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Abstract

In the article we first review some known
results on fuzzy versions of the dominance-
based rough set approach (DRSA) where
we expand the theory considering additional
properties. Also, we apply Ordinal Weighted
Average (OWA) operators in fuzzy DRSA.
OWA operators have shown a lot of po-
tential in handling outliers and noisy data
in decision tables when it is combined with
the indiscernibility-based rough set approach
(IRSA). We examine theoretical properties of
the proposed combination with fuzzy DRSA.

Keywords: Dominance-based rough set ap-
proach, Fuzzy logic, Ordered Weighted Aver-
age.

1 Introduction

The main purpose of the rough set theory is to deal
with inconsistencies in information. It is done in a
way that we distinguish objects which are fully consis-
tent with the available knowledge (lower approxima-
tion) from the objects which are possibly consistent
(upper approximation). The original rough set the-
ory proposed by Pawlak [13] defines these approxima-
tions based on an equivalence relation between objects,
while the dominance based rough set approach pro-
posed by Greco, Matarazzo and S lowinski [6] is doing
this based on a dominance relation between objects.
The main practical application of DRSA is the possi-
bility to extract monotonic rules. More precisely, the
approach filters data which do not satisfy the Pareto
principle. Pareto principle is saying that if one ob-
ject is not evaluated worse than another object on all
available criteria, then it should not be assigned to a
worse class than the other object. This principle is a
main assumption of the monotonic classification prob-
lem, which is a special type of the ordinal regression.

This assumption is intuitive; if we have two compa-
nies where one of them has better financial parameters,
then that one should have lower bankruptcy risk than
the other. DRSA found large applications in machine
learning and operational research [12], [19] [20]. On
the other hand, fuzzy set theory is used to model grad-
ual information, where we are grading how much some
statement is true on the scale from 0 to 1. Fuzzy set
theory combined with the indiscernibility based rough
set approach (IRSA) found a lot of applications in ma-
chine learning, especially in domains like attribute se-
lection [1], instance selection [10], imbalanced classi-
fication [14], multi-label classification [16] and so on.
So, we would like to see if a similar hybridisation when
we replace indiscernibility with a dominance relation
may give improvements in ordinal classification prob-
lems.

Additionally, we will investigate the combination
of the well-known aggregation operator - Ordinal
Weighted Average (OWA) with fuzzy DRSA. OWA
has been shown to improve IRSA in handling outliers
and noisy data [15]. OWA makes approximations (and
thus also machine learning algorithms that use them)
more robust to small changes in the data. This goes
at the expense of some desirable properties. However,
for IRSA at least, it was shown that the OWA ex-
tension provides the best trade-off between theoretical
properties and experimental performance among noise
tolerant models [2]. However, we would like to see
if a similar performance may be achieved with fuzzy
DRSA.

The structure of the paper is as follows. The next
section recalls preliminaries together with some addi-
tional properties of DRSA. In the third section, we
consider different possibilities of DRSA fuzzification,
while in the fourth section we present OWA integra-
tion with fuzzy DRSA. The last section is intended for
conclusion and future work.



2 Preliminaries

2.1 Fuzzy logic connectives

A negator N : [0, 1] → [0, 1] is an unary operator
which is non-increasing and N(0) = 1, N(1) = 0.
An involutive negator is one for which holds that
∀x ∈ [0, 1], N(N(x)) = x. With Ns we denote the
standard negator Ns(x) = 1− x.

A t-norm T : [0, 1]2 → [0, 1] is a binary opera-
tor which is commutative, associative, non-decreasing
in both parameters and for which holds that ∀x ∈
[0, 1], T (x, 1) = x.

A t-conorm S : [0, 1]2 → [0, 1] is a binary opera-
tor which is commutative, associative, non-decreasing
in both parameters and for which holds that ∀x ∈
[0, 1], S(x, 0) = x. For a given involutive negator N
and a t - norm T , we say that a t-conorm S is N -dual
of T if it holds that S(x, y) = N(T (N(x), N(y))). In
this case, triplet T,N, S is called de-Morgan triplet.

An implicator I : [0, 1]2 → [0, 1] is a binary opera-
tor which is non-increasing in its first coordinate, non-
decreasing in the second one and for which holds that
I(1, 0) = 0, I(0, 0) = I(0, 1) = I(1, 1) = 1. We say
that I is an S-implicator if there exists a negator N
and a t-conorm S such that I(x, y) = S(N(x), y). We
say that I is an R-implicator if there exist a t-norm T
such that I(x, y) = sup{λ ∈ [0, 1] : T (x, λ) ≤ y}. Let
T be a t-norm, and I its R-implicator, We say that
the residuation property holds if T (x, y) ≤ z ⇔ x ≤
I(y, z). We have the following proposition.

Proposition 2.1. [11] Residuation property holds if
and only if T is left-continuous.

We say that negator N is induced by an implicator I
if N(x) = I(x, 0).

Let T be a left continious t-norm, I its R-implicator
an N negator induced by I. If N is involutive then
T is IMTL t-norm. Abbreviation IMTL stands for
Involutive Monoidal t-norm based Logic.

2.2 Dominance based rough set approach

We first recall the classical version of DRSA. Assume
that we are given a decision table represented by 4-
tuple < U,Q∪{d}, V, f > where U = {u1, . . . , un} is a
finite set of objects or alternatives, Q = {q1, . . . , qm}
is a finite set of condition criteria, d is a decision cri-
terion, V = ∪q∈Q∪{d}Vq, where Vq is a domain of the
attribute q ∈ Q ∪ {d} and f : U × Q ∪ {d} → V is a
total function such that f(u, q) ∈ Vq for each u ∈ U
and q ∈ Q ∪ {d}. f is sometimes called information
function. In the applications of ordinal regression, Vd
is finite and its elements are named classes. Assume

that |Vd| = k. Using Vd we can split the universe set U
into k different sets, where every object u ∈ U belongs
to one and only one class from Vd. Denote those sets
of objects as Clt, t ∈ {1, . . . , k} where ∪kt=1Clt = U
and Clt ∩ Cls = ∅ for s 6= t. On each criterion q ∈ Q
we are assuming that there exists a preorder relation
%q. Those relations are reflexive and transitive for all
q ∈ Q i.e.

• it holds that u %q u,

• for any three elements u, v, w ∈ U holds u %q
v ∧ v %q w ⇒ u %q w.

We say that u, v ∈ U are indifferent with respect to
q ∈ Q denoted by u ∼q v if u %q v and v %q u, while u
is strictly preferred to v, denoted by u �q v, if u %q v
and v 6%q u. With respect to decision criterion d, we
assume that the elements in the same class Clt are
indifferent, while for all u, v ∈ U, u �d v if u ∈ Clt, v ∈
Cls and t > s. The sets which will be approximated
are upward and downward unions of classes defined
respectively as

Cl≥t = ∪s≥tCls, Cl≤t = ∪s≤tCls, t = 1, . . . , k.

u ∈ Cl≥t means that ”u belongs at least to Clt”, while

u ∈ Cl≤t means that ”u belongs at most to Clt”. We
provide some basic properties of downward and up-
ward unions:

• Cl≥1 = Cl≤k = U ,

• Cl≥k = Clk and Cl≤1 = Cl1,

• for t = 2, . . . , k holds Cl≥t = U−Cl≤t−1 and Cl≤t =

U − Cl≥t+1.

Let P ⊆ Q. The dominance relation DP on universe
U is defined as follows: uDP v if u %q v,∀q ∈ P . For
each u ∈ U we define the following sets:

• a set of objects dominating u called P -dominating
set,
D+
P (u) = {v ∈ U : vDPu},

• a set of objects dominated by u called P -
dominated set,
D−P (u) = {v ∈ U : uDP v}.

The P -lower approximation apr
DP

(Cl≥t ) of Cl≥t and

the P -upper approximation aprDP
(Cl≥t ) of Cl≥t are

defined as

apr
DP

(Cl≥t ) = {u ∈ U : D+
P (u) ⊆ Cl≥t }

aprDP
(Cl≥t ) = {u ∈ U : D−P (u) ∩ Cl≥t 6= ∅}.



Analogously, we can define the P -lower and P -upper
approximation of Cl≤t as

apr
DP

(Cl≤t ) = {u ∈ U : D−P (u) ∈ Cl≤t }

aprDP
(Cl≤t ) = {u ∈ U : D+

P (u) ∩ Cl≤t 6= ∅}.

We list the main properties of the lower and upper
approximations [7]:

• (inclusion): apr
DP

(Cl≥t ) ⊆ Cl≥t ⊆ aprDP
(Cl≥t ),

apr
DP

(Cl≤t ) ⊆ Cl≤t ⊆ aprDP
(Cl≤t ).

• (duality) apr
DP

(Cl≥t ) = U − aprDP
(Cl≤t−1),

aprDP
(Cl≥t ) = U − apr

DP
(Cl≤t−1),

apr
DP

(Cl≤t ) = U − aprDP
(Cl≥t+1),

aprDP
(Cl≤t ) = U − apr

DP
(Cl≥t+1).

• (criteria monotonicity) If we have two sets of
condition criteria M ⊆ P ⊆ Q, we have that
apr

DM
(Cl≥t ) ⊆ apr

DP
(Cl≥t ),

aprDM
(Cl≥t ) ⊇ aprDP

(Cl≥t ),

apr
DM

(Cl≤t ) ⊆ apr
DP

(Cl≤t ),

aprDM
(Cl≤t ) ⊇ aprDP

(Cl≤t ).

Proposition 2.2. We have the property of exact ap-
proximation:

apr
DP

(Cl≥t ) = Cl≥t ⇔ Cl≥t = aprDP
(Cl≥t ),

apr
DP

(Cl≤t ) = Cl≤t ⇔ Cl≤t = aprDP
(Cl≤t ).

Proof. We will prove the proposition for the upward
unions. Analogously holds for the downward unions.
We have the sequence of equivalences:

apr
DP

(Cl≥t ) = Cl≥t ⇔

(∀u ∈ Cl≥t ) (D+
P (u) ⊆ Cl≥t )⇔

(∀u, v ∈ U) (u ∈ Cl≥t ∧ vDPu =⇒ v ∈ Cl≥t )⇔

(∀u, v ∈ U) (v /∈ Cl≥t ∧ vDPu =⇒ u /∈ Cl≥t )⇔

(∀u, v ∈ U) (u /∈ Cl≥t ∧ uDP v =⇒ v /∈ Cl≥t )⇔

(∀u /∈ Cl≥t )(D−P (u) ∩ Cl≥t = ∅)⇔

Cl≥t = aprDP
(Cl≥t ).

In the fourth equivalence we just changed the notation;
v is replaced with u and u with v.

3 Fuzzy extension of DRSA

Here, we want to relax the statement that ’u is not
worse than v’ adding some sort of grading. So, we

would like to measure how much the previous state-
ment is true on scale from 0 to 1. We can name this as
a credibility of a statement. In the beginning we recall
the approach from Greco et al. [4], [5]. Throughout
this section we assume that we are given t-norm T ,
negator N , t-conorm S and implicator I. For a partic-
ular criterion q ∈ Q, we define a fuzzy ordering relation
as Rq : U × U → [0, 1]. We require this fuzzy relation
to be a preorder, i.e. to be reflexive: Rq(u, u) = 1 and
to be T -transitive: T (Rq(u, v), Rq(v, z)) ≤ Rq(u, z).
Using such defined fuzzy ordering relation, we can de-
fine a fuzzy dominance relation with respect to a set
of criteria P as:

DP (u, v) = Tq∈P (Rq(u, v)).

We assume now that the class sets Clt are fuzzy sets
with degrees of membership Clt(u) for u ∈ U . Value
Clt(u) is providing us the credibility that an element
u belongs to the class Clt. Greco et al. proposed
the concept of cumulative fuzzy upward and downward
unions as:

Cl≥t (u) =

{
1, if ∃s > t : Cls(u) > 0

Clt(u) otherwise

Cl≤t (u) =

{
1, if ∃s < t : Cls(u) > 0

Clt(u) otherwise

Corresponding values of such defined fuzzy sets rep-
resent credibility of the statement: “u is not worse
(not better) than objects from the class Clt”. Now
the question is, how can we define our fuzzy lower
approximations. If we rewrite the statement of lower
approximation of the upward union we have: ‘u ∈ Cl≥t
belongs to the lower approximation of Cl≥t if ∀v ∈ U ,

for which holds that vDPu also holds v ∈ Cl≥t ’. We

have to define a credibility that element u ∈ Cl≥t from
the previous statement belongs to the lower approxi-
mation in a fuzzy manner,. For that purpose, we need
to fuzzify logical quantifiers ∀ and ∃, where ∀ appears
in a statement for the lower approximation as above,
while ∃ appears in a statement for the upper approxi-
mation. We denote those fuzzy quantifiers as qua∀ and
qua∃. To fuzzify those quantifiers we have two propos-
als. The first one is from Greco et al. [5] where we take
fuzzy logic connectives, i.e. qua∀ = T, qua∃ = S.
This option is suitable when the set of objects U is fi-
nite as it is in our case and in a case of machine learning
application. The second option is proposed by Greco
et al. [4] where we take that qua∀ = inf, qua∃ = sup.
This option is suitable for both cases, when U is finite
or infinite and this definition goes in line with the orig-
inal fuzzy rough approximation of Dubois and Prade
[3]. So, for (qua∀, qua∃) ∈ {(T, S), (inf, sup)} we have



the following definitions for fuzzy lower and upper ap-
proximations:

aprqua∀,I
DP

(Cl≥t )(u) = qua∀(I(DP (v, u), Cl≥t (v)); v ∈ U),

apr
qua∃,T
DP

(Cl≥t )(u) = qua∃(T (DP (u, v), Cl≥t (v)); v ∈ U),

aprqua∀,I
DP

(Cl≤t )(u) = qua∀(I(DP (u, v), Cl≤t (v)); v ∈ U),

apr
qua∃,T
DP

(Cl≤t )(u) = qua∃(T (DP (v, u), Cl≤t (v)); v ∈ U).

We have properties as before listed in [5] for
(qua∀, qua∃) = (T, S) and in [4] for (qua∀, qua∃) =
(inf, sup):

• (inclusion) ∀u ∈ U :

aprqua∀,I
DP

(Cl≥t )(u) ≤ Cl≥t (u),

apr
qua∃,T
DP

(Cl≥t )(u) ≥ Cl≥t (u),

aprqua∀,I
DP

(Cl≤t )(u) ≤ Cl≤t (u),

apr
qua∃,T
DP

(Cl≤t )(u) ≥ Cl≤t (u).

• (duality) Let T, S,N be de-Morgan triplet,
N involutive negator for which holds that
∀t, N(Cl≥t (u)) = Cl≤t−1(u) and let I be the
S-implicator induced by S and N . Then we have:

N(apr
qua∀,I
DP

(Cl≥t )(u)) = apr
qua∃,T
DP

(Cl≤t−1)(u),

N(apr
qua∀,I
DP

(Cl≤t )(u)) = apr
qua∃,T
DP

(Cl≥t+1)(u),

N(apr
qua∃,T
DP

(Cl≥t )(u)) = apr
qua∀,I
DP

(Cl≤t−1)(u),

N(apr
qua∃,T
DP

(Cl≤t )(u)) = apr
qua∀,I
DP

(Cl≥t+1)(u).

• (criteria monotonicity) If we have two subsets
of criteria M ⊆ P ⊆ Q, then it follows that

apr
qua∀,I
DM

(Cl≥t )(u) ≤ apr
qua∀,I
DP

(Cl≥t )(u),

apr
qua∃,T
DM

(Cl≥t )(u) ≥ apr
qua∃,T
DP

(Cl≥t )(u),

apr
qua∀,I
DM

(Cl≤t )(u) ≤ apr
qua∀,I
DP

(Cl≤t )(u),

apr
qua∃,T
DM

(Cl≤t )(u) ≥ apr
qua∃,T
DP

(Cl≤t )(u).

For (qua∀, qua∃) = (inf, sup) we have the property of
exact approximation.

Proposition 3.1. Let T be a left-continuous t-norm
and let I be its R-implicator. Then we have that

(∀u ∈ U)(aprinf,I
DP

(Cl≥t )(u) = Cl≥t (u))⇔

(∀u ∈ U)(aprsup,TDP
(Cl≥t )(u) = Cl≥t (u)),

(∀u ∈ U)(aprinf,I
DP

(Cl≤t )(u) = Cl≤t (u))⇔

(∀u ∈ U)(aprsup,TDP
(Cl≤t )(u) = Cl≤t (u)).

Proof. We provide the proof of the proposition for up-
ward unions. Analogous proof holds for downward
unions. We will prove the following:

(∀u ∈ U)(aprinf,I
DP

(Cl≥t )(u) ≥ Cl≥t (u))⇔

(∀u ∈ U)(aprsup,TDP
(Cl≥t )(u) ≤ Cl≥t (u)).

The above equivalence together with inclusion prop-
erty provides the desired result. We have that

(∀u ∈ U) (aprinf,I
DP

(Cl≥t )(u) ≥ Cl≥t (u))⇔

(∀u ∈ U) ( inf
v∈U

(I(DP (v, u), Cl≥t (v))) ≥ Cl≥t (u))⇔

(∀u ∈ U) (∀v ∈ U) (I(DP (v, u), Cl≥t (v)) ≥ Cl≥t (u))⇔

(∀u ∈ U) (∀v ∈ U) (T (DP (v, u), Cl≥t (u)) ≤ Cl≥t (v))⇔

(∀v ∈ U) (sup
u∈U

T (DP (v, u), Cl≥t (u)) ≤ Cl≥t (v))⇔

(∀u ∈ U) (sup
v∈U

T (DP (u, v), Cl≥t (v)) ≤ Cl≥t (u))⇔

(∀u ∈ U) (aprsup,TDP
(Cl≥t )(u) ≤ Cl≥t (u)).

Third equivalence holds because of the residuation
property. In the fifth one, we just change the nota-
tion where u is replaced with v and v with u.

Here the question is, will the same property hold if we
use that (qua∀, qua∃) = (T, S). We provide the coun-
terexample. Take  Lukasiewicz t-norm, i.e. T (x, y) =
max(x+ y − 1, 0). The corresponding R-implicator is
I(x, y) = min(1 − x + y, 1). We induce N from I as
N(x) = 1− x which is standard negator, and we take
S to be N -dual of T , i.e. S(x, y) = min(x+ y, 1). Let
us assume that there are two objects a and b such that
Cl≥t (a) = Cl≥t (b) = 0.9. Assume now that

(∀u ∈ U)(aprinf,I
DP

(Cl≥t )(u) = Cl≥t (u))⇔

(∀u ∈ U) (Tv∈U (I(DP (v, u), Cl≥t (v))) = Cl≥t (u)).

We have that

Tv∈U (I(DP (v, a), Cl≥t (v)) =

T [I(DP (a, a), Cl≥t (a)), Tv 6=a(I(DP (v, a), Cl≥t (v)))] =

T [Cl≥t (a), Tv 6=a(I(DP (v, a), Cl≥t (v)))].

The last expression is equal to Cl≥t (a) if

Tv 6=a(I(DP (v, a), Cl≥t (v))) = 1⇒

(∀v 6= a)(I(DP (v, a), Cl≥t (v)) = 1)⇒

(∀v 6= a)(DP (v, a) ≤ Cl≥t (v)).

Now take that DP (b, a) = 0.9 which satisfies the above

condition. We have that T (DP (b, a), Cl≥t (a)) = 0.8.



Then we will have that

aprsup,TDP
(Cl≤t )(b) = Sv∈U (T (DP (b, v), Cl≥t (v))) ≥

S[T (DP (b, b), Cl≥t (b)), T (DP (b, a), Cl≥t (a))] =

S[Cl≥t (b), T (DP (b, a), Cl≥t (a))] =

S(0.9, 0.8) = 1 > 0.9 = Cl≥t (b).

So we got that for a particular b holds that,
aprsup,TDP

(Cl≤t )(b) 6= Cl≥t (b) which is a counterexample.
So if we want for the exact approximation property to
hold, we need to keep using inf and sup as fuzzy quan-
tifiers.

Now, we would like to investigate under which condi-
tions we have that all properties are satisfied. Prop-
erties which require additional assumptions on fuzzy
logic connectives are duality and exact approxima-
tion. First, we want to check if exact approximation
property holds under the assumptions of the duality
property and vice versa. More precisely, we will con-
struct counterexamples that it does not hold. First
let us solve the doubt if we may use (qua∀, qua∃) =
(T, S) for the exact approximation property when we
take S-implicator instead of R-implicator, which is
the assumption for duality property. The answer
is negative since provided  Lukasiewicz implicator is
both S-implicator and R-implicator so we have the
same counterexample as before. Further on we take
(qua∀, qua∃) = (inf, sup). Now, let us show that un-
der the assumptions of duality property we do not
have the exact approximation property. We take de-
Morgan triplet: T (x, y) = min(x, y), N(x) = 1 − x
and S(x, y) = max(x, y) with I as S-implicator, i.e.
I(x, y) = max(1− x, y). Assume that

(∀u ∈ U) (aprinf,I
DP

(Cl≥t )(u) ≥ Cl≥t (u))⇔

(∀u ∈ U) ( inf
v∈U

(I(DP (v, u), Cl≥t (v))) ≥ Cl≥t (u))⇔

(∀u ∈ U) (∀v ∈ U) (I(DP (v, u), Cl≥t (v)) ≥ Cl≥t (u)).

Take two objects a and b such that Cl≥t (a) =

0.4, Cl≥t (b) = 0.3 and DP (b, a) = 0.5. Then, we

have that I(DP (b, a), Cl≥t (b)) = I(0.5, 0.3) = 0.5 >

0.4 = Cl≥t (a), so the condition above is satisfied. On

the other side we have that T (DP (b, a), Cl≥t (a)) =

T (0.5, 0.4) = 0.4 > 0.3 = Cl≥t (b). Then we have that

aprsup,TDP
(Cl≤t )(b) = sup

v∈U
(T (DP (b, v), Cl≥t (v))) ≥

T (DP (b, a), Cl≥t (a)) > Cl≥t (b),

which is a counterexample.

Now let us see that R-implicators cannot be used for
duality property in general. Take de-Morgan triplet
T (x, y) = min(x, y), S(x, y) = max(x, y), N = Ns.

Let I be R-implicator of T , i.e. I(x, y) = 1 if
x ≤ y and I(x, y) = y otherwise. It is obvious
that in this case (T, S) = (inf, sup). Assume that
for some t and for unique object b we have that
Cl≤t−1(b) = 0 and Cl≤t−1(v) = 1 for every v 6= b.
Assume that for some u holds that DP (b, u) < 1.

Then we will have that apr
qua∀,I
DP

(Cl≤t−1)(u) = 0

since the values of I(DP (u, v), Cl≤t−1(v)) are
all ones with the one 0 value. On the other
side we have that N(apr

qua∃,T
DP

(Cl≥t )(u)) =

N(qua∃(T (DP (v, u), Cl≥t (v)))) =

qua∀(S(N(DP (v, u)), N(Cl≥t (v)))) =

qua∀(S(N(DP (v, u)), Cl≤t−1(v))) =

S(N(DP (b, u)), Cl≤t−1(b)) = N(DP (b, u)) > 0.

So, we got that for some u, N(apr
qua∃,T
DP

(Cl≥t )(u)) >

apr
qua∀,I
DP

(Cl≤t−1)(u) which is a counterexample.

Now we are ready to form our final conclusion.

Proposition 3.2. Assume that T is IMTL t-norm, I
its R-implicator, N negator induced by I, and S N -
dual of T . Assume also that (qua∀, qua∃) = (inf, sup).
Then all properties above hold.

4 Integration with OWA

In this section, we introduce the application of aggre-
gation approach called Ordinary Weighted Average or
OWA in fuzzy DRSA. To investigate if an object be-
longs to the lower approximation of the upward union,
we check if its P -dominating set is contained in the
upward union. In many practical approaches, we may
have outliers - the objects that do not follow a distri-
bution of data. Because of such objects, we may have
that all elements from P -dominating set are inside the
upward union except maybe few. In that case those
few elements cause that the object is excluded from
the lower approximation, often causing lower approx-
imations to be almost empty. We would like to avoid
this. If there is some outlier, we want to reduce its sig-
nificance to the calculation of the lower approximation
or to just forget about it. A lot of work has been done
to handle such issues for the classical version of DRSA.
The well-known methods here are Variable Precision
DRSA [9] and Variable Consistency DRSA [8]. Here,
we are proposing a new approach suitable for fuzzy
DRSA - OWA approach. OWA showed promising per-
formance in IRSA, not only for decreasing of an outlier
influence [2], but also in domains of imbalanced clas-
sification [14] and multi-instance learning [17]. OWA
is used to replace the fuzzy quantifiers used for final
aggregation when we are calculating lower and upper
approximations. We recall the definition from [18]:

Definition 4.1. The OWA aggregation of a set of
values V using weight vector W = (w1, w2, ..., w|V |),



with wi ∈ [0, 1] and Σ
|V |
i=1wi = 1, is given by

OWAW (V ) =

|V |∑
i=1

wiv(i),

where v(i) is the i-th largest element in the set V .

We have monotonicity property of OWA:

Proposition 4.1. [18] Let V and V ′ be two sets of
values such that for some permutation σ we have that
∀i, Vσ(i) ≥ V ′i . If W is a vector of weights we have
that OWAW (V ) ≥ OWAW (V ′).

Different weight vectors are used depending if they
will be used as qua∀ or as qua∃. For that purpose, we
define measures andness and orness where andness is
telling us how much is our aggregation vector usable as
qua∀ while orness is measuring similarity with qua∃.
They are defined as:

orness(W ) =
1

n− 1

n∑
i=1

(wi(n− i)),

andness(W ) = 1− orness(W ).

It is easy to see that fuzzy quantifiers inf and sup
are special cases of OWA. For them we have the cor-
responding OWA vectors as Winf = (0, . . . , 0, 1) and
Wsup = (1, 0, . . . , 0). It is easy to check that:

andness(Winf) = 1, orness(Wsup) = 1.

Assume now that we are given two weight vectors
WL, andness(WL) > 0.5 and WU , orness(WU ) > 0.5.
We have the new definitions of lower and upper ap-
proximations:

aprWL,I
DP

(Cl≥t )(u) =

OWAWL
((I(DP (v, u), Cl≥t (v))); v ∈ U),

aprWU ,T
DP

(Cl≥t )(u) =

OWAWU
((T (DP (u, v), Cl≥t (v))); v ∈ U),

aprWL,I
DP

(Cl≤t )(u) =

OWAWL
((I(DP (u, v), Cl≤t (v))); v ∈ U),

aprWU ,T
DP

(Cl≤t )(u) =

OWAWU
((T (DP (v, u), Cl≤t (v))); v ∈ U).

Here, we have more freedom to relax the definition of
lower and upper approximation such that we decrease
the significance of the possible outlier. One non-trivial
OWA example are additive weights obtained from the
normalization of vector (1, 2, . . . , n). We have that:

W add
L = (

2

n(n+ 1)
,

4

n(n+ 1)
, . . . ,

2

n+ 1
).

W add
U = (

2

n+ 1
,

2(n− 1)

n(n+ 1)
, . . . ,

2

n(n+ 1)
).

It is easy to check that andness(WL) > 0.5 and
orness(WU ) > 0.5. As we can see, we are giving the
largest significance to the possible outlier, but we are
including also the values of the other, non-outlying ob-
jects, into our calculation. This and some other exam-
ples are given in [15] and their performance in classifi-
cation problems is experimentally tested on IRSA. We
will now check if the same properties hold as before.
For every u ∈ U we notice the following:

aprWL,I
DP

(Cl≥t )(u) ≥ aprinf,I
DP

(Cl≥t )(u)

≥ aprT,I
DP

(Cl≥t )(u),

aprWU ,T
DP

(Cl≤t )(u) ≤ aprsup,TDP
(Cl≤t )(u)

≤ aprS,TDP
(Cl≤t )(u).

Let us now identify some properties.

Proposition 4.2. Let WL, orness(WL) > 0.5 be
a weight vector, T, S,N de - Morgan triplet with
N = Ns and let I be a S-implicator. Define vec-
tor WU as the reverse vector of WL, i.e. (WL)i =
(WU )n−i+1 for i = 1, . . . , n. Also assume that we have

∀t, N(Cl≥t (u)) = Cl≤t−1(u). Then, for u ∈ U we have
duality property defined as:

N(aprWL,I
DP

(Cl≥t )(u)) = aprWU ,T
DP

(Cl≤t−1)(u),

N(aprWL,I
DP

(Cl≤t )(u)) = aprWU ,T
DP

(Cl≥t+1)(u),

Proof. We will prove just first expression while the
second one will follow analogously. We fix u ∈ U .
W.L.O.G. we assume that

I(DP (u1, u), Cl≥t (u1)) ≤ · · · ≤ I(DP (un, u), Cl≥t (un)).

Using assumptions of the proposition further we have:

S(N(DP (u1, u)), Cl≥t (u1)) ≤ . . .

≤ S(N(DP (un, u)), Cl≥t (un))⇔

N(T (DP (u1, u), N(Cl≥t (u1)))) ≤ . . .

≤ N(T (DP (un, u), N(Cl≥t (un))))⇔

1− T (DP (u1, u), 1− Cl≥t (u1)) ≤ . . .

≤ 1− T (DP (un, u), 1− Cl≥t (un))⇔

T (DP (u1, u), Cl≤t−1(u1)) ≥ . . .

≥ T (DP (un, u), Cl≤t−1(un)).



We have that:

N(aprWL,I
DP

(Cl≥t )(u))

= 1−
n∑
i=1

(WL)i · I(DP (ui, u), Cl≥t (ui))

= 1−
n∑
i=1

(WU )n−i+1 · S(1−DP (ui, u), Cl≥t (ui))

= 1−
n∑
i=1

(WU )n−i+1 · (1− T (DP (ui, u), 1− Cl≥t (ui)))

=

n∑
i=1

(WU )n−i+1 · T (DP (ui, u), Cl≤t−1(ui))

= aprWU ,T
DP

(Cl≤t−1)(u).

Proposition 4.3. For two sets of criteria M ⊆ P ⊆ Q
and for any OWA aggregating vectors WL and WU

we have that
aprWL,I

DM
(Cl≥t )(u) ≤ aprWL,I

DP
(Cl≥t )(u),

aprWU ,I
DM

(Cl≥t )(u) ≥ aprWU ,I
DP

(Cl≥t )(u),

aprWL,I
DM

(Cl≤t )(u) ≤ aprWL,I
DP

(Cl≤t )(u),

aprWu,I
DM

(Cl≤t )(u) ≥ aprWU ,I
DP

(Cl≤t )(u).

Proof. For any t-norm T we have that T (x, y) ≤
min(x, y) ⇔ T (x, y) ≤ x ∧ T (x, y) ≤ y.
For dominance relation we have that DP (v, u) =
T (DM (v, u), DN−P (v, u)) ≤ DM (v, u). Because
of the monotonicity of I and T we have that
I(DM (v, u), Cl≥t (v)) ≤ I(DP (v, u), Cl≥t (v)) and

T (DM (v, u), Cl≥t (v)) ≥ T (DP (v, u), Cl≥t (v)). Using
this and the monotonicity property for OWA we com-
plete the proof of the proposition.

Inclusion principle does not hold in general. We will
give a counterexample. Assume that Clt is crisp for ev-
ery t, which means Clt(u) = 1 if u ∈ Clt and Clt(u) =

0 otherwise. Let us compute I(DP (v, u), Cl≥t (v)). If
we assume that I is an S-implicator, we have that:

• if v ∈ Cl≥t , then I(DP (v, u), Cl≥t (v)) = 1,

• if v ∈ Cl≤t−1, then I(DP (v, u), Cl≥t (v)) = 1 −
DP (v, u).

So the values used for OWA aggregation are either 1−
DP (v, u) or 1. Assume that u /∈ Cl≥t =⇒ Cl≥t (u) =
0. Then the lower approximation should be 0. If we
apply general OWA approach with some vector WL on
the values obtained above, it is not necessary that we

will obtain 0 at the end. There is a proposed extention
such that inclusion property holds. We may take that:

apr
DP

(Cl≥t )(u) = min(Cl≥t (u), aprWl,I
DP

(Cl≥t )(u))

aprDP
(Cl≥t )(u) = max(Cl≥t (u), aprWu,T

DP
(Cl≥t )(u))

It is obvious that in this case we will have inclusion
property, however, this extension did not find any in-
teresting applications in practice.

The property of exact approximation also does not
hold in general. We will give a counterexample. As-
sume as above that Clt sets are crisp and assume that
both WL and WU do not have zero weights. Then the
evaluations of the implicators will be as above. For
the t-norms we have that:

• if v ∈ Cl≥t then T (D(u, v), Cl≥t (v)) = DP (u, v),

• if v ∈ Cl≤t−1, then T (DP (u, v), Cl≥t (v)) = 0.

Let u ∈ Cl≥t . Then we have that aprWl,I
DP

(Cl≥t )(u) =

Cl≥t (u) = 1 if and only if ∀v ∈ Cl≤t−1, 1−DP (v, u) =

1⇒ DP (v, u) = 0. This holds since aprWl,I
DP

(Cl≥t )(u) is

a convex combination of the elements less or equal than
1 and it can be equal to 1 only if all elements are 1. So
it is possible to satisfy the condition. On the other
side, it is impossible to satisfy aprWu,T

DP
(Cl≥t )(u) =

Cl≥t (u) = 1 since we have the convex combination
where we have zero elements. So, from here we can
conclude that the equivalence does not hold in gen-
eral.

5 Conclusion and future work

In this article we have presented the theoretical back-
ground of integration of fuzzy set theory and DRSA.
We also proposed some improvements in the form of
OWA which is used to filter outliers and noisy data.
We saw that some properties which hold for classical
fuzzy DRSA also hold in OWA version with specific
assumption. The future work will have both, theoret-
ical and practical aspects. From the theoretical point
of view, we saw that the definition of upward and
downward unions does not have too much influence on
the properties, it is only important that the upward
unions are complements of downward unions based on
a given negator. So, we would like to see what will
happen if the unions are replaced with an arbitrary
set. In that case we would like to see if the similar
properties which hold in IRSA, would also hold here.
Also, we would like to include checking of these prop-
erties for other noise-tolerant extensions of DRSA like
VP-DRSA and VC-DRSA. From the practical point of
view, we want to see how fuzzy DRSA may improve



existing rule induction algorithms like DomLem and
VC-DomLem. Namely, those algorithms showed huge
potential in knowledge extraction from data in a form
of ‘if ..., then ...’ rules, as well as in ordinal classifica-
tion problems. It will be interesting to see how fuzzy
set theory can improve them.
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