demonstrated that densiometer measurements are a reliable alternative for
estimating light availability below the canopy, compared to hemispherical photography (Bellow & Nair,
2003; Parker, 2014).
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For the three stand characteristics described above, strong relations with light transmittance have been
found in even-aged, homogeneous stands with relatively regular spatial distribution of trees (e.g. Balandier
et al., 2000; Parker, 2014; Sonohat et al., 2004). However, relationships might be more complex in semi-
natural, uneven-aged, mixed, heterogeneous stands with multiple structural layers. The amount of light
transmitted by a tree can vary considerably among different species, partly because of their light-
interception strategies (Angelini et al., 2015; Leuschner & Ellenberg, 2017; Montgomery & Chazdon,
2001). For example, Perot et al. (2017) applied species-specific light extinction coefficients to account for
the canopy composition when modelling light at the forest floor in oak-pine mixed stands. Hence, stands
with similar basal area or canopy cover can have different light levels at the forest floor, depending on
the shade-casting ability of the constituent tree species. Additionally, in structurally rich stands,
interactions between different layers of the canopy (e.g. tree layer and shrub layer) will ultimately

determine the light availability at the forest floor (Sercu et al., 2017).

For this study, we used measurements from 192 plots across 19 regions in temperate European forests,
characterized as mixed, semi-natural, closed-canopy forests with a well-developed vertical structure (i.e.
the presence of both trees and shrubs with varying heights). Within regions, plots generally had similar
tree species in their canopy, but with varying density-levels due to varying management intensities.

Among regions, plots differed in their main constituent canopy species. We aimed to:

@) assess the relationships between stand basal area, canopy cover and canopy closure;

(i) compare how well stand basal area, canopy cover and canopy closure can predict the light-
demanding signature of the understorey;

(i)  assess the importance of including the shade-casting ability of individual canopy species to

improve predictions of the light-demanding signature of the understorey.

4.3. METHODS

4.3.1. Study site

We selected 192 forest plots, spread across 19 temperate forest regions in Europe (Fig. 1.1A, Table 4.1).
The plot selection was part of a vegetation resurvey project on understorey community responses to
global change and land-use history across European forests (ERC-project PASTFORWARD,
http:/ /www.pastforward.ugent.be/). All plots comprised semi-natural, mixed, closed-canopy forests
with a variable tree and shrub layer composition. Plots were predominantly composed of broadleaved
species, but a higher occurrence of coniferous species in the easternmost regions with a hemiboreal

climate was unavoidable. The five most frequent canopy species across all plots wete Quercus robur/ petraea
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(110/192 plots), Fagus sylvatica (78/192 plots), Corylus avellana (71/192 plots), Fraxinus excelsior (69/192
plots) and Carpinus betulus (64/192 plots) (see Appendix A1.2 for an overview of the shrub and tree layer
composition of all plots). Within the constraints of plot selection (information on land-use history and a
prior understorey vegetation survey were required within the larger project), we tried to minimize
differences in parent material and topography among plots. Plots differed in their land-use- and
management history: 57 plots were located in recent (post-agricultural forests) and 135 plots in ancient
forest (continuously forested since at least 1810). The timing of afforestation of the recent forest sites
ranged from 1810 to 1970, but with the majority (47/57) afforested before 1930. 79 out of the 192 plots

had a history of coppice(-with-standards) management (see Table 4.1).

After we located the centre of the plot, we established a 10x10-m? plot, and a 20x20-m? plot with the
same central point. In the 10x10-m? plot, we carried out a vegetation survey, with two surveyors visually
estimating and then agreeing on the percentage cover of each vascular plant species in three different
layers: herb layer (< 1 m), shrub layer (1-7 m) and tree layer (> 7 m). All measurements were done in

May/June 2015/2016.
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Table 4.2. Main canopy characteristics and understorey light signature of the 19 forest regions. Overview of the 19 forest regions, their number of plots, their land-use history
(AF = ancient forest), their management history (CWS = coppice-with-standards) and their mean values and ranges (in parentheses) of canopy closure, canopy cover, basal
area, proportion of the cover occupied by high shade-casting species, mean Ellenberg indicator value (ElVicHT) and percentage of forest specialists in the total herb species

pool.
Nr. of Mean (range) cover

Total Nr.of plots with proportion of high

nr.of AF C(ws) Mean (range)  Mean (range) shade-casting Mean (range) Mean (range) Mean (range) %
ID Region, Country plots plots history canopy closure canopy cover species basal area EIVught forest specialists

() () () (%) (%) (%) (m? ha™) () (%)
BI Bialowieza, PL 15 15 0 85.0(70.0-95.6) 77.0(48.1-91.9) 80.2(36.2 - 100) 39.5(23.2-64.4) 4.1(3.6-4.5) 78 (67 - 90)
BS Braunschweig, Ge 10 5 7 80.4(73.0-93.1) 78.8(65.8-90.4) 1.7(0.0-12.0) 26.5(17.5-41.3) 52(4.7-6.2) 35 (0 - 50)
BV  Binnen-Vlaanderen,Be 9 4 4 80.6(72.8-90.4) 75.0(16.4-94.2) 19.4(0.0-52.8) 33.7(17.4-64.9) 5.0(4.2-5.6) 36 (14 - 67)
CO  Compiégne, Fr 10 10 0 83.4(65.3-94.8) 77.1(22.5-97.2) 79.9(39.8-100) 23.4(10.0-46.9) 5.2(4.4-5.8) 44 (14 - 60)
DE  Devin Wood, CZ 10 3 3 84.0(67.8-96.9) 67.9(44.9-88.0) 37.5(0.0-78.0) 32.1(14.2-53.5) 4.5(3.7-5.6) 55 (31 - 68)
GO Gottingen, Ge 10 10 10 89.4(83.6-94.8) 87.1(69.9-96.6) 84.1(50.4-98.5) 33.5(18.5-47.9) 3.2(2.6-3.8) 88 (72 - 100)
KO  Koda Wood, CZ 10 10 7 92.7(79.6-95.8) 75.2(41.7-90.8) 47.0(4.8-76.2) 34.6(249-47.2) 4.7(4.2-5.2) 60 (50 - 72)
LF Lyons-la-forét, Fr 10 10 0 82.7(62.1-93.1) 79.9(55.0-98.7) 96.2(78.4 - 100) 21.1(12.3-29.0) 4.3(3.6-5.1) 71 (39 - 89)
MO  Moricsala, LV 8 5 0 74.2 (48.0-95.4) 67.0(41.4-94.1) 39.1(0.0-91.0) 34.8(21.8-46.4) 4.2(3.8-4.8) 72 (60 - 82)
PR Prignitz, Ge 10 5 0 80.1(63.2-94.8) 72.6(49.9-95.0) 31.5(0.0-100) 46.2(19.3-78.3)  4.6(3.6-5.8) 51 (21 - 75)
SH  Schleswig-Holstein, Ge 10 5 0 88.1(80.0-95.0) 82.0(15.0-97.0) 92.4(75.5 - 100) 40.6 (24.8-71.7) 3.9(3.0-4.8) 73 (33 - 100)
SK  Slovak Karst, SK 10 10 10 90.9 (84.4-96.5) 84.0(68.9-98.6) 55.0(44.9-67.9) 33.7(25.5-49.1)  4.4(3.7-4.8) 51 (35 - 75)
SKA  Skane, Sw 10 8 0 80.1(61.7-98.5) 71.5(50.0-92.7)  32.3(0.0- 100) 34.0(10.2-59.1)  4.5(3.5-5.3) 61 (37-92)
SP  Speulderbos, NI 10 5 5 90.2 (81.9-95.8) 78.9(38.6-98.0) 72.7(21.7 - 100) 25.0(16.5-40.3) 5.3 (4.5-6.0) 2(0-12)
TB  Tournibus, Be 10 5 10 86.3(71.9-95.2) 89.8(80.0-95.9) 23.3(2.5-51.2) 29.2(19.5-38.3) 4.5(4.1-5.0) 58 (41 - 80)
w Wales, UK 10 5 5 67.8(51.3-91.9) 56.4(22.8-77.7) 53.0(7.4-96.8) 28.9(13.5-38.3) 4.5(3.2-5.6) 52 (26 - 83)
WR  Warburg Reserve, UK 10 5 5 66.4 (27.4-89.4) 89.8(76.4-96.5)  45.4 (0.0 - 95.0) 31.3(19.9-43.0) 3.9(2.5-4.5) 69 (50 - 100)
WW  Wytham Woods, UK 10 5 5 57.8(34.7-75.6) 68.3(38.3-97.0) 10.3(0.0-55.7) 20.7(10.7-38.9) 4.8(4.3-5.6) 51 (30 - 64)
ZV. Zvolen, SK 10 10 8 86.4 (72.3-96.9) 76.4(47.4-91.2) 24.9(0.0-66.7) 37.9(29.4-44.7) 4.7(3.0-5.8) 47 (14 - 100)
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4.3.2. Light-demanding signature of the understorey

We derived two different variables that reflect the light-demanding signature of the understorey. First,
we calculated the mean Ellenberg indicator value for light (EIVwiicur) (Ellenberg et al., 1992).
Ellenberg indicator values indicate species environmental preferences in their fundamental niche
(Diekmann, 2003). EIVicur ranges from 1 (species can grow in very deep shade and rarely occurs in
more open conditions) to 9 (species only occurs in open conditions). Second, we calculated the
proportion of species typically related to closed forests (further on referred to as the proportion of
‘forest specialists’ (FS)). We classified each species in our dataset as either a forest specialist (FS) or
not, according to the recently published dataset of Heinken et al. (2019). This dataset presents a
comprehensive list of vascular plant species occurring in forests for 24 geographical regions across
Western, Central and Northern Europe, assigning each species to one of four different groups with
different degrees of association with forests (i.e. as an indication for the habitat preference). The forest
specialists (‘1.1 species’) are the species most strongly associated to closed forests. We used the regional
species classification relevant for each study region, as some species are classified as ‘forest specialist’ in
some regions, but not in others. Both variables were based on the ‘strict’” herb layer, containing only the
herbaceous species, and excluding tree seedlings and shrub species, because the latter often do not survive
more than one growing season as they germinate independent of suitable site conditions (Yan et al.,
2015). Moreover, light requirements of tree species can differ between the seedling and adult stage

(Valladares et al., 20106) (see Appendix A3.5 for species lists).

To calculate both the mean EIViicur and the proportion of forest specialists of the herb layer community
in each plot, we used presence/absence data. According to Diekmann (2003), the results using
presence/absence data should not differ much from the results based on abundances, but most
researchers prefer using presence/absence data reasoning that a species’” abundance is not only dependent
on environmental site conditions, but also on its specific growth form. Hence, mean EIVycur of each
plot was calculated as the sum of the EIViigur of each occurring species, divided by the total number of
species. The proportion of forest specialists in each plot was calculated as the total number of forest
specialists occurring in the plot, divided by the total number of species in the plot. However, in Appendix
A4.1, we repeated our main analysis (see further: ‘predicting understorey light signatures from canopy
structure and composition’) using abundance-weighted values for both EIViigur and %FS, to check

whether this resulted in different responses.
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4.3.3. Proxies for light availability at the forest floor: basal area,

canopy cover and canopy closure

The basal atea (m? ha') of a forest stand represents the area occupied by tree stems per hectare. For all
trees and shrubs within the 20x20-m? plot with a diameter at breast height (DBH) = 7.5 cm, we took two
measurements of DBH in orthogonal directions, and used the average for the calculation of basal area.
For tree stems located on the border or corner of the plot, we divided the calculated stem area by 2 or 4

respectively.

We derived the canopy cover (%) in each 10x10-m? plot from the visually estimated cover (%) of all
species occurring in the shrub and tree layer. To combine the cover values of the different layers and
species, we accounted for overlap by applying a formula described by Fischer (2015). This means that
the final canopy cover value of a plot will never exceed 100 %, even when the sum of the cover of all
species in the tree and shrub layer is higher than 100%. In Appendix A4.2, we repeated our statistical
analyses (described below) without applying this formula, and found that overall results and trends were

similar, but model fits were slightly better when accounting for overlap through applying the formula.

We measured canopy closure (%) with a spherical densiometer at breast height (1.3 m). This small
instrument employs a mirror with spherical curvature to visualize the reflection of a large overhead area.
A grid is used to estimate percentage of this overhead area covered with forest canopy (Forestry Suppliers,
2008; Lemmon, 1957). We repeated the measurement at five points in each plot: one time in the centre
of the plot, and on each corner of the 10x10-m? plot. We averaged the five results to get a final value of

canopy closure in the forest plot.

4.3.4. Shade-casting ability of canopy species

The shade-casting ability (SCA) of tree and shrub species is a qualitative index based on expert knowledge
from Ellenberg (1996). SCA scores (listed in Appendix A3.7, adapted from Ellenberg (1996) and
complemented with expert knowledge of prof. Kris Verheyen) range between 1 (very low shade-casting
ability) and 5 (very high shade-casting ability) (see also Baeten et al., 2009; Van Calster et al., 2008;
Verheyen et al.,, 2012). To check the reliability of this qualitative index, we compared it to the leaf area
index (LAIT) values that are available for eleven major Central European tree species (Leuschner & Meier,
2018). For these eleven species, we found high correlations between SCA and LAI (see Appendix A4.3
for details), suggesting that our SCA-scoring is acceptable. For both canopy cover and basal area, we not
only calculated total values for each plot, but also the canopy cover and basal area of the high shade-
casting species (with a SCA score of 4 or 5) only. From this, we derived the proportion (%) of the total

canopy cover and basal area that is attributed to the high shade-casting species.
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4.3.5. Statistical analyses

We performed all statistical analyses and visualizations in R version 3.6.0 (R Core Team, 2019) with the
packages ‘nlme’, ‘MuMIn’, ‘ggplot?’; ‘mgcv’, and ‘sjPlot’ (Barton, 2019; Lidecke, 2019; Pinheiro et al.,
2019; Wickham et al., 2019; Wood, 2017).

4.3.5.1. Relating basal area, canopy cover and canopy closure

(research question 1)

To assess the relationships between the three main stand characteristics, i.e. canopy closure, canopy cover
and basal area, we used linear mixed-effect models with one of the variables as the response variable, and
another one as the explanatory variable. In addition, for the relationship of both basal area and canopy
cover with canopy closure, we also checked whether an exponential relationship fitted the data better.
This expectation of an exponential relationship is based on the Lambert-Beer law, expressing light

transmittance under a canopy as (Sonohat et al., 2004):
T = e(ZkLAD Equation 4.1

where T is canopy transmittance (dimensionless), LAl is the canopy leaf area index, and k is an extinction
coefficient, which depends mainly on cover properties. Our expectation of an exponential relation is
based on the assumption that canopy closure is the complement of canopy transmittance, and LAI is
linearly related to basal area and canopy cover (Sonohat et al., 2004). Hence, Equation 4.1 can be

rewritten as:
Canopy Closure = 100 — e(@*+5X) Equation 4.2

where X is either canopy cover (%) or basal area (m*ha™), and o and B are respectively the intercept and
slope obtained with the linear mixed-effect modelling (after linearizing Equation 4.2 through a log

transformation).

Finally, we also fitted a smoother to the data using a generalized additive mixed model (GAMM), to

compare the actual shape of the relationships with the fitted exponential and/or linear relationships.

We started with a model with varying slopes and intercepts for the random effect term ‘region’, and a
weight term to control for heterogeneity in residual spread among the regions. For each model, we used
ANOVA to find the most parsimonious model, by checking whether the random slopes, random
intercepts and weights term significantly (alpha = 0.05) improved the model. We used R? to assess the

strength of the relationships.
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4.3.5.2. Predicting understorey light signatures from canopy

structure and composition (research questions 2 and 3)

For both response variables, i.e. the mean EIViigur and the proportion of forests specialist, we compared
five linear mixed effect models. The first three models contained only one explanatory variable: canopy
closure, canopy cover or basal area. The fourth model contains both canopy cover and the proportion
of the canopy cover occupied by high shade-casting species as explanatory variables. The fifth model
contains both basal area and the proportion of the basal area occupied by high shade-casting species as
explanatory variables. We standardized (scaled and centred) all explanatory variables in each model to
enable comparison of their effect sizes. In each model, we included a random effect term ‘region’ with
varied intercepts only to account for the hierarchical structure of the data. We also incorporated ‘region’
as a weight term, i.e. we controlled for heterogeneity in residual spread. With ANOVA, we confirmed
that both the random effect term and the weights term significantly (alpha = 0.05) improved the model
for each response variable. Including ‘region’ with both varied intercepts and slopes did not considerably
change the overall results, so we will only present the results from the simplest model with only varied

intercepts.

All models were fit with restricted maximum likelihood (REML). We found no clear patterns in the
residuals for each model, based on graphical evaluation (Zuur et al., 2009). We report estimates and 95%
confidence intervals for each explanatory variable in each model. We based our model comparison on
both the Akaike Information Criterion (AIC) (Akaike, 1973) and the marginal and conditional R?
(Nakagawa & Schielzeth, 2013). The marginal and conditional R? represent the variance explained by
fixed factors and the variance explained by both fixed and random factors, respectively (Nakagawa &
Schielzeth, 2013). AIC is often used to select the ‘best’ or ‘better’ models from a candidate model set,
and penalizes for the number of explanatory variables (Burnham & Anderson, 2002). R? values on the
other hand, have the advantage that they provide information on the absolute model fit and the amount

of variance explained (Nakagawa & Schielzeth, 2013).

4.4. RESULTS

4.4.1. Relating basal area, canopy cover and canopy closure

In general, the fitted relationships between canopy closure, canopy cover and basal area were poor (Fig.
4.1). For the first model (canopy closure vs. canopy cover), a mixed-effect model with both random
slopes and random intercepts was the most parsimonious model, while for the other two models, the
random intercept only model was retained. In each model, the weight term to control for heterogeneity

in residual spread among the regions was also retained. Our expectation of exponential relationships with
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canopy closure was not confirmed. For the relation between canopy closure and canopy cover, we found
a better model fit for the linear model (R?m = 0.20) than for the exponential model (R*m = 0.15) (Fig.
4.1a). We did not find any relation between canopy closure and basal area, as both the linear and
exponential model had an R®m value of 0.00 (Fig. 4.1b). Similarly, we found no clear relation between
canopy cover and basal area (R?m = 0.02; Fig. 4.1c). Using a generalized additive mixed model to relate
each pair of variables to each other did not result in better model fits, as the adjusted R* values of these
models were very similar to the R?m values of the linear and/or exponential relationships, and the shape

of the smoothers approached the shape of the linear and/or exponential relationships (Fig. 4.1).
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Figure 4.1. Relating basal area, canopy cover and canopy closure. (a) Linear (black line) and exponential (red line)
relationship between canopy closure and canopy cover; (b) Linear (black line) and exponential (red line) relationship
between canopy closure and basal area; (c) linear relationship between basal area and canopy cover. In each plot,
the blue line and blue R? value represent the result of the generalized additive mixed model. ‘Region’ was included
as a random effect, with random slopes (B) and random intercepts (a) in the first set of models (a), and random
intercepts (a) only in the second and third set of models (b+c). Coloured dots represent the actual data points per
region. The region labels refer to Table 4.1.
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4.4.2. Predicting understorey light signatures from canopy structure

and composition

We found similar but opposite trends when comparing the five models to predict both the mean EIViigrr
and the proportion of forest specialists (“Y0F'S’), which are respectively expected to increase and decrease
with increasing light availability (Fig. 4.2). Canopy closure was a significant predictor for both response
variables, but with quite poor model fits (R*m = 0.03 for both models). Canopy cover was also a
significant predictor for both response variables, with slightly bigger effect sizes than canopy closure, but
still poor model fits (R*m = 0.09 for EIViicur; R*m = 0.06 for %FES). For both response variables, basal
area was not a significant predictor (R>’m = 0.00 for both models). Adding the percentage of the total
canopy cover that is occupied by high shade-casting species as an additional predictor to the canopy cover
model improved the model fit for both response variables (R?m = 0.19 for EIVicur; R*m = 0.09 for
%FS). Adding the percentage of basal area that is occupied by high shade-casting species as an additional
predictor to the basal area model only improved the model fit for mean EIViicur (R?m = 0.12). For %FS,
the percentage of basal area that is occupied by high shade-casting species did not have additional

explanatory power, and R*m did not increase.

In general, for both response variables, the canopy cover models were the best models, with the lowest
AIC-values and the highest R*?m-values (Fig. 4.2). For mean EIViicur, including the percentage of high
shade-casting species clearly improved the model predictions, both for canopy cover and basal area, as
this clearly increased R?m-values and decreased AIC-values (Fig. 4.2a). For %FS, the benefit of
accounting for the shade-casting ability of the canopy species was less clear: for basal area, no model
improvements were found, while for canopy cover, R?’m increased slightly, but AIC increased as well

(AAIC = 6.55) (Fig. 4.2b).

For all models, conditional R* (R?c) was very high (ranging from 0.68 to 0.84 for EIViicur, and ranging
from 0.86 to 0.92 for %FS), which indicates that a large part of the variation in the response variables

can be explained by the random effect term ‘region’ (Fig. 4.2).

For the models based on abundance-weighted values for both ElIViigur and %FS, instead of
presence/absence based values (Appendix A4.1), we found very poor model fits (R*m ranging from 0
to 0.02 for EIViigur and R*’m = 0 for all models with %FS as response variable). Canopy closure was the
only significant predictor for EIViigur, and canopy cover was the only significant predictor for %FS (but

with a very small effect size of only -0.004).
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Figure 4.2. Predicting understorey light signatures from canopy structure and composition. Results of comparing
five models for two different response variables, i.e. the mean EIVyeur (0) and the percentage of forest specialists in
the community (b). The five models that we compared, with their respective marginal and conditional R2 (R2m and
Rc, respectively) and AlC-values, are shown in the legend. The figure shows the model estimates and 95% confidence
intervals for each explanatory variable. BA stands for basal area. ‘% Shade Cover’ and % Shade BA’ represent the
percentage of respectively the canopy cover and the basal area that is occupied by high shade-casting canopy
species.

4.5. DISCUSSION

In complex semi-natural mixed closed-canopy forests, relationships between structural characteristics of
the canopy are more complex compared to what we can find in the literature for homogenous

monospecific stands. The signature for light requirements of the herb layer species was only weakly
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related to the structural stand characteristics analysed, with canopy cover showing better predictions than
canopy closure and basal area. Correlations, however, improved when we took both the canopy structure
and the shade-casting ability into account. Yet, the understorey light signature remained largely driven by
regional characteristics (e.g. land-use history, management type, soil characteristics or landscape

fragmentation).

4.5.1. Relating basal area, canopy cover and canopy closure

In contrast to many other studies, we did not find strong relationships between the three main stand
characteristics that we studied, i.e. canopy closure, canopy cover and basal area. For example, Parker
(2014) found a very strong logarithmic relationship between canopy closure and basal area (R* = 0.81) in
even-aged pine-dominated forests, and Buckley et al. (1999) found very strong (R* > 0.90) linear
relationships between canopy cover and basal area in both oak and pine stands. Fiala et al. (2000)
described the relation between canopy cover and densitometer measurements with a simple linear
regression model, and found an R*-value of 0.65 in stands dominated by Douglas-fir, western hemlock,
and western redcedar. The lack of clear relationships in our study is probably related to the fact that our
analyses focused on much more complex and heterogeneous forest stands, with mixed species and well-
developed vertical structures. It can be assumed that tree architecture and the light-related characteristics
of crowns, branches and leaves can be changed when a tree species grows in mixed stands because of the
interactions with other tree species (Perot et al., 2017; Pretzsch, 2014). Differences in crown plasticity
between species in mixed stands might also influence the relation between structural stand characteristics,
as species with high crown plasticity (such as Fagus sylvatica, a common species in our dataset) can occupy
canopy gaps much more effective (Schroter et al., 2012). Also, we are likely investigating smaller ranges
of these stand characteristics compared to other studies, because all our plots are situated in mixed closed-
canopy forests with relatively high canopy packing and therefore decreased spatial light heterogeneity at
the forest floor (Sercu et al., 2017). Furthermore, the presence of a shrub layer in many of our study plots
could interfere with the typically expected relations between stand attributes. Especially when light
transmittance by the tree layer is high, a complementary shrub layer can exploit this high light availability,
and become dense (Sercu et al., 2017). However, shrubs with small stems might not be included in the
basal area of the plot, as we needed to set a diameter threshold (in this study at 7.5 cm) to keep DBH-

measurements feasible. This might weaken correlations between basal area and canopy cover/closure.

4.5.2. Predicting understorey light signatures from canopy structure

and composition

Of the three investigated stand attributes, canopy cover proved to be the best predictor for the light-

demanding signature of the understorey. This suggests that, in resurvey studies, the lack of data of stand
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characteristics such as basal area or canopy closure for the original survey is not necessarily a problem,
as they are weaker predictors of light availability than the more often available canopy cover values.
Indeed, tree and shrub cover estimates are often part of the vegetation survey, and therefore typically

available from past vegetation resurveys (e.g. Verheyen et al., 2012).

In contrast to our findings, Alexander et al. (2013) found that canopy closure had a better correlation
with EIViicur than canopy cover estimates based on airborne laser scanning (ALS). In theory, canopy
closure should indeed provide a better description of the light conditions under a canopy than canopy
cover as all the directions in which light reaches a point below the canopy are taken into consideration
(Alexander et al., 2013; Jennings et al., 1999). However, this might mainly apply to more open systems or
landscapes with forest patches, where light can reach the understorey from the edge of the forest (patch),
which is not the case in our plots. The better performance of canopy cover compared to basal area, for
predicting the understorey light signature, could be related to the DBH threshold of 7.5 cm that we
applied. In contrast to basal area, canopy cover also accounts for smaller shrubs with DBH < 7.5 cm,

which can make a considerable difference in plots with a high cover of young shrubs.

Including the species composition of the canopy, through distinguishing high- and low shade-casting
species, clearly improved the predictions of the understorey light signature. These results demonstrate
that in mixed forests, both canopy structure and canopy composition will determine the light conditions
at the forest floor. This is in accordance with several other studies that demonstrated that the simple
Lambert-Beer model for light attenuation in forests should be modified for mixed forest stands by
applying species-specific values for leaf area index (LAI) and the extinction coefficient (e.g. Cannell and
Grace, 1993; Lieffers et al,, 1999; Perot et al, 2017). In temperate mixed forests in Flanders, De
Lombaerde et al. (2019) also found that tree regeneration (strongly controlled by light availability)
depended more on the abundance-weighted shade-casting ability of the canopy, than on the abundance
(measured as both canopy cover and basal area) per se. However, the relative importance of the canopy
composition and structure might depend on the management intensity: Drever and Lertzman (2003)
found much weaker dependence of understorey light conditions on the canopy species composition in
intensively managed forests, where mainly structural features seemed to be affecting the light conditions

at the forest floot.

Opverall, we observed that the three easy-to-measure stand characteristics were weak predictors of the
light-demanding signature of the understorey in our study plots. These weak relations could be related to
the small range within these stand characteristics in the studied forests (Table 4.1), which are all closed-
canopy forests. Alexander et al. (2013) also found that the correlations between canopy cover estimates
and EIViGnr increased with increasing variability in canopy cover within a site, and that the lower the
variability, the more difficult it was to predict understorey light conditions from the estimates of canopy

cover. Similarly, Diekmann (2003) stated that if the light gradient is small, weighted mean indicator values

81



Chapter 4

will differ less between plots, and might be more affected by random spatial fluctuation in species
composition than by an underlying gradient of light availability. This can also be related to the very high
conditional R? values (compared to the very low marginal R* values) that we found in our models,
suggesting that a large part of the variation in the understorey light signature can be explained by the
region in which a plot is situated. Hence, regional attributes, such as the soil characteristics, the ‘available’
species pool, the regional climate, the topography, the land-use- and management history, and the
landscape fragmentation and associated dispersal limitations seem to be mainly controlling the
understorey composition and its light-demanding signature. For instance, the impact of land-use history
on the light-demanding signature of the understorey was assessed by Dzwonko (2001), who found weaker
correlations between ElVigur and measured light levels in recent forests, because shade-tolerant
specialists had not yet colonized these forests. Differences in management might affect the light-
demanding signature of the understorey through differences in the return interval of light at the forest
floor. When this interval is short (e.g. in coppice(-with-standard) systems), light-demanding species can
maintain in a vegetative state. Soil characteristics can affect the light-demanding signature of the
understorey, through for instance the fact that plant species are often more shade-tolerant on nutrient-

rich sites (Coomes et al., 2009).

The effect of other (regional) factors appears to be stronger for %FS than for EIViicur, based on the
lower R’m and higher R?c values that we found for %FS. This is in accordance with our expectations, as
EIViicur has a clear focus on light availability, while the ‘forest specialist’ classification is based on habitat
affinity in general, where other factors, next to light, are important. For example, the share of forest
specialists is generally lower on acidic soils than on base-rich soils (Schmidt et al., 2011). Furthermore,
the share of forest specialists can also depend on the litter quality and quantity (Decocq & Hermy, 2003),

which are affected by canopy characteristics.

Another potential cause of the poor model fits is the occurrence of time lags in the understorey.
Temperate forest herb layers are slow-changing systems (Dornelas et al., 2013; Perring, Bernhardt-
Roémermann, et al., 2018), and understorey communities can display a delayed response to overstorey
canopy and light dynamics (Plue et al., 2013). Hence, the current understorey composition might be more
strongly related to past light availability (and thus past management) than to the contemporary light
conditions (see also our findings in Chapter 5). Time lags can be expected to be stronger for
environmental shifts from light to shade (slow changes) than for shifts from shade to light (fast changes)
(De Lombaerde et al., 2018). Most of our plots are characterized by an overall reduction in management
intensity during the last decades (Kopecky et al., 2013; McGrath et al., 2015), and have therefore slowly
shifted from lighter to darker conditions, so it is likely that the understorey community changes are still

‘limping behind” (Diekmann, 2003).
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Related to these time lags, we might expect to see stronger effects of canopy characteristics on
abundance-based understorey responses compatred to presence/absence-based responses, as a species
will typically not disappear immediately when light conditions become unfavourable, but will decrease in
abundance (e.g. Decocq et al., 2005). However, this was not confirmed with a comparison between
abundance-based and presence/absence-based responses (Appendix A4.1). This comparison mainly
illustrated that the effects of canopy characteristics on the understorey light signature are mainly driven
by the rare species with low abundances. These less abundant species are given equal weight in the
presence/absence analysis, where we found stronger effects of canopy characteristics and higher model
fits, while they are given a lower weight than the more abundant species in the abundance-based analyses,
where we found small effects and lower model fits. Hence, species turnover appeared to be more
important than changes in species abundances for explaining canopy effects on the understorey light

signature.

4.6. CONCLUSION

Since intensive management has ceased in many European forests (cfr. McGrath et al., 2015), and
protection and restoration of (semi-)natural forest systems is more and more encouraged, it is important
to understand how increased structural complexity and species diversity in the overstorey will affect the
understorey. Alteration of light regimes is a crucial mechanism in these understorey-overstorey
interactions (Bartemucci et al., 2006; Kopecky et al., 2013). Here, we related structural and compositional
attributes of the overstorey to the light-demanding signature of the understorey. The typically expected
relationships between basal area, canopy cover and canopy closure are weaker or even absent in
structurally complex mixed closed-canopy forests, compared to what we found in the literature for
homogenous monospecific stands. In such complex and well-developed forest systems, easy-to-measure
structural canopy characteristics are weak predictors of the understorey light signature, but accounting
for the canopy composition on top of canopy structure can improve predictions. Yet, the understorey
light signature remained to be mainly driven by regional characteristics (such as land-use history,

management, and soil characteristics) and likely exhibits time lags.
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Chapter 5

5.1. ABSTRACT

Land-use legacies are important for explaining present-day ecological patterns and processes. However,
an overarching approach to quantify land-use history effects on ecosystem properties is lacking, mainly
due to the scarcity of high-quality, complete and detailed data on past land use. We propose a general
framework for quantifying the effects of land-use history on ecosystem properties, which is applicable (1)
to different ecological processes in various ecosystem types and across trophic levels; and (if) when
historical data are incomplete or of variable quality. The conceptual foundation of our framework is that
past land use affects current (and future) ecosystem properties through altering the past values of
resources and conditions that are the driving variables of ecosystem responses. We describe and illustrate
how Markov chains can be applied to derive past time series of driving variables, and how these time
series can be used to improve our understanding of present-day ecosystem properties. We present our
framework in a stepwise manner, elucidating its general nature. We illustrate its application through a
case study on the importance of past light levels for the contemporary understorey composition of
temperate deciduous forest. We found that the understorey shows legacies of past forest management:
high past light availability lead to a low proportion of ‘forest specialists’ (i.e. species adapted to dark,
closed forest conditions) in the understorey. Our framework can be a useful tool for quantifying the
effect of past land use on ecological patterns and processes and enhancing our understanding of

ecosystem dynamics by including legacy effects which have often been ignored.

5.2. INTRODUCTION

Ecological memory 1s defined as ‘%he capacity of past states or excperiences to influence present or future responses of the
community’ (Padisak, 1992), and as %he degree to which an ecological process is shaped by past modifications of a
landscape’ (Peterson, 2002). The importance of ecological memory in plant and ecosystem processes has
been demonstrated in a recent study by Ogle et al. (2015), who showed that various ecosystem processes,
across biological, temporal and/or spatial scales, were better explained when models take into account
antecedent conditions on top of contemporary conditions. Similar patterns have been observed in other
ecosystems (Barron-Gafford et al., 2014; Cable et al., 2013; Hawkins & Ellis, 2010; Leuning et al., 2005;
Oesterheld et al., 2001; Sala et al., 2012). An ecosystem’s ecological memory is (among other factors)
caused by the past land use of the system, which influences the past conditions of the system (Schaefer,

2009; Sun et al., 2013).

Past land use can affect ecosystems for thousands of years (Dupouey et al., 2002; Foster et al., 2003; Lunt
& Spooner, 2005). The system properties resulting from past land use are called land-use legacies (Foster
et al., 2003; Kopecky & Vojta, 2009; Perring et al., 2016). Examples of species and communities affected

by past land use include plant community composition in forests (De Frenne, Baeten, et al., 2011;
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Dupouey et al., 2002; Flinn & Marks, 2007; Peterken & Game, 1984), grasshoppers in woodlands (Hahn
& Orrock, 2015), butterflies in grasslands (Moranz et al., 2012), fish and invertebrates in streams (Harding
etal.,, 1998), and birds in Mediterranean forests and shrublands (De Caceres et al., 2013). In general, there

is increasing evidence that past land use can affect future biodiversity over decades to centuries (Biirgi et

al., 2017; Essl et al., 2015).

Given the importance of past land use for explaining current and future ecosystem properties, a
standardized method to quantify the effects of past land use is needed. Most existing classification
schemes or indices for land use consider only contemporary land-use intensity and are developed for one
specific ecosystem type, such as forest, grassland or agricultural land (e.g. Bliithgen et al., 2012; Dietrich
et al., 2012; Kahl & Bauhus, 2014; Luyssaert et al., 2011; Schall & Ammer, 2013). They do not capture
past land use or historical land-use changes and lack general applicability. More general frameworks for
quantifying ecological memory (e.g. Ogle et al., 2015) require a lot of data. Such data, including
continuous time series, are often lacking for long-term processes (e.g. time scales of decades or even

centuries).

We propose a framework that can help resolve the above-mentioned restrictions, by quantifying the effect
of land-use history on ecological processes in different ecosystem types, even when data on past land use
is incomplete, uncertain and of low quality or resolution. We do not intend to replace existing methods
such as the modelling approach from Ogle et al. (2015); our framework can support and complement
existing methods through developing the well-needed and often lacking time seties of environmental
variables. Our basic postulate is that past land use affects current (and future) ecological properties. This
occurs through the past land use altering resources and conditions that are the driving variables of
ecosystem and community responses (Perring et al., 2016) (Fig. 5.1). Testing this postulate would be
aided by time series data of the driving variables, but such series are rarely available. Trajectories of past

land use, even if uncertain, are more frequently known (e.g. McGrath et al., 2015).

Here, we provide a general framework to derive time series of driving variables from known land-use
history. By defining the driving variables case-specifically, the framework can be used for a wide range of
ecological processes and properties within different ecosystems. In this chapter, we describe how Markov
chains can be applied to derive time series of driving variables given the known land-use history.
Additionally, we provide an illustration of how past values of driving variables can be used to explain
current ecosystem properties. Our framework is based on Markov-chain modelling (box 5.1), a stochastic
modelling approach that is often used to model temporal ecosystem changes, such as successional
vegetation change, based on temporal autocorrelation in time series (Balzter, 2000; Golroo, Ph, Eng, &
Tighe, 2012; Horn, 1975; Logofet & Lesnaya, 2000; Usher, 1981). Markov chains can deal with different
types of data as well as uncertainties or missing data, and can incorporate expert knowledge to describe

causal relations in the network when long-term data series are lacking (Golroo et al., 2012) (as also
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implemented in Bayesian belief network modelling (Aguilera et al., 2011; Pollino et al., 2007)). Hence,
Markov chains are highly suitable when land-use history data are incomplete or uncertain, which is often

the case.

Incomplete
land-use history

Markov-chain \
model \

h 4

Difficult to quantify

\
(Probabilistic) continuous \ ’
(Y direct effects of past
1
1
!

time series of driving

K land use on current
variables

ecosystem conditions

v U

Current ecosystem ’
conditions

Figure 5.1. Rationale of the proposed framework: past land use affects current ecosystem conditions through
alteration of the resources and conditions that are the driving variables of ecosystem responses. We describe and
illustrate how Markov chains can be applied to derive time series of driving variables given the known land-use
history, and we provide an illustration of how time series of driving variables can be used to explain current
ecosystem conditions.

We describe our framework step-by-step (section 5.3, Fig. 5.3). In each step, we provide a general
description of the modelling approach, and illustrate the proposed approach with a specific case study
about the effects of past forest management practices on the current understorey composition in
temperate forests. We outline some of the main strengths and opportunities of the framework, describe
how the model performance could be improved, and discuss the applicability of the framework to assess

how past land use influences current ecosystem properties (section 5.4).

Box 5.1: Theoretical background of Markov chains

Markov chains are graphical, multivariate, statistical models, representing dynamic systems wherein

variables can go from one state to another over time, with a transition probability that depends on
preceding conditions (see Fig. 1 box 5.1). A Markov chain consists of nodes, representing the system’s
variables, and arrows, representing the causal relations among these variables. Each variable is discrete
and characterized by a set of states it can manifest (numerical values, discrete classes or qualitative levels)
and a probability distribution that quantifies the probability of being in one of the states. If such a
probability distribution depends on the state of another variable, it is referred to as a conditional
probability, which quantifies the causal relation represented by an arrow. Through probabilistic
inference, a Markov chain can infer the probability distribution for a given variable conditional on the

state of the other variables in the model (Jensen & Nielsen, 2007).
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The order of a Markov chain (Fig. 1 box 5.1) is the number of time steps in the past that influence the

probability of the current state (Shamshad et al., 2005).

@ . X)) X)) X)) ]  X(G)

T o T o T

(b) " — x(tn-S) ™ x(tn-z) I x(tnfl) I x(tn)

e et

(C) o 1 x(tn—s) ] x(tn—l) ] x(tn—l) ™ X(tn)

Figure 1 box 5.1. In the first-order Markov chain (a), the state of X only depends on the state of X at the previous time
step. In the second- and third-order Markov chains (b, ¢), the state of X depends on the state of X at the two and

three previous time steps, respectively.

Auxiliary variables can be added to Markov chains to model more complex processes with multiple

variables. For example, in Fig. 2 box 5.1, the state of the variable X at each time step depends on the
state of X at the previous time step (first-order Markov chain), and on the state of the auxiliary variable

Y at the current time step.

™ x(tn-S) ™ x(tn-2) 1 x(tn-l} ] x(tn)

f f f f

Y(tn-3} Y(tn-l) Y(tn-l) Y(tn}

Figure 2 box 5.1: First-order Markov chain with one auxiliary variable. The state of the variable X at each time step
depends on the state of X at the previous time step, and on the state of the auxiliary variable Y at the current time
step.

The Transition Probability Matrix (TPM) is the core of a Markov chain, in which each element

represents the probability that a variable is in a certain state, at a certain time step, given the state of the

previous time step(s) (Golroo et al., 2012; Logofet & Lesnaya, 2000; Shamshad et al., 2005).

Let X be a variable, possessing discrete states S (5={1,2,...,7}). In general, for a given sequence of time
points t; < t; < - < t,_1 < t,, the conditional probability for X to be in a certain state at time &, is

(Balzter, 2000; Logofet & Lesnaya, 2000; Shamshad et al., 2005):

P(Xs(tn) X (t1), X(£2), o, X (tn-1)) Equation 1box 5.1

91




Chapter 5

In Equation 1 box 5.1, X(t,) depends on the state of X at all previous time steps tq, ..., tp—1,
representing a Markov chain of order n — 1. Equation 2 box 5.1 and Equation 3 box 5.1 show the

conditional probabilities for a first- and second-order Markov chain:
P(X(t)1X (tn-1)) Equation 2 box 5.1
P(X ()X (tn-2), X (tr-1)) Equation 3 box 5.1

These conditional probabilities make up the TPM. For m states, the first-order TPM takes the form

(Shamshad et al., 2005):

P11 P12 w P1m
TPM = p:Z'l pZ:'Z p pz,:m Equation 4 box 5.1
: ij
Pm1i Pmz2 - Pmm

with p; j the probability of state 7 if the previous state was /.

Similarly, the second-order TPM takes the form (Shamshad et al., 2005):

r P11,1 P12 P11,m1

P121  DPi122 P12,m
: : Pijk
Pim1 Pim2 Pimm .
TPM = Equation 5 box 5.1

P2.11 P2.1,2 = P21m
P2.21 D222 o DP22m

-pm.m,l pm.m,z pm.m,m .

with p; ; x the probability of state 4 if the states at the two previous time steps were (in chronological

order) £ and /.

In Markov chain studies, a TPM is often derived from empirical evidence or machine learning (Balzter,
2000; Logofet & Lesnaya, 2000; Usher, 1981). However, transition probabilities can also be derived from
expert knowledge (Aguilera et al., 2011), a particularly suitable approach when long-term data series are

lacking (Golroo et al., 2012; Pollino et al., 2007).

The strength of influence can be calculated for each arrow in a Markov chain based on the Transition

Probability Matrix (TPM), and represents a measure for the extra information that is obtained by knowing
the value of the parent (i.e. the node where the arrow starts from) (Theijssen et al., 2013). In other words,
it quantifies how much the value of the parent node affects the value of the child node (i.e. the node

where the arrow arrives).

Belief updating is the process of inserting new information (evidence) on the status of one of the

variables in a Markov chain. This will change the probability distribution of other variables in the network,
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and lower the uncertainty in the model output (Jensen & Nielsen, 2007). The process of inserting hard
evidence into the network is called instantiation, and comprises assigning a 100% probability to one of
the states of a variable. Soft evidence provides probabilistic information on the status of a variable

(Jensen & Nielsen, 2007).

5.3. STEPWISE EXPLANATION AND ILLUSTRATION OF THE
MODELLING FRAMEWORK

In our framework, a Markov chain models the dynamics of the driving variables of the studied ecosystem
process. A variable representing the land-use history (called /and-use variable) is added to the chain as an
auxiliary variable (cf. box 5.1, Fig. 5.2). The final model represents the dynamics of a driving variable,
under the assumption that its present state is directly influenced by the current land-use state, and

indirectly by past land use, through the past states of the driving variable (Fig. 5.2).

(b) i
N = et =S e T = s |
! (a) Driving Driving Driving !
! .. =—>1 Vvariable »| variable » variable p——— .. |
i At (t-2) At (t-1) At (t) At i

__________________________________________________________________________________

___________________________________________________________________________________________________________________________

Figure 5.2. The Markov-chain model used within the framework presented in this chapter, consisting of a first-order
Markov chain (a) with an additional direct effect (b) between the state variable at t-2 and the state variable at t (i.e.
second-order Markov chain) and an additional auxiliary variable (c) representing the land-use history of the system.

Below, we describe the modelling approach step-by-step. Each step contains a general explanation and a
specific application for a case study. In the case study, we aim to assess the effect of past forest
management practices on the current understorey composition, in terms of the proportion of forest
specialists (i.e. plant species found mainly in closed forest, as defined for the lowlands of the Czech
Republic, cf. Heinken et al., 2019). We use 29 forest plots from Koda Wood (Czech Republic), Zvolen
(central Slovakia) and Slovak Karst (south-eastern Slovakia). For each plot, a description of the
management history since 1950 and two vegetation surveys (the first in the 1950s, 60s or 70s, depending
on the region, and the second in 2015) are available (see Appendix A5.1). The plots were originally

established in mostly oak-dominated forests managed either as coppice, coppice-with-standards or high
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forests. In each region, we resurveyed plots from all three management categories to cover the historical
management variability. Between the surveys, the intensity of forest management generally decreased and
shifted from historically dominant coppicing to presently high forest management or no regular
management in forest reserves. The change in management resulted in a general decline of plant species
richness and a spatial homogenization of the vegetation (Hédl, Kopecky, & Komarek, 2010; Kopecky et
al., 2013). The species that showed the strongest decline were light-demanding species typical for open
oak forests such as Bupleurum falcatum, Carex montana, Silene nutans, 1 eronica chamaedrys agg., Ajuga genevensis,
Lotus corniculatus, Campanula persicifolia and Tanacetum corymbosum. In contrast, shade-tolerant, mesic and
nutrient-demanding species such as .A/iaria petiolata, Asarum europaeum, Hepatica nobilis, Mercurialis perennis,
and Neottia nidus-avis became more frequent in the understorey. The annual Impatiens parviflora was the
only invasive alien species with higher occurrence across the studied plots. The majority of the species in
the study plots were perennials (full species list in Appendix A5.7). Tree species regeneration became
more abundant, particularly of shade-tolerant tree species such as Fagus sylvatica and Carpinus betulus (Malis

etal, 2016).

5.3.1. Step 1: defining variables

The ecological process of interest is scrutinised to identify its main drwving variables. For example, soil pH,
soil moisture content, nutrient availability, and light availability are important driving variables for plant
community composition trajectories (Klanderud et al., 2015), whereas soil temperature and moisture
content are among the main driving variables for soil respiration rates (Ogle et al., 2015). Making an
informed choice in this first step is vital, as the chosen driving variable(s) should enable the user to
evaluate how land use affects the ecological process of interest. We only consider one driving variable in
the further description and illustration of the framework, but the entire process can be repeated for the

multiple variables that drive the same ecological process.

In our case study, the ecological process of interest is the shaping of the forest understorey community.
We selected light transmittance as the driving variable because the understorey composition changes
observed in our study regions were strongly related to the light requirement of understorey plants (Hédl
etal., 2010; Kopecky et al., 2013) and light availability is one of the main environmental factors controlling
the establishment and growth of plant species in forests (Baeten, Bauwens, et al., 2009; Thomaes et al.,
2013; Tinya & Odor, 2016). Several studies have observed time lags in vegetation response to understorey
light conditions (Ddlle & Schmidt, 2009; Thomas, Halpern, Falk, Liguori, & Austin, 1999), suggesting
that past values of light transmittance can be important for current understorey composition. Light
transmittance is defined as the ratio of the amount of solar radiation reaching the understorey to the total
incident radiation at the top of the canopy (Parker, 2014). It is a common assumption that using light

transmittance (%) rather than absolute values of radiation allows for predictions or estimations without
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knowledge on specific climate and weather conditions (Balandier et al., 2009). Light transmittance
depends on forest architecture, and is, as such, mostly uninfluenced by the absolute amount of light at
the top of the canopy. Light transmittance depends on canopy closure and hence on the time of the year.

In the further description of our case study, we consider the light transmittance in July.

After identifying the process-specific driving variable, a suitable variable representing the land use of the
system is defined. The chosen /and-use variable can be related to one or more of the various aspects
comprising land use, such as land cover (e.g. grassland, arable land, forest, heathland), fertilizer type and
fertilization intensity, soil manipulation (e.g. ploughing, tilling), harvesting (e.g. crop type in arable fields,
different management regimes for timber production in forests, litter raking in forests), and should have
a potential effect on the driving variable. For example, past fertilization type and intensity can be suitable

land-use variables when soil pH is chosen as the driving variable (Koerner et al., 1997).

As the land-use variable in our case study, we selected forest management, given its possible impact on
the canopy composition and structure and hence on light transmittance (Thomaes et al., 2014) and the
forest understorey (e.g. Kopecky et al., 2013; Perring, Bernhardt-Romermann, et al., 2018; Ujhazy et al.,
2017; Van Calster et al., 2008). We did not consider other factors affecting light transmittance, such as

tree species and phenology, but kept in mind that these could influence the interpretation of the results.

5.3.2. Step 2: discretization of variables

First, to be able to use a driving variable in our Markov chain, the variable needs to be discretized (cf.
box 5.1) by defining a finite set of ecologically relevant, representative states (Carpinone et al., 2015;
Shamshad et al., 2005). In our case study, we defined sensible discrete states for light transmittance,
looking at the relationship between light transmittance and understorey community composition in
temperate deciduous forests in Europe. We used three threshold values between four light transmittance
states: strong shade (0-8%), moderate shade (8-20%), moderate light (20-40%) and strong light (>40%).
Many understorey species of temperate deciduous forest benefit from light levels below 8%, when the
survival of certain competitors is limited (De Keersmaeker et al., 2004). For some forest understorey
species, the survival is higher under moderate levels of shade (8-20%) than under strong shade (< 8%)
(Thomaes, 2014). Understorey cover reaches an asymptotic maximum at around 40% light transmittance

(Balandier et al., 2009).

Second, similar to the driving variable, also the land-use variable needs to be discretized. In our case
study, we defined four states of forest management (further on referred to as /and-use states) that cover a
gradient in management intensity, and encompass the typical forest management actions in our study

regions:
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e Zero cut: no tree fellings or removals, forest under a zero management system or forest in a
period in between two interventions of a rotation system;

e Thinning: the removal of a proportion of trees to allow more growing space for the final crop
trees (den Ouden et al., 2010) or management actions with similar effects on the canopy structure,

such as selection felling of single trees;

e Shelter cut: a method of securing natural tree regeneration under the sparse shelter of old trees
that are removed by successive cuttings to admit a gradually increasing amount of light to the
seedlings (den Ouden et al, 2010) or the cutting phase in a coppice-with-standards system
resulting in a similar forest structure;

e C(Clear-cut: most or all trees in an area are cut, e.g. the harvesting phase of coppice systems or high

forest systems with a clear-felling management.

Third, the magnitude of the time step (At) in the chain should be clearly defined. The time step can vary
from less than seconds to more than years, depending on the chosen driving and land-use variables, the
ecological process considered, and the availability of land-use history data (Carpinone et al., 2015). In our
case study, the time step (At) is mainly constrained by the temporal resolution of the available land-use
history data (section 5.3.5) and set at 10 years. The 10-year time step corresponds well to the typical
management cycles in temperate forests (den Ouden et al., 2010; Kerr & Haufe, 2011), but might be too
long to detect short-term temporal dynamics in understorey composition. Smaller time steps would have
been better to predict light dynamics that drive understorey composition. However, due to the absence
of high-resolution land-use history data, high-resolution predictions of light dynamics would be highly
uncertain and therefore contain no additional information compared to the light availability data derived
from the model with At = 10 years. Moreover, for herbaceaous perennial plants in forests, a time step of
10 years might be a reasonable choice given their high average life span (64 years for forest herb layer

species (Ehrlén & Lehtild, 2002)) and long time needed for full establishment.

5.3.3.Step 3: defining the model

One can adjust the proposed Markov-chain model to the system and the driving variable of interest by
defining the appropriate order of the Markov chain. The order of a Markov chain is the number of time
steps in the past that can directly influence the current state (Shamshad et al., 2005). In a simple first-
order Markov chain, the present state of the modelled variable only depends on the previous state of that
variable. However, for some ecological processes, it might be necessary to include higher-order terms to
the chain, to account for the possible ecological memory in the dynamics of the driving variables
controlling the processes. For example, adding a second-order arrow to the chain, implies that the state
of the driving variable at time t can depend both on the previous state (t-1) and the state before that (t-

2) (box 5.1) (Usher, 1979). The order that should be used when applying the framework will be case-
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specific, and depends on the expected ecological memory of the driving variable that is modelled, as well
as on the level of complexity that can be dealt with in the Transition Probability Matrix (TPM; see section
5.3.4). When validation data are available, results from chains with different orders can be compared to
assess how long influences of the past remain important for contemporary states. In addition,
mathematical methods are available to identify whether second-order relations are sufficiently important
to include when compared to the first-order relations in the model (BayesFusion, 2017). We show later
(see section 5.3.4) that in our particular case study, a first order model was sufficient to model the light

dynamics over time.

5.3.4. Step 4: Transition Probability Matrix

The Transition Probability Matrix (TPM; box 5.1) quantifies the causal relations between the different
variables in the Markov chain (Logofet & Lesnaya, 2000; Shamshad et al., 2005). In the context of this
study, expert-based approaches are best suited to derive the TPM. Experts are asked to complete a TPM
according to their knowledge and expectations, and to report their confidence in each estimate (Kuhnert
et al., 2010; Pollino et al., 2007). These confidence levels are then used to weight the estimates of all
experts in a final TPM (Pollino et al., 2007). It is important to clearly define the investigated process and
boundary conditions to ensure that different expert estimates are based on the same assumptions and

thus comparable.

In our case study, the second-order TPM describes the probability for light transmittance (IT) at time t
being in one of the four defined states, given the light transmittance state of the system at time #7 (i.e.
ten years ago) and #2 (i.e. twenty years ago), and the land-use state (i.e. forest management) at time t
(LU). Since both variables (light transmittance and forest management) have four possible states, the
second-order TPM contains 64 scenarios = 4 (LT.;) x 4 (LT:) x 4 (LU)). A team of six experts (all author
of this chapter) provided a probability distribution and a confidence level for this probability distribution
for each of these 64 scenarios, resulting in one second-order TPM (see Appendix A5.2). Clear guidelines,
definitions, boundary conditions and assumptions were provided to all experts (Appendix A5.3). Based
on the second-order TPM, we calculated the strength of influence between nodes (see box 5.1) in the Markov
chain. We found a strength of influence of 0.03 for the second-order relation (influence of LT,» on LT))
and 0.35 for the first-order relation (influence of LT.; on LT)). Light transmittance at # thus mainly
depended on light transmittance at -7, and less on light transmittance at 2. The strength of influence of
LU, on LT, was 0.49. We concluded that a first-order Markov chain is sufficient to model the light
dynamics over time given the land-use trajectory. All further results and figures are from the first-order
Markov chain. We derived a first-order TPM by marginalization (i.e. grouping scenarios with the same
light transmittance state at #7 (thus: only differing in the light transmittance state at #2) and calculating

the average probability distribution for each group of scenarios) (Table 5.1, Appendix A5.2). The first-
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order TPM describes the probability for light transmittance (IT) at time #being in one of the four defined
states, given the light transmittance state of the system at time #7 (i.e. ten years ago) and the land-use

state at time # (LU,), and thus contains 16 scenarios = 4 (L'T,s) x 4 (LU,).

Table 5.3. The first-order Transition Probability Matrix (TPM) derived from the second-order TPM by marginalization.
The pie charts represent the average expected probability distribution of light transmittance at t for the 16 different
scenarios (i.e. 16 combinations of the land-use state at t and the light transmittance state at (t-1). The full first- and
second-order TPMs can be found in Appendix A5.2.

Land-use Probability distribution for light transmittance at t,

stateatt ) . .
given the light transmittance state at (t-1)

Strong shade Moderate shade  Moderate light

at (t-1) at (t-1) at (t-1)
Zero cut . J
' Expected probability of:
Thinning . Strong shade
. Moderate shade
' . Moderate light
Shelter Strong light
cut
Clear cut

5.3.5. Step 5: land-use trajectory

Knowledge on past land use can be gathered from natural archives, such as tree-ring series or soil
properties, and cultural archives, such as old aerial pictures, historical maps, old management plans, and
face-to-face interviews with locals, land owners or managers. The land-use trajectory comprises the
translation of what is known about the past land use of the system into a sequence of the possible land-
use states defined in section 5.3.2 (step 2). Thus, for each time step in the chain, the land-use state that
best describes the situation at that time needs to be determined, and will be entered in the Markov chain

as evidence. This can, depending on the certainty of the land-use trajectory, either be done as hard evidence,
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assigning a 100% probability to the assumed land-use state at each time step, or as sof? evidence, providing

probabilities for the different states of the land-use variable that sum up to 100% (box 5.1).

For our case study, two co-authors of this chapter, each with detailed knowledge of the case study regions,
investigated the management history of the 29 plots and completed a standardized land-use history
questionnaire (Appendix A5.4). The historical information was used to assign a land-use state to each
10-year time step for each plot, starting in 1950 (Appendix A5.5). Some assumptions were necessary,
due to variations in the level of detail of the available historical data (Appendix A5.5). To illustrate the
possibility of including an uncertain land-use trajectory in the model, we defined three alternative
trajectories for one of the Czech plots (Plot KO775; Table 5.2). The historical information for this plot
mentioned sanitary thinnings of standards in the period 1900-2010. We assumed that every 30 years one
of these thinnings affected the plot and used a different timing of this thinning frequency in the three
alternative land-use trajectories. Presuming that each alternative is equally likely, each time step between
1950 and 2010 has a 66.6% probability of “zero cut’ and 33.3% probability of ‘thinning’, which can be

included in the model as soft evidence.
Table 5.4. Three alternative land-use (LU) trajectories for one of the Czech plots (KO775), with shifted timings for the

sanitary thinnings that took place between 1900 and 2010. The last row shows how alternative trajectories can be
combined into one uncertain land-use trajectory, which can be entered in the model as soft evidence.

100 % zero cut

100 % thinning

Originally assumed LU-trajectory (cf. Appendix E)

33.3% thinning

Alternative 1 66.6 % zero cut

Alternative 2

Uncertain LU trajectory added to Markov chain as soft
evidence

5.3.6. Step 6: running the model

Numerous software packages can be used to implement and run Markov-chain models. Aside from
software packages that are often used for Markov-chain modelling (e.g. R (Spedicato, 2017), MARCA
(Stewart, 1996), PRISM (Kwiatkowska et al.,, 2011)), also software packages primarily designed for
Bayesian belief network modelling can be highly suitable (e.g. Netica (Norsys, 1998), Hugin (Hugin, 2008)
and GeNie (Druzdzel 1999; http://www.bayesfusion.com))(Landuyt et al., 2013). In our case study,
models were implemented and run using the free software package GeNie. We built the model structure
(a first-order Markov chain with one auxiliary variable), and entered the weighted-average TPM of the
six experts (cf. Appendix A5.2). Then, we entered the assumed land-use state for each considered time
step, first as hard evidence (i.e. assigning a 100% probability to the assumed land-use state) for all 29

plots, and then as soft evidence (i.e. providing probabilities for the different states of the land-use variable
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that sum up to 100%) for one of the plots, to illustrate how using hard vs. soft evidence influences the
results. For each of the 29 study plots, the model then calculated the probability of each light
transmittance state to occur at each time step (for seven time steps of 10 years; from 1950-2020), given

the specific land-use trajectory of the plot.

Note that the model can be updated with evidence on the state of the driving variable at certain time
steps (in case these data are available). In our case study, we have light transmittance data for time step
ts (2010-2020). We first used these data to evaluate the model outcomes (section 5.3.7) and then updated
the model using the light transmittance data as evidence to generate model outcomes for further analysis

(see section 5.3.8 for details).

5.3.7. Step 7: evaluation of model outcomes

The final model output is a probability distribution of the different states of the driving variable at each
time step. In other words, the probability for each possible state of the driving variable at each time step
is predicted based on the land-use history data and the TPM (Fig. 5.3). From the probability distribution
output, a user can derive several variables to use in further analyses. Time series of, for instance, the mean
expected value, the most probable state to occur or the probability for a certain state to occur (e.g.
Dlamini, 2010; Smith et al., 2007) can be used to further investigate and analyse ecological process
dynamics. In our case study, we calculated the mean expected value of light transmittance at each time
step based on the probability distribution at each time step and the mean value of each light transmittance

(LT) state:

mean expected LT= Pss.g + PMSM—S + PMLm + PSL'S_L = Pss.4% + PMS' 14% + PML' 30% +
PSL' 70% Equation 5.1

with SS, MS, ML and SL the class means of respectively strong shade, moderate shade, moderate light and

strong light; and with P the probability for a light transmittance state to occur.
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Figure 5.3. Flowchart illustrating the steps of the framework, applied to our case study. Note that only a few rows of the TPM are shown here as an illustration. The full second-
order TPM, with 64 rows, can be found in Appendix A5.2. The data and graphs shown for step 5, 6, 7 and 8 are based on a hypothetical plot with a land-use history as
described in Step 5 of the figure. With LT light transmittance, LU land use, SS strong shade, MS moderate shade, ML moderate light and SL strong light.
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Metrics to evaluate the performance of models that produce a probabilistic output include confusion
tables, £-fold cross-validation, receiver operating characteristic curves, and several performance indices
such as spherical pay-off, Schwarz’ Bayesian information criterion, and true skill statistic (Marcot, 2012).
Another commonly used approach is based on comparing the model performance to the expected
percentage of correct classifications if the prediction was made in a random manner (i.e. by a model called
random classifier ot baseline classifier) (e.g. Genc & Dag 2016). In our case study, we used light transmittance
data obtained from the 2015 survey that took place in each of the 29 plots (Appendix A5.1) to evaluate
the model performance. We measured light transmittance with a spherical densiometer (Forestry
Suppliers, 2008; Lemmon, 1957). For the time step t; (2010-2020) for which observed light transmittance
data are available, we compared model predictions against predictions of an indifferent baseline classifier
(uniform distribution). For each plot, the model performance was expressed as the predicted probability
of the observed light transmittance state at the survey time, minus the baseline probability of that state.
Since the defined light transmittance classes were unbalanced, baseline probabilities, derived from a
uniform distribution, were set to 8%, 12%, 20% and 60%, for the states ‘strong shade’, ‘moderate shade’,
‘moderate light’ and ‘strong light’, respectively. Positive model performance values, where predicted

probability values are higher than their baseline, indicate that model predictions are informative.

In our case study, the model performance differed between plots (Fig. 5.4), and for the majority of the
plots, the informed model was performing better than the random (baseline) model (more positive than
negative values in Fig. 5.4). Many of the plots for which the model performed badly were thinned within
the 20 years prior to the survey. Thinning events close to the survey hence seemed to decrease the model’s
performance. Two possible explanations for this observation are: (i) the documented thinnings might not
have taken place in or close to the plot, and (ii) the experts who completed the TPM might have wrong
expectations about the effect of thinnings on light levels. The experts generally assumed thinnings to
increase light levels, but a recent study showed that light levels at the forest floor can be similar in forests
with a dense vs. a more open canopy, due to a higher shrub density in the more open forests (Sercu et

al,, 2017).
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Figure 5.4. Measure of model performance for the 29 plots of our case study, calculated as the predicted probability
of the observed light transmittance state (at the 2015 survey) minus the baseline probability of that state (based on
a uniform distribution). The more positive the value, the better the model predictions. The colours of the bars indicate
the observed light transmittance state during the 2015 survey.

Including uncertainty in the timing of thinning events in our model resulted in a more gradual change in
predicted average light transmittance over time compared to the cyclic behaviour of light transmittance
for thinning events with a certain timing (Fig 5.5).Yet, the general trend, i.e. an overall decrease in light

transmittance over time, was similar for certain and uncertain land-use trajectories.

— -8 — Uncertain land-use trajectory
35 —a&— Certain land-use trajectory

Mean expected light transmittance
(%)

t0 t1 t2 t3 t5 t5 t6
Time step

Figure 5.5. Comparison between the results of a first-order Markov chain, with and without accounting for
uncertainty in the land-use (LU) trajectory (see Table 5.2), for one plot from our case study (KO 775) and seven 10-
year time steps during 1950-2020.
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5.3.8. Step 8: application of model outcomes

For the 29 plots of our case study, we have vegetation data from two surveys (the first survey in the
1950s, 60s or 70s, depending on the region, and the second in 2015; see Appendix A5.1). The survey
data comprise an estimated cover (in %) for each species in three separate layers, 1.e. tree layer (all trees
taller than half of the height of the canopy trees), shrub layer (all woody plants taller than 1.3 m not
included in the tree layer) and understorey (all plants smaller than 1.3 m). We have data on light
transmittance for the 2015 survey, measured with a spherical densiometer, and derived estimates of light
transmittance for the first survey through the relationship between the light transmittance and tree and
shrub cover data of the second survey (see Appendix A5.6). We included the light transmittance data of
both time steps (the two survey times) as evidence in our model to calculate a time series of mean
expected light transmittance for each plot. We expect that including evidence will make the model results
more informative, but we cannot quantify this effect, as there is no validation data available. We did not
include uncertainty in the land-use trajectory to obtain the estimated light transmittance over time. We
used the obtained time series, combined with the vegetation data from the 2015 survey, to assess the

importance of past light levels on the current understorey community composition.

The data from the two surveys provide light transmittance values at two time points, as well as an
estimation for light transmittance values in between both surveys, given we assume linear dynamics (Fig.
5.6a). Our framework, however, allows uncovering the light transmittance in between surveys,
demonstrating that two plots with very similar light levels during both surveys may have experienced

completely different light regimes in between surveys (Fig. 5.6b).

We used a simple linear model to explore the importance of past light levels for understorey community
composition. The response variable was the proportion of forest specialists (i.e. plant species found
mainly in closed forest, as defined for the lowlands of the Czech Republic, cf. Heinken, 2019) in the
understorey community (all plants smaller than 1.3 m height, including tree species) in the 2015 survey.
The explanatory variables were the cumulative light transmittance, i.e. the area under the curve of
estimated light transmittance over time (Fig. 5.6¢), for 10 and 60 years prior to the 2015 survey. As
covariates, we included the total number of species present in 2015 and the region (i.e. Koda Wood,

Zvolen, or Slovak Karst) of a plot.
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Figure 5.6. Graphical illustration of the added value of our framework for a resurvey study, using 3 of our 29 study
plots. Light transmittance values are only available at the two survey times. (a) Light transmittance between both
surveys can be estimated through linear interpolation. (b) Using our framework, light transmittance in between
surveys can be estimated, demonstrating that two plots with similar light levels for both surveys may have
experienced completely different light regimes between the surveys. For plot 1 and 3, management interventions are
indicated on the figure. Plot 2 was thinned at each time step. (c) The projected time series of light transmittance can
be used to calculate, for example, the cumulative light transmittance over the 40 years before a survey.

We found that the cumulative light transmittance over a period of 60 years prior to the survey was a
better predictor of the proportion of forest specialists in a plot’s understorey community (p = 0.07),
compared to the cumulative light transmittance of the recent past (i.e. 10 years prior to the survey) (p =
0.16) (Fig. 5.7). This suggests that the current understorey composition is better explained by cumulative
light levels over the past 60 years than by the more recently prevailing light levels. Study plots with a
higher number of species in the understorey had a lower proportion of forest specialists, and the plots in
Zvolen had a lower proportion of forest specialists than in the other two regions. The model explains 43
% of the variation in the proportion of forest specialists (R* = 0.43); an acceptable R*-value for ecological
processes. Our findings suggest that management legacies are present in forest understoreys and are in
accordance with Thomas et al. (1999) and Délle and Schmidt (2009), who found that the light-vegetation
relationship might be better explained by past light regimes than by current light conditions because of
the slowness of plant community changes. Note that our findings are limited by (i) the small sample size
and (ii) possible correlation structures among plots in each region that are not accounted for in our simple

analysis. All analyses were performed in R 3.3.2 (R Core Team, 2017).
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Figure 5.7. Effect sizes of cumulative light transmittance (LT) over the past 10 and 60 years prior to the survey for
the proportion of forest specialists in the total species pool. Significant effects are indicated with *' (p<0.10). The
effect sizes of the covariates ‘total species number’ and ‘region’ are also shown.

5.4. DISCUSSION

We proposed a framework based on the hypothesis that past land use affects current ecosystem
properties through its impact on past values of driving variables (Fig. 5.1). We used our framework to
model the temporal dynamics of one such driving variable (i.e. light transmittance) based on land-use
history data, to look for effects of past land use on current understorey composition in temperate forests.
To more thoroughly estimate the past resources and conditions of an ecosystem, the modelling could be

repeated for other driving variables relevant for the particular study system.

5.4.1. Strengths of the framework

The strength of the framework is its applicability to different types of ecological processes and
ecosystems, while previously developed indices or classification schemes for quantifying land-use legacies
were only applicable to specific ecosystems, such as forests (e.g. Schall & Ammer 2013; Kahl & Bauhus
2014), grasslands (e.g. Bliithgen et al., 2012), or agricultural fields (e.g. Dietrich et al., 2012). The modelling
framework of Ogle et al. (2015) for quantifying ecological memory is also applicable in different
ecosystems, but has the disadvantage of requiring long continuous time series. When such long-term data
are unavailable or incomplete, which is often the case, our framework offers the opportunity to derive

time series of biologically meaningful driving variables from uncertain or incomplete land-use data.
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Markov chains offer the advantage that they can handle low-quality land-use data with high uncertainties
since both hard evidence (100% certainty about the land use at a certain time point, e.g. based on
photographs) and soft evidence (probabilistic information about the land use at a certain time point, e.g.
based on expert information) can be inserted (Jensen & Nielsen, 2007). The general applicability of the
proposed framework is further improved by allowing the user to adjust the order of the Markov chain,
depending on the expected extent of influences of the past. For our case study, where we model light
transmittance over time for a given land-use trajectory, we found very small influences of the second-
order term of the Markov chain (based on the Transition Probability Matrix (TPM)), suggesting that light

transmittance at the forest floor mainly depended on more recent management events.

5.4.2. Opportunities for improving model performance

The poor model performance that we observed for some of the plots in our case study can have several
reasons. We believe the most important reason is the high uncertainty of the data on past land use. As
the exact timing of management interventions was often unknown, especially at the plot level, we can’t
expect to be able to accurately predict light transmittance values at a specific point in time. In addition,
the resolution of the Markov chain in the application (i.e. time intervals of 10 years) might be too low to
capture small fluctuations in light availability that might have had an impact on the understorey. However,
when the aim of the model is to derive general trends in the dynamics of a driving variable, such as
cumulative light availability, this bias can be considered less problematic. We illustrated this with one of
the plots from our case study (Fig. 5.5), where similar general trends were predicted with and without

accounting for uncertainty in the land-use trajectory.
g y J ry

Another potential weakness of the framework is the strong dependence of the model output on the
quality of the Transition Probability Matrix (TPM), which depends on the knowledge of the consulted
experts. However, the TPM might be improved by including literature data and data-learning techniques
to estimate the conditional probabilities. The latter, however, requires extensive long-term data, which
are often not available. Providing experts with clear guidelines and background information on the
investigated process and boundary conditions is key for obtaining high-quality TPMs. In addition, when
multiple experts have provided a TPM, running the model with each separate TPM instead of the
(weighted) average TPM can provide information on the dependency of the model results on the TPM,
and can reveal how some TPMs better fit the data (assuming qualitative validation data is available) than

others and should therefore be given more weight in the final TPM.

Finally, information loss through strong simplifications due to the discrete nature of Markov chains can
decrease model performance. There is a trade-off between accuracy and complexity, as an increase in the
number of states will also increase the number of rows of the TPM. By using ecologically relevant

thresholds, information loss through discretization can be minimized.
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To deal with the abovementioned issues, a lot can be learned from recent advances in the field of Bayesian
belief network modelling, a modelling technique that also works with discrete variables and an identical
probabilistic knowledge base that is often derived from a combination of literature data, field data and
expert knowledge (see, for example, Murphy (2002)). Within this field, expert knowledge elicitation
techniques (e.g. Kuhnert et al., 2010; Pollino et al., 2007), and data assimilation techniques (e.g. Chen &

Pollino, 2012; Marcot et al., 2000) to combine different data sources have been developed and optimized.

Marcot (2012) suggests that Bayesian belief networks may best be developed stepwise, starting from a
less ambitious model based on expert knowledge, testing and calibrating the model, updating the structure
of the model and retesting it until a satisfying performance is reached. In this chapter, we used Markov
chains, which are related to Bayesian belief networks and also offer the flexibility to update the model
with auxiliary variables, such as the land-use variable in Fig. 5.2. They can easily be extended even further,
depending on the complexity of the ecological processes that are studied. For example, if next to land
use, other variables influence the state of the driving variable, these can be added to the chain as well,
and model performance can be tested again. Of course, this will only work if we have temporal data on
this additional auxiliary variable and if the relation between this variable and the driving variable can be
quantified through experts or data. Besides, the improvement of model performance can only be tested

when qualitative validation data is available.

Here, we illustrated one possible approach to validate the model performance. We compared the
performance of our ‘informed model” (based on expert knowledge for both the model structure and the
TPM) to the performance of a ‘random classifier model’, which makes predictions in a completely
random manner. However, alternative approaches could provide further insight in the validity and
performance of our model. For example, we could compare our informed model to a model with the
same structure (i.e. based on expert knowledge) but using a random TPM instead of an expert-based

TPM.

5.4.3. Applicability of the framework

With our framework, we are able to predict time trends of driving variables of ecological processes and
properties, for a given land-use history. We believe this is a key step leading to further investigation of
how past land use affects current ecosystems. Long time series of measured past resources and conditions
are often not available. With the time trends we model, we can reveal some of the likely past behaviour
of these resources and conditions (cf. Fig. 5.6), allowing us to detect why systems with seemingly similar
contemporary resources and conditions can display different properties. In our case study, we derived
past light dynamics to assess how current herb layer communities are (partially) shaped by past light
availability, and revealed why forest plots with similar current light conditions have different herb layer

communities. Several other drivers, such as soil pH, nutrient availability and soil moisture content also
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affect herb layer communities (Klanderud et al., 2015). It would therefore be interesting to apply the
proposed framework on the other important driving variables, which might be influenced by other land-
use variables. It may not always be feasible to determine all driving variables of an ecological process, but
gaining insight into the dynamics of a subset of the driving variables will already improve our

understanding of the process and its dependence on past land use.

We hope our framework will provide an opportunity for further studies on how past ecosystem properties
(i.e. past levels of resources and conditions), controlled by past land use, are affecting contemporary
ecological properties and patterns. The modelling approach can easily be translated to different driving
variables and different land-use variables and can be extended or adapted depending on the complexity
of the study system. We therefore believe the proposed approach is widely applicable in studies where
researchers have (some) data on past land use and want to take those into account to achieve a better

understanding and better predictions of the contemporary or future ecological state.
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Chapter 6

In this PhD, our main objectives were to (i) assess the main environmental change drivers that could
explain biodiversity and functional changes in forest understorey communities over time, and (ii) assess
how these understorey community responses to environmental change depend on the land-use history
of the system. An extensive dataset of vegetation resurveys allowed us to assess actual temporal changes
in understorey communities at multiple locations across Europe, and to disentangle the different potential
drivers of these changes. Our major findings were (i) that light availability as a local driver of change was
more important for explaining understorey community trajectories than the regional global-change
drivers (climate and nitrogen deposition) and (ii) that land-use history affected the impact of the
environmental change drivers on the understorey community trajectories (see Fig. 6.1 for an overview

of our most important findings).

In this general discussion, we will integrate the findings of the different chapters. Previous land use has
steered understorey communities onto trajectories of change, through locally eliminating plants and their
diaspores, and through altering the resources and conditions that determine understorey composition.
Therefore, we will first discuss the main legacies that we observed from different previous land uses, i.e.
the ancient/recent distinction across Europe, and the outland/infield distinction in Skane (section 6.1).
Then, we will elaborate on the importance of light availability, as we found that this was the key driver
for understorey community trajectories (section 6.2). Taking these findings together, we will discuss how
forest management practices can be used to steer understorey composition under future environmental
changes (section 6.3), and we will formulate concrete recommendations for future research avenues

(section 6.4).
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Figure 6.1. Overview of the main results from Chapter 2 and 3, where we investigated the effects of local- and
regional-scale environmental changes on different properties of the herb layer composition. Effects of land-use
history (LUH) should be interpreted as the effect of the plot being located on former infield (Chapter 2) or in recent
forest (Chapter 3) instead of former outland/ancient forest. Effects of forest management (Chapter 2) should be
interpreted as the effect of more intensive management practices. The sign (positive/negative) of the interactive effect
of LUH indicates the effect of infield (Chapter 2) or recent forest (Chapter 3) on the slope (estimate) of the effect of
the predictor on the response variable. Thus, a positive (negative) interaction means that the slope is higher (lower)
in recent forest/former infield than in ancient forest/former outland. SCA = shade-casting ability; SLA = specific leaf
area, N = nitrogen; MAT = mean annual temperature.
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6.1. LAND-USE LEGACIES IN SOIL AND CANOPY PROPERTIES

Legacies from the former agricultural use were present in the topsoil conditions of our study plots. Across
our European dataset, total phosphorus (P) concentrations were higher in recent than in ancient forests,
and in Skane, total P concentrations were higher in former infields compared to former outlands. While
we should bear in mind that these differences might partially be related to an initial preference for richer
soils for agriculture (Flinn et al., 2005), it is very likely that subsequent fertilization practices have at least
reinforced the higher fertility that infield/recent forest soils exhibit. In contrast to the results of Honnay
etal. (1999) and Verheyen and Hermy (2001), pHxkca was not related to former agricultural land use, which
could be due to a large variety of former agricultural practices across the different countries where we

sampled (Graae et al., 2003).

The former agricultural use was also reflected in the canopy structure and composition, but here, we
found contradictory results between the Skane study (Chapter 2) and the study across Europe (Chapter
3). Across Europe, the canopy’s shade-casting ability was lower in the recent (post-agricultural) forests
than in the ancient forests. We speculate that this might be related to differences in the stage of natural
succession between ancient and recent forests. With natural forest succession, the importance of higher
shade-casting species increases over time (Connell & Slatyer, 1977), and ancient forests are likely to be in
a more ‘mature’ stage of succession compared to recent forests which only started to develop after the
agricultural land use was abandoned. Yet, other factors could also have caused the differences in canopy
composition between ancient and recent forests, such as the choice of tree species when reforestation of
abandoned agricultural land happened through plantation rather than spontaneously. However, we were
not able to test the cause(s) of the different shade-casting abilities in ancient vs. recent forests. In Skane,
on the other hand, we found denser, more shade-casting canopies on former infields than on former
outlands, and related this to the higher soil fertility. Similar examples of lower light transmission on richer
soils, potentially due to a denser layer of subcanopy trees, have been reported in other parts of the world
(e.g. Coomes et al., 2009; Coomes & Grubb, 1996; Tilman, 1988). A possible reason for these opposite
findings is that the recent/ancient and infield/outland distinctions are not fully comparable. While the
basic idea of the nutrient-enriched vs. nutrient-depleted soils is comparable, forests on former
infields/outlands ty