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Abstract
We generalize Hamilton’s principle with fractional derivatives in the
Lagrangian L

(
t, y(t), 0D

α
t y(t), α

)
so that the function y and the order of the

fractional derivative α are varied in the minimization procedure. We derive
stationarity conditions and discuss them through several examples.

PACS numbers: 02.30, Xx, 45.10, Hj
Mathematics Subject Classification: 49K05, 26A33

1. Introduction

Hamilton’s principle is one of the basic principles of theoretical physics, where theory is often
considered to be complete if its variational principle in the sense of Hamilton is known [4].
When Hamilton’s principle is known, the information regarding the processes of a particular
system is included into its Lagrangian. It could serve as a basis for obtaining first integrals
via Nöther’s theory, or to generate approximate solutions to the relevant system of equations
by the use of the Ritz procedure (cf [30]).

In this paper we investigate necessary conditions for the existence of solutions of fractional
variational problems (Euler–Lagrange equations) by the use of a generalized Hamilton’s
principle. Such investigations have been initiated in [25, 26], and continued in [1–5] and
[8]; see also [24] for the importance of introducing fractional derivatives into the Lagrangian
density of Hamilton’s principle. In general, we refer to [9–16], [19, 22, 23] and [27–31]
for different aspects of the calculus of variations and fractional calculus, motivations and
applications.

When a fractional variational problem is studied, a natural question arises how can one
choose α, the order of fractional derivative, in order to achieve the minimal value of a
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functional under consideration. More generally, one can address the same question for any
problem involving fractional operators. Usually, in application, a good choice of α is obtained
by experiments or computational simulations. However, experimental results are theoretically
not well confirmed. In this paper we propose a method which a priori gives values for α

which optimize the considered variational problem following the fundamental minimization
principle of Hamilton’s action. In fact, we address the question of finding stationary points
for Hamilton’s action integral with fractional Lagrangian in a more general setting: we allow
the stationarity of the action integral with respect to a set of admissible functions and with
respect to the order of fractional derivatives, appearing in the Lagrangian. To our knowledge
the problem when both y and α are varied has not been analyzed so far. It leads to stationarity
conditions as a basis for a generalized Hamilton’s principle for the action integral

I [y, α] :=
∫ b

0
L(t, y(t), 0D

α
t y, α) dt, y ∈ U, α ∈ A := [0, α0], α0 � 1, (1)

where U is a set of admissible functions: find

min
(y,α)∈U×A

I [y, α] (2)

or

min
α∈A

(min
y∈U

I [y, α]) (3)

or

min
y∈U

(min
α∈A

I [y, α]). (4)

In this paper we analyze stationarity conditions for (2) and (3). Stationarity conditions with
respect to α in (4) are more difficult, and, contrary to (3), this case is less natural in applications.
Note that in (2), (3) and (4) one can look for maximums instead of minimums. So, our general
problem is the determination of stationary points.

The paper is organized as follows. In the introduction we recall the definitions and
properties of fractional derivatives. In section 2 we present a framework in which we shall
study variational problems (2) and (3). Then in section 3 we derive stationarity conditions for
(2). Section 4 is devoted to additional assumptions which provide equivalence of problems
(2) and (3). Results which are obtained in the previous sections are illustrated by several
examples in section 5. Moreover, examples of this section give further motivation for our
investigation. In the last remark of section 5 we propose a new formulation of a fractional
variational problem.

Throughout this paper we shall use the following notation. The mapping (t, α) �→
0D

α
t (y), which defines the left Riemann–Liouville fractional derivative of order α, will be

denoted by 0D
α
t y, or by 0D

α
t y(t). Recall that

0D
α
t y := 1

�(1 − α)

d

dt

∫ t

0

y(τ)

(t − τ)α
dτ, t ∈ [0, b], 0 � α < 1,

where � is the Euler gamma function, and its existence is provided whenever

[0, b] � t �→
∫ t

0

y(τ)

(t − τ)α
dτ (5)

is an absolutely continuous function. Recall that the space of absolutely continuous functions is
denoted by AC([0, b]) and is supplied with the norm ‖f ‖ = supx∈[0,b] |f (x)| (clearly, it is not
a Banach space). For example, (5) is absolutely continuous if y ∈ AC([0, b]). However, there
are some cases when with less regularity in y we still have a well-defined operator of fractional
differentiation (cf [27]). For instance, 0D

α
t y exists for functions with integrable singularities
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(a continuous and locally integrable function f in (0, b] has an integrable singularity at τ = 0
of order r < 1 if limτ→0 τ rf (τ ) �= 0). In particular, we can take y(t) = t−μ, t ∈ (0, b] (for
any b > 0), 0 < μ < 1. Then we obtain the so-called Euler formula (cf [27, (2.26)])

0D
α
t t−μ = �(1 − μ)

�(1 − μ − α)

1

tμ+α
, t ∈ (0, b].

The right Riemann–Liouville fractional derivative of order α is defined as

tD
α
b y := 1

�(1 − α)

(
− d

dt

)∫ b

t

y(τ )

(τ − t)α
dτ, t ∈ [0, b], 0 � α < 1.

The conditions for its existence are similar as in the case of the left fractional derivative.
In the following we shall consider cases involving both fractional derivatives and work

with integrable functions for which these derivatives (or one of them) exist. In such cases the
notation 0D

α
t y, resp. tD

α
b y, t ∈ [0, b], means that y and 0D

α
t y, resp. tD

α
b y, are considered as

integrable functions which can take values +∞ or −∞ at some points.
Recall [21] that 0D

α
t y → y ′ and tD

α
b y → −y ′ in C([0, b]), as α → 1−, whenever

y ∈ C1([0, b]).
Also, we shall make use of Caputo fractional derivatives. The left, resp. right, Caputo

fractional derivative of order α ∈ [0, 1) is defined as

C
0 Dα

t y := 1

�(1 − α)

∫ t

0

y ′(τ )

(t − τ)α
dτ resp. C

t Dα
b y := 1

�(1 − α)

∫ b

t

−y ′(τ )

(τ − t)α
dτ.

One can show that for y ∈ AC([0, b]) and t ∈ [0, b],

0D
α
t y = C

0 Dα
t y +

1

�(1 − α)

y(0)

(t − a)α
, tD

α
b y = C

t Dα
b y +

1

�(1 − α)

y(b)

(b − t)α
,

(cf e.g. [17]). Therefore, 0D
α
t y = C

0 Dα
t y, resp. tD

α
b y = C

t Dα
b y, whenever y(0) = 0, resp.

y(b) = 0.

2. Formulation of the problem

We investigate stationary points of (1) for α ∈ [0, α0] and all admissible functions y, whose
properties will be specified in the sequel. We shall distinguish two cases: α0 strictly less than
1 and α0 = 1. In the case α0 < 1, set

Ul := {
y ∈ L1([0, b])

∣∣
0D

α
t y ∈ L1([0, b])

}
.

Obviously, AC([0, b]) is a subset of Ul . In the case α0 = 1 we assume that y ∈ Ul and that,
in addition, 0D

1
t y exists, and 0D

1
t y = y ′ is an integrable function. Let us note that one can

consider Ul defined with Lp([0, b]) (or their subspaces) instead of L1([0, b]) (see remark 3.3).
In general, we shall use the notation

U := {y ∈ Ul|y satisfies specified boundary conditions}. (6)

We shall sometimes writeU also forUl (then the set of specified boundary conditions is empty).
In the following, the Lagrangian L

(
t, y(t), 0D

α
t y, α

)
(Lagrangian density, in physics)

satisfies:

L ∈ C1([0, b] × R × R × [0, 1])
and

t �→ ∂3L(t, y(t), 0D
α
t y, α) ∈ Ur , for every y ∈ Ul

⎫⎬
⎭ (7)

where Ur := {
y ∈ L1([0, b])

∣∣
tD

α
b y ∈ L1([0, b])

}
.

3
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Recall that our generalization of Hamilton’s principle is realized through the determination
of (y∗, α∗) ∈ U × A such that

min
(y,α)∈U×A

∫ b

0
L(t, y(t), 0D

α
t y, α) dt =

∫ b

0
L(t, y∗(t), 0D

α∗
t y∗, α∗) dt. (8)

There are two special cases of (8). The first one is obtained when A = {1}. Then,
since 0D

α
t y

∣∣
α=1 = y ′(t) for y ∈ C1([0, b]), the solution y∗ of (8) satisfies the classical

Euler–Lagrange equation

d

dt

∂L

∂y ′ − ∂L

∂y
= 0.

If A has a single element A = {α}, 0 < α < 1, then min(y,α)∈U×{α} I [y, α] leads to the
fractional Euler–Lagrange equation (cf ([1, 5]))

tD
α
b

∂L

∂0D
α
t y

+
∂L

∂y
= 0.

We proceed with finding stationary points related to (1).

3. Optimality conditions

A necessary condition for the existence of solutions to the variational problem (8) is given in
the following proposition.

Proposition 3.1. Let L satisfy (7). Then a necessary condition that functional (1) has an
extremal point at (y∗, α∗) ∈ U × A is that (y∗, α∗) is a solution of the system of equations

∂L

∂y
+ tD

α
b

∂L

∂0D
α
t y

= 0, (9)

∫ b

0

(
∂L

∂0D
α
t y

G(y, α) +
∂L

∂α

)
dt = 0, (10)

where

G(y, α)= ∂0D
α
t y

∂α
= d

dt
(f1 ∗t y)(t, α), f1(t, α)= 1

tα�(1 − α)
[ψ(1 − α) − ln t], t > 0,

with the Euler function ψ(z) = d
dz

ln �(z), and (f1 ∗t y)(t, α) = ∫ t

0 f1(τ, α)y(t − τ) dτ .

Proof. Let (y∗, α∗) be an element of U × A for which I [y, α] has an extremal value.
Let y(t) = y∗(t) + ε1f (t), α = α∗ + ε2, ε1, ε2 ∈ R, with f ∈ Ul , and the boundary
conditions on f are specified so that the varied path y∗ + ε1f is an element of U . Then
I [y, α] = I [y∗ + ε1f, α∗ + ε2] =: I (ε1, ε2). A necessary condition for an extremal value of
I [y, α] is

∂I (ε1, ε2)

∂ε1

∣∣∣∣
ε1=0,ε2=0

= 0,
∂I (ε1, ε2)

∂ε2

∣∣∣∣
ε1=0,ε2=0

= 0.

Therefore we obtain∫ b

a

(
∂L

∂y
f (t) +

∂L

∂0D
α
t y

0D
α
t f

)
dt = 0, (11)

∫ b

0

(
∂L

∂0D
α
t y

∂0D
α
t y

∂α
+

∂L

∂α

)
dt = 0. (12)

4
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Applying the fractional integration by parts formula (cf [17]):∫ b

0
g(t) · 0D

α
t f (t) dt =

∫ b

0
f (t) · tD

α
b g(t) dt, (13)

to (11), (11) is transformed into∫ b

0

(
∂L

∂y
+ tD

α
b

∂L

∂0D
α
t y

)
f (t) dt = 0.

From this equation, using the fundamental lemma of the calculus of variations (see [9, p 115]),
we conclude that condition (9) holds for the optimal values y∗ and α∗. In (10) the term ∂0D

α
t y

∂α

is transformed by the use of the expression

∂0D
α
t y

∂α
= ψ(1 − α) 0D

α
t y − 1

�(1 − α)

d

dt

∫ t

0

ln(t − τ)y(τ )

(t − τ)α
dτ

= d

dt
(f1 ∗t y)(t, α)

= G(y, α), (y, α) ∈ U × A (14)

(cf [6, p 592]). We obtain (10) by substituting (14) into (12). �

Remark 3.2. In general, while solving equations (9) and (10), the most delicate task is the
calculation of the expression ∂0D

α
t y

∂α
. Although its general form (14) has been derived in [6,

p 592], various difficulties can still appear. We illustrate this by examples in section 5.
However, the simplified form of ∂0D

α
t y

∂α
, in some special cases, is important.

Already in [6] it has been shown that for y ∈ AC([0, b])

∂0D
α
t y

∂α

∣∣∣∣
α=0+

= −(γ + ln t)y(0) −
∫ t

0
(γ + ln τ)y(t − τ) dτ

= −(γ + ln t)y(t) +
∫ t

0

y(t) − y(t − τ)

τ
dτ, (15)

where γ = 0.577 2156 . . . is the Euler constant. (Another form of ∂0D
α
t y

∂α

∣∣
α=0+ is also given in

[31, p 111].)
Let us obtain a simplified form of ∂0D

α
t y

∂α
at α = 1−. In order to do that we use the method

proposed in [28]. We recall the expansion of (t − τ)ε/�(1 + ε) with respect to ε, at ε = 0,
with τ < t (cf [28, p 401]), which will be used in the following:

(t − τ)ε

�(1 + ε)
= eε ln(t−τ)

�(1 + ε)
= 1 + ε(γ + ln(t − τ)) + o(ε). (16)

Now assume that y ∈ C2([0, b]). Then, as in [23], for t ∈ [0, b],

0D
α
t y = 1

�(1 − α)

d

dt

∫ t

0

y(τ)

(t − τ)α
dτ

= y(0)

�(1 − α)tα
+

1

�(1 − α)

∫ t

0

y(1)(τ )

(t − τ)α
dτ

= y(0)

�(1 − α)tα
+

y(1)(0)

�(2 − α)tα−1
+

1

�(2 − α)

∫ t

0
(t − τ)1−αy(2)(τ ) dτ.

With α = 1 − ε we obtain

0D
1−ε
t y = y(0)

�(ε)t1−ε
+

y(1)(0)tε

�(1 + ε)
+

1

�(1 + ε)

∫ t

0
(t − τ)εy(2)(τ ) dτ. (17)

5
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From (17) and (16) it follows that

∂0D
α
t y

∂α

∣∣∣∣
α=1−

= −∂0D
1−ε
t y

∂ε

∣∣∣∣
ε=0+

= −y(0)

t
− y(1)(0) ln t − γy(1)(t) −

∫ t

0
y(2)(τ ) ln(t − τ) dτ. (18)

Assuming y(0) = 0 in (18), we recover the results presented in [28] and [29] for the Caputo
fractional derivative. Since 0D

α
t y = C

0 Dα
t y when y(0) = 0, it follows that with y(0) = 0 (18)

becomes

∂0D
α
t y

∂α

∣∣∣∣
α=1−

= ∂C
0 Dα

t y

∂α

∣∣∣∣
α=1−

= −y(1)(0) ln t − γy(1)(t) −
∫ t

0
y(2)(τ ) ln(t − τ) dτ.

Remark 3.3. Functional (1) is a special case of the class of functionals with Lagrangians
depending on linear operators, see [12, p 51]. Indeed, suppose that the Lagrangian L depends
on t, y and Ly, where L : M → Lp([0, b]), p ∈ [1, +∞), is a linear operator acting on a
set of admissible functions M, which is linear, open and dense in Lp([0, b]) (i.e. L belongs
to Lin(M,Lp([0, b])), the space of continuous, linear functions with the uniform norm).
Suppose that L is continuously differentiable with respect to t and y and twice continuously
differentiable with respect to Ly. Moreover, assume that the function t �→ L(t, y(t),Ly(t)),
t ∈ [0, b], is continuous, for all y ∈ M . Then the Euler–Lagrange equation reads

∂L

∂y
+ L∗ ∂L

∂(Ly)
= 0,

where L∗ denotes the adjoint operator of L. In the case when L is the left Riemann–Liouville
operator 0D

α
t , with the adjoint tD

α
b , the latter equation coincides with (9).

If instead of L one considers a family {Lα, α ∈ A}, where A = [0, 1] (or some other
interval), and the mapping A → Lin(M,Lp([0, b])), α �→ Lα , is differentiable, then a more
general problem of finding stationary points with respect to y and α can be formulated. In that
case, one can derive the second stationarity condition similar to (10):∫ b

0

(
∂L

∂L
∂L
∂α

+
∂L

∂α

)
dt = 0.

4. Equivalent problems

In this section we shall give conditions which show that problems (2) and (3) coincide.

Proposition 4.1. Let the Lagrangian L satisfy (7). Assume that for every α ∈ [0, 1] there is
a unique y∗(t, α) ∈ U , a solution to (9), and that the mapping α �→ y∗(t, α) is differentiable
as a mapping from [0, 1] to U . Then the problem min(y,α)∈U×A I [y, α] is equivalent to the
problem minα∈A(miny∈U I [y, α]).

Proof. As we have shown in proposition 3.1, any solution to the problem min(y,α)∈U×A I [y, α]
satisfies the system (9)–(10). It can be solved as follows. We first solve (9) and the
corresponding boundary conditions to obtain y∗ = y∗(t, α). According to the assumption,
the solution y∗ is unique. Then we insert y∗ in (10) to obtain α∗. In this case, the functional

6
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I [y, α] becomes a functional depending only on α, α �→ I [y∗(t, α), α] = I [α], and therefore
(10) transforms into the total derivative of I [α] since

dI [α]

dα
= dI [α + ε]

dε

∣∣∣∣
ε=0

=
∫ 1

0

[
∂L

∂y

∂y

∂α
+

∂L

∂0D
α
t y

(
0D

α
t

(
∂y

∂α

)
+

(
∂

∂α
0D

α
t

)
y

)
+

∂L

∂α

]
dt

=
∫ 1

0

[
∂y

∂α

(
∂L

∂y
+ tD

α
b

∂L

∂0D
α
t y

)
+

∂L

∂0D
α
t y

(
∂

∂α
0D

α
t

)
y +

∂L

∂α

]
dt

=
∫ 1

0

(
∂L

∂0D
α
t y

(
∂

∂α
0D

α
t

)
y +

∂L

∂α

)
dt, (19)

where we used fractional integration by parts formula (13) in the third, and equation (9) in the
last equality. This proves the claim. �

The following simple assertion is of particular interest.

Proposition 4.2. Let L satisfy (7). Assume that for every α ∈ [0, 1] there exists a unique
yα ∈ U , a solution to the fractional variational problem (8), and that I [yα, α] is the
corresponding minimal value of the functional I. Assume additionally that

dI

dα
(y, α)|y=yα

> 0, ∀yα ∈ U .

Then the minimal and maximal value of the functional I [y, α] is attained at α = 0 resp. at
α = 1.

Proof. Under the above assumptions we have that

I [y0, 0] � I [yα, 0] � I [yα, α] � I [y1, α] � I [y1, 1], ∀α ∈ [0, 1],

which proves the claim. �

Remark 4.3. The same argument can be applied to the case when dI/dα < 0, for any fixed
yα ∈ U , i.e. when I is a decreasing function of α, for any fixed yα ∈ U . In that case the
minimal and maximal value of I is at α = 1, resp. α = 0.

5. Examples

5.1. Examples with Lagrangians linear in y

Example 5.1. Consider the action integral for the inertial motion (no force acting) of a material
point of the form

I [y, α] :=
∫ 1

0

(
0D

α
t y

)2
dt, (y, α) ∈ U × A, (20)

where U := {y ∈ Ul | y(0) = 0, y(1) = 1} and A = [0, 1].
Obviously, the minimal value of I [y, α] is zero, and it is attained whenever 0D

α
t y = 0.

Solutions to the equation 0D
α
t y = 0 are of the form y(t) = C · t1−α , t ∈ [0, 1], C ∈ R (cf

[27]). All solutions satisfy the Euler–Lagrange equation

tD
α
1

(
0D

α
t y

) = 0.

7
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The stationarity condition (10) reads∫ 1

0
0D

α
t y

(
ψ(1 − α)0D

α
t y − 1

�(1 − α)

d

dt

∫ t

0

ln(t − τ)y(τ )

(t − τ)α
dτ

)
dt = 0,

and is automatically satisfied.
Note that C · t1−α ∈ Ul , for all C ∈ R, but only t1−α ∈ U . Hence, we conclude that

(y∗, α∗) = (t1−α, α), α ∈ [0, 1], are solutions to the variational problem I [y, α] → min, for
I defined by (20).

Remark 5.2. If L
(
t, y(t), 0D

α
t y, α

) = (
0D

α
t y

)2
+ (α − α0)

2, for a fixed α0 ∈ (0, 1), then the

problem
∫ 1

0 L(t, y(t), 0D
α
t y, α) dt → min has a unique minimizer (y∗, α∗) = (t1−α0 , α0).

Example 5.3. Let the Lagrangian L be of the form

L
(
t, y(t), 0D

α
t y, α

)
:= (

0D
α
t y

)2 − c · y, c ∈ R,

and let U = {y ∈ Ul | y(0) = 0}, A = [0, 1], for the variational problem

min
(y,α)∈U×A

I [y, α] = min
(y,α)∈U×A

∫ 1

0

((
0D

α
t y

)2 − c · y(t)
)

dt.

Equations (9) and (10) become

tD
α
1 0D

α
t y = c,

∫ 1

0
0D

α
t y · ∂0D

α
t y

∂α
dt = 0. (21)

Equation (21) could be solved as follows. First, one introduces a substitution z(t) = 0D
α
t y,

t ∈ [0, 1], and solve tD
α
1 z = c:

z(t) = c · (1 − t)α

�(1 − α)
, t ∈ [0, 1], α ∈ A.

Therefore,

0D
α
t y(t) = c · (1 − t)α

�(1 − α)
, t ∈ [0, 1], α ∈ A. (22)

Recall that

0I
α
t y := 1

�(α)

∫ t

0
(t − τ)αy(τ ) dτ, t ∈ [0, 1], α ∈ A,

and apply it on the both sides of (22). Using [27, theorem 2.4], i.e. 0I
α
t (0D

α
t y) =

y(t) − tα−1

�(α) 0I
1−α
t y

∣∣
t=0, one obtains

y(t, α) = c

�(α)�(1 + α)

∫ t

0
(t − τ)α−1(1 − τ)α dτ

= c

�(1 + α)

∞∑
p=0

�(p − α)�(1 + p)

�(−α)p!�(1 + p + α)
tp+α, t ∈ [0, 1], α ∈ A.

This solution is unique and belongs to U . Since α �→ y(t, α) is differentiable, proposition 4.1
holds.

We substitute the obtained y(t, α) into I [y, α] which yields

I [α] =
∫ 1

0

((
c · (1 − t)α

�(1 − α)

)2

− c2

�(α)�(1 + α)

∫ t

0
(t − τ)α−1(1 − τ)α dτ

)
dt

=
∫ 1

0

⎛
⎝(

c · (1 − t)α

�(1 − α)

) )2

− c2

�(1 + α)

∞∑
p=0

�(p − α)�(1 + p)

�(−α)p!�(1 + p + α)
tp+α

⎞
⎠ dt.

8
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Simple numerical calculations show that I [α] is an increasing function and attains extremal
values at the boundaries.

Remark 5.4. Equation (21) represents a fractional generalization of the equation of motion
for a material point (with unit mass) under the action of constant force equal to c. Our result
shows that an optimal value of Hamilton’s action is attained for α = 1, that is for integer order
dynamics. We note that different generalizations of the classical equation of motion can be
found in [18], where the problem 0D

α
t y = c, 1 < α � 2, was analyzed.

5.2. Examples with Lagrangians linear in 0D
α
t y

Example 5.5. Let

L
(
t, y(t), 0D

α
t y, α

)
:= �(1 − α)0D

α
t y − 1

2cy2, c > 0, c �= 1, (23)

and consider the problem of finding stationary points for functional (1), where U := {
y ∈

Ul

∣∣ y(0) = 1
c

}
and α0 < 1

2 . Note that L satisfies the so-called primary constraint in Dirac’s
classification of systems with constraints (cf [15]). In the setting of fractional derivatives such
Lagrangians have been recently treated in [7] and [20].

Equations (9) and (10) become

�(1 − α)tD
α
1 1 − cy = 0 (24)

and ∫ 1

0

(
�(1 − α)

∂0D
α
t y

∂α
+

∂�(1 − α)

∂α

)
dt = 0. (25)

Equation (24) has a unique solution y∗ = 1
c(1−t)α

, t ∈ [0, 1], α ∈ [0, α0]. This implies

I [y∗, α] =
∫ 1

0

[
d

dt

∫ t

0

dτ

c(1 − τ)α(t − τ)α
− 1

2c(1 − t)2α

]
dt

=
∫ t

0

dτ

c(1 − τ)α(t − τ)α

∣∣∣∣
1

0

−
∫ 1

0

1

2c(1 − t)2α
dt

=
∫ 1

0

dτ

c(1 − τ)2α
−

∫ 1

0

1

2c(1 − t)2α
dt

= 1

2c

∫ 1

0

1

(1 − t)2α
dt.

Since α0 < 1/2 we have that I [y∗, α] exists and is an increasing function with respect to α.
Hence, I [y∗, α] attains its minimal value at α = 0, and it equals 1/(2c). We also have that the
maximal value of I [y∗, α] is attained at α0.

Example 5.6. Let U := {y ∈ Ul | y(0) = 0}, c �= 0 and let L be of the form

L
(
t, y(t), 0D

α
t y, α

)
:= c · 0D

α
t y + f (y(t)), t ∈ [0, 1], (26)

where the properties of f are going to be specified.
In this example we are dealing with integrable functions which can take values +∞ or

−∞ at some points. We are going to analyze stationary points of

I [y, α] =
∫ 1

0

(
c · 0D

α
t y(t) + f (y(t))

)
dt.

9
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Equations (9) and (10) become

tD
α
1 c +

∂f

∂y
= 0 (27)

c ·
∫ 1

0

∂0D
α
t y

∂α
dt = 0. (28)

Since tD
α
1 c = c

�(1−α)(1−t)α
, t ∈ [0, 1], we see that in order to solve (27)–(28) we have to

assume that f ∈ C1(R), and that f ′ is invertible so that t �→ (f ′)−1
(

c
�(1−α)(1−t)α

) ∈ Ul . Then
equation (27) is solvable with respect to y:

yc(t, α) =
(

∂f

∂y

)−1 (
c

�(1 − α)(1 − t)α

)
, t ∈ [0, 1]. (29)

Since c �= 0, (28) implies
∫ 1

0
∂0D

α
t y

∂α
dt = 0. Thus,

0 =
∫ 1

0

∂0D
α
t y

∂α
dt =

∫ 1

0
G(y, α)(t) dt =

∫ 1

0

d

dt
(f1 ∗t y)(t, α) dt

= f1 ∗t y(t, α)|t=1 − f1 ∗t y(t, α)|t=0 = f1 ∗t y(t, α)|t=1, (30)

where we have used that f1 ∈ L1([0, 1]) and that y ∈ U . Substitution of (29) into (30) gives
(f1 ∗ yc(t, α))(t)|t=1 = 0 or∫ 1

0

ψ(1 − α) − ln(1 − τ)

�(1 − α)(1 − τ)α

(
∂f

∂y

)−1 (
c

�(1 − α)(τ − 1)α

)
dτ = 0. (31)

Solving this equation is obviously difficult. Hence, we consider some special cases.
(a) f (y(t)) := d · y(t)2

2 , t ∈ [0, 1], d ∈ R. Then the Lagrangian is

L
(
t, y(t), 0D

α
t y, α

) = c · 0D
α
t y(t) + d · y(t)2

2
,

and

yc(t, α) = − 1

d

c

�(1 − α)(1 − t)α
, t ∈ [0, 1].

Also, (31) becomes∫ 1

0

ψ(1 − α) − ln(1 − τ)

�(1 − α)2(1 − τ)2α
dτ = 0.

By a simple numerical calculation one shows that this equation does not have any solution for
α ∈ (0, 1). Hence, in this case there does not exist any point (y, α) which is an extremal of
functional I [y, α].

(b) f (y(t)) := ln y(t), t ∈ [0, 1]. Then (27) becomes

c

�(1 − α)(1 − t)α
= 1

y
,

and therefore

y = �(1 − α)

c
(1 − t)α ∈ AC([0, 1]).

In this particular case we take the set of admissible functions to be U := {y ∈ Ul | y(1) = 0}.
Using (30), equation (28) reads∫ 1

0
(ψ(1 − α) − ln(1 − τ)) dτ = 0,

10
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which, after integration, yields ψ(α − 1) = 1. A unique solution of this equation in (0, 1) is
α = 0.604 . . . .

Therefore, a unique stationary point of

I [y, α] =
∫ 1

0
(c · 0D

α
t y + ln y(t)) dt

is the point (y, α) = (
�(0,396)

c
(1 − t)α; 0, 604

)
.

Remark 5.7. So far, we have considered variational problems defined via functionals of type
(1). In fact, we have allowed fractional derivatives of functions to appear in Lagrangians. The
natural generalization of such problems consists of replacing the Lebesgue integral in (1) by
the Riemann–Liouville fractional integral. More precisely, for β > 0 set

Iβ[y, α] := 0I
β

b L
(
t, y(t), 0D

α
t y, α

)
= 1

�(β)

∫ b

0
(b − t)β−1L(t, y(t), 0D

α
t y, α) dt, t ∈ (0, b).

Then the fractional variational problem consists of finding extremal values of the functional
Iβ[y, α].

In the above construction we have used the left Riemann–Liouville fractional integral of
order β (which, in general, differs from the order of fractional differentiation α), evaluated at
t = b. The choice β = 1 turns us back to the problem (1).

The study of such fractional variational problems is reduced to the case we have already
considered in the following way. It suffices to redefine the Lagrangian as

L1
(
t, y(t), 0D

α
t y, α, β

)
:= 1

�(β)
(b − t)β−1L

(
t, y(t), 0D

α
t y, α

)
.

Then we have to consider the functional

Iβ[y, α] =
∫ b

0
L1

(
t, y(t), 0D

α
t y, α, β

)
dt. (32)

In case β > 1, L1 is of the same regularity as L, so the straightforward application of the results
derived in the previous sections to the Lagrangian L1 leads to the optimality conditions for the
variational problem defined via functional (32). However, when 0 < β < 1, continuity as
well as differentiability of L1 with respect to t may be violated (which depends of the explicit
form of L), and hence it may not be possible to use the theory developed so far.

6. Conclusion

We formulated Hamilton’s principle so that the order of the derivative in the Lagrangian is also
subject to variation. The stationarity conditions are derived in (9) and (10). We introduced
additional assumptions which resulted in equivalent problems, simpler for solving. Several
examples are given in order to illustrate the theory presented in the paper. We concluded
our work with a consideration of Hamilton’s principle defined in terms of Riemann–Liouville
fractional integrals.
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