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Highlight 

Numerous genes have been identified that regulate leaf growth, which can be grouped into 

regulatory modules. Here, we review six important gene modules that affect cell proliferation 

during leaf development. 
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Abstract 

Leaves are the primary organs for photosynthesis and as such have a pivotal role for 

plant growth and development. Leaf development is a multi-factorial and dynamic 

process involving many genes that regulate size, shape, and differentiation. The 

processes that mainly drive leaf development are cell proliferation and cell expansion, 

and numerous genes have been identified that, when ectopically expressed or down-

regulated, increase cell number and/or cell size during leaf growth. Many of the genes 

regulating cell proliferation are functionally interconnected and can be grouped in 

regulatory modules. Here, we review our current understanding of six important gene 

regulatory modules affecting cell proliferation during Arabidopsis leaf growth: DA1-

EOD1, GRF-GIF, SWI/SNF, GA-DELLA, KLU, and PEAPOD. Furthermore, we discuss how 

post-mitotic cell expansion and these six modules regulating cell proliferation make 

up final leaf size. 

Keywords: Arabidopsis thaliana, cell cycle, cell proliferation, leaf development, leaf size, 

organ growth 

Abbreviations: APC/C, anaphase-promoting complex/cyclosome; ATHB12, ARABIDOPSIS 

THALIANA HOMEOBOX 12; BRM, BRAHMA; CCS52A/B, CELL CYCLE SWITCH PROTEIN 52 

A/B; CDKs, CYCLIN-DEPENDENT KINASES; CYCs, CYCLINS; DAR, DA1-RELATED; DP, 

DIMERISATION PROTEIN; EOD1, ENHANCER OF DA1; EXPs, EXPANSINs; GA, gibberellin; 

GAI, GA INSENSITIVE; GIF1, GRF-INTERACTING FACTOR 1; GRF, GROWTH REGULATING 

FACTOR; KIX, KINASE-INDUCIBLE DOMAIN INTERACTING; KRP/ICK, KIP-RELATED 

PROTEIN/INTERACTOR OF CDKs; NINJA, NOVEL INTERACTOR OF JAZ; NGAL, NGATHA-LIKE 

PROTEIN; ORG3, OBF-BINDING PROTEIN 3 (OBP3)-RESPONSIVE GENE 3;  PIF, 

PHYTOCRHOME INTERACTING FACTOR; RBR, RETINOBLASTOMA-RELATED; RGA, 

REPRESSOR OF ga1-3; RGL, RGA-LIKE; SAP, STERILE APETALA; SAUR, SMALL AUXIN UP 

RNA; SCF, SKP1/CULLIN1/F-BOX PROTEIN; SEC, SECRET AGENT; SIM/SMR, 

SIAMESE/SIAMESE-RELATED; SOD, SUPPRESSOR OF DA1; SPY, SPINDLY; SWI/SNF, 

SWITCH/SUCROSE NON-FERMENTING; SYD, SPLAYED; TCP14, TEOSINTE BRANCHED 

1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR 14; UBP15, UBIQUITIN 

SPECIFIC PROTEASE 15; ZHD5,  ZINC-FINGER HOMEODOMAIN 5  
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Introduction 

Plants develop and grow mainly post-embryonically, forming two types of organs; organs 

such as roots with an indeterminate growth and therefore a theoretical unlimited growth 

potential, and organs such as leaves and flowers with a determinate growth and a fixed  final 

size (Tsukaya, 2003; Rodriguez et al., 2014). Leaves are the organs in which photosynthesis 

predominantly occurs. Leaves also contribute significantly to plant biomass, since the energy 

and carbohydrates produced during photosynthesis are used by the rest of the plant to 

sustain its growth and complete its lifecycle (Demura and Ye, 2010). These features render 

leaf size control a highly interesting field of study. 

In Arabidopsis thaliana (Arabidopsis), leaves grow through cell proliferation and cell 

expansion, two highly interconnected developmental processes, which are partially 

overlapping during leaf development (Kheibarshekan Asl et al., 2011; Gonzalez et al., 2012). 

Leaves are initiated by a group of founder cells emerging at the flanks of the shoot apical 

meristem (Reinhardt et al., 2000; Efroni et al., 2010; Kalve et al., 2014). These leaf 

primordium founder cells undergo extensive cell division, resulting in an increased cell 

number that contributes to final leaf size (Gonzalez et al., 2012). After a predefined 

developmental timeframe, cells at the tip of the leaf exit the mitotic cell cycle and start to 

expand, marking the beginning of the cell expansion phase. In Arabidopsis, a cell cycle arrest 

front then moves through the leaf in a tip-to-base manner (Andriankaja et al., 2012). 

However, some cells dispersed throughout the leaf epidermis retain their meristematic 

activity. These stem cell-like cells, called meristemoids, continue to divide asymmetrically for 

several rounds before giving rise to stomata, pores located in the epidermis that allow gas 

and water vapor exchange with the environment (Bergmann and Sack, 2007). In Arabidopsis, 

the increase in number of stomatal cells takes place in a tip-to-base direction as well, 

suggesting the occurrence of a secondary cell cycle arrest front corresponding to the arrest 

of meristemoid asymmetric divisions (White, 2006; Andriankaja et al., 2012). Altogether, at 

least six major cellular processes contribute to final leaf size and shape: the number of cells 

recruited to the leaf primordium from the shoot apical meristem; the rate and duration of cell 

proliferation; the rate and duration of cell expansion; and the extent of meristemoid division 

(Gonzalez et al., 2012; Hepworth and Lenhard, 2014). Impinging on one of these processes 

often results in an alteration in cell number or cell size, affecting final leaf size (Gonzalez et 
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al., 2012). Therefore, the correct regulation of cell proliferation and cell expansion 

mechanisms is fundamental to determine final leaf size. 

In this review, we describe current advances in Arabidopsis leaf growth regulation 

mainly focusing on six gene regulatory modules involved in cell proliferation: DA1-EOD1, 

GRF-GIF, SWI/SNF, GA-DELLA, KLU, and PEAPOD. We do not only describe the components 

within each regulatory module, but also the connections between the modules, how they are 

connected with the cell cycle and, to a lesser extent, with the post-mitotic cell expansion 

machinery (Fig. 1, Table 1). The majority of the genes discussed throughout this review 

affect cell proliferation, demonstrating how the cell cycle and its machinery are central in 

mediating leaf growth.  There are also many other aspects of leaf development including 

mechanisms controlling cell growth of dividing cells, including leaf initiation (Ichihashi and 

Tsukaya, 2015; Sluis and Hake, 2015), leaf shape (Nikolov et al., 2019; Sapala et al., 2019) 

and the effect of environmental stress (Dubois et al., 2018). Many of the processes are 

governed by plant hormones (Du et al., 2018). However, to keep this review concise, 

emphasis is given to the regulation of cell division and to a lesser extent post-mitotic cell 

expansion on leaf size. 

The pivotal role of the cell cycle machinery during leaf growth 

During cell division, cells separate their duplicated genetic information into two daughter 

cells. This process, referred to as the cell cycle, can be subdivided into four phases: the S-

phase during which the nuclear DNA is duplicated, the M-phase or mitosis during which the 

chromosomes are separated and distributed to the daughter cells, and two gap-phases (G1 

and G2) to prepare the cells for DNA replication or mitosis, respectively (Inzé and De Veylder, 

2006). To assure correct transmission of the genetic information, progression through these 

different phases is tightly controlled by different groups of core cell cycle proteins; the 

CYCLINS (CYCs) complexed with CYCLIN-DEPENDENT KINASES (CDKs), the 

E2F/DIMERISATION PROTEIN (DP) transcriptional regulatory proteins, KIP-RELATED 

PROTEIN/INTERACTOR OF CDKs (KRP/ICK), and SIAMESE/SIAMESE-RELATED (SIM/SMR) 

proteins (Inzé and De Veylder, 2006; Harashima et al., 2013). 

In Arabidopsis, CYCs include A-type CYCs (CYCA), B-type CYCs (CYCB) and D-type 

CYCs (CYCD), while CDKs include A-type CDKs (CDKA) and B-type CDKs (CDKB), the latter 
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being  plant-specific (Vandepoele et al., 2002; Inzé and De Veylder, 2006). The composition 

and activity of the CDK/CYC complexes is highly cell cycle phase-specific, with CYCAs and 

CYCDs mainly involved in the G1 progression and G1-to-S transition and CYCBs mainly 

regulating the G2-to-M transition and progression through mitosis (Inzé and De Veylder, 

2006; Van Leene et al., 2011; Zhao et al., 2012). In parallel, CDKAs are essential at both G1-

to-S and G2-to-M phases, whereas CDKBs mainly control the G2-to-M phase, progression 

through mitosis and cell cycle exit (Inzé and De Veylder, 2006; Harashima et al., 2013). The 

expression of genes required for G1-to-S transition and S-phase progression is 

predominantly controlled by three E2F proteins (E2Fa, E2Fb, and E2Fc) that form 

heterodimeric complexes with DP proteins (DPa and DPb) (Magyar et al., 2000; Kosugi and 

Ohashi, 2002; Desvoyes et al., 2006; Yao et al., 2018). Whereas the E2Fc/DP complex is a 

transcriptional inhibitor, E2Fa/DP and E2Fb/DP complexes are transcriptional activators of 

which the activity is inhibited by binding to RETINOBLASTOMA-RELATED (RBR) proteins 

(Desvoyes et al., 2006; Inzé and De Veylder, 2006). During the G1-to-S transition, CYCD 

proteins are predominantly complexed with CDKA;1 (Boruc et al., 2010; Van Leene et al., 

2011) that bind and phosphorylate RBR proteins associated with the E2Fa-b/DP complex, 

causing RBR degradation (Huntley et al., 1998; Nakagami et al., 1999; del Pozo et al., 2006). 

The activated E2Fa-b/DP transcription factor complex triggers the expression of numerous 

target genes involved in cell cycle progression, transcription, chromatin dynamics and DNA 

replication (Vandepoele et al., 2005; Yao et al., 2018). During transition between the G2- and 

M-phase, CDKA-CYCB complexes activate MYB3R proteins that in their turn activate several 

M-phase-related genes such as KNOLLE and CYCB1;1 itself, guiding cell cycle exit into mitosis 

(De Veylder et al., 2007). Alternatively, however, cells can continue to duplicate their genomic 

content (S-phase) for several rounds without subsequent division, called endoreduplication 

(Inzé and De Veylder, 2006; Breuer et al., 2014). 

The activity of the CDK/CYC complexes is tightly regulated by multiple mechanisms, 

acting at a transcriptional and a mainly post-translational level (Inzé and De Veylder, 2006; 

De Veylder et al., 2007; Breuer et al., 2014; Edgar et al., 2014). These regulatory mechanisms 

include phosphorylation, interaction with cell cycle inhibitor proteins of the KRP/ICK and 

SIM/SMR family and proteolysis mediated by the anaphase-promoting complex/cyclosome 

(APC/C) and the SKP1/CULLIN1/F-BOX PROTEIN (SCF) complexes (Inzé and De Veylder, 
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2006; Heyman and De Veylder, 2012). KRP/ICK proteins predominantly inhibit CDKA-CYCD 

complexes (Van Leene et al., 2010). In lines overexpressing KRP proteins, mitosis is 

hampered, leading to a drastic decrease in cell number that is partially compensated by an 

increase in cell size (De Veylder et al., 2001; De Veylder et al., 2011). Whereas single krp 

mutants do not show drastic effects, triple (krp4/6/7), quadruple (krp1/2/6/7), and 

quintuple (krp1/2/5/6/7) krp mutants have longer and enlarged leaves, which are narrow 

and curled downwards as a result of an increased cell number (Cheng et al., 2013). A septuple 

krp mutant, in which all seven KRP/ICK genes are inactivated, produces leaves with an 

increased leaf size, similar to that in the quintuple krp mutant (Cao et al., 2018). The SIM/SMR 

proteins inhibit CDKA-CYCD and CDKB-CYCB complexes, blocking progression through the 

cell cycle and promoting endoreduplication (Walker et al., 2000; Churchman et al., 2006; Van 

Leene et al., 2010). Although sim mutants do not have an altered leaf phenotype, they have 

multicellular and clustered trichomes and SIM-overexpressing plants are dramatically 

reduced in size (Walker et al., 2000; Churchman et al., 2006; Kumar et al., 2015). The APC/C 

complex is a multiple-subunit E3 ligase that controls cell cycle progression and endocycle 

entry, and altered expression levels of APC/C complex members, their activators or their 

inhibitors impair plant morphology. APC10 is an essential component of the APC/C complex 

and upon APC10 overexpression, epidermal cells divide faster owing to a faster degradation 

of the mitotic cyclin CYCB1;1, resulting in the formation of enlarged leaves (Eloy et al., 2011). 

Down-regulation of APC10 or APC6, encoding another APC/C subunit, results in the 

production of smaller and curled leaves that show a reduced cell area (Marrocco et al., 2009). 

In Arabidopsis, two isoforms exist for the APC/C subunit APC3: APC3a/CDC27a and 

APC3b/HOBBIT (Heyman and De Veylder, 2012). These proteins act with APC10 as receptors 

for the APC/C activators CELL CYCLE SWITCH PROTIEN 52 A/B (CCS52A/B) and CELL 

DIVISION CYCLE 20 (CDC20) (Fülöp et al., 2005; Eloy et al., 2011; Kevei et al., 2011; Breuer 

et al., 2012). Plants highly overexpressing CCS52A have a reduced leaf area as a result of a 

decreased cell number, slightly compensated by an increased cell area. Milder 

overexpression of CCS52A, however, results in larger plants because of increased cell 

divisions during the early stages of leaf development (Baloban et al., 2013). Overexpression 

of APC3a/CDC27a increases leaf size owing to an increased cell number, whereas plants, in 

which the expression of APC3b/HOBBIT is down-regulated, are extremely dwarfed 
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(Willemsen et al., 1998; Heyman and De Veylder, 2012). APC/C is negatively regulated by 

SAMBA. Loss-of-function mutation in SAMBA (samba) results in plants that produce a larger 

shoot apical meristem, larger leaf primordia and enlarged mature leaves, which has been 

proposed to result, at least partially, from an increase in leaf primordium founder cells (Eloy 

et al., 2012). SAMBA targets mitotic cyclins such as CYCLIN A2 (CYCA2) for APC/C-mediated 

degradation and eventually cell cycle exit (Eloy et al., 2012). Accordingly, CYCA2s are 

stabilized in samba mutants throughout early leaf development, stimulating cell division 

(Eloy et al., 2012).  

F-box proteins are a major type of E3 ligases of which some are involved in cell cycle 

control, marking proteins for ubiquitin-mediated proteasomal degradation (Skaar et al., 

2013). Recently, it has been described that overexpression of F-BOX PROTEIN 92 (AtFBX92) 

results in the formation of smaller leaves as a result of a decreased cell number, though 

slightly compensated by an increased cell size (Baute et al., 2017). Conversely, plants with a 

decreased expression of AtFBX92 (amiFBX92) exhibited larger leaves, resulting from an 

increased cell division rate (Baute et al., 2017). In addition, the F-box protein F-BOX LIKE 17 

(FBL17) was characterized as a positive growth regulator as fbl17 mutants display a drastic 

reduction in leaf area due to a decrease in cell number compared with wild type plants (Noir 

et al., 2015). 

The DA1-EOD1 module 

The DA1-EOD1 module has an important role in controlling leaf growth by regulating several 

key growth regulatory proteins in a post-translational manner. Plants with a dominant-

negative point mutation in the gene encoding peptidase DA1 (da1-1) display enlarged leaves 

that contain more cells owing to a prolonged cell proliferation phase (Li et al., 2008; Dong et 

al., 2017; Vanhaeren et al., 2017). In these plants, not only the leaf area is increased, but also 

the size of flowers, fruits and seeds. In contrast, a decreased leaf size is observed upon 

overexpression of GFP-DA1, likely because DA1 is stabilized by the fluorescent tag, 

demonstrating that DA1 is a negative regulator of leaf growth (Vanhaeren et al., 2017). 

The peptidase activity of DA1 is activated upon multiple mono-ubiquitination by the 

E3 ligases BIG BROTHER/ENHANCER OF DA1 (BB/EOD1, further referred to as BB) and DA2 

(Xia et al., 2013; Dong et al., 2017). BB mutants (bb-1) exhibit smaller, but shorter leaves, 
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leaving total leaf area unchanged, and larger floral organs (Disch et al., 2006). Overexpression 

of BB in the bb-1 mutant background decreases leaf size drastically by restricting cell 

proliferation duration (Disch et al., 2006). Plants in which DA2 is mutated (da2-1) display 

larger leaves and have an increased biomass compared with the wild type, whereas 

overexpressing lines form smaller plants with a decreased leaf area (Xia et al., 2013). 

Whereas overexpression of BB or DA2 dramatically decreases leaf size (Disch et al., 2006; Xia 

et al., 2013), bb and da2 mutations in the da1-1 mutant background synergistically enhance 

the da1-1 phenotype (Li et al., 2008; Xia et al., 2013; Dong et al., 2017; Vanhaeren et al., 2017).  

Several targets of DA1 have so far been described. Among others, DA1 negatively 

regulates the stability of the deubiquitinating enzyme SUPPRESSOR OF DA1 2/UBIQUITIN 

SPECIFIC PROTEASE 15 (SOD2/UBP15, further referred to as UBP15) (Liu et al., 2008; Du et 

al., 2014; Dong et al., 2017). Overexpression of UBP15 leads to the formation of larger leaves, 

roots, flowers and seeds as a result of increased cell divisions, mimicking the da1-1 mutant 

phenotype (Liu et al., 2008; Du et al., 2014). In concordance, ubp15-1 mutants have smaller 

organs compared with the wild type (Liu et al., 2008; Du et al., 2014) and the da1-1 enlarged 

seed phenotype is repressed in da1-1/ubp15 double mutants (Du et al., 2014). In addition to 

UBP15, DA1 also inactivates TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL 

NUCLEAR ANTIGEN FACTOR 14 (TCP14), TCP15 and TCP22, transcription factors that 

positively regulate cell division duration (Dong et al., 2017). More specifically, TCP14 and 

TCP15 repress the transition from mitosis to endoreduplication by inducing the expression 

of RBR and CYCA3;2 (Li et al., 2012; Peng et al., 2015). The stability of TCP14 and TCP15 is 

not only modulated by DA1, but also by its close family members DA1-RELATED 1 (DAR1) 

and DAR2 (Peng et al., 2015). Nonetheless, whereas the da1-ko/dar1-1/dar2-1 triple mutant 

produces enlarged flowers and seeds, leaf size is decreased compared with wild-type plants, 

suggesting that DA1, DAR1 and DAR2 may regulate plant growth and development in an 

organ-specific manner (Peng et al., 2015). 

The GRF-GIF module 

The GRF-GIF module plays an important role for cell number determination in leaves. It 

consists of several interacting proteins of which ANGUSTIFOLIA3/GRF-INTERACTING 

FACTOR 1 (AN3/GIF1, further referred to as GIF1) and members of the GROWTH 
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REGULATING FACTOR (GRF) are transcriptional regulators (Kim and Kende, 2004; 

Debernardi et al., 2014).  The three GIF family members, GIF1, GIF2, and GIF3, are 

transcriptional co-activators that act, at least partially, redundantly to activate cell 

proliferation in the leaf primordia (Kim and Kende, 2004; Horiguchi et al., 2005). 

Overexpression of GIF1 results in plants that form enlarged organs resulting from an 

increased cell proliferation, reflected by an increased expression of CYCB1;1 and other cell 

cycle-related genes (Lee et al., 2009). In contrast, gif1 mutants display smaller and narrower 

leaves that contain fewer cells compared with the wild type (Kim and Kende, 2004; Horiguchi 

et al., 2005; Lee et al., 2009). Accordingly, also overexpression of GIF2 and GIF3 increases leaf 

size by an increasing cell number, demonstrating that GIF proteins act as positive regulators 

of cell proliferation (Lee et al., 2009). Recently it was shown that GIF1 might act as a mobile 

growth factor that diffuses through the leaf using plasmodesmata, and as such, establishes a 

long-range gradient along the leaf proximal-to-distal axis to determine the cell proliferation 

domain (Kawade et al., 2017). 

GIF1 has been shown to interact with six out of the nine members composing the GRF 

protein family in Arabidopsis: GRF1, GRF2, GRF3, GRF4, GRF5, and GRF9 (Kim and Kende, 

2004; Horiguchi et al., 2005; Debernardi et al., 2014; Vercruyssen et al., 2015).  

Overexpression of GRF5 results in larger organs owing to an increased cell number, whereas 

down-regulation of GRF5 results in the formation of narrower leaves that contain fewer cells 

(Horiguchi et al., 2005; Kim and Tsukaya, 2015; Vercruyssen et al., 2015). Also several other 

members of the GRF family are positive regulators of growth, such as GRF1 and GRF2, for 

which overexpression results in the formation of larger leaves (Kim and Tsukaya, 2015; 

Omidbakhshfard et al., 2015). In contrast, however, GRF9 negatively regulates leaf growth, 

since overexpression of GRF9 decreases organ size and the grf9 mutant produces bigger leaf 

primordia, rosette leaves and petals resulting from an increased cell proliferation compared 

with wild-type plants (Omidbakhshfard et al., 2018). GRF9 acts as a growth repressor by 

activating the expression of OBF-BINDING PROTEIN 3 (OBP3)-RESPONSIVE GENE 3 

(ORG3/bHLH039, further referred to as ORG3), which encodes a basic LEUCINE-ZIPPER 

(bZIP) transcription factor (Omidbakhshfard et al., 2018). Whereas org3 loss-of-function 

mutants produce leaves with an increased area as a result of an increased cell number 

compared with wild-type plants, the opposite phenotype is observed in plants 
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overexpressing ORG3 (Omidbakhshfard et al., 2018). Consistent with the genetic interaction 

between GRF9 and ORG3, the decreased leaf area in plants overexpressing GRF9 (GRF9ox) is 

completely restored in GRF9ox/org3 double mutants (Omidbakhshfard et al., 2018). Several 

downstream target genes of GIF1 have been identified so far, including GIF1 itself, GRF3, 

GRF5, GRF6, TARGET OF MONOPTEROS 3/CYTOKININ RESPONSE FACTOR 2 (TMO3/CRF2), B-

BOX DOMAIN PROTEIN 6/CONSTANS-LIKE 5 (BBX6/COL5), HECATE (HEC1), ZINC-FINGER 

HOMEODOMAIN 5/HOMEOBOX PROTEIN 33 (ZHD5/HB33, further referred to as ZHD5), and 

ARABIDOSPIS THALIANA RESPONSE REGULATOR 5 (ARR5) (Vercruyssen et al., 2014). 

Except for GRF5 and GRF6, GRF family members are regulated at transcript level by 

miR396-mediated RNA cleavage (Liu et al., 2009; Rodriguez et al., 2010; Debernardi et al., 

2014). miR396 expression increases throughout leaf development in a basipetal direction, 

following the cell cycle arrest front, restricting GRF expression to the basal part of the leaf 

(Liu et al., 2009; Rodriguez et al., 2010; Wang et al., 2010). Since the balance between GRFs 

and miR396 regulates cell number in a quantitative manner, miR396-overexpressing plants 

produce small and narrow leaves containing fewer cells owing to a shorter cell proliferation 

phase (Liu et al., 2009; Rodriguez et al., 2010; Wang et al., 2010). Oppositely, overexpression 

of a miR396-resistant version of GRF3 (rGRF3) prolongs cell proliferation, resulting in the 

formation of larger leaves that contain more cells (Debernardi et al., 2014).  

The SWI/SNF chromatin remodeling module 

The SWITCH/SUCROSE NON-FERMENTING (SWI/SNF) chromatin remodeling complex is 

closely linked with the GRF-GIF module and can activate and/or repress transcription by 

disrupting DNA–histone interactions, thereby altering chromatin accessibility (Han et al., 

2015; Archacki et al., 2016). The SWI/SNF complex comprises a functional core including a 

SWI2/SNF2 ATPase family member, BRAHMA (BRM), SPLAYED (SYD), CHROMATIN 

REMODELING 12 (CHR12) or CHR23 (Han et al., 2015), an SNF5 subunit, BUSHY (BSH), two 

SWI/SNF ASSOCIATED PROTEINS 73 (SWP73A/CHC2 and SWP73B), two ACTIN RELATED 

PROTEINS (ARP4 and ARP7) and a pair of SWI3 subunits: SWI3A, SWI3B, SWI3C, or SWI3D 

(Vercruyssen et al., 2014). SWI/SNF subunits are important for transcriptional regulation of 

key developmental processes (Wagner and Meyerowitz, 2002; Farrona et al., 2004; Hurtado 

et al., 2006; Kwon et al., 2006). Loss of function in the double knockout CHR12/CHR23 
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(minu1/minu2), SWI3A, SWI3B, or ARP7 causes embryonic lethality. Whereas plants with a 

single mutation in BRM, SYD, SWI3C, or SWI3D or silencing of BSH, SWP73B, or ARP4 do 

manage to develop, they display severe embryonal defects with limited leaf and flower 

development, often resulting in sterility (Kandasamy et al., 2005a; Kandasamy et al., 2005b; 

Sarnowski et al., 2005; Sang et al., 2012; Sacharowski et al., 2015). The brm mutant exhibits 

pleiotropic phenotypic alterations, resulting in an overall reduced plant size accompanied 

with a downward curling of the leaves (Farrona et al., 2004; Hurtado et al., 2006; Tang et al., 

2008). Furthermore, overexpression of SWI3C enhances leaf growth by increasing the 

number of cells (Vercruyssen et al., 2014), whereas swi3c mutants display small rosettes 

constituted of curled leaves (Sacharowski et al., 2015). GIF1 associates with the SWI/SNF 

complex through several subunits, including BRM, SYD, and SWP73B, to induce transcription 

of several downstream cell cycle-related genes (Vercruyssen et al., 2014). 

The GA-DELLA module  

Gibberellins (GAs) play an important role in both cell proliferation and cell expansion and 

mutations in genes involved in GA-signaling or -homeostasis can drastically affect plant organ 

size (Achard et al., 2009). Overexpression of GIBBERELLIN 20-OXIDASE 1 (GA20OX1), 

encoding a rate-limiting enzyme essential for GA-biosynthesis, results in increased levels of 

active GA, leading to the formation of enlarged leaves that contain more and larger cells 

(Coles et al., 1999; Gonzalez et al., 2010). In contrast, plants with reduced GA levels or a 

reduced GA sensitivity display a dwarfed phenotype (Olszewski et al., 2002). In Arabidopsis, 

there are five DELLA proteins; GA INSENSITIVE (GAI), REPRESSOR OF ga1-3 (RGA), RGA-

LIKE 1 (RGL1), RGL2, and RGL3. All five DELLA proteins function as key repressors of GA-

responsive growth, inhibiting GA-regulated gene expression (Sun and Gubler, 2004; de Lucas 

et al., 2008). GA binds to the GIBBERELLIN INSENSITIVE DWARF 2 (GID2) receptor, which 

causes ubiquitination of the DELLA proteins, marking them for protein degradation with the 

help of F-box protein SLEEPY1 (SLY) and the SCFSLY1/GID2 E3 ligase complex (McGinnis et al., 

2003; Dill et al., 2004; Ueguchi-Tanaka et al., 2007). Plants in which DELLA proteins are 

stabilized (sleepy1), which are GA-deficient (ga1-3) or in which SLY is mutated (sly1-10), 

show a dwarfed phenotype (Olszewski et al., 2002; Dill et al., 2004; Fu et al., 2004). In 

contrast, the quadruple DELLA mutant (gai-t6/rga-t2/rgl1-1/rgl2-1) mimicking constitutive 
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GA-signaling displays increased cell division rates, and consequently larger leaves (Achard et 

al., 2009). 

To regulate transcription, DELLA proteins exert their inhibiting function through 

protein–protein interactions with other transcriptional regulators (de Lucas et al., 2008). 

Among others, RGA is known to interact with and inhibit the transcriptional activity of 

PHYTOCRHOME INTERACTING FACTOR 3 (PIF3) and PIF4, bHLH factors involved in light 

signaling and mediators of cell elongation (de Lucas et al., 2008). Further downstream, 

DELLA proteins  promote the expression of the cell cycle inhibitor-encoding genes KRP2, SIM, 

SMR1, and SMR2 as the expression of these cell cycle genes is elevated in GA-deficient plants, 

suggesting the resulting dwarfed phenotype is caused by inhibition of the cell cycle (Achard 

et al., 2009). In addition to their involvement in the GA pathway, DELLA proteins are linked 

to the brassinosteroid pathway, since they regulate and are regulated by BRASSINAZOLE 

RESISTANT 1 (BZR1), which in its turn is inhibited by BRASSINOSTEROID INSENSITIVE 2 

(BIN2), known to positively affect cell proliferation. Furthermore, DELLA proteins are 

regulated through protein modification by SECRET AGENT (SEC) and SPINDLY (SPY) 

(Zentella et al., 2017). SEC acts as a positive growth regulator by inducing a closed 

conformation of the DELLA protein RGA1 through the addition of O-β-N-acetylglucosamine, 

inhibiting the repressor activity of RGA1 (Zentella et al., 2017). The loss-of-function mutant 

sec-2 displays a reduction in leaf length compared with wild-type plants (Hartweck et al., 

2006). Oppositely, SPY acts as a negative regulator of growth by enhancing the capacity of 

RGA1 to bind to PIF3, PIF4, and BZR1 (Zentella et al., 2017). Reduced SPY activity partially 

suppresses the dwarf phenotype caused by ga1 that lacks an early GA-biosynthesis enzyme 

(Filardo and Swain, 2003). In contrast, mutations in SEC did not reverse the dwarf 

phenotypes in a ga1 background, demonstrating that its role might be GA-signaling specific 

(Hartweck et al., 2006). 

The KLU module 

KLU/KLUH/CYP78A5 (further referred to as KLU) is a plant-specific cytochrome P450 

protein belonging to the CYP78A subfamily. The CYP78A subfamily consists of six members 

in Arabidopsis termed CYP78A5 to CYP78A10, and stimulates cell proliferation during leaf, 

flower, seed, and fruit development (Anastasiou et al., 2007; Adamski et al., 2009; Eriksson 
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et al., 2010). It is proposed that KLU stimulates cell proliferation in a non-cell autonomous 

manner, either by producing a mobile growth-promoting molecule or by degrading a, so far 

unknown, growth-inhibiting signal (Anastasiou et al., 2007; Eriksson et al., 2010; Kawade et 

al., 2010). Loss of KLU function also shortens the time between successive leaf initiation 

events, referred to as the plastochron, leading to an increased final leaf number (Wang et al., 

2008). Accordingly, KLU is expressed at the boundary between the shoot apical meristem and 

developing organ primordia, further strengthening its putative role in leaf initiation (Zondlo 

and Irish, 1999). KLU is proposed to stimulate cell proliferation, at least to some extent, 

redundantly with the closely related protein CYP78A7 as the loss-of-function cyp78a7 

mutant does not show a clear phenotype, whereas seedlings of cyp78a5/cyp78a7 double 

mutants are smaller compared with wild-type plants (Wang et al., 2008).  

The expression of KLU is repressed by SUPPRESSOR OF DA1-1 7/NGATHA-LIKE 

PROTEIN 2 (SOD7/NGAL2), a B3 transcription factor that binds directly to the KLU promoter 

(Zhang et al., 2015). Accordingly, the smaller leaf phenotype in the dominant sod7-1D mutant 

may directly result from an increased expression of KLU, though largely unexplored so far. 

Additionally, the closest homolog of NGAL2, DEVELOPMENT-RELATED PcG TARGET IN THE 

APEX4 (DPA4)/NGAL3, regulates plant size, since in the absence of DPA4/NGAL3, leaves 

appear smaller as a result of a decreased cell number compared with the wild type (Zhang et 

al., 2015). Additionally, KLU is regulated by the DELLA protein GAI1, which may link the KLU 

module with the GA-DELLA module, although largely unexplored so far (Claeys et al., 2014). 

The PEAPOD module 

In the epidermis of Arabidopsis leaves, 48% of the pavement cells are estimated to originate 

from the repeating asymmetric divisions of meristemoids, stem cell-like precursor cells of 

the stomatal lineage (Larkin et al., 1997; Geisler et al., 2000). Consequently, also the extent 

of meristemoid division may contribute significantly to final leaf size (White, 2006; Gonzalez 

et al., 2015). Meristemoid asymmetric division is negatively regulated by PEAPOD 1 (PPD1) 

and PPD2, putative DNA-binding proteins that belong to the TIFY protein family, a plant-

specific group of proteins with a broad range of functions (White, 2006; Zhang et al., 2012; 

Gonzalez et al., 2015). Landsberg erecta (Ler) plants in which the PPD locus is deleted (ppd) 
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and Col-0 plants expressing an artificial microRNA targeting the PPD transcripts (ami-ppd) 

both form enlarged rosettes with enlarged dome-shaped leaves that contain more cells owing 

to an increased meristemoid division compared with wild-type leaves (White, 2006; 

Gonzalez et al., 2015). In contrast, overexpression of the PPD genes results in the formation 

of leaves that are smaller and flatter, containing fewer cells compared with wild-type leaves  

(White, 2006). 

PPD proteins interact with KINASE-INDUCIBLE DOMAIN INTERACTING 8 (KIX8) and 

KIX9 and NOVEL INTERACTOR OF JAZ (NINJA), acting as adaptor proteins for the co-

repressor TOPLESS (TPL) (Gonzalez et al., 2015; Baekelandt et al., 2018). The kix8/kix9 

double mutant phenocopies both the ami-ppd leaf size and shape, suggesting that KIX8 and 

KIX9 act in a redundant manner and are pivotal for PPD functionality (Gonzalez et al., 2015). 

Whereas ninja mutants also show dome-shaped leaves, they lack the leaf size increase 

observed in ami-ppd and kix8/kix9 plants (Baekelandt et al., 2018). PPD2 is known to bind to 

the promoters of two out of the three D3-type CYCLIN genes, CYCD3;2 and CYCD3;3, 

repressing their transcription and accordingly, the expression of CYCD3;2 and CYCD3;3 is 

increased in ami-ppd, kix8/kix9 and ninja leaves compared with the wild type (Gonzalez et 

al., 2015; Baekelandt et al., 2018). Interestingly, meristemoid initiation and activity are 

reduced in the cycd3;1/cycd3;2/cycd3;3 triple mutant compared with the wild type (Dewitte 

et al., 2007; Elsner et al., 2012; Lau et al., 2014). More recently, it has been shown that plants 

overexpressing CYCD3;2 display propeller-like rosettes with narrow dome-shaped leaves, 

though lacking the leaf size increase observed in ppd and kix8/kix9 mutants (Baekelandt et 

al., 2018). Down-regulation of CYCD3;2 expression can partially complement the ppd2 leaf 

curvature phenotype, suggesting that CYCD3 genes are direct PPD2 target genes involved in 

controlling leaf shape (Baekelandt et al., 2018). In contrast, overexpression of CYCD3;3 does 

not affect leaf shape, but results in an overall reduced growth (Baekelandt et al., 2018). 

In Arabidopsis, the activity of the PPD/KIX-complex is regulated by the SCF complex 

containing the F-box protein STERILE APETALA/SUPPRESSOR OF DA1 3 (SAP/SOD3, further 

referred to as SAP) (Wang et al., 2016; Li et al., 2018). Poly-ubiquitination of the PPD/KIX-

complex by SCFSAP results in proteasome-dependent degradation of the protein complex 

(Wang et al., 2016; Li et al., 2018). Consistently, Arabidopsis plants overexpressing SAP 

produce enlarged leaves with uneven lamina growth and have an increased expression of the 
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PPD/KIX downstream target genes CYCD3;2 and CYCD3;3 compared with wild-type plants 

(Wang et al., 2016; Li et al., 2018). 

Connecting the growth regulatory modules with the cell cycle 

During the recent years, more and more studies demonstrate that the six growth regulatory 

modules discussed here do not operate independently, and several links between the 

different modules and with the core cell cycle machinery were discussed already before 

(Fig. 1). DA1-mediated proteolysis of TCP14/15/22 results in the induction of CYCA3;2 and 

RBR expression, whereas the PPD module regulates CYCD3;2 and CYCD3;3 expression 

(Baekelandt et al., 2018), demonstrating that both modules regulate the G1/S transition of 

the cell cycle. Furthermore, the SWP73B subunit of the SWI/SNF complex is known to bind 

to the promoter of KRP5, encoding a cell cycle inhibitor that regulates endoreduplication and 

interacts with D-type CYCLINs, thereby also regulating the G1/S transition (Jégu et al., 2013). 

Also the downstream target genes of the GRF transcription factors include many cell cycle-

related genes, including KNOLLE, which is active during the M-phase when cell plate 

formation occurs (Lauber et al., 1997; Touihri et al., 2011), and CYCB1;1, pivotal for the G2/M 

transition (Debernardi et al., 2014; Vercruyssen et al., 2014). Additionally, inducible KLU 

overexpression in the klu-2 mutant background causes up-regulation of CDKF;1, a CDK-

ACTIVATING KINASE (CAK) affecting the activity of the CDK/CYC complexes throughout the 

cell cycle by phosphorylation (Umeda et al., 2005; Takatsuka et al., 2009). Plants lacking 

functional CDKF;1 exhibit a dwarfed phenotype because of a decreased cell number and cell 

size (Takatsuka et al., 2009). Finally, DELLA proteins activate the expression of several genes 

encoding cell cycle inhibitors, such as KRP2, SIM, SMR1 and SMR2, that are responsible for 

the onset of endoreduplication and as such contribute to the balance between cell 

proliferation and endoreduplication during leaf development (Achard et al., 2009; Kumar et 

al., 2015).  

In addition to the direct connections with the cell cycle, several interactions between 

the members of different regulatory modules have been described. The SWI/SNF and the GA-

DELLA modules are  directly connected through SWI3C, a subunit of the SWI/SNF complex, 

that interacts with the DELLA proteins RGL2 and RGL3, and the DELLA regulatory protein 

SPY (Sarnowska et al., 2013). Furthermore, SPY is known to physically interact with TCP14 
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and TCP15, which are degraded in a DA1-dependent manner and repressed by DELLA 

proteins, connecting the SWI/SNF, GA-DELLA, and DA1-EOD1 modules (Steiner et al., 2012; 

Davière et al., 2014; Resentini et al., 2015). Additionally, the BRM-subunit was found to bind 

to the promoters of GA3ox1 (Sarnowska et al., 2013; Archacki et al., 2016), affecting GA-

biosynthesis. The GRF-GIF and SWI/SNF modules are also closely connected as GIF1 

associates with the SWI/SNF complex through several subunits, including BRM, SYD, and 

SWP73B, to induce the expression of the downstream target genes (Vercruyssen et al., 2014). 

Finally, upon expression of an inducible non-degradable form of GAI in proliferating leaf cells, 

GRF5 and KLU transcripts were decreased, putatively linking the GA-DELLA, KLU and GRF-

GIF modules (Claeys et al., 2014).  

Phenotypic effects observed upon misexpression of individual members of distinct 

modules may also be balanced at leaf level. For instance, whereas the DA1-EOD1 module 

predominantly affects the primary arrest front, the PEAPOD module is mainly involved in 

establishing the secondary arrest front (Gonzalez et al., 2012). Taken together, both are 

involved in determining cell proliferation, and therefore cell number and final leaf size. In 

agreement, at least two SOD mutants were identified in forward genetic screens that could so 

far not directly be linked with the DA1-EOD1 module: SAP that is part of the PEAPOD module 

and NGAL2 that is part of the KLU module (Zhang et al., 2015; Wang et al., 2016). In both 

cases, it seems that the da1-1 phenotype can be complemented by affecting distinct core cell 

cycle genes or impinging on different processes of leaf development.  

The importance of post-mitotic cell expansion for leaf growth 

Besides cell proliferation, cell expansion contributes significantly to final leaf size and a close 

coordination between cell proliferation and cell expansion is fundamental for proper 

organogenesis (Andriankaja et al., 2012). Cell expansion is proposed to be predominantly 

regulated by EXPANSINs (EXPs), XYLOGLUCAN ENDOTRANSGLUCOSEYLASE/HYDROLASEs 

(XTHs), PECTIN METHYLESTERASEs (PMEs) and reactive oxygen species (ROS) (Cosgrove, 

2015; Schmidt et al., 2016). Auxin-induced acidification of the apoplast by ATPases importing 

H+ ions results in the activation of cell wall-associated EXPs that facilitate cell wall loosening 

(Cosgrove, 2000, 2005). Plants ectopically expressing EXP10 display larger leaves and longer 

petioles containing larger cells, whereas down-regulation of EXP10 has the inverse effect 
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(Cosgrove, 2015). Also, SMALL AUXIN UP RNA (SAUR)-type proteins are proposed to 

promote ATPase activity by inhibiting 2C protein phosphatase (PP2C) proteins, resulting in 

the acidification of the apoplast and stimulating cell expansion (Chae et al., 2012; Hou et al., 

2013). Plants ectopically expressing GFP-stabilized SAUR19 protein display an increased leaf 

area owing to the production of larger cells (Spartz et al., 2012; Spartz et al., 2014). In 

contrast, saur36 mutants produce bigger leaves containing larger cells, demonstrating that 

SAUR36 acts as a negative regulator of cell expansion (Hou et al., 2013). Furthermore, also 

SAUR53 has been identified to positively regulate cell elongation as ectopic expression of 

SAUR53 results in the elongation of cells and organs (Kathare et al., 2018). Another link 

between auxin and cell expansion was demonstrated by Katano et al. (2016). They showed 

that in fugu5 mutants, lacking the AVP1 encoded H+-pyrophosphatase, cell division is 

inhibited, thus triggering auxin-induced compensated cell expansion (Katano et al., 2016). 

Besides EXP10 and several members of the SAUR family, only few other proteins have been 

described to impinge on the cell expansion phase, including GRF1, GRF2, EOD3/CYP78A6, 

ZHD5, KUODA 1 (KUA1), and ARABIDOPSIS THALIANA HOMEOBOX 12 (ATHB12) (Hong et 

al., 2011; Fang et al., 2012; Lu et al., 2014; Hur et al., 2015; Omidbakhshfard et al., 2015; 

Tsukaya, 2016). In contrast to the increased cell numbers in plants overexpressing GRF5 or 

GRF9, the increased leaf area in GRF1- and GRF2-overexpressing plants results from an 

increased cell area (Lee et al., 2009; Omidbakhshfard et al., 2015). Also in plants 

overexpressing EOD3, encoding a cytochrome p450 similar to KLU, seeds and leaves are 

bigger as a result of increased cell expansion, whereas EOD3 down-regulation leads to 

smaller leaves that consist of smaller cells (Fang et al., 2012). Also, the transcriptional 

regulators ZHD5, KUA1, and ATHB12 positively regulate leaf growth and their 

overexpression results in larger leaves and seeds owing to an increased cell area compared 

with the wild type (Hong et al., 2011; Fang et al., 2012; Lu et al., 2014; Hur et al., 2015). ZDH5 

is part of the ZINC-FINGER HOMEODOMAIN (ZF-HD) class of transcription factors, which 

comprises fourteen members in Arabidopsis that can homo- and heterodimerize (Tan and 

Irish, 2006; Hu et al., 2008). ZHD5 activity can be abolished by MINI ZINC-FINGER 1 (MIF1), 

which also contains a zinc-finger domain but lacks a DNA-binding domain (Hu and Ma, 2006; 

Hong et al., 2011). In this way, MIF1 acts as a competitive inhibitor peptide and upon 

overexpression, blocks binding of ZHD5 to the DNA, resulting in dwarfed plants (Hu and Ma, 
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2006; Hong et al., 2011). KUA1 encodes a MYB-like transcription factor that positively 

regulates leaf growth by promoting cell wall relaxation (Lu et al., 2014; Schmidt et al., 2016). 

ATHB12 is involved in cell expansion as well as ploidy determination, since overexpression 

of ATHB12 induces the expression of CCS52A and CCS52B, encoding components of the APC/C 

complex, regulating endoreduplication onset, as well as the expression of EXPA, involved in 

cell expansion (Hur et al., 2015). Recently, TCP13 was found to repress ATHB12 expression 

and overexpression of TCP13 resulted in a decreased leaf length and size owing to reduction 

in cell size (Hur et al., 2019). Similarly, downregulation of TCP13, and its paralogs, TCP5 and 

TCP17, resulted in enlarged leaf cells, suggesting that TCP13 regulates cell expansion through 

transcriptional control of ATHB12 (Hur et al., 2019). 

The alterations in organ size in mutants with an impaired cell division are often not as 

pronounced as one would expect based on the reduction in cell numbers (Ferjani et al., 2007; 

Horiguchi and Tsukaya, 2011). This is because inhibition of cell division in organs with 

determinate growth, such as leaves, is often compensated by excessive post-mitotic cell 

expansion, a phenomenon called compensation (Hisanaga et al., 2015). Interestingly, such 

compensatory mechanisms often occur in mutants of core cell cycle genes (Blomme et al., 

2013). For instance, the decreased cell number in the triple cycd3 mutant is compensated by 

an increased cell area (Dewitte et al., 2007). Also, gif1 mutants and plants overexpressing 

KRP2 show an only slight decrease in leaf area as the decrease in cell number is partially 

restored by an increase in cell size (Mizukami and Fischer, 2000; De Veylder et al., 2001; 

Horiguchi et al., 2005; Kawade et al., 2010). Analogously, the increased cell number in plants 

that ectopically express E2Fa is partially restored by a decreased cell size, resulting in the 

formation of slightly enlarged cotyledons and leaves (De Veylder et al., 2002). Altogether, 

these findings strengthen the putative presence of complex interactions between cell division 

and cell expansion, coordinated by distinct mechanisms (Ferjani et al., 2007; Horiguchi and 

Tsukaya, 2011). In this way, inhibition of one process may, at least partially, be restored by 

an increased activity of another process to ensure that the genetically determined size is 

attained as well as possible (Horiguchi et al., 2006; Horiguchi and Tsukaya, 2011; Hisanaga 

et al., 2015). The underlying molecular mechanisms, however, are often still largely 

underexplored (Ferjani et al., 2007; Horiguchi and Tsukaya, 2011; Hisanaga et al., 2015).  
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Concluding Remarks 

In this review, we presented six modules that are important for Arabidopsis leaf size 

determination and showed that for most of them, direct links with the cell cycle machinery 

have been revealed. In addition, we demonstrate that connections between these different 

modules are revealed with an increasing pace. This demonstrates that the modules described 

throughout this review do not stand on their own, but that leaf growth is an intricate process 

that requires the cooperation of various interconnected key players that are part of complex 

regulatory networks. In the future, additional work will be required to further complete our 

view on these regulatory networks and the connections residing therein. There are also many 

genes affecting leaf size that were not presented in this review, largely because there are to 

our knowledge no links with any of the modules discussed here. In the future, more research 

will be required to also map these regulators in the bigger network of leaf growth regulation. 

Ultimately, mathematical modeling may enable to fully grasp the complexity of the organ 

growth machinery.  
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Fig. 1. Overview of at least six gene regulatory modules involved in cell proliferation and/or 

cell expansion: DA1-EOD1, GRF-GIF, SWI/SNF, GA-DELLA, KLU, and PEAPOD. The cell cycle 

is shown in the center and is surrounded by the core cell cycle proteins of which the 

expression/activity is affected by one or more of the six regulatory modules. Proteins 

involved in cell expansion and their interaction with some of the modules are also indicated. 

Transcriptional (pill-shaped) or non-transcriptional (octagonal shapes) regulators with a 

positive (teal blue) or negative (orange) effect on leaf growth are indicated.  Gray 

proteins/transcriptional regulators represent proteins of which the effect on leaf growth is 

unknown or not presented in this review. The type of arrowhead indicates an activating 

(arrow) or repressing (T-junction) action, while absence of an arrowhead represents 

binding. These three actions are either at a transcriptional (dotted lines) or protein (full 

lines) level. Abbreviations: APC/C (ANAPHASE PROMOTING COMPLEX/CYCLOSOME), ARP 

(ACTIN RELATED PROTEINS), ARR (ARABIDOPSIS THALIANA RESPONSE REGULATOR), ATHB 

(ARABIDOPSIS THALIANA HOMEOBOX), BB (BIG BROTHER), BRM (BRAHMA), BSH (BUSHY), 

BZR (BRASSINALZOLE RESISTANT), CCS52A (CELL-CYCLE SWITCH PROTEIN), CDC20 (CELL 

DIVISION CYCLE 20), CDK (CYCLIN DEPENDANT KINASE), COL5 (CONSTANS-LIKE 5), CRF2 

(CYTOKININ RESPONSE FACTOR 2), CYC (CYCLIN), DAR (DA1-RELATED), DP (DIMERISATION 

PROTEIN), EOD (ENHANCER OF DA1), EXP (EXPANSIN), GA20OX1 (GIBBERELLIN 20-OXIDASE 

1), GA3OX1 (GIBBERELLIN 3-OXIDASE 1), GAI1 (GA INSENSITIVE), GIF (GRF-INTERACTING 

FACTOR), GRF (GROWTH REGULATING FACTOR), HEC1 (HECATE 1), KIX (KINASE-INDUCIBLE 

DOMAIN INTERACTING), KRP/ICK (KIP-RELATED PROTEIN/INTERACTOR OF CDKs), KUA1 

(KUODA1), MIF1 (MINI ZINC-FINGER 1), CHR (CHROMATIN REMODELING), NGAL (NGATHA-

LIKE PROTEIN), NINJA (NOVEL INTERACTOR OF JAZ), ORG3 (OBP3-RESPONSIVE GENE 3), PIF 

(PHYTOCHROME INTERACTING FACTOR), PPD (PEAPOD), RBR (RETINOBLASTOMA-

RELATED), RGA1 (REPRESSOR OF ga1-3), RGL (RGA-LIKE), SAP (STERILE APETALA), SAUR 

(SMALL AUXIN UP RNA), SCF (SKP1/CULLIN1/F-BOX PROTEIN), SEC (SECRET AGENT), SIM 

(SIAMESE), SMR (SIAMESE-RELATED), SNF5 (SUCROSE NON-FERMENTING 5), SPY (SPINDLY), 

SWI/SNF (SWITCH/SUCROSE NON-FERMENTING), SWI3 (SWITCH), SWP73 (SWI/SNF 

ASSOCIATED PROTEIN 73), SYD (SPLAYED), TCP (TEOSINTE BRANCHED 

1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR), TPL (TOPLESS), UBP15 

(UBIQUITIN SPECIFIC PROTEASE 15), ZHD5 (ZINC-FINGER HOMDEODOMAIN 5).  
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Table 1. AT-code, gene name, and description of genes discussed or mentioned in this review 

as well as the module to which they belong. Protein groups or families represent multiple 

genes and therefore have no AT-code. 

Module AT-code Gene name Gene description 

/ AT1G75080 BZR1 BRASSINALZOLE RESISTANT 1 

/ AT1G75950 SKP1/ASK1/UIP1 
S PHASE KINASE-ASSOCIATED PROTEIN 1/ARABIDOPSIS 
SKP1 HOMOLOGUE 1/UFO INTERACTING PROTEIN 1 

/ AT3G48100 ARR5/IBC6 
ARABIDOPSIS THALIANA RESPONSE REGULATOR 
5/INDUCED BY CYTOKININ 6 

/ AT3G56980  ORG3/BHLH039 
OBF-BINDING PROTEIN 3 (OBP3)-RESPONSIVE GENE 
3/BASIC HELIX-LOOP-HELIX 39 

/ AT4G02570 CUL1/ICU13 CULLIN 1/ INCURVATA 13 

/ AT4G18710 BIN2 BRASSINOSTEROID-INSENSITIVE 2 

/ AT4G23750 CRF2/TMO3 
CYTOKININ RESPONSE FACTOR 2/TARGET OF 
MONOPTEROS 3 

/ AT5G57660 COL5/BBX6 CONSTANS-LIKE 5/B-BOX DOMAIN PROTEIN 6 

/ AT5G67060 HEC1 HECATE 1 

Cell expansion AT1G09530 PIF3 PHYTOCHROME INTERACTING FACTOR 3 

Cell expansion AT1G19840 SAUR53 SMALL AUXIN UPREGULATED RNA 53 

Cell expansion AT1G26770 EXP10 EXPANSIN 10 

Cell expansion AT1G74660 MIF1 MINI ZINC-FINGER 1 

Cell expansion AT1G75240 ZHD5/HB33 
ZINC-FINGER HOMEODOMAIN 5/HOMEOBOX PROTEIN 
33 

Cell expansion AT2G43010 PIF4 PHYTOCHROME INTERACTING FACTOR 4 

Cell expansion AT2G45210 SAUR36/SAG201 
SMALL AUXIN UPREGULATED 36/SENESCENCE-
ASSOCIATED GENE 201 

Cell expansion AT2G46660 EOD3/CYP78A6 
ENHANCER OF DA-1 3/CYTOCHROME P450, FAMILY 78, 
SUBFAMILY A, POLYPEPTIDE 6 

Cell expansion AT3G02150 TCP13/PTF1 
TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING 
CELL NUCLEAR ANTIGEN FACTOR 13/PLASTID 
TRANSCRIPTION FACTOR 1 

Cell expansion AT3G61890 ATHB12 ARABIDOPSIS THALIANA HOMEOBOX 12 

Cell expansion AT5G18010 SAUR19 SMALL AUXIN UP RNA 19 

Cell expansion AT5G47390 KUA1/MYBH KUODA1/MYB HYPOCOTYL ELONGATION-RELATED 

Cell expansion Gene group PP2C 2C PROTEIN PHOSPHATASE 

Cell expansion Gene group EXPA EXPANSIN A 

Cell-cycle 
machinery 

AT1G08560 KNOLLE/SYP111 SYNTAXIN OF PLANTS 111 

Cell-cycle 
machinery 

AT1G32310 SAMBA SAMBA 

Cell-cycle 
machinery 

AT3G07870 FBX92 F-BOX PROTEIN 92 
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Module AT-code Gene name Gene description 

Cell-cycle 
machinery 

AT3G54650   FBL17 F-BOX LIKE 17 

Cell-cycle 
machinery 

Gene group APC/C ANAPHASE PROMOTING COMPLEX/CYCLOSOME 

Cell-cycle 
machinery 

Gene group CCS52A CELL CYCLE SWITCH PROTEIN 52 A 

Cell-cycle 
machinery 

Gene group CDC20 CELL DIVISION CYCLE 20 

Cell-cycle 
machinery 

Gene group CDK CYCLIN DEPENDANT KINASE 

Cell-cycle 
machinery 

Gene group CYC CYCLIN 

Cell-cycle 
machinery 

Gene group DP DIMERISATION PROTEIN 

Cell-cycle 
machinery 

Gene group KRP/ICK KIP-RELATED PROTEIN/INTERACTOR OF CDKs 

Cell-cycle 
machinery 

Gene group RBR RETINOBLASTOMA-RELATED 

Cell-cycle 
machinery 

Gene group SIM SIAMESE 

Cell-cycle 
machinery 

Gene group SMR SIAMESE-RELATED 

DA1-EOD1 AT1G14920 GAI/RGA2 
GIBBERELLIC ACID INSENSITIVE/RESTORATION ON 
GROWTH ON AMMONIA 2 

DA1-EOD1 AT1G15550 GA3OX1 GIBBERELLIN 3-OXIDASE 1 

DA1-EOD1 AT1G17110 UBP15/SOD2 
UBIQUITIN-SPECIFIC PROTEASE 15/SUPPRESSOR OF DA1 
2 

DA1-EOD1 AT1G19270 DA1 DA1 

DA1-EOD1 AT1G69690 TCP15 
TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING 
CELL NUCLEAR ANTIGEN FACTOR 15 

DA1-EOD1 AT1G72010 TCP22 
TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING 
CELL NUCLEAR ANTIGEN FACTOR 22 

DA1-EOD1 AT1G78420 DA2 DA2 

DA1-EOD1 AT2G39830 DAR2 DA1-RELATED PROTEIN 2 

DA1-EOD1 AT3G47620 TCP14 
TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING 
CELL NUCLEAR ANTIGEN FACTOR 14 

DA1-EOD1 AT3G63530 BB/EOD1 BIG BROTHER/ENHANCER1 OF DA1 

DA1-EOD1 AT4G25420 GA20OX1 GIBBERELLIN 20-OXIDASE 1 

DA1-EOD1 AT4G36860 DAR1 DA1-RELATED PROTEIN 1 

GA-DELLA AT1G66350 RGL1 RGA-LIKE 1 

GA-DELLA AT2G01570 RGA1 REPRESSOR OF GA1-3 

GA-DELLA AT3G03450 RGL2 RGA-LIKE 2 

GA-DELLA AT3G04240 SEC SECRET AGENT 

GA-DELLA AT3G11540 SPY SPINDLY 
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Module AT-code Gene name Gene description 

GA-DELLA AT4G24210 SLY SLEEPY 1 

GA-DELLA AT5G17490 RGL3 RGA-LIKE PROTEIN 3 

GA-DELLA  GID2 GIBBERELLIN INSENSITIVE DWARF 2 

GRF-GIF AT1G01160 GIF2 GRF1-INTERACTING FACTOR 2 

GRF-GIF AT2G06200 GRF6 GROWTH-REGULATING FACTOR 6 

GRF-GIF AT2G22840 GRF1 GROWTH-REGULATING FACTOR 1 

GRF-GIF AT2G36400 GRF3 GROWTH-REGULATING FACTOR 3 

GRF-GIF AT2G45480 GRF9 GROWTH-REGULATING FACTOR 9 

GRF-GIF AT3G13960 GRF5 GROWTH-REGULATING FACTOR 5 

GRF-GIF AT3G52910 GRF4 GROWTH-REGULATING FACTOR 4 

GRF-GIF AT4G00850 GIF3 GRF1-INTERACTING FACTOR 3 

GRF-GIF AT4G24150 GRF8 GROWTH-REGULATING FACTOR 8 

GRF-GIF AT4G37740 GRF2 GROWTH-REGULATING FACTOR 2 

GRF-GIF AT5G28640 GIF1/AN3 GRF1-INTERACTING FACTOR 1/ANGUSTIFOLIA 3 

GRF-GIF AT5G53660 GRF7 GROWTH-REGULATING FACTOR 7 

KLU AT1G13710 KLU/CYP78A5 
KLUH/CYTOCHROME P450, FAMILY 78, SUBFAMILY A, 
POLYPEPTIDE 5 

KLU AT3G11580 NGAL2/SOD7 NGATHA-LIKE PROTEIN 2/SUPRESSOR OF DA1 7 

KLU AT5G06250 NGAL3/DPA4 
NGATHA-LIKE PROTEIN 3/DEVELOPMENT-RELATED PcG 
TARGET IN THE APEX 4 

PPD AT1G15750 TPL/WSIP1 TOPLESS/WUS-INTERACTING PROTEIN 1 

PPD AT3G24150 KIX8 KINASE-INDUCIBLE DOMAIN INTERACTING 8 

PPD AT4G14713 PPD1 PEAPOD 1 

PPD AT4G14720 PPD2 PEAPOD 2 

PPD AT4G28910 NINJA NOVEL INTERACTOR OF JAZ 

PPD AT4G32295 KIX9 KINASE-INDUCIBLE DOMAIN INTERACTING 9 

PPD AT5G35770 SAP/SOD3 STERILE APETALA/SUPRESSOR OF DA1 3 

SWI/SNF AT1G18450 ARP4 ACTIN-RELATED PROTEIN 4 

SWI/SNF AT2G28290 SYD/CHR3 
SPLAYED/CHROMATIN REMODELING COMPLEX SUBUNIT 
R 3 

SWI/SNF AT2G46020 BRM BRAHMA 

SWI/SNF AT3G01890 SWP73A/CHC2 SWI/SNF ASSOCIATED PROTEIN 73 A 

SWI/SNF AT3G06010 CHR12 CHROMATIN REMODELING 12 

SWI/SNF AT3G17590 BSH BUSHY GROWTH 

SWI/SNF AT3G17590 SNF5 SUCROSE NON-FERMENTING 5 

SWI/SNF AT3G60830 ARP7 ACTIN-RELATED PROTEIN 7 

SWI/SNF AT5G14170 SWP73B/CHC1 SWI/SNF ASSOCIATED PROTEIN 73 B 

SWI/SNF AT5G19310   CHR23 CHROMATIN REMODELING 23 

SWI/SNF Gene group SWI/SNF SWITCH/SUCROSE NON-FERMENTING 
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Module AT-code Gene name Gene description 

SWI/SNF Gene group SWI3 SWITCH 
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