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High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common
Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show
LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for
inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to
more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are
the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and
the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator
based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into
HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed
our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise
comparison experiment. We compared our results with those obtained with the most recent methods found in the literature.
Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone
mapping methods and its performance is similar to other more complex and time-consuming advanced techniques.
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I . I NTRODUCT ION

One of the most important key factors of display per-
formance is the contrast ratio, which represents the ratio
between how dark or bright the display can get. In general,
the dynamic range refers to the ratio between the bright-
est whites and the darkest blacks given at the same time
in a specific image or video frame. The dynamic range is
often measured in “stops,” which is the logarithm base-2 of
the contrast ratio. While conventional display technology is
capable to reach brightness ranges from 1 to 300 cd/m2 (nits)
and 8 stops of dynamic range, objects captured in sunlight
can easily have brightness values up to 10 000 nits. Consid-
ering that the human eye can see 14 stops of dynamic range
in a single view; clearly, conventional display technology is
unable to show luminance-realistic images.
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Images associated to display technology with narrow
dynamic range and a low brightness have been retroactively
called LowDynamicRange (LDR) images. AHighDynamic
Range (HDR) image refers to an image that encodes a higher
dynamic range and a larger amount of brightness than a
reference LDR image. To improve the dynamic range of a
display, manufacturers have innovated in the development
of new display technologies. Recent developments have
yielded LED displays, which contain an array of indepen-
dently controlled high-power white LEDs as backlighting
system, which allows reaching a peak brightness of 6000
nits and 14 stops of dynamic range [1]. Despite LED dis-
plays offer the best alternative for manufacturers to design
HDR displays, OLED technology also has been used for
this purpose. LED technology tolerates higher peak bright-
ness (more than 1000 nits) and higher black levels (less
than 0.05 nits). OLED technologies tolerate lower bright-
ness (less than 1000 nits) and deeper black levels (less than
0.0005 nits). In general, LED technology allows manufac-
turers to create displays with high peak brightness levels but
less deep blacks, while OLED technology allows them to
build displays with lower peak brightness but deeper blacks.
Additionally, in order to represent a wide dynamic range in
an image, the number of bits for its representation needs
to be increased. Hence, a wider range of luminance levels

1https://doi.org/10.1017/ATSIP.2020.5
Downloaded from https://www.cambridge.org/core. Universiteit Gent, on 24 Feb 2020 at 12:18:16, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https:{/}{/}orcid.org{/}0000-0002-9757-4507
mailto:GonzaloRaimundo.LuzardoMorocho@UGent.be
https://doi.org/10.1017/ATSIP.2020.5
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


2 gonzalo luzardo, et al.

can be encoded to display images with a larger dynamic
range.
HDR imaging overcomes the dynamic range limitations

of traditional LDR imaging by capturing the full range of the
visible light spectrum and colors that exist in the real world
by performing operations at high bit-depths [2]. Hence,
HDR technology is capable of enhancing the quality of tele-
vision experience with a dynamic range compared to the
Human Visual System (HVS) [3]. Additionally, due to its
truthful representation of the real world with more details
and information about the scenes, it is becoming more rel-
evant for other fields such as video game development,
medical imaging, computer vision, scientific visualization,
surveillance, among others [4].
Unfortunately, a large amount of existing video content

has already been recorded and/or graded in LDR. To dis-
play LDR content on HDR displays, an inverse/reverse tone
mapping algorithm is required. Inverse tone mapping algo-
rithms work on reproducing real-world appearance HDR
images by using LDR images as input [5, 6]. Different tech-
niques have been proposed in the past few years, each of
them addresses the problem of inverse tone mapping in a
different way. Common limitations of these techniques are
(1) they need human intervention to decide the most suit-
able parameters to use for the inverse tone mapping, (2)
they are limited to produce HDR images with a limited
peak brightness (between 1000 and 3000 nits), (3) they are
designed to preserve the appearance of the original LDR
image without considering the artistic intentions inherent
to the HDR domain (like deep shadows and bright high-
lights), and (4) they are complex and their computation
times are so high that they are not suitable for practical
purposes such as real-time inverse tone mapping or being
embedded on hardware with limited resources.
In this article, as an extension of our previous work [7],

we describe a fully-automatic inverse tone mapping
algorithm based on dynamic mid-level mapping. We car-
ried out an extensive objective evaluation of our algorithm
against the most recent methods of inverse tonemapping in
the literature. Additionally, we conducted a subjective pair-
wise comparison experiment in order to validate our previ-
ous findings. This paper is organized as follows: an overview
of previous works is given in Section II. Then, the proposed
expansion function and the inverse tonemapping algorithm
are described in Section III and Section IV, respectively
Experimental results are presented in Section V. Finally,
concluding remarks are discussed in Section VI.

I I . RELATED WORK

Several methods for inverse tone mapping have been pro-
posed in recent years. These can be grouped according to
how the dynamic range expansion problem is tackled [8]:

• Global operators. Where the same global expansion func-
tion is applied to each pixel of the LDR image. A mono-
tonic function is usually adopted and its shape is adjusted

according to the characteristics of the scene present in
the image. Typical characteristics are the scene type (dark,
average, bright), contrast, amount of saturated pixel,mean
and median luminance, and the perceived amount of
brightness in the scene [7, 9–11].

• Local operators. Where each region of the image is
expanded in a different way, depending on a given crite-
rion. Commonly, these methods classify different parts of
the image as a region with a diffuse or a specular highlight
in order to expand each one using a different expansion
function. Other methods seek to identify salient objects
in the image in order to expand them in a different way
than in the rest of the image [6, 12, 13].

• Expansion maps. Where an expansion map is used to
direct the expansion of the LDR content. This expansion
map is a non-binary mask that represents the weights to
be used for the expansion of each pixel in the LDR image.
The main difference of each method is the way how this
map is created [14–17].

• User-guided techniques. Where the user intervention is
required to address the expansion. In these methods, the
user helps to add detailed information lost in over/under-
exposed areas on the original LDR image prior to being
expanded [18].

• Deep Learning techniques. Where Deep Convolutional
Neural Networks (CNNs) are used to automatically
expand an input LDR image. Not all, but most of these
methods address the dynamic range expansion in to
reconstruct data that have been lost from the original
signal due to clipping, quantization, tone mapping, or
gamma correction [19–24].

In the remainder of this section, we discuss some very
specific inverse tone mapping techniques. Kovaleski and
Oliveira [17] proposed a reverse tone mapping operator for
images and videos which can deal with images with a wide
range of exposure conditions. This technique is based on
the automatic computation of a brightness enhancement
function, also called expand-map, that determines areas
where image information may have been lost and fills these
regions using a smooth function. Likewise, Huo et al. [15]
proposed a method that considers the perceptual proper-
ties of the Human Visual System (HVS). Their approach is
based on the fact that the perceived brightness of each point
in an image is not determined by its absolute luminance,
but by a complex sequence of steps that happens in the
HVS. According to the authors, due to this and the fact that
for applications of rendering a believable HDR impression
(entertainment/TV) rather than a scientifically HDR recov-
ery, it is not necessary to create a perfect reconstruction
of the original HDR image. Rather, an approximation that
does not produce a significant change in the visual sensa-
tion experienced by the observers should be enough, which
can be achieved by imitating the local retina response. Their
algorithm first extracts the luminance and chrominance
channels from the LDR input image. Then, the luminance
channel is used to compute the local surrounding lumi-
nance using an iterative bilateral filter. Afterward, the new
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expanded HDR luminance is obtained by combining the
input luminance channel and the local surrounding using
the local response of retina as the mathematical model,
whichwas estimated previously from the global one. Finally,
the HDR image is generated by combining the computed
HDR luminance and the chrominance channel from the
input LDR image. According to the authors, this method is
capable to enhance the local contrast and preserve details in
the resulting expanded HDR image.
Masia et al. [11] proposed a dynamic inverse tone map-

ping algorithmbased on image statistics. Themain assump-
tion of this method is that input LDR images are not always
correctly exposed. In this way, the authors propose to use
a simple gamma curve as inverse tone mapping operator
in which the gamma value is estimated from a multi-linear
model that incorporates the key value [25], the number of
overexposed pixels, and the geometric mean luminance as
input parameters. Bist et al. [9] proposed a method based
on the conservation of the lighting style aesthetics. As with
previous approaches, thismethod uses a simple gamma cor-
rection curve as an expansion operator; however, in this
method, the gamma value is computed based on themedian
of the luminance in the input LDR image. Despite these
methods produce good results across a wide range of expo-
sure conditions; because they are based on preserving the
aspect of the original LDR image, they might not always
reflect the artistic intentions intrinsic to the HDR domain.
In recent studies, Endo et al. [21] proposed an inverse

tone mapping method based on Deep Learning. This is one
of the first approaches that explore the use of deep CNNs.
The key idea is to synthesize LDR images taken with dif-
ferent exposures based on supervised learning, and then
reconstruct an HDR image by merging them. In a so-called
learning phase, authors trained two deep neural network
models by using 2D convolutional and 3D deconvolutional
networks to learn the changes in exposures of the synthe-
sized LDR images created from an HDR dataset. The first
model was trained to output N up-exposure images, while
the second one to output N down-exposed images. Both
models were built using the same architecture but trained
separately. The synthesized images used to train the models
were created by simulating cameras with different camera
response functions and exposures from each image in the
HDR dataset. For the inverse tonemapping of a single input
LDR image; first, a set of synthesized LDR images is gener-
ated using the built models, in a so-called inference phase.
Then, the input LDR image and k synthesized LDR images
selected systematically, s.t. k ≤ 2N, are used to compute the
final HDR image by merging them using the method pro-
posed byDebevec andMalik [26]. According to the authors,
their method can reproduce not only natural tones with-
out introducing visible noise but also the colors of saturated
pixels. Likewise, Eilertsen et al. [19] proposed a technique
forHDR image reconstruction from a single exposure using
deep CNNs. This method is focused on reconstructing the
information that has been lost in saturated image areas, such
as highlights lost due to saturation of the camera sensor, by
using deep CNNs. The authors first trained themodel using

a dataset of HDR images with their corresponding LDR
images. This dataset was generated by simulating sensor
saturation for a range of cameras using random values for
exposure, white balance, noise level, and camera curve. The
model proposed by the authors for the HDR reconstruction
is a fully convolutional deep hybrid dynamic range autoen-
coder network. It is defined as “hybrid” because it mixes the
behavior of a classic autoencoder/decoder that transforms
and reconstructs dimensional data, and a denoising autoen-
coder/decoder that is trained to reconstruct the original
uncorrupted data. The encoder operates on the LDR input
image, which contains corrupted data in saturated regions,
to convert it into a latent feature representation. Then, the
decoder uses this representation to generate the final HDR
image by restoring corrupted data. Authors claim that their
method can reconstruct a high-resolution visually convinc-
ing HDR image using only an arbitrary single exposed LDR
image as an input.
In this paper, we propose a fully-automatic inverse

tone mapping algorithm based on mid-level mapping. Our
approach allows expanding LDR images into HDR domain
with peak brightness over 1000 nits. For this, a compu-
tationally simple non-linear expansion function that takes
only one parameter is used. This parameter is automat-
ically estimated using simple first-order image statistics.
Unlike [9, 11], our proposed expansion function offers bet-
ter capabilities to increase the perceived image quality of
the resulting HDR image than a gamma expansion curve.
Furthermore, it can expand an LDR image into an HDR
image with a peak brightness of over 1000 nits. The pro-
posed algorithm can reach the same performance of more
computationally complex methods, with the advantage that
it is simple enough to be used for practical purposes such as
real-time processing in embedded systems.

I I I . PROPOSED EXPANS ION
FUNCT ION

To expand the dynamic range of an LDR image (ILDR) and
obtain its inverse tone-mapped HDR image counterpart
(IHDR), a method based on mid-level mapping is proposed.
The tone mapper function proposed in [27] is adopted. In
this function, two parameters to control the shape of the
curve (a and d) and two parameters to set the anchor point
are defined (b and c), as follows:

f (L) = Lw = La

L(ad)b + c
s.t. L ∈ [0, 1] (1)

Where L is the display luminance of ILDR, Lw is the expanded
luminance of IHDR in the real-world domain, and Lw ∈
[0, Lw,max]. The parameter Lw,max is the maximum lumi-
nance in which ILDR wants to be expanded, and its value
usually depends on the peak brightness of the HDR display
where IHDR will be displayed. Lw,max can also be considered
as the relative luminance to the maximum luminance pro-
duced by the HDR display. Then, a value of 1 means that an
output HDR-image that reaches the peak luminance of the
HDR display is required.
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As mentioned by the authors, this function was designed
to result in believably real images and to allow adaptation
to a large range of viewing conditions. In our case, this
formulation offers sufficient freedom to change the overall
brightness impression of the scene and preserve its artistic
intent, without resulting in an “unbelievable” image.
Figure 1 shows a graph of the proposed function. The

parameters a and d allow controlling the shape of the so-
called toe (contrast) and shoulder (expansion speed) of the
curve, respectively. Our function offers the possibility to
fine-tune the resulting inverse tone-mapped HDR image to
improve its perceived image quality, for example by increas-
ing the contrast [28]. As can be seen in Fig. 1, the parameters
mi and mo act as an anchor point for the curve and repre-
sent the middle-gray value defined for the input ILDR and
the expected middle-gray value in the output IHDR, respec-
tively. The middle-gray value is a tone that is perceptually
about halfway between black and white on a lightness scale.
These parameters enable us to control the overall luminance
of IHDR. For this, the parametermi is set to the middle-gray
predefined for ILDR (e.g. 0.214 for sRGB linear LDR images),
andmo is adjusted to the middle-gray value desired in IHDR.
In practice, this operation can be seen asmid-levelmapping.
A low value for themo causes IHDR to become darker, and a
higher value brighter.
Considering the following constraints: f (mi) = mo and

f (1) = Lw,max. The anchor points b and c can be computed
as follows:

b = mi
aLw,max − mo

mo(miad − 1)Lw,max (2)

c = mi
admo − mi

aLw,max
mo(miad − 1)Lw,max (3)

s.t. mi,mo ∈]0, 1[ Lw,max, a, d > 0

Fig. 1. The shape of the proposed inverse tone mapping function. LDR input
values are normalized between 0 and 1. The maximum output HDR value
depends on the peak luminance in nits of the HDR display e.g. 6000, or 1 for
expressing that we intend to achieve the maximum luminance supported by the
display.

Note that practically these conditions imply thatmi should
be different from 0 (a completely black frame) and 1 (a
completely white frame), both are border cases that can
easily be accounted for.
As can be seen, the proposed function in equation (1)

is applied only to the luminance channel in order to leave
the chromatic channels of ILDR unaffected. Despite the exis-
tence of other methods that allow reconstructing the color
imagewhile preserving its saturation better [29], we decided
to use the method proposed by Mantiuk et al. [30]. In this,
the color image IHDR is reconstructed by preserving the ratio
between the red, green, and blue channels as follows:

CHDR =
((

CLDR

L
− 1

)
s + 1

)
Lw s.t. s � 1 (4)

Where CLDR and CHDR denote one of the color channel val-
ues (red, green, blue) of the ILDR and IHDR, respectively.
The parameter s is a color saturation parameter and allows
to compensate for the loss of saturation during the lumi-
nance expansion operation. By fixing the saturation (s),
contrast (a), and expansion speed (d), the expand operation
of ILDR can be performed easily using equations (1)–(4). In
addition, the proposed function allows changing the peak
brightness of the resulting HDR image without affecting its
middle tones, which is controlled by the parametermo.

I V . FULLY -AUTOMAT IC INVERSE
TONE MAPP ING

The proposed solution exploits the premise that an inverse
tone mapping procedure should take into account the con-
text in which the scene unfolds [31]. In this sense, the con-
text could be objectively expressed as features of the scene
that are used to lead the inverse tone mapping process.
Our algorithm is based on a mid-level mapping

approach. Image features are used to estimate the middle-
gray level of the HDR output. For the proposed expansion
function, parameters s, a, and d are fixed manually; then,
the input mo, the value required for the expansion opera-
tion, is automatically estimated through amulti-linear func-
tion. Our function uses simple image-statistics from the
LDR image as input parameters to estimatemo. Section (A)
describes the scene image dataset used for training, Section
(B) explains how the corresponding human-chosen inverse
tone mapping parameters were obtained through psycho-
visual experiment, and Section (C) describes the machine
learning method (multi-linear regression) used to estimate
the inverse tone mapping parameters from scene features.

A) HDR-LDR Image Dataset
The following HDR video datasets were used to create
our HDR-LDR Image Dataset: Tears of Steel [32] (1 video
sequence), Stuttgart HDR image dataset [33] (15 video
sequences), and a short film (1 video sequence) created
by the Flemish Radio and Television Broadcasting Organi-
zation (VRT). These video datasets were selected because
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they include video sequences that contain scenes with a
wide range of contrast and lighting conditions. Addition-
ally, they were professionally graded by experts from VRT
in HDR and LDR, using a SIM2-HDR47E HDR screen [1]
and a Barco type RHDM-2301 LDR screen as reference
displays, respectively. Professionally graded video content
refers to video sequences that have been obtained by altering
and/or enhancing a master (or a raw input video) in order
to be properly displayed on a specific display. This process
involves an artistic step, where the “grader”manipulates the
input to better express the director’s artistic intentions on
the final graded content, which is extremely important to
offer a reliable base to the discussion on how the content is
perceived by the viewers.
From each video sequence in the HDR video datasets,

we obtained two professionally graded video sequences, one
in LDR and another one in HDR. HDR video sequences
obtained are considered as ground truth, with most of the
artistic intentions that content creators consider when they
work in the HDR domain. The HDR-LDR Image Dataset
was created by selecting one frame per second from each
professionally graded video sequence. As can be seen in
Table 1, the entire dataset includes 1631 pairs of images, an
LDR image and itsHDRcounterpart.More details about the
image dataset created for this study can be seen in Table 1.
Figure 2 shows examples of LDR images from the dataset.
For each LDR image in the dataset, simple first-order

image statistics, most of them computed on the luminance

Table 1. Details about the size and number of pairs included in the
HDR-LDR Image Dataset.

Video dataset Size (RGB pixels) HDR-LDR pairs

Tears of Steel 1920× 800 735
Stuttgart 1920× 1080 509
VRT 1920× 1080 387

Table 2. First-order image statistics computed.

Geometric mean Lh = exp((1/N)
N∑
i=1
log(Li + ε)) s.t. ε = 0.0001

Key value K = log(Lh + ε) − log(Lmin + ε)

log(Lmax + ε) − log(Lmin + ε)

Kurtosis Ku =
(1/N)

N∑
i=1

(Li − Lavg)4

Lvar2

Skewness Sk =
(1/N)

N∑
i=1

(Li − Lavg)3

Lvar3/2

Contrast C =
√

(1/N)
N∑
i=1

(log(Li + ε) − log(Lavg + ε))2

 of saturated pixels Pov = Nov

N

(L), were extracted. Image statistics include the average
(Lavg), variance (Lvar), and median (Lmed), and those
included in Table 2. Images in the dataset were normalized
into the [0, 1] range and linearized by using a gamma cor-
rection curve with a power coefficient value α = 2.2, hence
L was computed as follows:

L = 0.213R + 0.715G + 0.072B
s.t. R,G,B ∈ [0, 1] (5)

Where R,G, and B are, respectively, the red, green, and blue
channel of the linearized input image. In Table 2, Lmin and
Lmax refer to theminimum andmaximum luminance value,
respectively. N is the total number of pixels in the image
without outliers, andNov is the total number of overexposed
pixels. Overexposed pixels refers to those pixels where at
least one color channel is greater than or equal to (254/255).
The contrast C was computed using only the luminance
channel in logarithmic scale.

Fig. 2. Example of LDR images obtained from the HDR-LDR image dataset. As can be seen, the dataset contains images with a wide range of contrast and lighting
conditions.
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B) Subjective study
To carry out our subjective study, we selected a subset of 180
pairs of images (an LDR and its HDR image counterpart)
from the HDR-LDR Image Dataset, which corresponds to
11 of the total number of pairs in the dataset. These pairs
were selectively chosen in such a way the final subset con-
tains images with equally distributed contrast and lighting
conditions.
Six different middle-gray values (mo) to inverse tone

map each LDR image from the subset were obtained. Six
non-experts participants, between 25 and 40 years old with
normal eye-sight, took part in this study. They were asked
to tweak mo until they found the subjective best match
between the inverse tone-mappedHDR image and its corre-
sponding professionally gradedHDR image (ground truth).
To facilitate the matching task and prevent that the dif-

ferences in saturation between the two images affect our
results, both, the luminance channel of the inverse tone-
mapped image (LEDR) and the luminance channel of HDR
ground truth (LHDR), were displayed on the same display, a
SIM2 HDR screen, in a four split-screen pattern. Figure 3
depicts how the subjective study to obtain mo was car-
ried out.
As can be seen in Fig. 3, LEDR and LHDR were divided

into four regions. The top-left and bottom-right regions of
LHDR (LHDR,1 and LHDR,4) and the top-right and bottom-
left regions of LEDR (LEDR,2 and LEDR,3) were selected and
displayed on the HDR screen. A desktop application was
implemented to collect themiddle-gray values from the par-
ticipants. In this, the participant sits 2m from the screen
changed themo value using a slider-like control. This value

was used as an input parameter to compute LEDR in real-
time using themo value selected by the participant. For this
study, the contrast (a) and expansion speed (d) were set
manually in 1.25 and 4.0, respectively, in order to increase
the contrast and minimize that diffuse whites in the input
produce artifacts in the output. Similarly, the saturation (s)
was manually fixed in 1.25 as suggested in [9], and Lw,max in
0.67 to specify that we want to reach only 67 of the max-
imum luminance of the SIM2 display (around 4000 nits).
A total of 1080 mo values (180 values per participant) were
collected. To avoid any light interference, this study was
conducted in a light-controlled room with dim lights.

C) Multi-linear regression
As is [11], a multi-linear regression approach was used. We
seek to model the relationship between the middle-gray
value in the output (mo, dependent variable) from first-
order image statistics (independent variables). This allowed
us to keep the model simple enough in order to have the
possibility of running the proposed inverse tone mapping
algorithm in real-time.
First of all, an outlier analysis was performed over the

data collected in the subjective study. In this analysis, all
observations that were deemed as extreme values were
removed. Given the IQR (Interquartile Range) of the sam-
ples in a group (values of mo obtained for the same pair
of images), an extreme value is a data point that is below
Q1 − 1.5IQR or aboveQ3 + 1.5IQR. Then, amultivariate out-
liers detection using Mahalanobis’ distance was performed
[34]. Mahalanobis was used as a metric for estimating how

Fig. 3. Schemeof the subjective experiment carried out tomanually obtainmiddle-gray out values that bestmatch the luminance channel of the inverse tone-mapped
HDR image (EDR) and its corresponding professionally graded HDR image (HDR) in the pair. The middle-gray value (mo) is used by the inverse tone mapping
algorithm (iTMO) to compute EDR.
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far each case is from the center of all the variables’ distribu-
tions. At the end of the outlier analysis, 47 input values were
removed from the dataset. Consequently, a multi-linear
regression was carried out using a step-wise regression
method for variable selection. In this method, a variable is
entered into the model whether the significance level of its
F-value is less than a so-called entry value, and it is removed
if the significance level is greater than the removal value.
For this, values of 0.05 and 0.10 were used as entry and
removal value. After we applied this method, the following
multi-linear model was obtained:

mo = 0.017+ 0.097Lh + 0.008C − 0.028Pov (6)

The P-value obtained for the F-test of overall signifi-
cance test was much lower than our significance level
(F(3, 126.673), p<0.01). This test is a specific form of the F-
test that compares a model with no predictors to the model
obtained in the regression. It also contains the null hypoth-
esis that the model explains zero variance in the dependent
variable [35]. Then the lower P-value obtained means that
the model explains a significant amount of the variance in
the middle-gray output value (mo). In other words, we can
conclude that the linear combination of the geometricmean
(Lh), contrast (co), and the percentage of overexposed pix-
els (Pov) were significantly related to themiddle-gray output
value (mo).
We also found that the R2 of our model was 0.702 (R2 =

0.702). R2 is a statistical measure of how much of the vari-
ability in the outcome is explained by the independent
variables [35]. This means that the 70 of the variation in
the linear combination of the geometric mean (Lh), con-
trast (C), and the percentage of overexposed pixels (Pov), is
explained by the equation (6).
As can be seen in equation (6) and as was expected, the

geometricmean (Lh), which is the parameter that represents
the perceptual overall brightness of the input image, has the
highest positive relation with the middle-gray value in the
output (mo), followed by the contrast (C). This means that
LDR images with a high perceptual brightness value tend
to expand into HDR images with high brightness. This is
also controlled by the contrast, in the sense that LDR images
with high perceptual brightness but with lower contrast are
not expanded to very bright HDR images. Another inter-
esting finding was that the negative relation between the
percentage of overexposed pixels (Pov) andmo acts as a con-
trol parameter that avoids that an overexposed image to be
expanded to a very bright HDR image. In fact, in the pres-
ence of a highly overexposed image, C has a value close to
zero, and Lh and Lh close to one. This results in a dimmed
positive middle-gray output value (mo) which is a more
pleasant inverse tone-mapped HDR image.
It should be noted that equation (6) produces acceptable

results for natural scenes. During an extensive testing and
after a detailed analysis, it was verified that equation (6)
only degenerates in very rare cases: artificial (non-natural)
frames that are made up nearly completely (>98) of
monochromatic blue pixels that are overexposed.

V . RESULTS

We intend to show that the proposed method is qualita-
tively in the same league as the state-of-the-art methods. To
prove this, we use “ground truth” data, i.e. video frames of
which both an HDR and LDR graded version are available.
We intend to measure how close the LDR-to-HDR con-
verted content is to the actual HDR-graded versions mainly
using full-reference metrics. Two different quality metrics
were used: CalibratedMethod for Objective Quality Predic-
tion (HDR-VDP-2.2) [36] as the main full-reference quality
metric and Dynamic Range Independent Image Quality
Assessment (DRIM) [37].
HDR-VDP-2.2 is a visual metric that compares a pair of

images, a reference and a test image, usually with the same
dynamic range. This metric provides a so-called Probability
of DetectionMap (PMap) that describes the probabilities of
detection of differences between both images at each pixel
point, which is related to the perceived quality. A higher
detection probability implies a higher distortion level at the
specific pixel. HDR-VDP-2.2 also provides a measurement
of quality with respect to the reference image expressed as a
mean-opinion-score or simply Q-score. Likewise, DRIM is
a full-reference quality metric that is used to compare a pair
of images regardless of their dynamic ranges. This metric
generates a so-called Distortion Map, which represents the
visible structural changes to the human eye between a refer-
ence and a test image. In this map, three classes of structural
changes are described: loss of visible contrast (LVC), ampli-
fication of invisible contrast (AIC), and reversal of visible
contrast (RVC).
The proposed method was compared with the most

recent inverse tone mapping approaches that have been
listed in Table 3. For this assessment, we created a test
dataset composed of images from the HDR-LDR image
dataset that were not included in the subjective study to
derive the equation (6). Additionally, we included 10 pairs
of images from the DML-HDR dataset [38]. It should
be noted that the images from the DML-HDR dataset

Table 3. Inverse Tone Mapping Algorithms used for the comparison.

Name of the method Abbreviationa
Authors/
reference

High-Quality Reverse Tone
Mapping for a Wide Range of
Exposures

HQRTM Kovaleski and
Oliveira [17]

Physiological inverse tone
mapping based on retina
response

PITMRR Huo et al. [15]

Dynamic range expansion based
on image statistics

DREIS Masia et al. [11]

Tone expansion using lighting
style aesthetics

TELSA Bist et al. [9]

Deep Reverse Tone Mapping DRTMO Endo et al. [21]
HDR image reconstruction from
a single exposure using deep
CNNs

HDRCNN Eilertsen et al. [19]

aThese abbreviations will be used to refer these methods in the document.
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were not professionally graded. The HDR images from the
DML-HDR dataset were tone-mapped using the Mantiuk
et al. [39] operator to obtain the LDR images counterpart.
In this evaluation, LDR images from the final test dataset
were used as input for the assessed inverse tone-mapping
algorithms andHDR images were considered as the ground
truth.
HDR-VDP-2.2 allowed us to compare an inverse tone-

mapped HDR image (EDR) using the HDR image ground
truth (HDR) as a reference. Each LDR image (LDR) from
the test dataset was inverse tone-mapped using the pro-
posed method and methods listed in Table 3 to compute
the inverse tone-mapped HDR images to be tested. Default
parameter values recommended by the authors were used
for inverse tone mapping. The inverse tone-mapped HDR
images obtained by each method were evaluated using
HDR-VDP-2.2. The software available at [40] and the fol-
lowing parameters were used for the evaluation: absolute
luminance comparison, automatic computation of the pix-
els per degree, 1920 horizontal display resolution, 1080 ver-
tical display resolution, 47 inches display diagonal size, and
viewing distance equal to 1m. The outputs from DRTMO
andHDRCNNwere scaled to 1000 nits and calibrated using
the SIM2 display.
Figure 4 shows some Probability of DetectionMaps gen-

erated by HDR-VDP-2.2. Red color represents those pixels
with a high probability that an average observer will notice
a difference between HDR and EDR. Probability Detec-
tion Maps obtained in this evaluation are included in the
Supplementary material. Figures 5 and 6 show the Mean Q-
score obtained by HDR-VDP-2.2. The last one shows the
results grouped according to which video sequence of the
processed image of the test dataset belongs to.
As can be seen in Figs 5 and 6, the proposed method

together with DRTMO produce on average better Q-score
results in comparison with the other assessed methods
(except for the images that belong to DLM-HDR). It should
be noted that, although our proposed method is far less
complex than DRTMO, it can produce on average sim-
ilar Q-score results. These results were further analyzed

Fig. 5. Mean Q-scores obtained by HDR-VDP-2.2. Error bars represent the
95 confidence intervals. Horizontal lines represent homogeneous subsets from
post-hoc comparisons using the Tukey HSD test.

for significance using Kruskal–Wallis one-way ANOVA
followed by Tukey Dunn post-hoc test because the data did
not fit the assumptions of anANOVA.This analysis, allowed
us to identify which methods produced results that were
driving different mean Q-scores. In Fig. 5, error bars repre-
sent a 95 confidence interval and the horizontal lines the
homogeneous subset from post-hoc comparisons using the
Tukey Dunn post-hoc test.
In Fig. 5, it may also be noted that DREIS (70.56±

6.02), PITMRR (70.69± 5.23), TELSA (70.75± 6.68), and
HQRTM (71.18± 5.87) show similar results in mean
Q-scores; more specifically, they do not show a statisti-
cally significant difference in mean Q-scores among them.
Results in mean Q-scores obtained by DRTMO (74.61±
5.40) and the proposedmethod (73.97± 6.54) are the better
scored. We found that their differences in mean Q-scores
were statistically significant with respect to the results

Fig. 4. Example of maps generated by HDR-VDP-2.2. The Quality Score (Q-score) is shown on the top of each map.
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Fig. 6. MeanQ-scores obtained by HDR-VDP-2.2. Results have been grouped according to which sequence the processed image of the test dataset belongs to. Error
bars represent the standard deviation.

obtained by the other methods and they do not show a
statistically significant difference between them. Finally,
we found that HDR images from HDRCNN (68.83± 6.32)
yield the lowest mean Q-scores and show a statistically sig-
nificant difference in mean Q-scores with respect to the
other assessed methods.
Likewise, inverse tone-mappedHDR images obtained by

each method were visually inspected, and it was observed
that even though HDRCNN can better reconstruct infor-
mation lost in saturated areas, their results differ most from
the HDR reference. Figure 7 shows the resulting inverse
tone-mapped HDR image obtained by each method that
contains details in saturated areas not present in the input
LDR image (flame and iron-bar). As can be seen, for this
scene HDRCNN better reconstructs the information lost in
these areas in comparisonwith the othermethods; however,
the overall brightness is higher than the HDR reference.
Likewise, as can be seen in Fig. 7, DRTMOoccasionally pro-
duces artifacts on the reconstructed saturated areas (flame).
Asmentioned before, we also compared the inverse tone-

mapped images obtained by using the proposed method
with those obtained by the methods listed in Table 3 using
DRIM as a quality metric. This time, only a small ran-
dom sample of 147 images from the test dataset was used.
This was decided due to the fact that DRIM does not pro-
vide the source code that allows testing a large number
of images, but only a web site where each image must be
uploaded one by one. DRIM allowed us to objectively com-
pare the inverse tone-mapped HDR images with the LDR
input images in terms of structural changes. These struc-
tural changes are represented with different colors on the
distortion map generated by this metric. Green color, red
color, and blue color are used to represent lost of visible

contrast (LVC), amplification of invisible contrast (AIC),
and reversal of visible contrast (RVC), respectively. For this
evaluation, the online software available at [41] with the
following parameters was used: automatic computation of
the pixels per degree, 1920 horizontal display resolution,
1080 vertical display resolution, 47 inches display diagonal
size, and a viewing distance equal to 0.5m, and 0.0025 peak
contrast.
Distortion maps obtained by DRIM revealed that the

proposed method causes far less RVC and LVC, and much
more AIC than the other tested methods. All these char-
acteristics help to increase the perceived quality of our
method. The presence of a high AIC indicates that our
algorithm can better disclose/enhance some details that are
not present in the original LDR image and in this way it con-
tributes to the quality of the resulting inverse tone-mapped
HDR image. In general, for an inverse tone mapping oper-
ator, loss and reversal of visible contrast are undesirable
results, while amplification of invisible contrast tends to
increase perceived image quality [15, 17, 28, 42].
Figure 8 shows examples of distortion maps obtained in

this assessment. As can be seen, DRIMprovides a pixel-wise
distortion map. The saturation of each color (red, blue, or
green) in the distortion map indicates the magnitude of the
detection probability that can be seen as the magnitude of
perceived distortion. More distortion maps obtained in this
evaluation are included in the Supplementary material.
Additionally, we visually inspected the results obtained

using highly overexposed images from the dataset as input.
Figure 9 shows results obtained by each algorithm and our
proposed solution. As can be seen, our method does not
produce results with unnatural appearances when process
highly overexposed natural images. However, DRTMO and
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Fig. 7. Comparison of different results of inverse tone mapping. An image with a lack of details in saturated areas was used as input. DRTMO and HDRCNN better
reconstruct the lost details. Q-score is shown in parentheses. HDR images were tone-mapped by Mantiuk et al. [39] operator.

Fig. 8. Distortion maps generated by DRIM.
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Fig. 9. Comparison of different results obtained by each tested algorithm using a highly overexposed image as input. As can be seen, DRTMO and HDRCNN
produce artifacts in overexposed areas. For visualization, HDR images were tone-mapped by Mantiuk et al. [39] operator.

HDRCNN produce artifacts in overexposed areas. It was
found that the only degenerate cases in ourmethod are arti-
ficial (non-natural) scenes that consist of more than 98 of
overexposed, monochromatic blue pixels.
As well as in other comparative studies [20, 43–45], we

carried out a subjective full pair-wise comparison experi-
ment. In this study, observers had to select the preferred
HDR inverse tone-mapped image in the pair based on the
overall-similarity criterion. That is, they had to select which
HDR inverse tone-mapped image in the pair better match
with the ground truth HDR image. The three images, the
HDR ground truth, the HDR inverse tone-mapped image
using one method, and the HDR inverse tone-mapped
image using a second method, were displayed at the same
time on the SIM2 display. The HDR ground truth was dis-
played on top and HDR inverse tone-mapped images were
randomly displayed on the bottom. In this way, users could
not identify which methods in the pair they were assessing.
As well as in the previous subjective study, to prevent that
the differences in saturation between the images affect our
results, only the luminance channel was displayed. Four-
teen different images, not included in the training phase,
were used. Twenty participants took part in this experiment
which was carried out in viewing conditions according to
the ITU-R BT.500-13 recommendation. For seven evaluated
algorithms and 14 images, the total number of comparisons
was 14× (7

2

) = 294. The experiment was divided into two
sessions, where each session contained seven images to be
evaluated. At the end of each session, users had to write
down some comments about the reasonswhy they preferred
one image against the other in the pair.
The result of the pairwise comparison experiment

was scaled in Just-Objectionable-Differences (JODs). This
helped us to quantify the relative quality differences among
the results obtained by each inverse tonemapping algorithm
evaluated. To compute the JODs, the problem is formu-
lated as a Bayesian inference under the Thurstone Case V
assumptions and uses a maximum-likelihood estimator to
find the relative JOD values [46]. Results of this subjective
experiment are shown in Fig. 10.
As can be seen, the proposed method has a higher rel-

ative quality (JOD). This can be interpreted as the results
obtained by the proposed method are subjectively the most

Fig. 10. The results of the subjective experiment scaled in JOD units (higher
the values, the better). The difference of 1 JOD indicates that 75 of observers
selected one condition as better than the other. Absolute values are arbitrary and
only the relative differences are relevant. The error bars denote 95 confidence
intervals computed by bootstrapping.

similar from the HDR ground truth in comparison with the
other inverse tone mapping methods included in this com-
parison. Unexpectedly, DRTMOwas not the best evaluated.
According to the participants, occasionally, both DRTMO
and HDRCNN produced annoying artifacts in high satu-
rated regions in the image. They mentioned that they pre-
ferred to select an image in the pair that does not exactly
match the HDR ground truth than an image that contains
annoying artifacts.
Figure 11 shows the results of the comparison that

includes the statistical significance of the difference. The
continuous lines in the plot indicate statistically significant
difference between the pair of conditions and the dashed
lines indicate the lack of evidence for a statistically signif-
icant difference. As can be seen, results obtained with the
proposed method show statistical difference in quality (a
better overall-similarity with the HDR ground truth) with
respect to the other methods. It should be noted that results
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Fig. 11. The results of the subjective experiment scaled in JOD units. Points represent conditions and solid lines represent statistically significant differences, as
opposed to dashed lines. The x-axis shows the JOD scaling

Table 4. Computation-time for processing one frame (1920× 1080) in
milliseconds (ms).

Method Mean Min. Max.

HQRTM 178.14 168.92 237.64
PITMRR 263.91 258.97 300.18
DREIS 70.07 57.66 92.61
TELSA 74.82 63.45 88.12
DRTMO 376 · 106 317 · 106 439 · 106
HDRCNN 10 901.77 10 241.19 11 821.33
Proposed method 11.44 10.29 27.90

obtained by HDRCNN andHQRTMdo not show statistical
difference in quality among them.
Finally, a computation-time analysis was performed.

For this task a computer with the following specifications
was used: Intel Core i7 3.4 GHz with 16GB of RAM and
equipped with an NVidia GeForce GTX-770 video card.
The proposed method was implemented in Quasar Pro-
gramming Language, which allows using GPU accelera-
tion [47]. In order to carry out a fair comparative evaluation,
methods that did not use GPU for processing (HQRTM,
PITMRR, DREIS, and TELSA) were also implemented in
Quasar. The computation-times register for each algorithm
corresponds only to the time taken in to convert an LDR
image to an HDR image. These times do not correspond to
any reading/writing from/to the hard disk nor loading the
network in the case of the methods based on CNN.
Themean,min, andmax computation-times for process-

ing each image from the test dataset were computed. Table 4
shows the results of this analysis. We found, as might be
expected, that the mean computation-time of the proposed
method (11.44ms± 2.23) is far less than other methods. It
also can be noticed that the methods based on Convolu-
tional Neural Networks, DRTMO, and HDRCNN show the
highest computation-times.

V I . CONCLUS IONS

In this paper, we have presented a fully-automatic inverse
tone mapping operator and experimental results that show
its effectiveness for rendering LDR content inmodernHDR
LED displays. We employed two full-reference objective

metrics to compare our method against recent approaches.
The proposed method was found to provide higher image
quality scores in a number of test HDR-LDR datasets while
achieving the lowest processing time. It can also be observed
that with a maximum computation time of 27.90ms, the
proposed method can be considered as the most promis-
ing approach for real-time inverse tone mapping of HD
(1920× 1080) video sequences at 24fps. Note that themaxi-
mum computing-time to process one frame of an HD video
in real-time at 24 fps is 41.66ms.
The novelty of our paper is to exploit the freedom that the

proposed tonemapper function inmapping a human visual
experiment to the parameters of the curve can offer. In this
experiment, users tried to mimic the artistic intention of
the grader. We found that the proposed inverse tone map-
pingmethod is able to generate believable scenes at different
global brightness impressions, which we call different artis-
tic intentions. Our research trains the parameters to follow
the artistic intentions of a human grader.
The proposed method sets all parameters of its mid-

level mapping function automatically, by modeling human
perception using first-order image statistics. Moreover,
the mapping function can be used in any type of HDR
display, i.e. different levels of peak brightness. Because
professionally-gradedHDR images were used as a reference
for thismapping procedure, the proposedmethod preserves
the artistic intentions inherent to the HDR grading. This is
reflected in better Q-scores obtained in the HDR-VDP-2.2
metric.
Despite the proposed method was developed to expand

LDR static images, it can be used to expand an LDR video
sequence frame by frame. The proposed algorithm has
advantages when it comes to video: it is simpler, therefore
allowing real-time processing and allowing better integra-
tion with integrated hardware. Also, it is less complex, leav-
ing less room for errors. However, in order to extend our
method to handling video sequences, a method to ensure
temporal coherence of the middle-gray output value (mo)
between frames needs to be considered. This will prevent
the inverse tone-mapped HDR video from flickering.
We also confirmed the findingsmade byAkyüz et al. [31],

which stated that, from a perceptual point of view, a sophis-
ticated algorithm for inverse tone mapping is not necessary
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to yield a compelling HDR experience. In our case, our
results produced on average a similar mean-opinion scores
(Q-score) than more complex methods.
An important aspect of the proposed method, and in

contrast to neural network approaches, is that the proposed
methods’ mapping procedure provides insight about the
type of enhancement as expected by the observer of anHDR
image while avoiding the need of an extensive training set.
Although our experimental results are very promising, we
acknowledge that exhaustive tests on the effect of mid-level
mapping parameters should be carried out.
Despite the fact that a more exhaustive subjective evalu-

ation is very relevant, the objective measures used in this
paper can be seen as complementary and less subject to
debate. Therefore, of interest to the community. While this
objective evaluation is useful, in the future, it would be inter-
esting to do an additional exhaustive subjective evaluation
of the performance of the proposedmethod including other
evaluation criteria.
Some of the drawbacks of the proposed method are

mainly related to the contrast stretching by using a global
expansion operator, such as false-contouring and noise-
artifacts boosting. The stretched contrast results in an
increase of visibility of compression artifacts and the
appearance of false contours. The former issue was more
related to artifacts in the LDR input image [48]. This is
unavoidable and the best course of action is to combine it
with a real-time denouncing algorithm prior to the pro-
posed algorithm. The second drawback can be mitigated by
using a method previously proposed by ours which helps
to remove false contours in HDR images [49]. Another
shortcoming we found in our method is related to the col-
orimetry. We used a fixed value of 1.25 for the saturation
compensation on the HDR output, however, we think that
further research in this aspect is needed. In future work, we
are planning to work more in terms of pixel-wise saturation
compensation.We found that better results can be obtained
by locally varying the saturation enhancement parameter
for every pixel. In this way, not every pixel will be boosted
in color saturation the same way, resulting in HDR scenes
that are a mix of objects with a muted color saturation and
very colorful objects.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://telin.ugent.be/
~gluzardo/midlevel-itmo
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