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ABSTRACT

The possible impact of natural heat stress on animal fertility is currently a major concern for breeding
companies. Here, we aimed to address this concern by determining the effects of natural heat stress on
the fertility of Holstein bulls located in the Netherlands. Semen samples were collected from six bulls at
two locations in March 2016 (low temperature-humidity index (THI) group; maximum THI of 51.8 and
55 at their respective locations) or August (high THI group; maximum THI of 77.9 and 80.5 during meiotic
and spermiogenic stages of spermatogenesis, 42 to 14 days prior to semen collection). The effect of heat
stress on semen quality was assessed by sperm morphology, motility, reactive oxygen species produc-
tion, lipid peroxidation, viability, and DNA fragmentation. Moreover, we evaluated the development of
embryos generated in vitro by low and high THI semen, and determined inner cell mass/trophectoderm
ratio, apoptotic cell ratio, and embryonic gene expression in day-8 blastocysts. An increase in cell death
(propidium iodide-positive cells; P = 0.039) was observed in the high THI group (31.5%) compared to the
low THI group (27.6%). Moreover, a decrease (P < 0.001) was observed in the total blastocyst rates at day 7
post-insemination (15.3 vs 20.9%) and day 8 (23.2 vs 29.6%) in the high THI compared to the low THI
group, respectively. There were no differences in the relative abundance of candidate transcripts
examined. In conclusion, sperm samples from dairy bulls obtained during a period with higher THI had
reduced viability and led to a decrease in blastocyst development and delayed hatching, compared to

semen collected during a period with low THI.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

animals, having detrimental effects on the formation and function
of gametes, and embryonic and fetal development (reviewed by

Heat stress has been established as a cause of subfertility in Ref. [1]). Elevations in temperature associated with global climate
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change are concerning for animal agriculture, particularly in
countries with a moderate climate, and especially when it relates to
bovine fertility given the economic importance of cattle in modern
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summers are typically highly humid and winters are typically
relatively mild. In view of climate change, the dairy industry in the
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Netherlands is implementing preventive measures, such as
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ventilation systems, to minimize the effect of heat stress on cow
fertility, based on knowledge obtained in countries with extreme
temperatures, such as Australia. Australia has a significant portion
of its cattle production under an arid climate, which has a great
impact on cattle fertility [2]. This impact has been mainly studied in
cows, as female physiology is crucial for correct oocyte production,
fertilization, embryo development and to produce healthy offspring
(reviewed by Ref. [3]). Moreover, the oocyte plays a decisive role in
embryo development. This imbalance leads the focus of research
towards the female, thus neglecting the male. The effect of tem-
perature on cows has been extensively studied, resulting in a metric
based in the temperature-humidity index (THI) [4—6]. This metric
correlates temperature with physiological responses and is pres-
ently used as a measure for temperature-wellbeing of cows [7,8].
However, the physiological impact of THI on the bull has not been
established to the same extent, and the molecular mechanisms of
heat stress-induced sperm damage have not been entirely charac-
terized [9]. In humans, genital heat stress is a substantial risk factor
for male infertility [10—14]. At present, it is known that bulls
exposed to natural heat stress experience a decrease in sperm
quality, even in regions with temperate climates [15]. Natural heat
stress has been found to induce variations in lipid composition and
reduce normal morphology in fresh bovine semen [16], and reduce
very-low-density lipoprotein receptor (VLDLr) mRNA expression,
sperm motility, progressive motility and velocity, and to alter both
the concentration and composition of fatty acids in frozen bovine
sperm [17,18]. In a recent study performed on dairy bulls in
Northern Spain [19], higher sperm quality, in terms of kinetics,
plasma membrane integrity, acrosome status, mitochondrial
membrane potential, and reactive oxygen species (ROS) production,
was observed in semen samples collected in spring compared to
other seasons.

In a previous study from our group [20], artificial scrotal insu-
lation was performed to detect at which period sperm is mostly
affected by heat. This insulation mimicked abnormal high tem-
peratures for the scrotum, which had dramatic consequences on
the sperm quality. Significantly higher abnormal morphology,
chromatin protamination, and nuclear shape and a decrease in
motility and viability of sperm were detected in semen ejaculated
between 14 and 42 days after scrotal insulation. Spermatogenesis
requires approximately 61 days in total to be complete in the bull:
21 days of spermatocytogenesis, 23 days of meiosis, and 17 days of
spermiogenesis. Therefore, increased testicular temperature
affected mostly those sperm cells that were at meiotic and the
beginning of spermiogenic stages of development at the time of
scrotal insulation.

In summer, ROS production significantly increases in sperm,
leading to lipid peroxidation (LPO) and major sperm defects [21].
During normal cell metabolism, ROS are produced by mitochon-
drial respiration [22,23]. Sperm cells naturally produce ROS either
during their stay in the male and female reproductive tract [24] or
by being handled during assisted reproductive technologies (ART),
such as semen cryopreservation or sperm centrifugation [25,26].
Unsaturated fatty acids present in the sperm plasma membrane are
vulnerable to ROS, initiating a lipid peroxidation cascade and
restricting the fluidity needed to participate in the membrane
fusion events associated with fertilization [27—30]. Hydrogen
peroxide has been identified as one of the major ROS involved in
LPO, impairment of protein function, apoptosis, and DNA damage
[31,32]. Reactive oxygen species are not only responsible for DNA
fragmentation, but may also cause lower sperm DNA methylation
[33], implying that DNA fragmentation leads to global DNA deme-
thylation. Epigenetic modifications, such as DNA methylation, are
involved in either enhancing or inhibiting gene expression by
opening or condensing chromatin configuration respectively

(reviewed by Ref. [34]). Oocytes have a limited degree of DNA repair
mechanisms that can restore sperm DNA from fragmentation and
give rise to a competent embryo [35], depending on their size
[36,37]. However, severe sperm DNA fragmentation induces early
embryo apoptosis and, consequently, halt further embryo devel-
opment [31,36]. Genetic and epigenetic alterations produced by
ROS in sperm may compromise the correct transcription of the
necessary genes for embryo development [38].

In this study, we aimed to identify the effect of high THI on bull
fertility and how such effect compromises embryo development.
For this purpose, we combined the assessment of selected sperm
quality parameters to detect possible alterations by elevated tem-
peratures and subsequent embryo quality parameters to determine
the effect on early embryo development. In contrast to previous
studies, we have compared the quality of bovine sperm during low
and high THI periods and related it to the quality of the subsequent
embryos, by assessing quality parameters: embryo development
rates, apoptotic ratio, ICM/TE ratio, and total embryo cell number.
Moreover, the expression of pluripotency, DNA methyltransferases
(DNMT), imprinted, and interferon tau genes was evaluated
because of their importance in early embryo development and
maternal recognition of pregnancy [39—42]. In addition, heat shock
protein and apoptotic genes were included due to their involve-
ment in the response to thermal shock [43—45].

2. Materials and methods
2.1. Experimental design

Frozen bovine semen samples were obtained from six Holstein-
Friesian dairy bulls, one to eight years old, housed in two collection
barns in the Netherlands (CRV, Arnhem, the Netherlands). Ejacu-
lates were collected from the same six bulls with an artificial vagina
between the 8th and the 22nd of March 2016 (low THI group) and
between the 1st and the 30th of August 2016 (high THI group).
Semen from one ejaculate per bull and period was used for these
experiments. The bulls were housed indoors; however, no cooling
facilities were present; therefore, temperatures were similar inside
and outside of the stables. Only fresh semen samples with normal
morphology (>70% normal) were cryopreserved according to the
company's routine practice, using an animal protein-free extender
(OPTIXcell; IMV Technologies, L'Aigle, France). Plastic straws of
0.25 ml were filled with the extended semen samples and cooled to
5°C in a cooling cabinet for 2—4h prior to cryopreservation. A
programmable freezing machine, DigitCool (IMV Technologies),
was used to cryopreserve the semen samples, for subsequent
storage in liquid nitrogen. Only frozen/thawed straws were
retained with motility >30% and progressive motility >20%.

Air temperature and relative humidity are factors that deter-
mine the level of environmental heat to which that animals are
exposed. The THI is a metric that combines those factors and has
been used for heat stress measurement [8]. Temperature and
relative humidity data were obtained from The Royal Netherlands
Meteorological Institute (KNMI) [46]. Consequently, the THI was
calculated per hour considering the meiotic and spermiogenic
stages of spermatogenesis, i.e., from 14 to 42 days before the
ejaculates were collected.

The following equation was used to calculate the THI, where T is
the temperature in degrees Celsius and RH is relative humidity:

THI = (0.8 x T (°C) + (RH (%) [ 100) x (T (°C) — 14.4) + 46.4)
The maximum THI was selected as the highest daily value,

whereas the mean THI was calculated as the daily average of the
hourly THI values. In the low THI group, the maximum THI
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oscillated between 38 and 55, whereas in the high THI group, the
maximum THI oscillated between 60 and 81.

We evaluated sperm motility, reactive oxygen species generated
by sperm, sperm lipid peroxidation, sperm viability and sperm DNA
fragmentation on Percoll®-purified frozen-thawed semen; we
chose to only focus on such sperm so as to be representative of live
sperm cells that were capable of fertilization. Moreover, we eval-
uated the development of embryos generated in vitro by low and
high THI semen after Percoll®-purification and assessed inner cell
mass (ICM)/trophectoderm (TE) ratio, apoptotic cell ratio, and
embryonic gene expression in day-8 blastocysts.

2.2. Reagents and media

Unless otherwise stated, all media and reagents were purchased
from Thermo Fisher Scientific (Merelbeke, Belgium).

Culture and handling media were prepared as described by
Ref. [47]. All media were filtered through a sterile 0.22 um filter
(Millipore Corporation, USA) prior to use. Unless otherwise stated,
all other components were obtained from Sigma (Diegem,
Belgium).

2.3. Sperm motility

In order to assess the effect of heat stress on viable sperm,
frozen/thawed sperm were passed through a discontinuous Per-
coll® gradient (45:90% (v:v); GE Healthcare Biosciences, Uppsala,
Sweden) and washed in sperm Tyrode's albumin lactate pyruvate
(TALP) for semen quality analysis. Sperm motility was evaluated
using computer-assisted sperm analysis (CASA). A semen sample of
10 ul was placed on a clean warm (37 °C) disposable counting
chamber (ISAS® D4C20, Proiser, Paterna, Spain). The sperm motility
was assessed using a 10x negative phase contrast microscope
objective connected to an ISAS® v1 CASA system (Proiser, Paterna,
Spain). The software settings specific for bulls were used for sperm
motility analysis. The parameter settings were: number of frames
captured per second =25; minimum surface that an object is
recognized as a sperm = 5 pm; low VAP cut-off = 10 um/s; medium
VAP cut-off = 25 um/s; low VSL cut-off = 10 um/s; medium VSL cut-
off =25 um/s; STR cut-off = 70%. Static sperm, total and progressive
motility data were collected.

2.4. Reactive oxygen species, lipid peroxidation and sperm viability

Flow cytometry and fluorescent staining techniques were used
to determine ROS, LPO and sperm viability. Frozen-thawed sperm
were passed through a discontinuous Percoll® gradient (45:90%
(v:v)) and adjusted to a final concentration of 2.5 x 10° cells/ml in
PBS without calcium and magnesium. For ROS evaluation, two as-
says were performed to measure H,0, and total ROS present in
sperm. For this purpose, 100 uM of 2’,7’-dichlorofluorescein diac-
etate (DCFH-DA) or 5uM CellROX Green Reagent was added to
200 pl of the sperm suspensions (0.5 x 10° cells) and incubated at
37°C for 30 min in the dark. The sperm suspension was washed
twice in PBS at 270 g for 5 min, and 1.5 pM of PI was added to assess
sperm viability. All samples were analyzed using a Cytoflex 3 laser
flow cytometer. For LPO assessment, 10 uM of BODIPY 581/591 Cy;
(further referred as BODIPY) was added to the Percoll® purified
sperm samples and incubated at 37 °C for 15 min in the dark before
flow cytometry analysis. Three replicates were performed. Overall
10,000 sperm were screened per sample and replicate.

Cell fluorescence was exited at 488 nm. The fluorescence in-
tensity of the PE (PI and BODIPY) and FITC (CellROX, DCFH-DA and
BODIPY) channels was measured to analyze the percentage of cells
positive for cell death (PI), ROS production (CellROX and DCFH-DA)

and LPO (BODIPY) in low and high THI semen samples. The emis-
sion of the PE channel was 585/42 nm and FITC channel was 525/
40 nm. The acquisition velocity was 30—60 pl/min. All data were
corrected for autofluorescence. The single sperm population was
gated on FSC-H vs. FSC-A dotplot to exclude aggregates, and on FS/
SS dotplot to exclude debris. All acquired data were processed using
CytExpert v2.0.0.153 software (Beckman Coulter, Inc., California,
USA). The percentage of DCFH-DA™ and CellROX" cells was calcu-
lated from the viable (PI") sperm population.

2.5. Sperm DNA fragmentation TUNEL assay

Terminal deoxynucleotidyl transferase fluorescein-dUTP nick-
end labeling (TUNEL) assay was used to detect the presence of free
3’-OH termini in single and double-stranded sperm DNA, using the
In Situ Cell Death Detection Kit (Roche, Brussels, Belgium) following
the methods described by Rahman et al. [37] with a single modi-
fication. Frozen/thawed sperm were passed through a discontin-
uous Percoll® gradient (45:90% (v:v)) and adjusted to a final
concentration of 5 x 10°cells/ml in sperm TALP. Sperm were
incubated in 2 mM DTT in Sp-TALP for 45 min at room temperature
(RT) as described by Mitchell et al. [48], which breaks the disul-
phide bridges between protamines and DNA, and allows the
enzyme terminal deoxynucleotidyl transferase to access the chro-
matin structure. Sperm cells were centrifuged and washed in Sp-
TALP. After this step, in contrast to the previously mentioned pro-
tocol, sperm samples were directly fixed with 4% paraformaldehyde
(PFA). After fixation and washing in PBS, the samples were per-
meabilized and incubated with TUNEL mixture (terminal deoxy-
nucleotidyl transferase and fluorescein-dUTP 1:10). The samples
were stained with 5 pg/ml of Hoechst 33,342, smeared onto a poly-
L-lysine-coated slide and examined by fluorescence microscopy
(Leica, DMR; magnification 400x, oil immersion). At least 200
sperm from each sample were analyzed randomly per replicate to
evaluate the percentage of TUNEL-positive cells. Both positive
(1000 U/ml DNAse I) and negative (nucleotide mixture in the
absence of transferase) controls were included in each replicate.
Three replicates were performed.

2.6. Embryo production

Bovine blastocysts were produced in vitro as described by
Wydooghe et al. [47]. In vitro-produced bovine blastocysts were
derived from immature oocytes that were collected from slaugh-
terhouse ovaries obtained from October to March. Cumulus-
oocytes complexes (COCs) were recovered from follicles with a
diameter of 2—8 mm using an 18-gauge needle attached to a 10 ml
syringe. Oocytes with homogeneous dark cytoplasm and compact
cumulus cells were selected and matured in groups of 60 in 500 pl
of bicarbonate-buffered TCM199 medium (Life Technologies,
Ghent, Belgium) supplemented with 50 mg/ml gentamycin and
20 ng/ml of epidermal growth factor. Oocytes were matured for
22 hat38.5°Cin 5% CO; in the air. Frozen-thawed low and high THI
sperm from six bulls were passed through a discontinuous Percoll®
gradient (45:90% (v:v)) and adjusted to a final concentration of
1 x 108 cells/ml in IVF TALP medium for fertilization. An extra
group of oocytes fertilized with a control bull of known fertility was
always added in every replicate. The matured COCs were washed in
500 ml IVF-TALP and co-incubated with sperm for 21h. After
fertilization, presumptive zygotes were first vortexed to remove the
excess of the sperm and cumulus cells, and then cultured in groups
of 25 in 50 pl droplets of SOF medium at 38.5°C in 5% CO», 5% Oo,
and 90% N,. Six replicates were performed. Cleavage rates were
determined after 48 h post-insemination and blastocyst rates at
168 and 192 h post insemination (day 7 and 8 respectively) as the
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percentage of initial number of COCs. We grouped early and non-
expanded blastocysts together as ‘early blastocysts’, and
expanded, hatching and hatched blastocysts as ‘advanced
blastocysts’.

2.7. Differential blastocyst staining

In vitro-produced day-8 blastocysts were fixed in 4% PFA for
20 min at RT and stored at 4 °C until use. Differential staining was
performed as described by Wydooghe et al. [49]. Blastocysts were
permeabilized with 0.5% Triton X-100 + 0.05% Tween for 1 h at RT
and DNA of the blastomeres was denatured by exposure to 2 N HCI
for 20 min followed by 100 mM Tris-HCI (pH 8.5) for 10 min at RT.
Blocking solution consisting of 10% goat serum and 0.5% BSA pre-
pared in PBS was added and the embryos were incubated at 4 °C
overnight. The embryos were washed and incubated in the ready-
to-use primary CDX2 antibody (Biogenex, San Ramon, USA) at
4 °C overnight. The test embryos were washed and incubated
overnight at 4 °Cin rabbit active caspase-3 antibody (0.768 pg/ml in
blocking solution, Cell Signaling Technology, Leiden, the
Netherlands). After another wash step, test embryos and negative
controls (not exposed to CDX2 and Caspase-3 antibodies) were
transferred to goat anti-mouse Texas Red secondary antibody
(20 pg/ml in blocking solution, Molecular Probes, Merelbeke,
Belgium) for 1 h at RT and to goat anti-rabbit FITC antibody (10 pg/
ml in blocking solution, Molecular Probes) for 1 h at RT. Next,
blastocysts were rinsed three times in PBS, counterstained with
Hoechst 33,342 (50 pg/ml in PBS/BSA, Molecular Probes) for
20 min at RT, and mounted with DABCO mounting medium. 3D
images were reconstructed after acquiring Z-stack images using a
63x water immersion objective on a Leica TCS-SP8x confocal mi-
croscope (Leica Microsystems, Weltzar, Germany).

2.8. Quantitative reverse transcription polymerase chain reaction
(RT-qPCR)

Blastocysts were produced as described above, after fertilization
with low and high THI semen from six experimental bulls. All the
embryos reaching blastocyst stage were washed three times in 3 ml
of RNase-free PBS, transferred in groups of maximum five blasto-
cysts to 1 pl/blastocyst of lysis buffer consisting of 5 mM Dithio-
threitol (DTT; Promega, Leiden, the Netherlands), 4 U/uL
RNasinPlus RNase inhibitor (Promega), and 0.64 puM Igepal in
RNase-free water, and immediately stored at —80 °C until use for a
maximum of two months. The total RNA was extracted from pools
of day-8 blastocysts from the same replicate for gene expression
analysis using the RNeasy Micro kit (Qiagen, Antwerp, Belgium)
following the manufacturer's instructions, eluting the extracted
RNA in 15 puL RNase-free water passed through the column twice.
Minus-reverse transcriptase control was performed to detect DNA
contamination as described by Goossens et al. [50]. A PCR reaction
using DNA polymerase in 1pul of RNA sample was performed.
Ubiquitin-C primers -a highly conserved and ubiquitously
expressed gene-were used for analysis [51]. Due to the limited
amount of samples, concentration and integrity analysis were not
assessed. After confirming no presence of genomic DNA in the
samples, reverse transcription was performed with the 14 pl left
from the RNA extraction procedure. iScriptcDNA synthesis kit (Bio-
Rad, Temse, Belgium) was used according to the manufacturer's
instructions, and cDNA was diluted 10-fold for downstream PCR.

We selected 25 genes for their importance in early embryo
development (pluripotency, DNA methyltransferases and imprin-
ted genes), maternal recognition (interferon tau gene), and stress
response (heat shock protein and apoptotic genes). Pluripotency
genes are involved in establishing gene regulatory networks and

early embryonic dynamics necessary for embryonic development
(reviewed by Ref. [39]). DNA methyltransferases (DNMTs) establish
and maintain DNA methylation, a key function especially during
early embryogenesis epigenetic reprogramming [40]. Imprinted
genes are differentially methylated genes according to their
parental origin, which cause severe fetal growth abnormalities
when they are deregulated (reviewed by Ref. [41]). Establishment
of early pregnancy depends on interferon tau (IFN-t), the signal of
the embryo to the mother to prevent luteolysis and maintain the
production of progesterone during pregnancy [42]. Heat shock
proteins are a family of highly conserved proteins produced for
protection against environmental, physical or chemical stress
(reviewed by Refs. [43,44]), while programmed cell death or
apoptosis is an essential pathway for the correct functioning of an
organism [45].

The primers for these genes were designed using Primer-BLAST
tools from NCBI based on bovine mRNA sequences, avoiding sec-
ondary structures as indicated by MFold [52]. All the amplicons
were validated by sequencing and aligned using Bioedit and BLAST
tools from NCBI. All PCR reactions were performed in a volume of
10 pl using SsoAdvanced™ Universal SYBR® Green Supermix (Bio-
Rad), according to the manufacturer's instructions, using 2 pL of 10
X diluted cDNA template and 5 pM of forward and reverse primers.
A CFX Connect system (BioRad) was used and the PCR program
consisted of initial denaturation at 95 °C for 3 min, followed by 40
cycles of 15 sat 95°C, 30 s at a range between 59 °C and 65 °C ac-
cording to the annealing temperature of the primers, and plate
reading step. A final 5s elongation at 72 °C was performed, fol-
lowed by a melting curve from 72 °C up to 95 °C, with a tempera-
ture increase of 0.5°C and a plate reading step every 5s. Two
replicates were performed for each gene. Negative (water) and
positive (testis cDNA) controls were included in each replicate. The
stability of all the reference genes described by Goossens et al. [50]
was tested and analyzed for normalization using the GeNorm
program. Then, the three most stable genes were selected (GAPDH,
SDHA and ACTB).

2.9. Statistical analysis

Statistical analysis was performed using IBM Statistical Package
for the Social Sciences (SPSS) v25. The data were analyzed using
Paired-samples t-test, Wilcoxon Signed Rank Test and GLM pro-
cedure (p < 0.05). The dataset was checked for normal distribution
by Shapiro-Wilk test and Kolmogorov-Smirnov (p < 0.05). All data
are expressed as mean + SEM. gbasePlus v1.2 software (Biogazelle,
Zwijnaarde, Belgium) was used for gene expression analysis.
GeNorm was used for the reference genes selection and Wilcoxon
Signed Rank Test (p <0.05) was performed to analyze the qPCR
results.

3. Results

For the low THI semen group, the maximum THI observed
during the period of meiosis and spermiogenesis was 51.8 and 55 at
the two different locations, whereas the mean THI was 40 and 40.6.
For the high THI semen group, the observed maximum THI was 77.9
and 80.5, while the mean THI was 61.6 and 64.3, at the respective
locations. The maximum and mean THI for the meiosis and sper-
miogenesis period of the assessed samples is represented in Fig. 1.

Data from sperm analysis are summarized in Table 1. Low and
high THI sperm groups did not differ significantly in the percentage
of normal sperm morphology and sperm abnormalities (data not
shown). Motility in Percoll®-purified semen was not affected by
heat stress although the oscillation index (WOB) was significantly
lower in high THI semen (47.5%) compared to low THI (50.7%).
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Netherlands Meteorological Institute (KNMI).

A greater percentage of dead cells (PIT cells; P=0.039) was
observed in the high THI group (31.5%) compared to the low THI
group (27.6%). Although no significant differences (P > 0.05) in the
two groups were found for ROS production (DCFH-DA' and
CellROX™ cells), LPO (BODIPY' cells) and DNA fragmentation
(TUNEL" cells), a tendency towards lower sperm motility
(P =0.089), higher LIN (P = 0.078) and higher total ROS production
(P=0.087) was observed in high THI semen compared to low THI
semen.

No differences were observed in the cleavage rates of low

Table 1

Sperm analysis from Percoll®-purified frozen-thawed low and high THI semen
groups; including sperm motility (CASA), DNA fragmentation (TUNEL), H,0, pro-
duction (DCFH-DA), total ROS production (CellROX), LPO (BODIPY) and cell death
(PI).

Semen characteristics Low THI - March High THI - August P-value
Total motility (%) 68.9+2.0 68.0+14 0.446
Progressive motility (%) 57.4+1.7 553+14 0.199
TUNEL" (%) 3.43+0.72 3.17+0.75 0.713
DCFH-DA" (%) 15.8+2.75 14.2+3.39 0.474
CellROX™" (%) 70.2 +4.67 74.6 +3.61 0.087
BODIPY ™" (%) 0.25 +0.06 0.25+0.08 0.999
PI* (%) 27.6+2.76° 31.5+3.09° 0.039

Values with different letters in superscripts in the same row express differences
which were significant (P < 0.05). Data are expressed as mean + SEM.

(78.3%) and high (74.8%) THI groups. Remarkably, a significant
decrease (P <0.001) was observed in the total blastocyst rates at
day 7 post-insemination in the high THI group (15.3%) compared to
the low THI group (21%), as well as in the total blastocyst rates at
day 8 post-insemination in the high THI group (23.2%) compared to
the low THI group (29.6%) (Fig. 2). When comparing the develop-
mental stage of the blastocysts, we observed a significant reduction
of early and advanced stage blastocysts at day 7 and advanced stage
blastocysts at day 8 of the high THI group (Fig. 2). Moreover,
hatching was delayed in the high THI group since only the low THI
group showed hatched blastocysts at day 7 post insemination.

The higher THI did not equally affect all bulls, as individual
variability had a great impact on the blastocyst rates (P <0.05)
(Table 2). The bulls were not selected for their fertilizing capacity;
therefore, 3 bulls had good in vitro fertility (40% or more blastocyst
rates) and 3 had poor in vitro fertility (less than 25% blastocyst
rates). However, all bulls consistently showed decreased blastocyst
rates in the high THI group.

No differences (P > 0.05) were observed in the total number of
cells, ICM cell number and rate (%), and apoptotic cell number and
rate (%) in blastocysts generated by low and high THI sperm (Figs. 3
and 4). However, the percentage of ICM and the ICM/TE ratio in the
high THI group (34.1% and 0.565, respectively) tended to be lower
(P=0.090 and P =0.087, respectively) than in the low THI group
(36.0% and 0.603, respectively).
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Fig. 2. Total blastocyst development rates of day 7 and 8 after fertilization and percentage of ‘advanced blastocysts’ of embryos derived from low and high THI semen groups.

Significant differences (P < 0.05), marked with an asterisk, were found between the two experimental groups for total blastocyst development rates of day 7 and 8, and percentage
of ‘advanced blastocysts’.

Table 2

Total blastocyst development rates at day 7 and 8 after fertilization of embryos derived from low and high THI semen by individual bulls.
Bull Number of oocytes Day 7 blastocyst rate Day 8 blastocyst rate

low THI high THI low THI high THI low THI high THI

1 295 306 324+6.38 219+3.0 447 +4.5° 27.8+4.2°
2 301 295 264+3.3 226+54 38+19 359+40
3 302 298 16.2+3.5 10.7+1.6 224+4.1 164+1.6
4 300 294 6+1.3° 03+03° 10+2.0° 6.1+1.7°
5 305 304 30.8+4.3 276+52 40.7 +2.1 354+45
6 300 302 14+4.0 86+24 21.6+5.0 17.6+3.0
AVERAGE 300.5 299.8 21+23? 153 +2.1° 29.6 +2.5% 23.24+2.2°

p-value of the influence of individual bull on day 7 blastocysts: 1.545 x 106,

p-value of the influence of individual bull on day 8 blastocysts: 6.816 x 107",

Values with different letters in superscripts in the same row express differences which were significant (P < 0.05). Data are expressed as mean + SEM. Six replicates were
performed for each bull. Significant effect of individual bulls on blastocyst development rates of day 7 and 8 (P < 0.05).

Hoechst CDX2 antibody - Texas Red  Caspase 3 antibody - FITC Overlay

Low THI

High THI

Fig. 3. Differential apoptotic staining of representative bovine blastocysts derived from low and high temperature humidity index (THI) semen groups: both trophectoderm (TE) and
inner cell mass nuclei were stained with Hoechst. The CDX2 antibody was indirectly labeled with Texas Red resulting in a red fluorescent signal in TE cells only. The apoptotic cells
show a green fluorescent signal because the anti-caspase-3 antibody was indirectly labeled with FITC. An overlay of the three stainings is given.
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Fig. 4. Total cell number, ICM cell number and rate (%), and apoptotic cell number and rate (%) of differentially stained day-8 blastocysts derived from low and high THI semen

groups. No differences (P> 0.05) were found between the two experimental groups.

No significant differences were observed in the gene expression
of blastocysts at day 8 for any of the assessed target genes (Table 3).

4. Discussion

The main objective of this study was to investigate the existence
and degree of damage in sperm cells produced by bulls exposed to
natural heat stress conditions from 14 to 42 days before semen
collection. Artificial insemination centers select ejaculated semen
for cryopreservation according to morphology, kinetics and num-
ber of cells in an ejaculate (volume and concentration). In the
present study, we investigated the impact of increased THI on
sperm and subsequent embryo quality of Holstein bulls housed in
the Netherlands and provided evidence that semen classified as
good quality and collected some weeks after higher THI had, in fact,
inferior quality and fertility which was only apparent after in vitro
embryo production. In contrast to other studies, we looked at
Percoll®-separated semen, as we aim to investigate possible
damages that might exist in living sperm that can contribute to
fertilization. By separating the living sperm with Percoll®, we
looked at the influence of possible sperm damage on resulting
embryo development and quality.

In order to assess the damage caused by climate factors on viable
sperm, we examined sperm motility, ROS production, LPO, cell
membrane damage, and DNA fragmentation after a Percoll®
gradient, which selects the motile sperm that could potentially
traverse the female reproductive tract and reach the site of fertil-
ization under physiological conditions. By doing that, we expected
that major sperm defects would be removed. In agreement with the
findings of Argov et al. [17], a significant reduction in sperm
viability, assessed by PI staining and likely caused by climate fac-
tors, was observed in sperm collected in August at higher THI
compared to March at lower THI. We speculate that this reduction,
assuming a similar efficiency of Percoll® in all the samples, is due to
an increased sensitivity of the viable sperm cells selected with
Percoll® in the high THI group compared to the low THI group.

Although no significant differences were observed in any other

Table 3

Gene expression of day-8 blastocysts derived from low and high THI semen groups.
A total of 25 genes were analyzed. The ratio is based on the comparison high/low
THI. Four pairs were analyzed for IGF2 gene due to low expression. Six pairs were
analyzed for the rest of the genes.

Target gene Ratio P-value 95% Cl low 95% CI high
Pluripotency genes

NANOG 1.102 0.75 0.899 1.352
POU5F1 1.104 0.825 0.921 1.323
S0X2 1.553 0.625 0.755 3.194
DNMT genes

DNMT1 1.213 0.825 0.477 3.087
DNMT3A 0.953 0.825 0.744 1.221
DNMT3B 0.977 0.825 0.903 1.058
Imprinted genes

H19 4.146 0.375 1.489 11.542
IGF2 2426 0.625 0.947 6.219
IGF2R 1.034 1 0477 2.239
MEG3 1.314 0.825 0.592 2917
MEG9 1.263 0.825 0.47 3.397
MEST 1.591 0.825 0.406 6.239
PEG10 1.224 1 0.476 3.143
PHLDA2 0.869 0.825 0.434 1.743
PLAGL 1.138 0.964 0.555 2.335
SNRPN 1.035 0.825 0.763 1.405
Interferon TAU gene

IFNT2 1.608 0.625 0.72 3.589
Heat shock protein genes

HSF1 0.611 0.5 0.379 0.984
HSPA1A 1.272 0.825 0.557 2.908
HSPA2 2.536 0.375 1.698 3.786
HSPA8 0.931 1 0.554 1.563
HSP10 0.874 0.825 0.528 1.447
HSP60 1.301 0.825 0.797 2.124
HSP90 1.145 0.825 0.648 2.023
Apoptotic gene

BAX 1.536 0.438 0.485 4.863

High/low THI gene expression ratio, P-value, and low and high confidence intervals
are described.
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sperm quality parameters (in terms of morphology, kinetics, ROS
production, LPO and DNA fragmentation), tendencies towards
higher total ROS production (P = 0.087) were observed in high THI
sperm (74.61%) compared to low THI sperm (70.19%, respectively).
In response to heat stress, ROS can be involved in two different
pathways: oxidation of important molecules such as membrane
lipids and activation of death pathway though the caspase cascade
[53].

Sperm cells are not transcriptionally active and, therefore,
cannot repair DNA damage [54]. Functional sperm with damaged
DNA have the ability to fertilize the oocyte without a significant
effect on the first cleavage, only affecting the embryo after the
embryonic genome activation at 8 to 16 cell stage, when the dam-
age in paternal DNA can be either repaired or can activate the
apoptotic machinery of the early embryo, thus stopping further
development [36,55—57]. According to Karoui et al. [58], sperm
DNA fragmentation values of 7—10% might indicate low Al success.
In our study, minor LPO and DNA fragmentation were present,
indicating no severe damage of Percoll®-purified sperm cells by
ROS, which might not affect the membrane fusion events associ-
ated with fertilization. However, in this study, an inferior blastocyst
rate was observed and the growth of those embryos was delayed, as
no hatched blastocysts were observed 7 days post-insemination in
the high THI group, indicating that molecular mechanisms for
advanced blastocyst development were affected.

When bovine sperm heat stress is induced in vitro, plasma
membrane integrity and mitochondrial membrane potential were
significantly reduced [9]. Moreover, incubation of sperm at physi-
ological temperature (38.5°C) did not impact fertilization and
cleavage rates, but embryo development was compromised. In
contrast, incubation at a hyperthermic temperature (41°C) seri-
ously compromised fertilization, cleavage rates and embryo
development. The mitogen-activated protein kinase (MAPK14)
pathway was activated, which generally misfolds and aggregates
proteins which leads to cell apoptosis. Moreover, this MAPK14
pathway has been observed in heat-induced testicular germ cell
apoptosis in rats [59]. Similarly, in the present study, we observed
that warmer climate conditions significantly affect sperm plasma
membrane, causing elevated sperm mortality; however, the role of
MAPK14 in naturally heat-stressed sperm has to be determined.

Our study shows for the first time that exposure of bulls to a
period of elevated THI has a negative impact on blastocyst devel-
opment after in vitro fertilization. The paternal contribution to the
zygote consists of the safe delivery of the paternal genome,
epigenetic marks, RNA and centriole into the oocyte for correct
embryo development [60—63]. We did not observe substantial
damage in the paternal DNA, as no high incidence of DNA breaks
were observed in our samples. Therefore, an aberrant DNA
methylation or damage of the RNA or centriole could lead to the
subsequent embryo development delay or failure. As previously
described, global DNA demethylation of the paternal pronucleous
can be blocked in heat-stressed sperm when IVF is performed [64].

Although the quality of the embryos that reached the blastocyst
stage was similar in both groups, as no significant differences were
observed in the embryo quality parameters assessed with the dif-
ferential staining, tendencies to have smaller ICM% and ICM/TE
ratio (P = 0.090 and 0.087, respectively) were observed in high THI
semen compared to low THI semen. However, apoptosis rate, the
total number of cells and gene transcription were similar in the two
studied groups; therefore, we infer that the damage produced in
the sperm cells by a higher THI was not severe and repaired by the
oocyte machinery.

Moreover, we investigated the impact of sperm heat stress on
the expression of several important genes for early embryo devel-
opment. The selected target genes did not differ in expression

between the low and high THI embryo groups, leading us to
conclude that those gene pathways were not involved in the
observed delay of embryo development in the high THI group.
Environmental factors modulate the cell behavior thought epige-
netics [65]; therefore, we speculate that epigenetic modifications
could be contributing to this delay. DNA methylation and histone
modification are epigenetic mechanisms involved in DNA tran-
scription [66,67]; therefore, they regulate the quantity of RNAs
present in the cell. However, miRNAs are another epigenetic
mechanism, involved in mRNA translation, which could be blocking
the presence of proteins in the cell [68]. Investigating the gene
expression with Next Generation Sequencing techniques can give
us an overview of the RNAs present in the embryos, and possibly
help understand the molecular mechanisms involved in the heat-
stress-induced delay of embryo development [69].

In agreement with Roth [3], we presume that the effect of heat
stress might be less drastic in the male compared to the female.
However, a decrease in male fertility caused by heat stress when
using sperm for in vitro techniques could generate an important
economic loss. Companies that produce embryos for farmers, who
want to obtain embryos from their own top animals, older cows
that are difficult to get pregnant, or purchase foreign genetics to
transfer into recipients, are susceptible to a decrease in embryo
development rates caused by male heat stress.

5. Conclusions

In conclusion, dairy bull sperm viability and in vitro fertility are
affected by climate conditions in the Netherlands. Sperm samples
obtained at higher THI have reduced in vitro fertility compared to
the samples collected at a low THI. Although we did not observe
severe damage of Percoll®-purified sperm, the decrease in blasto-
cyst rates and the delayed hatching observed in embryos produced
with higher THI semen indicates that molecular mechanisms for
advanced blastocyst development were affected. However, those
mechanisms did not involve our target genes. Further studies are
required for better understanding the mechanisms compromising
the quality of sperm samples obtained at seasons with high THI and
of the subsequent blastocyst development.
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