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Abstract
Social networks often provide only a binary perspective on social ties: two individuals
are either connected or not. While sometimes external information can be used to infer
the strength of social ties, access to such information may be restricted or impractical
to obtain. Sintos and Tsaparas (KDD 2014) first suggested to infer the strength of social
ties from the topology of the network alone, by leveraging the Strong Triadic Closure
(STC) property. The STC property states that if person A has strong social ties with per-
sons B and C , B and C must be connected to each other as well (whether with a weak
or strong tie). They exploited this property to formulate the inference of the strength of
social ties as a NP-hardmaximization problem, and proposed two approximation algo-
rithms. We refine and improve this line of work, by developing a sequence of linear
relaxations of the problem, which can be solved exactly in polynomial time. Use-
fully, these relaxations infer more fine-grained levels of tie strength (beyond strong
and weak), which also allows one to avoid making arbitrary strong/weak strength
assignments when the network topology provides inconclusive evidence. Moreover,
these relaxations allow us to easily change the objective function to more sensible
alternatives, instead of simply maximizing the number of strong edges. An extensive
theoretical analysis leads to two efficient algorithmic approaches. Finally, our experi-
mental results elucidate the strengths of the proposed approach, while at the same time
questioning the validity of leveraging the STC property for edge strength inference in
practice.
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1 Introduction

Online social networks, such as Facebook, provide unique insights into the social
fabric of our society. They form an unprecedented resource to study social-science
questions, such as how information propagates on a social network, how friendships
come and go, how echo chambers work, how conflicts arise, and much more. Yet,
many social networks provide a black-and-white perspective on friendship: they are
modeled by unweighted graphs, with an edge connecting two nodes representing that
two people are friends.

Surely though, some friendships are stronger than others. Facebook friendships are
formed because of reciprocity, human error or peer-pressure, but also simply because
of the existence of real-life friendship. Understanding the strength of social ties can
be critical. It is used by sociologists trying to understand user-to-user interactions in
complex network dynamics (Granovetter 1977). It has applications in viral marketing
(De Meo et al. 2014) and friend recommender systems (Lu and Zhou 2010).

Although in some cases detailed data are available and can be used for inferring
the strength of social ties, e.g., communication frequency between users, or explicit
declaration of relationship types, such information may not always be available.

The question of whether the strength of social ties can be inferred from the structure
of the social network alone, the subject of the current paper, is therefore an important
one. Edge strength inference has been extensively studied before, and we refer to
Sect. 7 for an overview of existing methods and motivation.

However, we emphasize that the aim of this paper is not to improve upon the state-
of-the-art methods for edge strength inference. Instead, the main topic of this paper is
improving upon earlier work that leverages the Strong Triadic Closure (STC) principle
for edge strength inference, and investigating the practical usefulness ofmethods based
on this principle.

Before we discuss our specific contributions, however, let us provide some essential
background on prior work on this topic.

Background An important line of research attempting to address the inference of the
strength of social ties is based on the Strong Triadic Closure (STC) property from
sociology, introduced by Simmel (1908) and later popularized by Granovetter (1977).
To understand the STC property, consider an undirected network G = (V , E), with
E ⊆ (V

2

)
. Consider additionally a strength function w : E → {weak,strong}

assigning a binary strength value to each edge. A triple of connected nodes i, j, k ∈ V
is said to satisfy the STC property, with respect to the strength functionw, ifw({i, j}) =
w({i, k}) = strong implies { j, k} ∈ E . In other words, two adjacent strong edges
always need to be “closed” by an edge (whether weak or strong).We refer to a strength
function for which all connected triples satisfy the STC property as STC-compliant:

Definition 1 (STC-compliant strength function on a network) A strength function w :
E → {weak,strong} is STC-compliant on an undirected network G = (V , E) if
and only if

for all i, j, k ∈ V , {i, j}, {i, k} ∈ E :
w({i, j}) = w({i, k}) = strong implies { j, k} ∈ E .
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A consequence of this definition is that for an STC-compliant strength function, any
wedge—defined as a triple of nodes i, j, k ∈ V for which {i, j}, {i, k} ∈ E but
{ j, k} /∈ E—can include only one strong edge. We will denote such a wedge by the
pair (i, { j, k}), where i is the root and j and k are the end-points of the wedge, and
we will denote the set of wedges in a given network by W .

On the other hand, for a triangle—defined as a triple of nodes i, j, k ∈ V for
which {i, j}, {i, k}, { j, k} ∈ E—no constraints are implied on the strengths of the
three involved edges. We will denote a triangle simply by the (unordered) set of its
three nodes {i, j, k}, and the set of all triangles in a given network as T . Without loss
of generality, in this paper we will assume that the graph does not have any isolated
edge: indeed, isolated edges can be assigned to a predefined strength level.

Relying on the STC property, Sintos and Tsaparas (2014) propose an approach
to infer the strength of social ties. They observe that a strength function that labels
all edges as weak is always STC-compliant, but this is not a meaningful assignment.
Instead, they postulate that a large number of strong ties is expected to be found1

in a social network, and hence they suggest searching for a strength function that
maximizes the number of strong edges, or (equivalently) minimizes the number of
weak edges.

To write this formally, we introduce a variable wi j for each edge {i, j} ∈ E ,
defined as wi j = 0 if w({i, j}) = weak and wi j = 1 if w({i, j}) = strong. Then,
the original STC problem, maximizing the number of strong edges, can be formulated
as:

max
wi j :{i, j}∈E

∑

{i, j}∈E
wi j , (STCmax)

such that wi j + wik ≤ 1, for all (i, { j, k}) ∈ W, (1)

wi j ∈ {0, 1}, for all {i, j} ∈ E . (2)

Equivalently, one could instead minimize
∑

{i, j}∈E (1 − wi j ) subject to the same
constraints, or with transformed variables vi j = 1 − wi j equal to 1 for weak edges
and 0 for strong edges:

min
vi j :{i, j}∈E

∑

{i, j}∈E
vi j , (STCmin)

such that vi j + vik ≥ 1, for all (i, { j, k}) ∈ W, (3)

vi j ∈ {0, 1}, for all {i, j} ∈ E . (4)

When we do not wish to distinguish between the two formulations, we will refer to
them jointly as STCbinary.

Sintos and Tsaparas (2014) observe that STCmin is equivalent to Vertex Cover on
the so-called wedge graph GE = (E, F), whose nodes are the edges of the original
input graph G, and whose edges are F = {{{i, j}, {i, k}} | (i, { j, k}) ∈ W}, i.e.,
1 However, our empirical findings in Sect. 6 indicate that this is not true for most available datasets. This
is confirmed by earlier work of De Meo et al. (2014) on the Facebook network.
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two nodes of GE are connected by an edge if the edges they represented in G form
a wedge. While Vertex Cover is NP-hard, a simple 2-approximation algorithm can
be adopted for STCmin (f.e., by finding a maximal matching in the wedge graph).
On the other hand, STCmax is equivalent to finding the maximum independent set on
the wedge graph GE , or equivalently the maximum clique on the complement of the
wedge graph. It is known that there cannot be a polynomial-time algorithm that for
every real number ε > 0 approximates the maximum clique to within a factor better
thanO(n1−ε) (Håstad 1999). In other words, while a polynomial-time approximation
algorithm exists for minimizing the number of weak edges (with approximation factor
two), no such polynomial-time approximation algorithm exists for maximizing the
number of strong edges.

Despite its novelty and elegance, STCbinary suffers from a number of weaknesses,
which we address in this paper.

First, STCbinary is a NP-hard problem. Thus, one has to either resort to approxi-
mation algorithms, which are applicable only for certain problem variants—see the
discussion on STCmin vs. STCmax above—or rely on exponential algorithms and hope
for good behavior in practice. Second, the problem returns only binary edge strengths,
weak vs. strong. In contrast, real-world social networks contain tie strengths of many
different levels. A third limitation is that, on real-life networks, STCbinary tends to have
many optimal solutions. Thus, any such optimal solution makes arbitrary strength
assignments w.r.t. the graph’s topology, for edges having different assignments in dif-
ferent optimal solutions. 2 Last but not least, the objective of STCbinary is to maximize
the total number of strong edges. This is motivated by the assumption that social
networks contain a lot of strong relationships. However, our empirical findings indi-
cate that real-life networks often do not have a large amount of strong edges. Instead
of maximizing the strong edges, there are other meaningful objective functions that
perform better in practice, such as maximizing the number of strong triangles.

Contributions In this paperwe propose a series of Linear Programming (LP) relaxations
that address all of the above limitations of STCbinary. In particular, our LP relaxations
provide the following advantages.

– The first relaxation replaces the integrality constraints wi j ∈ {0, 1} with a range
constraint 0 ≤ wi j ≤ 1. It can be shown that this relaxed LP is half-integral,
i.e., there is an optimal solution for which all edge strengths take values wi j ∈
{0, 1

2 , 1}. Thus, not only the problem becomes polynomial, but the formulation
also introduces meaningful three-level edge strengths.

– Next we relax the upper-bound constraint, requiring only wi j ≥ 0, while general-
izing the STC property in triangles to deal with higher gradations of edge strengths.
Furthermore, we propose additional relaxations that allow for some STC violations
and a change of the objective function.

– We analyze these relaxations and derive properties of their optima, highlighting
the benefits of these relaxations with respect to STCbinary.

2 A case in point is a star graph, where the optimal solution contains one strong edge (arbitrarily selected),
while all others are weak.
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– We show that the relaxations can be solved by the efficient combinatorial
Hochbaum–Naor algorithm, and propose a number of methods for reducing aribi-
trariness w.r.t. the graph’s topology.

– Finally, we conduct an extensive experimental evaluation, and discuss the useful-
ness of leveraging the STC property in practical situations.

Outline We start by proposing the successive relaxations in Sects. 2 and 3. In Sect. 4
we analyze these relaxations and the properties of their optima in more detail. The
theory developed in Sect. 4 leads to efficient algorithms, discussed in Sect. 5. Empirical
performance is evaluated in Sect. 6, and related work is reviewed in Sect. 7, before
drawing conclusions in Sect. 8.

2 Main LP relaxations

Herewewill derive two increasingly loose relaxations of ProblemSTCmax.3 We simply
enlarge the feasible set of strengthswi j , for all edges {i, j} ∈ E . The detailed analysis
of both problems is deferred to Sect. 4.

2.1 Relaxing the integrality constraint

The first relaxation relaxes the constraint wi j ∈ {0, 1} to 0 ≤ wi j ≤ 1. Denoting the
set of edge strengths with w = {wi j | {i, j} ∈ E}, this yields:

max
w

∑

{i, j}∈E
wi j , (LP1)

such that wi j + wik ≤ 1, for all (i, { j, k}) ∈ W, (5)

wi j ≥ 0, for all {i, j} ∈ E, (6)

wi j ≤ 1, for all {i, j} ∈ E . (7)

Equivalently in Problem STCmin, one can relax constraint (4) to 0 ≤ vi j ≤ 1. Recall
that Problems STCmax and STCmin are equivalent respectively with the Independent
Set andVertex Cover problems on the wedge graph. For those problems, this particular
linear relaxation is well-known, and for Vertex Cover it can be used to achieve a 2-
approximation (Hochbaum 1982, 1983).

Clearly, this relaxation will lead to solutions that are not necessarily binary. How-
ever, as will be explained in Sect. 4, Problem LP1 is half-integral, meaning that there
always exists an optimal solution with wi j ∈ {0, 1

2 , 1} for all {i, j} ∈ E .

2.2 Relaxing the upper bound constraints to triangle constraints

We now further relax Problem LP1, so as to allow for edge strengths larger than 1.
The motivation is to allow for higher gradations in the inference of edge strengths.

3 Our relaxations can also be applied to Problem STCmin, however, for brevity, hereinafter we omit dis-
cussion on this minimization problem.
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Simply dropping the upper-bound constraint (7)would yield uninformative unbounded
solutions, as edges that are not part of any wedge would be unconstrained. Thus, the
upper-bound constraints cannot simply be deleted; they must be replaced by looser
constraints that bound the values of edge strengths in triangles in the same spirit as
the STC constraint does for edges in wedges.

To enable such a relaxation, we propose to generalize the wedge STC constraints (5)
to STC-like constraints on triangles, as follows: in every triangle, the combined strength
of two adjacent edges should be bounded by an increasing function of the strength of
the closing edge. In social-network terms: the stronger a person’s friendship with two
other people, the stronger the friendship between these two people must be. Encoding
this intuition as a linear constraint yields:

wi j + wik ≤ c + d · w jk,

for some c, d ∈ R
+. This is the most general linear constraint that imposes a bound

on wi j + wik that is increasing with w jk , as desired. We will refer to such constraints
as triangle constraints.

In sum, we relax Problem LP1 by first adding the triangle constraints for all tri-
angles, and subsequently dropping the upper-bound constraints (7). For the resulting
optimization problem to be a relaxation of Problem LP1, the triangle constraints must
be satisfied throughout the original feasible region. This is the case as long as c ≥ 2:
indeed, then the box constraints 0 ≤ wi j ≤ 1 ensure that the triangle constraint is
always satisfied. The tightest possible relaxation is thus achieved with c = 2, yielding
the following relaxation:

max
w

∑

{i, j}∈E
wi j , (LP2)

such that wi j + wik ≤ 1, for all (i, { j, k}) ∈ W,

wi j + wik ≤ 2 + d · w jk, for all {i, j, k} ∈ T ,

wi j ≥ 0, for all {i, j} ∈ E . (8)

Remark 1 (The wedge constraint is a special case of the triangle constraint) Consid-
ering an absent edge as an edge with negative strength −1/d, the wedge constraint
can in fact be regarded as a special case of the triangle constraint.

3 Additional LP formulations

Although the STC property is theoretically motivated, real-world social networks are
noisy and may contain many exceptions to this rule. In Sects. 3.1 and 3.2 we propose
two further relaxations of Problem LP2 that gracefully deal with exceptions of two
kinds: wedges where the sum of edge strengths exceeds 1, and edges with a negative
edge strength, indicating that the STC property would be satisfied should the edge not
be present. These methods thus solve the STC relaxation in polynomial time, while
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allowing a small number of edges to be added or removed from the network. We note
that Sintos and Tsaparas (2014) also suggest a variant of STCbinary that allows the
introduction of new edges. However, the resulting problem is again NP-hard, and the
provided algorithm provides an O(log(|E |))-approximation, rather than a constant-
factor approximation.

Finally, in Sect. 3.3 we propose an alternative objective function to be maximized.
Instead ofmaximizing the number of strong edges,wepropose tomaximize the number
of strong triangles in the graph.

3.1 Allowing violated wedge STC constraints

In order to allow for violated wedge STC constraints, we can simply add positive slack
variables ε jk for all (i, { j, k}) ∈ W:

wi j + wik ≤ 1 + ε jk, ε jk ≥ 0. (9)

The slack variables ε jk can be interpreted as quantifying the strength of the (absent)
edge between j and k. In more detail, let Ē denote the set of pairs of end-points of
all the wedges in the graph, i.e., Ē = {{ j, k} | there exists i ∈ V : (i, { j, k}) ∈ W}.
We also extend our notation to introduce strength values for those pairs, i.e., w ={
wi j | {i, j} ∈ E or {i, j} ∈ Ē

}
, and define w jk = ε jk−1

d for { j, k} ∈ Ē . The relaxed
wedge constraints (9) are then formally equal to the triangle STC constraints (8). Indeed,
the upper bound in the relaxedwedge constraint (9) is then equal to 1+ε jk = 2+d ·w jk ,
which is of the same form as the upper bound in the triangle constraint (8).Meanwhile,
the lower bound ε jk ≥ 0 from (9) is equivalent with w jk ≥ − 1

d , i.e., allowing the
strength of these absent edges to be negative.

In order to bias the solution towards few violated wedge constraints a term
−C

∑
{ j,k}∈Ē w jk is added to the objective function. The larger the parameter C ,

the more a violation of a wedge constraint will be penalized. The resulting problem
is:

max
w

∑

{i, j}∈E
wi j − C

∑

{ j,k}∈Ē
w jk, (LP3)

such that wi j + wik ≤ 2 + d · w jk, for all (i, { j, k}) ∈ W,

wi j + wik ≤ 2 + d · w jk, for all {i, j, k} ∈ T ,

wi j ≥ 0, for all {i, j} ∈ E .

w jk ≥ − 1

d
, for all { j, k} ∈ Ē .

Note that in Remark 1, − 1
d was argued to correspond to the strength of an absent

edge. Thus, the lower-bound constraint on w jk requires these weights to be at least
as large as the weight that signifies an absent edge. If it is strictly larger, this may
suggest that the edge is in fact missing, as adding it increases the sum of strengths in
the objective more than the penalty paid for adding it.
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3.2 Allowing negative edge strengths

A further relaxation is obtained by allowing edges to have negative strength, with
lower bound equal to the strength signifying an absent edge:

max
w

∑

{i, j}∈E
wi j − C

∑

{ j,k}∈Ē
w jk, (LP4)

such that wi j + wik ≤ 2 + d · w jk, for all (i, { j, k}) ∈ W,

wi j + wik ≤ 2 + d · w jk, for all {i, j, k} ∈ T ,

wi j ≥ − 1

d
, for all {i, j} ∈ E .

w jk ≥ − 1

d
, for all { j, k} ∈ Ē .

This formulation allows the optimization problem to strategically delete some edges
from the graph, if doing so allows it to increase the sum of all edge strengths.

3.3 Maximizing the number of strong edges in all triangles

Sintos and Tsaparas (2014) proposed to maximize the number of strong ties in a
network, arguing that “people build social networks with the goal to create strong ties
with other people”. However, our emperical findings in Sect. 6 show that most real
datasets do not have a large number of strong edges. On the contrary, most networks
have heavily right-skewed distributions of their empirical edge weights: there are
numerously many more weak edges than strong edges. Moreover, the STC property
does not provide grounding to label edges that are not part of any triangle as strong.

Hence, alternative objective functions could be more appropriate. For example,
in their book “Networks, Crowds and Markets” (Chapter 3.3), Easley and Kleinberg
(2010) show that empirical tie strength linearly scales with the neighborhood overlap
of an edge in a whotalks-to-whom network maintained by a cell-phone provider that
covered roughly 20% of the US population.

Instead of maximizing the total edge weights sum, we propose to maximize the
sum of the weights of all triangles. Let�i j denote the number of triangles that an edge
{i, j} is part of. Since every edge can be part of multiple triangles, maximizing the
sum of the weights of all triangles is equivalent to

max
w

∑

{i, j}∈E
wi j · �i j (LP�)

This affine objective function favors edges that are part of many triangles to be labeled
as strong, and can be applied to any of the previously discussed LP’s 1–4. Edges that
are not part of any triangle can simply be put to their weakest assignment possible,
since they do not contribute anything to the objective. Section 4 discusses theoretical
results for LP’s 1–4.Withoutmuch effort, one can show that the theoretical results from
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Fig. 1 A toy graph illustrating
the different type of edges
defined in Sect. 4.1

x
y

z
w

u

Sect. 4 still apply to any of the LP� formulations. More specifically, half-integrality
results are still valid.

4 Theoretical analysis of the optima

The general form of relaxation LP1 is a well-studied problem, and it is known that there
always exists a half-integral solution—asolutionwhere allwi j ∈ {0, 1

2 , 1} (Nemhauser
and Trotter 1975). In this section we demonstrate how to exploit the symmetries in
the optima, and show an analogous result for Problem LP2. Furthermore, the described
symmetries also exist for Problems LP3 and LP4, although they donot imply an analogue
of the half-integrality result for these problems.

We also discuss how the described symmetries are useful in reducing the arbi-
trariness of the optima, as compared to Problems STCmax and STCmin, where
even structurally-indistinguishable edges might be assigned different strengths at the
optima. Furthermore, in Sect. 5 we will show how the symmetries can be exploited
for algorithmic performance gains, as well.

We start by giving some useful definitions and lemmas.

4.1 Auxiliary definitions and results

It is useful to distinguish two types of edges:

Definition 2 (Triangle edge and wedge edge) A triangle edge is an edge that is part
of at least one triangle, but that is part of no wedge. A wedge edge is an edge that is
part of at least one wedge.

These definitions are illustrated in a toy graph in Fig. 1, where edges (x, y), (y, z),
and (x, z) are triangle edges, while edges (w, x), (w, y), (w, z), and (w, u) are wedge
edges.

It is clear that in this toy example the set of triangle edges forms a clique. This is
in fact a general property of triangle edges:

Lemma 1 (Subgraph induced by triangle edges) Each connected component in the
edge-induced subgraph, induced by all triangle edges, is a clique.

Proof See “Appendix”. ��
Thus, we can introduce the notion of a triangle clique:

Definition 3 (Triangle cliques) The connected components in the edge-induced sub-
graph induced by all triangle edges are called triangle cliques.
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The nodes {x, y, z} in Fig. 1 form a triangle clique. Note that not every clique in
a graph is a triangle clique. E.g., nodes {x, y, z, w} form a clique but not a triangle
clique. A node k is a neighbor of a triangle clique C if k is connected to at least one
node of C . It turns out that a neighbor of a triangle clique is connected to all the nodes
of that triangle clique.

Lemma 2 (Neighbors of a triangle clique) Consider a triangle clique C ⊆ V , and a
node k ∈ V \C. Then, either {k, i} /∈ E for all i ∈ C, or {k, i} ∈ E for all i ∈ C.

Proof See “Appendix”. ��
In other words, a neighbor of one node in the triangle clique must be a neighbor of
them all, in which case we can call it a neighbor of the triangle clique. Lemma 2 allows
us to define the concepts bundle and ray:

Definition 4 (Bundle and ray) Consider a triangle clique C ⊆ V and one of its neigh-
bors k ∈ V \C . The set of edges {k, i} connecting k with i ∈ C is called a bundle of
the triangle clique. Each edge {k, i} in a bundle is called a ray of the triangle clique.

Note that rays of a triangle clique are always wedge edges. Indeed, otherwise they
would have to be part of the triangle clique.

In Fig. 1 the edges (w, x), (w, y), and (w, z) form a bundle of the triangle clique
with nodes x, y, and z.
A technical condition to ensure finiteness of the optimal solution. Without loss of
generality, we will further assume that no connected component of the graph is a
clique—such connected components can be easily detected and handled separately.
This ensures that a finite optimal solution exists, as we show in Propositions 1 and 2.
These propositions rest on the following lemma:

Lemma 3 (Each triangle edge is adjacent to a wedge edge) Each triangle edge in a
graph without cliques as connected components is immediately adjacent to a wedge
edge.

Proof See “Appendix”. ��
Proposition 1 (Finite feasible region in Problems LP1 and LP2) A graph in which no
connected component is a clique has a finite feasible region for Problems LP1 and LP2.

Thus, also the optimal solution is finite.

Proof See “Appendix”. ��
For Problems LP3 and LP4 the following weaker result holds:

Proposition 2 (Finite optimal solution in Problems LP3 and LP4) A graph in which no
connected component is a clique has a finite optimal solution for Problems LP3 and
LP4 for sufficiently large C.

Note that for these problems the feasible region is unbounded.

Proof See “Appendix”. ��
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4.2 Symmetry in the optimal solutions

We now proceed to show that certain symmetries exist in all optimal solutions
(Sect. 4.2.2), while for other symmetries we show that there always exists an opti-
mal solution that exhibits it (Sect. 4.2.1).

4.2.1 There always exists an optimal solution that exhibits symmetry

We first state a general result, before stating a more practical corollary. The theorem
pertains to automorphisms α : V → V of the graph G, defined as node permutations
that leave the edges of the graph unaltered: for α to be a graph automorphism, it must
hold that {i, j} ∈ E if and only if {α(i), α( j)} ∈ E . Graph automorphisms form a
permutation group defined over the nodes of the graph.

Theorem 1 (Invariance under graph automorphisms)For any subgroupA of the graph
automorphism group of G, there exists an optimal solution for Problems LP1, LP2, LP3
and LP4 that is invariant under all automorphisms α ∈ A. In other words, there exists
an optimal solution w such that wi j = wα(i)α( j) for each automorphism α ∈ A.

Proof See “Appendix”. ��
Enumerating all automorphisms of a graph is computationally at least as hard as

solving the graph-isomorphism problem. The graph-isomorphism problem is known
to belong to NP, but it is not known whether it belongs to P. However, the set of
permutations in the following proposition is easy to find.

Proposition 3 The set Π of permutations α : V → V for which i ∈ C if and only if
α(i) ∈ C for all triangle cliques C in G forms a subgroup of the automorphism group
of G.

Thus the set Π contains permutations of the nodes that map any node in a triangle
clique onto another node in the same triangle clique.

Proof See “Appendix”. ��
We can now state the more practical Corollary of Theorem 1:

Corollary 1 (Invariance under permutations within triangle cliques) Let Π be the set
of permutations α : V → V for which i ∈ C if and only if α(i) ∈ C for all triangle
cliques C. There exists an optimal solution w for problems LP1, LP2, LP3 and LP4 for
which wi j = wα(i)α( j) for each permutation α ∈ Π .

Thus there always exists an optimal solution for which edges in the same triangle
clique (i.e., adjacent triangle edges) have equal strength, and for which rays in the
same bundle have equal strength.

Such a symmetric optimal solution can be constructed from any other optimal
solution, by setting the strength of a triangle edge equal to the average of strengths
within the triangle clique it is part of, and setting the strength of each ray equal to the
average of the strengths within the bundle it is part of. Indeed, this averaged solution is
equal to the average of all permutations of the optimal solution, which, from convexity
of the problem, is also feasible and optimal.
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b1

b2

x1

x2

x3

y z1

z2

z3

z4

z5
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1/3

2/3
1/3

2/3
1/3
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Fig. 2 This graph is an example where an optimal solution of Problem LP2 (with d = 2) exists that is not
constant within a bundle. To see this, note that y is the root of a bundle to both triangle cliques (the one with
nodes xi and the one with nodes zi ). Its rays to both bundles constrain each other in wedge constraints. As
the z triangle clique is large, the optimal solution has the largest possible value for edges to those nodes.
This is achieved by assigning strengths of 1 to y’s rays to zi , and 0 to y’s rays to xi . Then the triangle edges
in the z triangle clique can have strength 3, and the strengths between the x nodes is 2. There are two other
bundles to the x triangle clique: from b1 and b2. These constrain each other in wedges (xi , {b1, b2}), such
that edges from b1 and b2 to the same xi must sum to 1 at the optimum. Furthermore, triangles {bi , x j , xk }
impose a constraint on the strength of those edges as: wbi x j + wxi xk ≤ 2 + d · xbi xk . For d = 2 and
wx j xk = 2, this gives: wbi x j ≤ 2 · xbi xk . No other constraints apply. Thus, the (unequal) strengths for
the edges in the bundles from b1 and b2 shown in the figure are feasible. Moreover, this particular optimal
solution is a vertex point of the feasible polytope (proof not given). Note that strengths equal to 1/2 for
each of those edges is also feasible

4.2.2 In each optimum, connected triangle-edges have equal strength

Only some of the symmetries discussed above are present in all optimal solutions, as
formalized by the following theorem:

Theorem 2 (Strengths of adjacent triangle edges in the optimum) In any optimal solu-
tion of Problems LP1, LP2, LP3 and LP4, the strengths of adjacent triangle edges are
equal.

Proof See “Appendix”. ��
In other words, all triangle edges within the same triangle clique have the same

strength in any optimal solution of these problems. However, there do exist graphs for
which not all optimal solutions have equal strengths for the rays within a bundle. An
example is shown in Fig. 2.

4.3 An equivalent formulation for finding symmetric optima of problem LP2

Corollary 1 asserts that symmetries in the structure of the graph imply that there
are optimal solutions that exhibit symmetries with respect to the strength of the cor-
responding edges. This is an intuitive property: solutions that lack these symmetry
properties essentiallymake arbitrary strength assignments. Thus, itmakes sense to con-
strain the search space to just those optimal solutions that exhibit these symmetries.4

4 It would be desirable to search only for solutions that exhibit all symmetries guaranteed by Theorem 1,
but given the algorithmic difficulty of enumerating all automorphisms, this is hard to achieve directly. Also,
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Fig. 3 The contracted graph
corresponding to the graph
shown in Fig. 2

{b1}

{b2}

{xi|i = 1 : 3} {y} {zi|i = 1 : 6}

In addition, exploiting symmetry leads to fewer variables, and thus, computational-
efficiency gains.

In this section, we will refer to strength assignments that are invariant with respect
to permutations within triangle cliques as symmetric, for short. The results here apply
only to Problem LP2.

The set of free variables consists of one variable per triangle clique, one variable per
bundle, and one variable per edge that is neither a triangle edge nor a ray in a bundle.
To reformulate Problem LP2 in terms of this reduced set of variables, it is convenient
to introduce the contracted graph, defined as the graph obtained by edge-contracting
all triangle edges in G. More formally:

Definition 5 (Contracted graph) Let∼ denote the equivalence relation between nodes
defined as i ∼ j if and only if i and j are connected by a triangle edge. Then, the

contracted graph G̃ = (Ṽ , Ẽ) with Ẽ ⊆ (Ṽ
2

)
is defined as the graph for which

Ṽ = V / ∼ (the quotient set of ∼ on V ), and for any A, B ∈ Ṽ , it holds that
{A, B} ∈ Ẽ if and only if for all i ∈ A and j ∈ B it holds that {i, j} ∈ E .

Figure 3 illustrates these definitions for the graph from Fig. 2.
The contracted graphwill of course containwedges, the set ofwhichwill be denoted

as W̃ . We now introduce a vector wt indexed by sets A ⊆ V , with |A| ≥ 2, with wt
A

denoting the strength of the edges in the triangle clique A ⊆ V . We also introduce a
vector ww indexed by unordered pairs {A, B} ∈ Ẽ , with ww

AB denoting the strength
of the wedge edges between nodes in A ⊆ V and B ⊆ V . Note that if |A| ≥ 2 or
|B| ≥ 2, these edges are rays in a bundle.

With this notation, we can state the symmetrized problem as:

max
wt ,ww

∑

A∈Ṽ :|A|≥2

|A|(|A| − 1)

2
wt

A +
∑

{A,B}∈Ẽ
|A||B|ww

AB, (LP2SYM)

such that ww
AB + ww

AC ≤ 1, for all (A, {B,C}) ∈ W̃, (10)

wt
A ≤ 2 + (d − 1) · ww

AB, for all {A, B} ∈ Ẽ, |A| ≥ 2, (11)

wt
A ≤ 2

2 − d
(if d < 1), for all A ∈ Ṽ , |A| ≥ 3, (12)

realistic graphs probably contain few automorphisms other than the permutations within triangle cliques.
Section 5.3 does however describe an indirect but still polynomial-time approach for finding fully symmetric
solutions.
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wt
A ≥ 0, for all A ∈ Ṽ , |A| ≥ 2, (13)

ww
AB ≥ 0, for all {A, B} ∈ Ẽ . (14)

The following theorem shows that there is a one-to-one mapping between the optimal
solutions of Problem LP2SYM and the symmetric optimal solutions of Problem LP2.
In particular the mapping is given by setting wi j = wt

A if and only if i, j ∈ A, and
wi j = ww

AB if and only if i ∈ A, j ∈ B.

Theorem 3 (Problem LP2SYM finds symmetric solutions of Problem LP2) The set of
symmetric optimal solutions of Problem LP2 is equivalent to the set of all optimal
solutions of Problem LP2SYM.

Proof See “Appendix”. ��

4.4 The vertex points of the feasible polytope of problem LP2

The following theorem generalizes the well-known half-integrality result for Prob-
lem LP1 (Nemhauser and Trotter 1975) to Problem LP2SYM.

Theorem 4 (Vertices of the feasible polytope) On the vertex points of the feasible
polytope of Problem LP2SYM, the strengths of the wedge edges take values ww

AB ∈{
0, 1

2 , 1
}
, and the strengths of the triangle edges take values wt

A ∈ {
0, 2, d+3

2 , d + 1
}

for d ≥ 1, or wt
A ∈

{
0, 2

2−d , d + 1, d+3
2 , 2

}
for d < 1.

Proof See “Appendix”. ��
Corollary 2 On the vertices of the optimal face of the feasible polytope of Prob-
lem LP2SYM, the strengths of the wedge edges take values ww

AB ∈ {
0, 1

2 , 1
}
, and

the strengths of the triangle edge take values wt
A ∈ {

2, d+3
2 , d + 1

}
if d ≥ 1, or

wt
A ∈

{
2

2−d , d + 1, d+3
2 , 2

}
if d < 1. Moreover, for d < 1, triangle edge strengths

for |A| ≥ 3 are all equal to wt
A = 2

2−d throughout the optimal face of the feasible
polytope.

Proof See “Appendix”. ��
Corollary 2 asserts that there always exists an optimal solution to Problem LP2SYM

where the edge strengths belong to these small sets of possible values. Note that the
symmetric optima of Problem LP2 coincide with those of Problem LP2SYM, such that
this result obviously also applies to the symmetric optima of LP2.

5 Algorithms

In this section we discuss algorithms for solving the edge-strength inference problems
LP1, LP2, LP3, LP4, and LP2SYM. The final Sect. 5.3 also discusses a number of ways to
further reduce the arbitrariness of the optimal solutions.
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5.1 Using generic LP solvers

First, all proposed formulations are linear programs (LP), and thus, standard LP solvers
can be used. In our experimental evaluation we used CVX (Grant and Boyd 2014) from
within Matlab, and MOSEK (ApS 2015) as the solver that implements an interior-point
method.

Interior-point algorithms for LP run in polynomial time, namely in O(n3L) opera-
tions, where n is the number of variables, and L is the number of digits in the problem
specification (Mehrotra andYe 1993). For our problem formulations, L is proportional
to the number of constraints. In particular, problem LP1 has |E | variables and |W| con-
straints, problem LP2 has |E | variables and |W| + |T | constraints, and problems LP3

and LP4 have |E |+ |Ē | variables and |W|+ |T | constraints. Here |E | is the number of
edges in the input graph, |W| the number of wedges, and |T | the number of triangles.

Today, the development of primal-dual methods and practical improvements ensure
convergence that is often much faster than this worst-case complexity. Alternatively,
one can use the Simplex algorithm, which has worst-case exponential running time,
but is known to yield excellent performance in practice (Spielman and Teng 2004).

5.2 Using the Hochbaum–Naor algorithm

For rational d, we can also exploit the special structure of Problems LP1 and LP2SYMand
solve them using more efficient combinatorial algorithms. In particular, the algorithm
ofHochbaumandNaor (1994) is designed for a family of integer problems named 2VAR

problems. 2VAR problems are integer programs (IP) with 2 variables per constraint of
the form akxik −bkx jk ≥ ck with rational ak, bk, and ck , in addition to integer lower and
upper bounds on the variables. A 2VAR problem is called monotone if the coefficients
ak and bk have the same sign. Otherwise the IP is called non-monotone. The algorithm
of Hochbaum and Naor (1994) gives an optimal integral solution for monotone IPs
and an optimal half-integral solution for non-monotone IPs. The running time of the
algorithm is pseudopolynomial, that is, polynomial in the range (difference between
lower bound and upper bound) of the variables. More formally, the running time is
O(n�2(n + r)), where n is the number of variables, r is the number of constraints,
and � is maximum range size. For completeness, we briefly discuss the problem and
algorithm for solving it below.

The monotone case We first consider an IP with monotone inequalities:

max
n∑

i=1

di xi , (monotone IP)

such that akxik − bkx jk ≥ ck for k = 1, . . . , r , (15)

�i ≤ xi ≤ ui , xi ∈ Z, for i = 1, . . . , n, (16)

where ak , bk , ck , and di are rational, while �i and ui are integral. The coefficients ak
and bk have the same sign, and di can be negative.
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The algorithm is based on constructing a weighted directed graph G ′ = (V ′, E ′)
and finding a minimum s − t cut on G ′.

For the construction of the graph G ′, for each variable xi in the IP we create a set
of (ui − �i + 1) nodes {vi p}, one for each integer p in the range [�i , ui ]. An auxiliary
source node s and a sink node t are added. All nodes that correspond to positive
integers are denoted by V+, and all nodes that correspond to non-positive integers are
denoted by V−.

The edges of G ′ are created as follows: First, we connect the source s to all nodes
vi p ∈ V+, with �i + 1 ≤ p ≤ ui . We also connect all nodes vi p ∈ V−, with
�i + 1 ≤ p ≤ ui , to the sink node t . All these edges have weight |di |. The rest of the
edges described below have infinite weight.

For the rest of the graph, we add edges from s to all nodes vi p with p = �i—both
in V+ and V−. For all �i + 1 ≤ p ≤ ui , the node vi p is connected to vi(p−1) by a
directed edge. Let qk(p) = � ck+bk p

ak
�. For each inequality k we connect node v jk p,

corresponding to x jk with � jk ≤ p ≤ u jk , to the node vikq , corresponding to xik where
q = qk(p). If qk(p) is below the feasible range [�ik , uik ], then the edge is not needed.
If qk(p) is above this range, then node v jk p must be connected to the sink t .

Hochbaum and Naor (1994) show that the optimal solution of (monotone IP) can
be derived from the source set S of minimum s-t cuts on the graph G ′ by setting
xi = max{p | vi p ∈ S}. The complexity of this algorithm is dominated by solving the
minimum s-t cut problem, which is O(|V ′||E ′|) = O(n�2(n + r)), where n is the
number of variables in the (monotone IP) problem, r is the number of constraints, and
� is maximum range size � = maxi=[1,n](ui − �i + 1). Note also that in practice the
graph is sparse and finding the cut is faster than this theoretical complexity analysis
might suggest.

Monotonization and half-integrality A non-monotone IP with two variables per con-
straint is NP-hard. Edelsbrunner et al. (1989) showed that a non-monotone IP with
two variables per constraint has half-integral solutions, which can be obtained by the
following monotonization procedure. Consider a non-monotone IP:

max
n∑

i=1

di xi , (non-monotone IP)

such that akxik + bkx jk ≥ ck for all k = 1, . . . ,m, (17)

�i ≤ xi ≤ ui , xi ∈ Z, for all i = 1, . . . , n, (18)

with no constraints on the signs of ak and bk .

For monotonization we replace each variable xi by xi = x+
i −x−

i
2 , where �i ≤ x+

i ≤
ui and −ui ≤ x−

i ≤ −�i . Each non-monotone inequality (ak and bk having the same
sign) akxik + bkx jk ≥ ck is replaced by a pair:

akx
+
ik

− bkx
−
ik

≥ ck (19)

−akx
−
ik

+ bkx
+
ik

≥ ck (20)
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Each monotone inequality āk xik − b̄k x jk ≥ ck is replaced by:

āk x
+
ik

− b̄k x
+
jk

≥ ck (21)

−āk x
−
ik

+ b̄k x
−
jk

≥ ck (22)

The objective function is replaced by
∑n

i=1
1
2di x

+
i − 1

2di x
−
i .

By construction, the resulting monotone IP is a half-integral relaxation of the Prob-
lem (non-monotone IP).

LP1 is a (non-monotone) 2VAR system, so that it can directly be solved by the
algorithm of Hochbaum and Naor. Problem LP2, however, is not a 2VAR problem,
such that the Hochbaum and Naor algorithm is not directly applicable. Yet for integer
d ≥ 1, Problem LP2SYM is a 2VAR problem. The lower bound on each of the variables
is 0, and the upper bound is equal to 1 for the wedge edges and d + 1 for the triangle
edges—i.e., both lower and upper bound are integers. For rational d, the upper bound
is max{2, d + 1}, which may be rational, but reformulating the problem in terms of
a · wi j for a the smallest integer for which a · d is integer turns it into a 2VAR problem
again. Thus, for d rational, finding one of the symmetric solutions of Problem LP2 can
be done using Hochbaum and Naor’s algorithm. Moreover, this symmetric solution
will immediately be one of the half-integral solutions we know exist from Corollary 2.
Note that the monotonization and using the Hochbaum–Naor algorithm still works
when changing the objective to LP�.

5.3 Approaches for further reducing arbitrariness

As pointed out in Sect. 4.3, Problem LP2SYM does not impose symmetry with respect
to all graph automorphisms, as it would be impractical to enumerate them. However,
in Sect. 5.3.1 below we discuss an efficient (polynomial-time) algorithm that is able
to find a solution that satisfies all such symmetries, without the need to explicitly
enumerate all graph automorphisms.

Furthermore, in Sects. 5.3.2 and 5.3.2, we discuss strategies for reducing arbi-
trariness that is not based on finding a fully symmetric solution. These algorithms
attempt to meaningfully, and in polynomial time, describe the entire optimal face of
the feasible polytope, rather than selecting a single optimal (symmetric) solution from
it.

Several algorithms discussed below exploit the following characterization of the
optimal face. As an example, and with o∗ the value of the objective at the optimum,
for Problem LP2SYM this characterization is:

P∗ =
{
w |

∑

{i, j}∈E
wi j = o∗,

wi j + wik ≤ 1, for all (i, { j, k}) ∈ W,

wi j + wik ≤ 2 + d · w jk, for all {i, j, k} ∈ T ,

wi j ≥ 0, for all {i, j} ∈ E .
}
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It is trivial to extend this to the optimal faces of the other problems.

5.3.1 Invariance with respect to all graph automorphisms

Here we discuss an efficient algorithm to find a fully symmetric solution, without
explicitly having to enumerate all graph automorphisms.

Given the optimal value of the objective function of (for example) Problem LP2,
consider the following problem which finds a point in the optimal face of the feasible
polytope that minimizes the sum of squares of all edge strengths:

min
w

∑

{i, j}∈E
(wi j )

2, (LP2FULLSYM)

such that w ∈ P∗.

As P∗ is a polytope, this is a Linearly Constrained Quadratic Program (LCQP),
which again can be solved efficiently using interior point methods.

Theorem 5 (Problem LP2FULLSYM finds a solution symmetric with respect to all graph
automorphisms) The edge strength assignments that minimize Problem LP2FULLSYM

are an optimal solution to Problem LP2 that is symmetric with respect to all graph
automorphisms.

Proof See “Appendix”. ��
For simplicity of notation, we explained this strategy for Problem LP2, but of course
it is computationally more attractive to seek a solution within the optimal face of the
feasible polytope for Problem LP2SYM. Note that Theorem 5 still holds for LP1, LP3
and LP4, and also when changing the objective to LP�.

5.3.2 Characterizing the entire optimal face of the feasible polytope

Here, we discuss an alternative strategy for reducing arbitrariness, which is to char-
acterize the entire optimal face of the feasible polytope of the proposed problem
formulations, rather than to select a single (possibly arbitrary) optimal solution from
it. Specifically, we propose three algorithmic implementations of this strategy.

The first algorithmic implementation of this strategy exactly characterizes the range
of the strength of each edge amongst the optimal solutions. This range can be found
by solving, for edge strength wi j for each {i, j} ∈ E , two optimization problems:

max
w

wi j and min
w

wi j ,

such that w ∈ P∗.

These are again LP’s, and thus require polynomial time.Yet, it is clear that this approach
is impractical, as the number of such optimization problems to be solved is twice the
number of variables in the original problem.
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The second algorithmic implementation of this strategy is computationally much
more attractive, but quantifies the range of each edge strength only partially. It exploits
the fact that the strengths at the vertex points of the optimal face belong to a finite
set of values. Thus, given any optimal solution, we can be sure that for each edge,
there exists an optimal solution for which any given edge’s strength is equal to the
smallest value within that set equal to or exceeding the value in that optimal solution,
Moreover, it is equal to the largest value within that set equal to or smaller than the
value in that optimal solution. To ensure this range is as large as possible, it is beneficial
to avoid finding vertex points of the feasible polytope, and more generally points that
do not lie within the relative interior of the optimal face. This can be done in the same
polynomial time complexity as solving the LP itself, namely O(n3L) where L is the
input length of the LP (Mehrotra and Ye 1993). This could be repeated several times
with different random restarts to yield wider intervals for each edge strength.

The third implementation is to uniformly sample points (i.e., optimal solutions)
from the optimal faceP∗. A recent paper (Chen et al. 2017) details an MCMC algorithm
with polynomial mixing time for achieving this.

5.3.3 Approximating the centroid of the optimal face by using the Chebychev center

The centroid of the optimal face is the least arbitrary solution out of all optimal
solutions. Like LP2FULLSYM, it is easy to see that the centroid is also symmetric with
respect to all graph automorphisms. One problem in practice with LP2FULLSYM, is that
it will often assign a large number of 1/2-weighted edges (because of the quadratic
minimization),whereas the centroidwill not usemore 1/2-weighted edges thanneeded.
However, finding the centroid of a polytope is #P-hard, evenwhen the polytope is given
as an intersection of halfspaces (Rademacher 2007).Wewill use the Chebychev center
for a good approximation of the centroid of the optimal face.

The Chebychev center yc of a polytope P = {y ∈ R
n|aTi y ≤ bi } is defined as the

center of the largest inscribed ball, and can be determined by solving the following
LP:

max r ≥ 0, (LPCHEBY)

such that ∀i : aTi yc + r‖ai‖2 ≤ bi .

In our case, we want the Chebychev center of the relative interior of the optimal face.
This can be easily achieved as follows: After finding an initial solution in the relative
interior of the optimal face, solve (LPCHEBY) with ball constraints only applied to the
inactive constraints aTi y < bi , while keeping the active constraints aTi y = bi in their
original form.

Let us look at the following example to see the difference between LP2FULLSYM and
LPCHEBY. Figure 4 shows 3 optimal solutions to Problem LP2 on a small graph. Since
all edges are part of atleast one wedge, the triangle constraints are redundant and not
active throughout the feasible polytope. Observe that the wedge (x4, {x3, x5}) has an
inactive constraint at the optimal face, because there exists an optimal solution where
wx3x4 + wx4x5 = 0 (see Fig. 4a). Similarly for the wedge (x4, {x1, x5}). The wedges
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(a) Vertex point of P∗ (b) LP2FULLSYM

0.79 0.21

(c) LPCHEBY

Fig. 4 Toy example to show the difference between LP2FULLSYM and LPCHEBY (d > 0)

(x4, {x2, x5}), (x4, {x1, x3}) and (x2, {x1, x3}) always have active constraints. Hence,
the LPCHEBY solution is formed by giving an equal amount of slack to the two inactive
wedge constraints, see Fig. 4c. After simplyfing and ignoring redundant equations, we
find that LPCHEBY reduces to

max r ≥ 0,

such that wx4x5 + r
√
2 ≤ 1/2,

wx2x4 + wx4x5 = 1,

wx2x4 ≥ r and wx4x5 ≥ r .

The radius r is maximized by settingwx4x5 = r , leading to a unique solution where
r = 1

2(1+√
2)

≈ 0.21, see Fig. 4c. Conversely, LP2FULLSYM simply assigns all edges

to a 1/2, minimizing the quadratic form discussed in Sect. 5.3.1. Observe that Fig. 4a
is also a solution to STCbinary, showing the arbitrariness (asymmetry) in the proposed
problem setting.

On this example, LPCHEBY has better explainability than LP2FULLSYM: the edge
(x2, x4) is part of more triangles and less wedges than the edge (x4, x5), so intuitively
it should get a stronger assignment. Note that LPCHEBY is not compatible with the
efficient Hochbaum–Naor algorithm, discussed in Sect. 5.2, since LPCHEBY needs a
point in the relative interior of the optimal face as an input. Hence in general, this
approach is not very scalable.

Remark 2 For general polytopes, the Chebychev center is not unique and is not neces-
sarily a good approximation of the centroid. This occurs in cases where the polytope
is “long and thin” (Boyd and Vandenberghe 2004). However, the vertex points of the
feasible polytopes of the LP’s discussed in this paper are all half-integral, and thus
avoiding these cases, motivating our use for the Chebychev center. Alternatively, the
centroid can be approximated by uniformly sampling the optimal face P∗ (Chen et al.
2017), but this is not tested in this paper.
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6 Empirical results

This section contains the main empirical findings. The code used in the experiments
is publicly available5. All experiments were run on a large server with 48 Intel (R)
Xeon Gold 6136 CPU cores @ 3.00GHz and a total of 256 GB RAM. We will denote
STCbinary [GREEDY] as the greedy algorithm, and STCbinary [MM] as themaximal match-
ing algorithm proposed by Sintos and Tsaparas (2014). STCbinary [GREEDY] assigns the
edge that is part of most wedges as weak, and then ignores those wedges in future
countings. STCbinary [MM] finds a maximal matching in the wedge graph GE , and then
assigns those nodes in the maximal matching (corresponding to edges in the origi-
nal graph) as weak. Both algorithms have an important tiebreaker: they break ties by
assigning the edge with the least amount of common neighbors as weak.

We start by thoroughly discussing a toy example (Sect. 6.1). After that, we evaluate
performance on 20 real datasets (Sects. 6.2, 6.3). In Sect. 6.4 we visualize two small
networks and discuss the outcomes of the methods in more detail.

6.1 Discussion of a toy example in detail

To gain some insight in our methods, we start by discussing a simple toy example.
Figure 5 shows a network of 8 nodes, modelling a scenario of 2 communities being
connected by a bridge, i.e., the edge {4, 5}. The nodes {1, 2, 3, 4} form a near-clique—
the edge {1, 3} is missing—while the nodes {5, 6, 7, 8} form a 4-clique. This 4-clique
contains a triangle clique: the subgraph induced by the nodes {6, 7, 8}.

Figure 5a shows the solution by STCbinary [GREEDY], which is optimal for the
STCbinary problem. Figure 5b shows a half-integral optimal solution to Problem LP1.
We observe that for STCbinary [GREEDY] we could swap nodes 1 and 3 and obtain a
different yet equally good solution, hence the strength assignment is arbitrary with
respect to several edges, while for LP1 the is not the case. Indeed, there is no evidence
to prefer a strong label for edges {2, 3} and {3, 4} over the edges {1, 2} and {1, 4}.
Figure 5c shows a symmetric optimal solution to Problem LP2, allowing for multi-
level edge strengths. It labels the triangle edges as stronger than all other (wedge)
edges, in accordance with Theorem 2 and Corollary 2. Figure 5d shows the outcome
of LP4 for d = 1 and C = 1, allowing for edge additions and deletions. For C = 0,
the problem becomes unbounded: the edge {4, 5} is only part of wedges, and since
wedge violations are unpenalized, w45 = +∞ is the best solution (see Sect. 3.2).
Since this edge is part of 6 wedges, the problem becomes bounded for C > 1/6. For
C = 1, the algorithm produces a value of 2 for the absent edge {1, 3}. This suggests
the addition of an edge {1, 3} with strength 2 to the network, in order to increase the
objective function. The addition of this edge decreases the objective function by 2,
but enables the sum of the edges {1, 2} and {2, 3} to increase from 1 to 4, leading to a
net gain of 3− 2 = 1 in the objective function. This is the only edge being suggested
for addition by the algorithm. Edge {4, 5}, on the other hand, is given a value of −1.
As discussed in Sect. 3.2, this corresponds to the strength of an absent edge (when
d = 1), suggesting the removal of the bridge in the network in order to increase the

5 https://bitbucket.org/ghentdatascience/stc-code-public.
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Fig. 5 Toy example with 8 nodes
to show the different outcomes
of the proposed algorithms. The
triangle clique is shown in
orange (Color figure online)

1

3

2 4 5 6

7

8

0

1

1

0

1

0 1

1

1

1

1

1

(a) STCbinary [GREEDY]

1

3

2 4 5 6

7

8

1/2

1/2

1

1/2

1/2

0 1

1

1

1

1

1

(b) LP1

1

3

2 4 5 6

7

8

1/2

1/2

1

1/2

1/2

0 1

1

1

2

2

2

(c) LP2 (d=1)
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(d) LP4 (d=1, C=1)

objective. For large C there will be no more edge additions being suggested, as can be
seen by setting C = ∞ in LP4 (reducing it to LP3). The cost of a violation of a wedge
constraint will always be higher than the possible benefits. However, regardless of the
value of C , the edge {4, 5} is always being suggested for edge deletion.

For this example, there is no difference in the outcomes of the LPFULLSYM and
LPCHEBY algorithms, nor does changing the objective to LP� have an effect.

6.2 Performance analysis on real datasets

We evaluate our approach on the 20 datasets shown in Table 1. Most of these datasets
have been previously used in edge strength prediction problems (Gupte and Eliassi-
Rad 2011; Rozenshtein et al. 2017; Sintos and Tsaparas 2014). For all these datasets,
empirical tie strength is given and their interpretation is shown in the last column.
Table 1 shows basic statistics of the datasets. The clustering coefficient is shown
in the 4th column. To measure if STC in present in a dataset, we look if “strong”
connected triples are closed more often than “normal” connected triples. In order to
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do so, we define strong by looking at percentiles. The 5th column shows the clustering
coefficient, when computed on the induced subgraph defined by keeping only the
10% strongest edges.6 In all datasets except Actors, strong connected triples are more
closed than normal connected triples, providing evidence that STC is atleast partially
present in these datasets.

To measure the correlation of a method’s proposed edge strength and the empirical
edge strength, we use the Kendall τb rank correlation coefficient (Kendall and Gibbons
1990). We compare our methods with both the STCbinary [GREEDY] and STCbinary
[MM] algorithms, as well as some simple but powerful baselines: Common Neighbors
(number of triangles an edge is part of) and Preferential Attachment (the product
of the degrees of the two nodes of an edge). We test both the main relaxations LP1

and LP2 (d = 1), as well as the LP� formulations (Sect. 3.3). Note that we will use
LP2SYM to solve LP2, but will just denote it as LP2 for brevity. To reduce arbitrariness
w.r.t. the graph structure, we compute the Chebychev center (Sect. 5.3.3) as the final
assignment. The performance of LP4 was similar to method LP2, and is not reported
here due to the overhead of tuning the parameter C .

Table 2 shows the result on the 20 different datasets. Our methods were the best
performing on only 5 out of 20 datasets: SouthernWoman, Freeman 2, LesMiserables,
Twitter (tied with Common Neighbors) and Actors. The first 3 of them are all small
datasets with a relatively high clustering coefficient. Moreover, the empirical edge
strength distribution for these networks were not that heavily right-skewed as the other
small datasets (like Freeman 1, Terrorists, Beach, Kangaroo and Students), indicating
that the objective of maximizing strong edges (or triangles) makes more sense here.
We refer to Sects. 6.4 and 8 for a more thorough discussion.

Note the increase in performance for both LP1 and LP2 when changing the objective
to LP�. Also, it is remarkable that the main relaxations LP1 and LP2 do not outperform
themethods for STCbinary (Even though they are better, by definition of the relaxations,
at maximizing the objective function). Although not tested over all datasets, this could
be an effect of the tiebreaker of both STCbinary [GREEDY] and STCbinary [MM]: ties are
breaked by selecting the edge with the least amount of common neighbors as the next
weak edge. Averaged over all datasets, Common Neighbors was the best performing,
a powerful baseline that is known to work well for link prediction.

Another observation is that for the very sparse networks with low clustering coeffi-
cient (Students, Twitter), the LPmethods work in amore robust way than the STCbinary
algorithms. Indeed, for the Students dataset, STCbinary [GREEDY] assigned 12% of the
edges as strong. Most of these assignments were false positives. Instead, LP1 assigned
99% of the edges a 1/2 score (intermediate), while only 0.5% edges got a score of
0.21 (weak), and the remaining 0.5% edges got a score of 0.79 (strong). Interestingly,
the values of 0.21 and 0.79 coincide with the assignments of the Chebychev center on
the toy graph in Fig. 4. When the objective is changed to LP�, the labelling changed
quite drastically: 66,5% of the edges were now assigned a 0 (weak), 32,7% of the
edges got a 1/2 (intermediate), and 0.8% of the edges were labeled a 1 (strong). This
clearly shows that the LP� formulation takes the absence of triangles in this network

6 There are other meaningful ways of defining strong edges. Moreover, another perecentile than 10% could
be chosen. However, the conclusion that STC is present in the datasets remains the same.
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Table 3 Running time (s) for the different methods

Network STCb [GREEDY] Hochbaum Naor LP1 LP2

Kangaroo 0.01 0.43 0.56 0.34

Southern Women 0.01 0.01 0.39 0.37

Terrorists 0.01 0.07 0.4 0.37

Beach 0.02 0.07 0.48 0.49

Freeman 1 0.01 0.06 0.38 0.4

Freeman 2 0.01 0.03 0.44 0.6

Cross Parker Consulting 0.01 0.05 0.5 0.7

Les Miserables 0.02 0.03 0.39 0.36

Students 0.4 0.83 3.36 3.01

Facebook-like Social 5.14 11.02 282 306

KDD 1.99 4.8 8.8 7.76

ICDM 1.71 4.17 8.07 8.7

Facebook 26 105 46 39

Twitter 68 198 3924 3861

Authors 9.59 24.5 19 23.6

BitCoin Alpha 6.44 14.5 37 45

BitCoin OTC 14.45 35 93 98

Actors 111 227 4323 4401

Facebook-like Forum 51 110 2450 2377

Newman collab. network 14 43 32 31

Total times include problem construction for the LP’s, graph construction for Hochbaum–Naor, and wedge-
graph construction for STCbinary [GREEDY]

into account, while still being cautious with the assignment of strong edges, leading
to improved performance.

6.3 Runtime analysis

Tabel 3 shows the running time of methods STCbinary [GREEDY], LP1, LP2 (d = 1)
and the combinatorial algorithm of Hochbaum–Naor (d = 1). It demonstrates the
superior performance of the latter when compared to the LP solvers, especially on
the more challenging networks like Actors and Facebook-like Forum. The running
time of STCbinary [MM] is comparable to STCbinary [GREEDY] and is not reported here.
Remarkably, the Hochbaum–Naor algorithm performs very comparably to STCbinary
[GREEDY].

6.4 Discussion of the SouthernWoman and the Terrorists datasets

For a better understanding, we visualize two datasets, one where our methods perform
well and one where our methods perform poorly. Figure 6 shows a visualization of
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the methods STCbinary [GREEDY], LP2 and Common Neighbors on the SouthernWomen
dataset. It shows the edge strengths as inferred by each of the methods. The dataset
recorded the attendance at 14 social events of 18 women is the 1930s. The empirical
edge strengths denote the number of co-attendances between pairs of women, recorded
over a 9month period. Figure 6e shows the distribution of the empirical edge strengths.
This dataset has a natural tendency for STC: if woman A has numerous co-attendences
with both woman B and C, then there is a high chance that also woman B and C
have atleast one co-attendence, especially when the number of social events is small.
Method LP2 has the highest Kendall τb score (0.45) of the different methods. On this
example, LP2 can be seen as a refinement of method STCbinary [GREEDY]: only a small
set of edges in the central cluster are labeled as strong (the trianglecliques), while the
rest of the clusteredges have an intermediate score. All but one edge (i.e. the edge
connecting them) coming from the three outliers are labeled as weak.

On the other hand, Fig. 7 shows the methods’ results on the Terrorists dataset. The
network contains the suspected terrorists involved in the train bombing of Madrid
on March 11, 2004 as reconstructed from newspapers. The edge weights denote how
strong a connectionwas between the terrorists (friendship, co-participating in previous
attacks, etc.). As with the Southern Women data, also this network seems to have
an intuitive tendency for STC. This is confirmed by Table 1. However, our methods
perform quite badly on this dataset. Figure 7e shows that there are very few strong
edges in the network. Method LP1(�) fails to recognize most of these edges as strong,
it assigns them an intermediate 1/2- score most of the time. Method STCbinary [MM]

also incorrectly labels a lot of weak edges as strong. However, most of the strong edges
are indeed labeled as strong, leading to better performance than the LP methods. As
discussed in Sect. 3.3, one can argue that for this dataset the objective is notwell-suited:
it might not be justified to maximize the number of strong edges (or triangles), given
that there are very few strong edges (or triangles) present in the empirical data, see
Fig. 7e. Common Neighbors doesn’t overscore too much, and was the best performing
method, with a Kendall τb score of 0.32.

7 Related work

This work builds on the STC principle for edge strength inference in (social) networks.
The STC principle was first suggested by sociologist Simmel (1908), and later popu-
larized by Granovetter (1977). The book of Easley and Kleinberg (2010) discusses the
STC property in more detail, studying the effect of the property on certain structural
properties, such as the clustering coefficient. They claim that the STC property is too
extreme to hold true for large, complex networks, but suggested that it can be a useful
simplification of reality that can be used to understand and predict networks.

Sintos and Tsaparas (2014) were the first to cast this into a NP-hard optimization
problem (STCbinary) for edge strength inference: they propose a {weak,strong}
labeling thatmaximizes the number of strong edges,without violating the STC property.
Our work proposes a number of LP relaxations of STCbinary. The main advantages are
that our methods are solvable in polynomial time, solutions are less arbitrary w.r.t. the
graph structure, and they allow for more fine-grained levels of predicted tie strengths.
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(a) Empirical edge strengths (b) STCbinary [GREEDY]

(c) LP2 (d=1) (d) Common Neighbors
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Fig. 6 A case where our methods perform well. Southern Women dataset

Another recent extension of the work of Sintos and Tsaparas (2014) is is the work of
Rozenshtein et al. (2017). They consider a {weak,strong} labeling with additional
community connectivity constraints, and allowing for a small number of STC violations
to satisfy those constraints.

All of these methods can also be seen as part of a broader line of active research
aiming to infer the strength of ties in (social) networks. Excellent surveys of the
existing methods for this general problem are given by Hasan and Zaki (2011); Rossi
et al. (2012). These methods can roughly be put into two different categories:
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(a) Empirical edge strengths (b) STCbinary [MM]

(c) LP1(Δ) (d) Common Neighbors
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Fig. 7 A case where our methods perform poorly. Terrorists dataset

– Methods that make use of various meta-data Jones et al. (2013) use frequencies
of online interactions to predict the strength of ties with high accuracy. Gilbert
and Karahalios (2009) characterize social ties based on similarity and interaction
information. Similarly, Xiang et al. (2010) estimate relationship strength from the
homophily principle and interaction patterns and extend the approach to hetero-
geneous types of relationships. Pham et al. (2016) incorporate spatio-temporal
features of social interactions to increase accuracy of inferred tie strengths. Fire
et al. (2011) use topological features to build a supervised learning classifer to
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identify missing links (although they are concerned with link prediction, their
method can be applied to the edge strength classification setting).

– Methods that only use structural informationMost well-known heuristics such as
Common Neighbors, Jacard Index, Preferential Attachment, etc. fall in this cate-
gory. A good overview of all the different heuristics are given by Hasan and Zaki
(2011). Gupte and Eliassi-Rad (2011) measure the tie strength between individu-
als, given their attendence to mutual events. They propose a list of axioms that a
measure of tie strength must satisfy.

Network Embedding methods (Grover and Leskovec 2016; Hamilton et al. 2017;
Kang et al. 2019) map the nodes of a network into a low-dimensional Euclidean space.
The mapping is such that ‘similar’ nodes are mapped to nearby points. The notion of
‘similarity’ can be based on topological features, or on additional information, such
that these methods can be categorized similarly as discussed above. Zhou et al. (2018)
learn embedding vectors for nodes by capturing evolutionary structual properties of
a network. In particular, they propose a framework that quantifies the probability of
an open triple developing into a closed triple. They use the empirical edge weights
as an input variable of their embedding. Most of these methods are known to have
excellent performance in link prediction and node classification problems. However,
it is unclear how they perform when the downstream task is edge strength inference.

Another related research area is Edge Role Discovery in a network. Ahmed et al.
(2017) leverage higher-order network motifs (graphlets) in an unsupervised learning
settings, in order to capture edges that are ‘similar’. However, the inference about the
(relative) strength of the different assigned roles is not clear. Tang et al. (2012, 2011,
2016) propose a generative statistical model, which can be used to classify heteroge-
neous relationships. The model relies on social theories and incorporates structural
properties of the network and node attributes. Their more recent works can also com-
pute strengths of the predicted types of ties. Backstrom and Kleinberg (2014) focuses
on the graph structure to identify a particular type of ties — romantic relationships in
Facebook. Role discovery for nodes (Rossi and Ahmed 2014; Henderson et al. 2012)
is less relevant to our work, since it deals with classification of nodes and not edges.

8 Conclusions and further work

8.1 Conclusions

We have proposed a sequence of Linear Programming (LP) relaxations of theNP-hard
problem introduced by Sintos and Tsaparas (2014). These formulations have a number
of advantages, most notably their computational complexity, they allow for multi-level
strength inferences, and they make less arbitrary strength assignments w.r.t. the graph
structure. Additionally, instead of maximizing the number of strong edges, we can
change the objective of these LP’s to more meaningful objectives (Sect. 3.3). This
comes without a loss of the above discussed advantages.

Section 4 provides an extensive theoretical discussion of these LP’s, providing half-
integrality results and discussing the symmetries present in certain optimal solutions.
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Section 5.2 discusses a fast combinatorial algorithm that can be used to solve the main
LP relaxations.

The main goal of both the LP relaxations and the original NP-hard problem, is
to infer the strengths of ties in (social) networks by leveraging the Strong Triadic
Closure (STC) property. The empirical evaluation (Sect. 6) shows that the methods for
both problems are often outperformed by some simple but powerful baselines, such as
Common Neighbors or Preferential Attachment. This is interesting, because Table 1
indicates a presence of the STC property in almost all datasets: strong triples are closed
more often than normal triples. We believe two important factors of the rather poor
performance of the STC methods are the following:

– Most datasets used in this paper have heavily right-skewed distributions of their
empirical edge strengths. It might not be justified tomaximize the number of strong
edges (or triangles), given that there are very few actual strong edges (or triangles)
present in the data. See Fig. 7 for the Terrorists dataset as an example. The fact
that the distributions are often heavily right-skewed, could have a temporal cause:
some (social) networks are snapshots of an evolving process, and strong ties take
time to form.7

– Only leveraging the STC principle for edge strength inference may be a bit too
ambitious. Although STC is present in most datasets, exclusively leveraging this
principle may fail to capture other important structural causes that lead to the
devolpment of strong edges in networks (f.e., node degrees, common neighbors,
community structure, other external information etc.).

This raises doubts about the usefulness of the STCbinary problem in real-life networks.

8.2 Further work

Our research results open up a large number of avenues for further research.
Afirst line of research is to investigate alternative problem formulations.Anobvious

variation would be to take into account community structure, and the fact that the STC

property probably often fails to hold for wedges that span different communities.
A trivial approach would be to simply remove the constraints for such wedges, but
more sophisticated approaches could exist. Additionally, it would be interesting to
investigate the possibility to allow for different relationship types and respective edge
strengths, requiring the STC property to hold only within each type. Furthermore,
the fact that the presented formulations are LPs, combined with the fact that many
graph-theoretical properties can be expressed in terms of linear constraints, opens up
the possibility to impose additional constraints on the optimal strength assignments
without incurring significant computational overhead as compared to the interior point
implementation. One line of thought is to impose upper bounds on the sum of edge
strengths incident to any given edge,modeling thewell-known fact that an individual is
limited in howmany strong social ties they can maintain. Another interesting question

7 For example, in a co-authorship network, junior researchers having published their first paper with several
co-authors could well have all their first edges marked as strong, as their co-authors are connected through
the same publication. Yet, they have not yet had the time to form strong connections according to the ground
truth.
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is whether we can leverage higher-order graphlets (Ahmed et al. 2015) in the LP

formulations, beyond wedges and triangles. It’s also natural to investigate how to
leverage available temporal information: can we use STC to predict the strength of
future edges, based on edges that were formed in the past?

A second line is to investigate whether more efficient algorithms can be found for
inferring the range of edge strengths across the optimal face of the feasible polytope.
A related research question is whether the marginal distribution of individual edge
strengths, under the uniform distribution of the optimal polytope, can be characterized
in a more analytical manner (instead of by uniform sampling). Both these questions
seem important beyond the STC problem, and we are unaware of a definite solution to
them.

A third line of research is whether an active learning approach can be devel-
oped, to quickly reduce the number of edges assigned an intermediate strength by
our approaches.

Finally, perhaps the most important line of further research concerns the manner in
which the STC property is leveraged for edge strength inference: could it be modified
so as to become more widely applicable across real-life social networks?
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Appendix: Proofs

Lemma 1.

Proof Nodes connected by a triangle edge have the same set of neighbors. Indeed,
otherwise the supposed triangle edge would be part of a wedge with that non-common
neighbor as one of its end-points. Conversely, an edge between nodes that have the
same sets of neighbors is a triangle edge by definition. Thus, “being connected by a
triangle edge” is equivalent with “having the same set of neighbors,” which defines
an equivalence relation over the nodes of the graph. This equivalence relation allows
one to divide the nodes into equivalence classes, within which all nodes are connected
by a triangle edge. Each of these equivalence classes corresponds to a fully connected
component in the subgraph induced by all triangle edges. ��
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Lemma 2.

Proof This follows directly from the fact that “being connected by a triangle edge” is
equivalent with “having the same set of neighbors,” as shown in the proof of Lemma 1.

Alternatively, it can be proven directly by contradiction as follows. Assume the
contrary, that is, that some node k ∈ V \C is connected to i ∈ C but not to j ∈ C . This
means that (i, { j, k}) ∈ W . However, this contradicts the fact that {i, j} is triangle
edge. ��
Lemma 3.

Proof Consider any triangle clique in the graph. Then either this triangle clique is
a connected component on its own (a situation we excluded), or it has at least one
bundle. As rays are wedge edges, and the bundle contains a ray for each node in the
triangle clique, this means that each triangle edge is adjacent to a wedge edge. ��
Proposition 1.

Proof The weight of wedge edges is trivially bounded by 1. From Lemma 3, we know
that the weight of each triangle edge is bounded by a at least one triangle inequality
where the strength of the edge on the right hand side is the strength of a wedge
edge—i.e., it is also bounded by a finite number, thus proving the theorem. ��
Proposition 2.

Proof From weak duality, we know that if the dual is feasible, then the primal is
bounded. Hence, it suffices to construct one feasible point for the dual LP in order to
show boundedness of the primal solution.

Todo this,wefirst transformLP4 to the symmetric formby substitutingwi j+ 1
d = xi j

for all {i, j} ∈ E ∪ Ē :

max
w

∑

{i, j}∈E
xi j − C

∑

{ j,k}∈Ē
x jk + 1

d
(C |Ē | − |E |),

such that xi j + xik − d · x jk ≤ 1 + 2

d
, for all (i, { j, k}) ∈ W,

xi j + xik − d · x jk ≤ 1 + 2

d
, for all {i, j, k} ∈ T ,

xi j ≥ 0, for all {i, j} ∈ E .

x jk ≥ 0, for all { j, k} ∈ Ē . (23)

For each wedge constraint we introduce the dual variable yw
i, jk . For each triangle

constraint that lower bounds x jk , we introduce the dual variable yti, jk . I.e. y
t
i, jk refers

to the triangle constraint associated with triangle {i, j, k}where x jk is multiplied with
−d. The constraints of the dual LP of (23) are then given by:

∑

(i,{ j,k})∈W,
e={i, j}∨{i,k}

yw
i, jk +

∑

{i, j,k}∈T ,
e={ j,k}

(
ytj,ik + ytk,i j − dyti, jk

)
≥ 1, for all e ∈ E, (24)
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∑

(i,{ j,k})∈W,
e={ j,k}

yw
i, jk ≤ C

d
, for all e ∈ Ē,

yw
i, jk, y

t
i, jk ≥ 0. (25)

Let M be the maximum number of wedges in the graph that have the same end-points,
and let L be the maximum number of triangles any edge in the graph is part of. Then,
we will prove that the following is a dual feasible solution for sufficiently large C :

yw
i, jk = C

Md
for all w ∈ W,

yti, jk = 0 for { j, k} a triangle edge,
yti, jk = 1 for { j, k} a wedge edge.

The constraints (25) are trivially satisfied for all e ∈ Ē .
To show that constraints (24) are satisfied, we distinguish two cases: the case where

e is a wedge edge, and the case where e is a triangle edge.
For e ∈ E a wedge edge, the left summation in constraints (24) contains at least

one term and is lower bounded by C
Md , while the right summation is lower bounded

by −Ld (it contains at most L terms that are each lower bounded by −d). Thus, the
constraint is satisfied as long as C ≥ Md(1 + Ld).

For e ∈ E a triangle edge, the left summation in constraints (24) disappears. In
the right summation, all terms −dyti, jk = 0 as { j, k} is a triangle edge, such that all
terms in this summation are positive. Moreover, from Lemma 3 we know that each
triangle edge e = { j, k} is adjacent to at least one wedge edge {i, j}. By definition of
a triangle edge, {i, j, k} must then form a triangle, and thus give rise to a term in the
right summation. As ytk,i j = 1, this term, and therefore the entire summation, is lower
bounded by 1 as required. ��
Proposition 3.

Proof Each permutation α ∈ Π is an automorphism of G. This follows directly
from Lemma 2 and the fact that α only permutes nodes within each triangle clique.
Furthermore, it is clear that if α ∈ Π then also α−1 ∈ Π , and if α1, α2 ∈ Π then also
α1α2 ∈ Π . Finally, Π contains at least the identity and is thus non-empty, proving
that Π is a subgroup of A. ��
Corollary 2.

Proof A strength of 0 for a triangle edge can never be optimal, as triangle edges are
upper bounded by at least 2 for d ≥ 1, and the objective function is an increasing
function of the edge strengths. The second statement follows from the fact that 2

2−d
is the smallest possible value for triangle edges when d < 1, and Eq. (12) bounds the
triangle edge strengths in triangle cliques A with |A| ≥ 3 to that value. Thus, it is the
only possible value for the vertex points of the optimal face of the feasible polytope,
and thus for that entire optimal face. ��
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Theorem 1.

Proof Let wi j be the optimal strength for the node pair {i, j} in an optimal solution
w. Then, we claim that assigning a strength 1

|A|
∑

α∈A wα(i)α( j) to each node pair
{i, j} is also an optimal solution. This solution satisfies the condition in the theorem
statement, so if true, the theorem is proven.

It is easy to see that this strength assignment has the same value of the objective
function. Thus, we only need to prove that it is also feasible.

As α is a graph automorphism, it preserves the presence of edges, wedges, and
triangles (e.g., {i, j} ∈ E if and only if {α(i), α( j)} ∈ E). Thus, if a set of strengths
wi j for node pairs {i, j} is a feasible solution, then also the set of strengths wα(i)α( j)

is feasible for these node pairs. Due to convexity of the constraints, also the average
over all α of these strengths is feasible, as required. ��
Theorem 2.

Proof We will prove the claim by contradiction. Consider an optimum w for which
this is not the case, i.e., two adjacent triangle edges can be found that have different
strength. From Corollary 1 we know that we can construct from this optimal solution
another optimal solution w= for which adjacent triangle edges do have the same
strength, equal to the average strength in w of all triangle edges in the triangle clique
they are part of. Moreover, in w= all rays within the same bundle have the same
strength, equal to the average strength in w of all rays in the bundle. Let us denote the
strength in w= of the b-th bundle to the triangle clique as w=

b (i.e., b is an index to the
bundle), and the strength of the edges in the triangle clique as w=

c . We will prove that
w= is not optimal, reaching a contradiction.

In particular, we will show that there exists a solution w∗ for which w∗
b = w=

b for
all bundles b, but for which the strength within the triangle clique is strictly larger:
w∗
c > w=

c . We first note that the strengths of the triangle edges w∗
c are bounded

in triangle constraints involving two rays and one triangle edge, namely w∗
c ≤ 2 +

(d − 1) · w=
b . They are bounded also in triangle constraints involving only triangle

edges, namely (2 − d) · w∗
c ≤ 2. For d ≥ 2 this constraint is trivially satisfied, but

not for d < 2. Thus, we know that w∗
c = 2 + minb

{
(d − 1) · w=

b

}
for d ≥ 2, and

w∗
c = min

{
2 + minb

{
(d − 1) · w=

b

}
, 2
2−d

}
for d < 2. If this optimal value for w∗

c

is larger than w=
c the contradiction is established.

First we show that w=
c < 2

2−d when d < 2, again by contradiction. For each
triangle {i, j, k} in the triangle clique, the following triangle inequality is the tightest:
max{wi j , wik, w jk}+median{wi j , wik, w jk} ≤ 2+d ·min{wi j , wik, w jk}. Averaging
these constraints over all triangles within the triangle clique, we obtain:

w+ + w0 ≤ 2 + d · w− (26)

for some w+ ≥ w0 ≥ w− for which w=
c = 1

3 (w
+ + w0 + w−). Since we assumed

(with the intention to reach a contradiction) that not all wi j in the triangle clique are

equal, we also know that w++w0

2 > w=
c > w−. Given this, and if it were indeed the
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case that w=
c ≥ 2

2−d , Eq. (26) would imply that 2 · 2
2−d < 2 + d · w−, and thus,

2
2−d < w−, a contradiction.

Next, we show that w=
c < 2 + minb

{
(d − 1) · w=

b

}
. To show this, we need to

distinguish two cases:

1. The bundle b with smallest (d−1)·w=
b has at least two different weights inw. Then,

note that for each pair of ray strengths wbi and wbj from node b to triangle-edge
(i, j), the following triangle constraints must hold: wi j ≤ 2+ d ·min{xbi , xbj } −
max{xbi , xbj }. Summing this over all {i, j} and dividing by n(n−1)

2 where n is the
number of nodes in the triangle clique, yields: w=

c ≤ 2 + d · w−
b − w+

b for some

w−
b < w+

b with wb = w−
b +w+

b
2 . This means that w=

c < 2 + minb {(d − 1) · xb},
with a strict inequality since we assumed that there is at least one pair of rays
{b, i} and {b, j} for which wbi < wbj . Thus, this shows that w∗

c > w=
c , and a

contradiction is reached.
2. All rays in the bundle b with smallest (d − 1) · w=

b have equal strength wb = w=
b

in w. In this case, we know that wi j ≤ 2 + (d − 1)w=
b (due to feasibility of

the original optimum). Again, averaging this over all triangle edges {i, j}, yields:
w=
c ≤ 2 + (d − 1)w=

b , with equality only if all terms are equal (since the right
hand side is independent of i and j). Thus, again a contradiction is reached.

��
Theorem 3.

Proof It is easy to see that for a symmetric solution, the objective functions of Prob-
lems LP2SYM and LP2 are identical.

Thus, it suffices to show that:

1. the feasible region of Problem LP2SYM is contained within the feasible region of
Problem LP2,

2. the set of symmetric feasible solutions of Problem LP2 is contained within the
feasible region of Problem LP2SYM.

The latter is immediate, as all constraints in Problem LP2SYM are directly derived from
those in Problem LP2 (see rest of the proof for clarification), apart from the reduction
in variables which does nothing else than imposing symmetry.

To show the former, we need to show that all constraints of ProblemLP2 are satisfied.
This is trivial for the positivity constraints (13) and (14). The wedge inequalities (10)
are also accounted in Problem LP2SYM, and thus trivially satisfied, too.

We consider three types of triangle constraints in Problem LP2: those involving two
rays from the same bundle and one triangle edge with the triangle edge strength on
the left hand side of the < sign, those involving two rays from the same bundle and
one triangle edge with the triangle edge strength on the right hand side of the < sign,
and those involving three triangle edges.

Constraint (11) covers all triangle constraints involving two rays (from the same
bundle) and one triangle edge, with the triangle edge strength being upper bounded.
Indeed, wt

A is the strength of the triangle edges between nodes in A, and ww
AB is the
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strength of the edges in the bundle from any node in B to the two nodes connected by
any triangle edge in A.

Triangle constraints involving two rays and one triangle edge that lower bound the
triangle edge strength are redundant and can thus be omitted. Indeed, they can be
stated as ww

AB + ww
AB ≤ 2 + d · wt

A, which is trivially satisfied as each wedge edge
has strength at most 1.

Finally, triangle constraints involving three triangle edges within A reduce towt
A +

wt
A ≤ 2 + d · wt

A. For d ≥ 2 this constraint is trivially satisfied. For d < 2 it reduces
to wt

A ≤ 2
2−d . For 2 > d ≥ 1, this constraint is also redundant with the triangle

constraints involving the triangle edge and two rays, which imply an upper bound
of at most d + 1 ≤ 2

2−d for d ≥ 1 (namely for the ray strengths equal to 1). Thus,

constraint wt
A ≤ 2

2−d must be included in Problem LP2SYM only for d < 1. Finally,
note that such triangle constraints are only possible in triangle cliques A with |A| ≥ 3.

��
Theorem 4.

Proof Assume the contrary, i.e., that a vertex point of this convex feasible polytope
can be found that has a different value for one of the edge strengths. To reach a
contradiction, we will take such vertex point wt ,ww and nudge the wedge edges’
strengths ww

AB as follows:

– if ww
AB ∈ (0, 1

2 ), add ε,
– if ww

AB ∈ ( 12 , 1), subtract ε.

Note that 0 ≤ ww
AB ≤ 1 for all wedge edges (due to the wedge constraints in Eq. (10)).

Thus, all wedge edge strengths that are not exactly equal to 0, 1
2 , or 1 will be nudged.

For the triangle edgeswe need to distinguish between d ≥ 1 and d < 1. For d ≥ 1,
we nudge their strengths as follows:

– if wt
A ∈ (0, 2), add ε,

– if wt
A ∈ (

2, 2 + (d − 1) · 1
2

) = (
2, d+3

2

)
, add (d − 1)ε,

– if wt
A ∈ (

2 + (d − 1) · 1
2 , 2 + (d − 1) · 1) = ( d+3

2 , d + 1
)
, subtract (d − 1)ε.

For d < 1, we nudge the strenghts as follows:

– if wt
A ∈

(
0, 2

2−d

)
∪

(
2

2−d , d + 1
)
, add ε,

– if wt
A ∈ (

2 + (d − 1) · 1, 2 + (d − 1) · 1
2

) = (
d + 1, d+3

2

)
, subtract (d − 1)ε.

– if wt
A ∈ (

2 + (d − 1) · 1
2 , 2

) = ( d+3
2 , 2

)
, add (d − 1)ε.

Note that for d ≥ 1, it holds that 0 ≤ wt
A ≤ d + 1 for all triangle edges (due to the

triangle constraints in Eq. (11) with ray strength equal to 1). For d < 1, it holds that
0 ≤ wt

A ≤ 2 for all triangle edges (due to the triangle constraints in Eq. (11) with ray
strength equal to 0). Thus, also all triangle edge strengths that are not of one of the
values specified in the theorem statement will be nudged.

For sufficiently small |ε| no loose constraint will become invalid by this. Further-
more, it is easy to verify that strengths in tight constraints are nudged in corresponding
directions, such that all tight constraints remain tight and thus valid. Now, this nudging
can be done for positive and negative ε, yielding two new feasible solutions of which
the average is the supposed vertex point of the polytope—a contradiction. ��
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Theorem 5.

Proof Let us denote the optimal vector of weights found by solving Problem
LP2FULLSYM as w∗. It is clear that w∗ is an optimal solution to Problem LP2, as it
is constrained to be such.

Now, we will prove symmetry by contradiction: let us assume there is a graph
automorphism α ∈ A with respect to which it is not symmetric, such that there
exists a set of edges {i, j} ∈ E for which w∗

i j �= w∗
α(i)α( j). Due to convexity, w∗∗

with w∗∗
i j = w∗

i j+w∗
α(i)α( j)
2 is then also a solution to Problem LP2FULLSYM and thus to

Problem LP2. However, since a2+b2 > 2
( a+b

2

)2
for any a �= b ∈ R,w∗∗ has a smaller

value for the objective of Problem LP2FULLSYM, such that w∗ cannot be optimal—a
contradiction. ��
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