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Abstract

This paper proposes a framework for modelling velocity profiles and sus-
pended objects in non-Newtonian fluid environment. A setup is proposed
to allow mimicking blood properties and arterial to venous dynamic flow
changes. Navier-Stokes relations are employed followed by fractional con-
stitutive equations for velocity profiles and flow. The theoretical analysis is
performed under assumptions of steady and pulsatile flow conditions, with
incompressible properties. The fractional derivative model for velocity and
friction drag effect upon a suspended object are determined. Experimental
data from such an object is then recorded in real-time and identification
of a fractional order model performed. The model is determined from step
input changes during pulsatile flow for velocity in the direction of the flow.
Further on, this model can be employed for controller design purposes for
velocity and position in pulsatile non-Newtonian fluid flow.
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1. Introduction

Autonomous object modeling and control in non-Newtonian fluid en-
vironment has a manifold of cross-disciplinary applications in the fields of
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biology, medicine, (nuclear) physics and fluid mechanics. Whether the pur-
pose is to position particles in electro-magnetic actuated fluids (e.g. in steel
manufacturing) [2], build a constitutive model for geomaterials [3] or guide
a nano-sensor for detection of structural changes in arterial walls [20, 13],
the necessity of apriori model for analysis is always justified. There are
applications which require suspended object free motion, such as in ground
water transportation [16], but also precise orientation and positioning is
required via closed loop control, for instance in electromagnetic stirring of
liquid steel velocities [9].

Most properties of non-Newtonian fluids overlap with that of viscoelas-
tic materials, such as polymers, lung tissue, gel substances, rubber, etc
[20, 27, 28]. Specific properties as memory, creep and shear stress do not
follow classical Newton’s law of viscosity and has been manifold proven
to be well characterized by combinations of power-law and exponential
functions [11]. These are non-rational expressions of combined nonlinear
effects in material creep and strain, and have been well characterized by
the Mittag-Leffler function [18, 19, 13, 12].

To investigate the problems posed for modeling, identification and con-
trol objectives in such non-Newtonian environments, lab scale setups mim-
icking the main properties are very useful and accessible for research. This
paper proposes such a lab scale setup, featuring non-Newtonian fluid motion
and submerged objects. Physically-based rationale allows to investigate the
development of a fractional derivative constitutive equation for the velocity
gradient in non-Newtonian fluid. The space-dependent fractional derivative
can also capture possible non-local effects of velocity on the non-Newtonian
fluid flow. Identification of a fractional order dynamic model for velocity
is performed from step response measured data. The model can be further
used for controller design of position and velocity in non-Newtonian fluid
flow.

The paper is structured as follows. The Section 2 introduces the mate-
rials and methods uses in this work, namely, the fractional flow dynamics
are derived, followed by velocity and frictional head loss equations. Next,
the setup description and details on hardware and software components are
given. The section ends with considerations for identification step. Section
3 gives an overview of the obtained results, along with discussions and lim-
itations of the current status. The concluding Section 4 summarizes the
main outcome and proposes the next steps to be acquired in the project.
Furthermore, a brief familiarization with fractional order calculus relevant
for control purposes is presented in the Appendix section.
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2. Materials and methods

2.1. Fractional flow dynamics in Non-Newtonian fluids. Classical
constitutive relationship for shear stress in terms of the velocity gradient
can be expressed as [17]

τ = μ
du

dy
, (2.1)

with τ the viscous shear stress, μ (kg/m s) the dynamic viscosity, u the flow
velocity (m/s) and y (-) the radial direction in normalized form, i.e. y =
r/R with R (m) the radius of the pipeline and r (m) the radial coordinate.
This relation no longer holds for non-Newtonian fluids as blood, detergent,
gel, plasma, etc.

Our previous work on fractionalising compartmental models for drug
concentration gradients in blood and tissue has indicated that each gradient
can be expressed in terms of its kernel and integral form of mass transfer
[6, 10]. Consider the pipeline with our fluid divided in compartments of
equal infinitesimal distance. The gradient is given by

u(1) − u(0) = k

∫ 1

0
M(τ)dτ, (2.2)

where the M denote mass or molar amounts of material in the respective
compartment, k (1/s) are rate constants. Each of the mass transfer integral
includes a kernel, i.e.

u(1)− u(0) = k

∫ 1

0
K · M̃ (τ)dτ. (2.3)

In the classic theory case, the kernel is simply equal to one. By choosing
the kernel in an appropriate form of power-law, we can then use Riemann-
Liouville fractional integrals or others. This power-law kernel has been
formerly introduced in earlier studies of non-Newtonian materials and fluids
[25, 15, 1]. For instance, using the kernel

K(t, τ) =
(t− τ)α−1

Γ(α)
(2.4)

with 0 < α < 1, we have for α = 1 the classical case since K = 1. Keeping
in mind the Riemann-Liouville fractional integral is

0D
−α
t M(t) =

∫ 1

0

(t− τ)α−1

Γ(α)
M̃(τ)dτ, (2.5)

where D stands for an integral when the order is negative and for a deriv-
ative when the order is positive. Finally, we can write (2.3) as

u(1)− u(0) = k0D
−α
t M(t). (2.6)

The zero initial values are common in compartmental models, but if it is
not zero, we can use the Caputo derivative, in the form
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0D
1−α
t M(t) =C

0 D1−α
t M(t) +

M(0)tα−1

Γ(α)
, (2.7)

where the superscript C on the left denotes a Caputo fractional derivative.
Note the units of the rate constant are no longer time−1 but time−α.

In [29] has been proposed a model to describe time-dependent flow in
non-Newtonian fluids with similar initial conditions as the presented study:

τ(t) = τ0 + a · λβ
dβ−1ε̇

dtβ−1
, (2.8)

where 0 ≤ β ≤ 1, a and λ are material constants, and ε (m) denotes strain.
This is a generalization of (2.1) following the fractionalisation rationale.
This has been used (in various forms) to model Maxwell elements in me-
chanical models of viscoelasticity [25, 15]. Further on, these mechanical
models are then the basis for electrical model analogous [14, 1].

To address the non-locality problem of properties in non-Newtonian
fluids, one may use (2.8), for 0 < α = β − 1 < 2. The physical basis
for this non-uniform velocity gradient can be the non-uniformity of fluid
particles (e.g. mixtures of solid and liquid particles), molecular interaction,
biological and chemical effects. Using the fractional derivative definition
from [29],

dαu(y)

dyα
=

1

Γ(n− α)

∫ y

0

u(n)(τ)

(y − τ)α−n+1
dτ, (2.9)

with n − 1 < α ≤ n, and n the smallest integer greater than the order α,
the relationship between velocity gradient and viscous shear stress is given
by

τ =

⎧⎪⎨
⎪⎩

τ0 + μI1−α du
dy , 0 < α < 1

τ0 + μdu
dy , α = 1

τ0 + μI2−α d
dy

du
dy , 1 < α < 2

⎫⎪⎬
⎪⎭ , (2.10)

where I1−α and I2−α represent the fractional integral

Iγf(y) =
1

Γ(γ)

∫ y

0
(y − τ)γ−1f(τ)dτ, γ > 0. (2.11)

2.2. Velocity profile in pipeline. The following assumptions are made
for this study, which are also in agreement with the real-life setup applica-
tion for this work:

• the non-Newtonian fluid is incompressible, and
• the flow is laminar.

Consider a suspended object as in Fig. 1. The force balance relation in
the flow direction is given by

A(p1 − p2 + ρgl sin(φ))− τ · 2πrl = 0 (2.12)
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Figure 1. Schematic representation of a suspended object
in pipeline.

with A (m2) cross section, r (m) radial direction, ρ (kg/m3) the density
of the non-Newtonian fluid, and � (m) is the length considered and R (m)
the absolute radius of the cylinder. We have that sin(φ) = z1−z2

l , thus the
hydraulic gradient is given by:

J =
(z1 + p1/ρg)− (z2 + p2/ρg)

l
=

2τ

ρgr
. (2.13)

Employing the velocity gradient constitutive equation from previous section
we impose

μ
dαu

drα
= −ρgrJ/2 (2.14)

and obtain

u(r)− u(r = 0) = − ρgJr1+α

2μΓ(α+ 2)
. (2.15)

Imposing the no slip condition, we have u(r = R) = 0, hence:

u(r) =
ρgJr1+α

2μΓ(α+ 2)
. (2.16)

The velocity profile is written as

u(r) =
ρgJ

2μΓ(α+ 2)
(R1+α − r1+α) (2.17)

which reduces to the Newtonian velocity profile for α = 1.
The maximum velocity is then calculated as

umax =
ρgJR1+α

2μΓ(α+ 2)
(2.18)
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and the mean velocity is

ū =
ρgJ

2μΓ(α+ 2)
(1− 2

3 + α
)R1+α. (2.19)

When the ration of these velocities is 0.5, then we have Newtonian fluid
- this is again the case for α = 1. So the velocity gradient may be non-
uniform in non-Newtonian fluids.

2.3. Frictional head loss. For objects moving forward in a non-Newtonian
fluid, we have a frictional head loss of velocity, which can be calculated from
the mean velocity relation:

F =
2μ
ρΓ(α+ 2)

g

3 + α

1 + α

lū

R1+α
(2.20)

with μ
ρ the kinematic viscosity. This can be expressed in terms of the

diameter of the cylinder D = 2R:

F =
64

23−α

(3+α)Γ(1+α)
ūDα

μ
ρ

l

D

ū2

2g
. (2.21)

Again this reduces to the classical frictional head loss for Newtonian fluid
when α = 1.

2.4. Lab scale setup description. An experimental setup was designed
and implemented to mimic non-Newtonian fluid flow under pulsatile flow
conditions. The rationale is to try to mimic pulsatile blood flow with non-
Newtonian properties and further control suspended objects in it. Appli-
cations are of course related to nanorobot control for medical purposes,
but other technical areas are also featuring similar modelling and control
challenges. For instance, controlling liquids (e.g. liquid steel) by electro-
magnetic actuator force field onto regulating the flow profile and velocity
in continuous casting.

The brain of the circulatory system is the LabVIEWTM programmable
myRIOTM real-time controller. The myRIOTM controls the variable flow
pump CM10P7-1-24 which can generate a flow of up to 15 liters/minutes.
The variable flow is realized with the pump driver EM-174A. The SNS-
FLOW201 flowmeter gives feedback regarding the actual flow of the liquid
in the system. All components are supplied by a 24V power supply. The
components necessary to create the experimental circulatory system are
listed in Table 1.

The main command unit of the submersible is the ESP WROOM-02
programmable module. The ESP module connects the Inertial Measure-
ment Unit BNO055 from Bosch SensorTech and the direct current motor.
Additional information regarding the components used to build the sub-
mersible are shown in Table 2. The ESP features integrates a WiFi module
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Component Description
Tee elbow with PVC door Used as immersion and submersion

points, 2 pieces
Small tube Polyurethane with metal insertions

R = 51/1000 (m), h = 0.9/1000 (m), κ = 0.1.
Large tube Polyurethane with metal insertions

R = 80/1000 (m), h = 0.9/1000 (m), κ = 0.9
Funnel Narrow diameter dn = 0.102 (m),

Wide diameter dw = 0.16 (m)
Tube Tube to recirculate the fluid, any diameter

Plumbing elbow Connection purpose, 2 pieces
CM10P7-1-24 Variable flow pump
EM-174A Pump driver

SNS-FLOW201 Flowmeter
NI myRIO Real-time microcontroller

Power Supply 24 (V) supply
Non-Newtonian fluid Approx. 10 (l) e.g. water and starch mixtures,

conditioning shampoo, liquid detergent

Table 1. Circulatory system components

Component Description
Submersible case The custom hull, 2 halves, 3D printed

CRC232 Battery powering the submersible
TPS61090 Power booster circuit that ensures the

nominal voltage of [+2.7, 3.0]V
ESP232 WROOM-02 WiFi module and microcontroller

Bosch BNO055 Inertial Measurement Unit - Accelerometer,
Gyroscope and Magnetometer

Graupner 3 blade propeller Propeller for miniature ship design
used to thrust the submersible

DC motor 10 mm x 6 mm DC motor
DRV8833 Motor driver
Screws Self locking screws, 3 pieces
Glue Gasket sealant, 1 tube

Table 2. Submersible components
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used to communicate with a server in a bidirectional manner. The sub-
mersible sends velocity and positioning data to the server with the purpose
of real-time tracking.

For the particular tests in the project to which this work relates, the
setup has been designed to consist of two parts: i) a resemblance to the
circulatory system and ii) the suspended object, i.e. a submersible capable
of navigating through the non-Newtonian liquid. Hence, pulsatile flow is
used, in transitional dimensional tubes to obtain pressure gradient varia-
tions. The setup is an air-tight circuit.

A snapshot view is presented in Fig. 2. The following protocol is pro-
posed for motion tests. The object is inserted into the system via an im-
mersion point, navigates through the mimicked vein tube and passes the
diameter change between the vein and the artery. Subsequently, it travels
through the artery mimicked tube and ultimately, it is extracted through
the extraction point into a reservoir tank. The liquid flowing through the
pipes is a liquid detergent with characteristics similar to the blood such as
density and non-Newtonian flow profiles.

The tubes used for mimicking the blood vessels are made of polyurethane
with metal insertions, making them slightly flexible. The small tube, re-
sembling a vein, has radius of R = 51/1000 (m), wall thickness of h =
0.9/1000 (m) and a ratio of soft-to-hard rings denoted by κ = 0.1. For
the larger tube, resembling the artery, the parameters are R = 80/1000
(m), h = 0.9/1000 (m) and κ = 0.9. The density of the steel rings is
ρcart = 1.14∗1000kg/m3 and of the polyurethane ρsoft = 1.06∗1000kg/m3 .
The polyurethane elastic modulus is Es = 2.5 ∗ 109, while the steel has an
elastic modulus of Ec = 209 ∗ 109.

The pumping of the heart to obtain pulsatile flow profiles is simulated
through a variable flow pump, that steers the liquid through veins following
a pre-defined a sinusoidal pattern. The viscosity of the liquid detergent
mimicking blood is μ = 0.085 ∗ 10−5kg/ms, at the pulsing frequency ω =
2 ∗ π ∗ 70/60 rad/s and a density of ρ = 1.03/1000kg/m3 .

Figure 2. Proposed experimental setup to mimic sections
of the circulatory system with non-Newtonian fluid (i.e. liq-
uid detergent) flowing in an air-tight circuit.
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The object is a robot-like submersible, as presented in Fig. 3. The robot
is 50 mm long and 30 mm wide, with embedded dedicated electronics. The
object has been custom designed and the hull was 3D printed to encapsulate
a microcontroller, a battery, a WiFi module and an Inertial Measurement
Unit. The propeller is actuated by a continuous current motor to which
a voltage signal is applied. The propeller generates a thrust allowing the
object to move through the non-Newtonian fluid. The velocity of the sub-
mersible depends on the surge generated with the propeller and on the
interaction with environment. The propeller can rotate in both directions,
allowing accelerating, decelerating and standstill motions in pulsatile fluid
flow conditions.

An IMU board on the robot enables from the recorded signals to com-
pute the velocity and position, respectively. The well-known problem of
the noisy accelerometer data, resulting in an accumulating error that slowly
goes towards infinity, has been resolved and presented in [4]. For the current
experimental protocol, accurate velocity and positioning data is available.

Further on, in order to closed loop control the velocity and positioning
of the submersible, a compensating error law can be implemented in discrete
polynomial form by programming the robot. The feedback signal contains
the velocity/positioning information obtained from the IMU unit, while the
controller output is the voltage given to the DC motor for actuating the
propeller’s rotation direction and angular velocity.

Figure 3. A snapshot view of the submersible robot cus-
tom made for this project.

2.5. Considerations on identification for control. For control pur-
poses, a general model is needed that connects the input voltage to the
velocity of the submersible. Since the width of the robot is relatively large
with respect to the diameter of the tubes, the movement is modeled solely
on the longitudinal X axis, i.e. ignoring the heave and sway movements.
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The obtained model has been previously reported in [5], indicating that
a fractional order model outperforms the integer order model. This is in
accordance to the theoretical concepts presented in here, in a generalized
sense of velocity gradient profiles.

The thrust generated by the rotation of the propeller is dependent on
several features such as the operating conditions of the propeller (e.g. the
liquid in which it is immersed, propeller angular velocity) and the man-
ufacturing characteristics (e.g. rotor blade area, radius, thrust and drag
coefficients) [21]. The surge velocity of the submersible through the liquid
is given by the carefully chosen design parameters of the hull. Here, the
important features which will influence the motion are the frontal area,
the diameter and the ellipsoid shape of a transverse section, hydrostatic
coefficients and input thrust.

In this paper, two approaches are reported. Based on the theoretical
concepts generalizing velocity gradient profiles and our prior results, a frac-
tional order (impedance) model has been proposed to be identified on both
the analytical and the experimental step response data.

For the identification algorithm, an optimization approach is chosen
that minimizes the integral absolute error defined as

min

∫ ∞

0
|um(t)− u(t)|dx, (2.22)

where um is the measured velocity data at time t and u(t) is the step
response data at moment t of the system to be identified. The entire
fractional-order identification is translated into a classical minimization
problem. The optimization is started from an initial transfer function of
the form

HFOIM =
bmsβm + bm−1s

βm−1 + ...+ b0s
β0

ansαn + an−1sαn−1 + ...+ a0sα0
, (2.23)

where parameters a, b, α and β are optimized such that the integral abso-
lute error condition is minimized. An initial point must be provided and
the obtained results are strongly influenced by the initial conditions. Con-
straints on the parameter values, on the tolerance interval, as well as on the
fractional orders are imposed to reduce the computation time. An iterative
procedure is employed to avoid local minimum solutions.

3. Results and discussion

3.1. Velocity profiles. Relative axial velocity in the two tubes has been
calculated for the relative pressure gradient across the section of the tube
and normalized ration of the radial position with respect to the axis of the
tube. Fig. 4 (A) indicates the results.
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(a)

(b)

Figure 4. (A) Velocity profiles in the two tubes (B) Pres-
sure gradient in the two tubes for pulsatile flow.

Damping is decreased by 40% when going from narrow tube to large
tube, thus a relative larger displacement can be expected. This is verified
in Fig. 4 (B), where the pressure variations in narrow tube (blue color)
is smaller in relative amplitude than the pressure variations in the larger
tube (red color). Given the same flow in both tubes, the velocity gradient
is expected to be accelerated in the narrow tube. This is in accordance to
physical laws and the next step to verify is the effect on the radial velocity.
This is important for determining the deviation from axial position during
movement of liquid, i.e. frictional head loss.

The velocity profiles for non-Newtonian fluid in steady pipe flow for
various values of α are given in Fig. 5a.

3.2. Identification results. The relation between the motor voltage and
propeller angular velocity is determined by applying a step input of am-
plitude 2.4 V applied to the direct motor through PWM signals. For a
linear flow of the liquid detergent, a fractional order model is identified on
the experimental step response data of the submersible’s velocity inside the
small tube as

HFOIM =
0.36

0.005682s1.7263 + 0.11031s0.86825 + 1
. (3.1)

The identified fractional model resembles the second order one with
fractional orders of 1.7263 and 0.86825, respectively. The search for a
fractional order model started from the second order transfer function with
the static gain k = 0.36. Optimization is performed in Matlab using the
fmincon function and the ’active-set’ algorithm. The step response of the
identified model is compared against the experimental data in Fig. 5b.
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(a)

(b)

Figure 5. (A) Velocity profiles for non-Newtonian fluid
based on model (2.17); (B) Comparison of the identified
model and the experimental step response data.

3.3. Discussion and limitations. Amanifold of applications in specialised
literature deal with design, material, manufacturing and functioning of
nanorobot objects for motion in non-Newtonian fluids. With that respect,
precise, high-performance design and material properties have been inves-
tigated over the last decade with exponential success in nanomedicine and
other application fields [24, 26]. Our work differentiates to the extent of
offering a low-cost, approachable and instructive benchmark solution to
the problematic of modelling, identification and control of objects in non-
Newtonian fluids.

In this context, the paper succeeded to design, manufacture and imple-
ment such a benchmark system, allowing experiments to sustain the theo-
retical claims. The fractional velocity gradient in developed flow conditions,
as well as the dynamic response have been well captured in a non-Newtonian
environment, i.e. liquid detergent. Similar reports on such effective bench-
marks have not been found in the control engineering literature, hence the
work has an original added value to the control community.

An important limitation of the present study refers to the mechani-
cal properties of the tubes selected. Their elasticity is certainly below the
biological value of arteries, such that viscoelastic properties are not fully
captured. It should be noted that fractional order impedance models have
been previously reported to be good candidates for modelling creep and
tension, viscoelasticity in arteries [7, 8]. Effects of distention and elonga-
tion of the tubes during pulsatile flow conditions are not enabled to be
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investigated. The properties of the benchmark, as it is at this moment,
are situated somewhere in-between biomedical and technical applications
of non-Newtonian fluid mechanics.

Another limitation is perhaps the identification from step response data,
a well-known problem [22]. The lack of persistent excitation will lead to
biased results for high frequency dynamics. Nevertheless, the model seems
to capture well enough the steady state gain of the process.

4. Conclusions

This paper proposed a theoretical framework and benchmark process
to allow generalization of flow dynamics in non-Newtonian fluid environ-
ment, i.e. fractional order derivative elements. Given the availability of
a laboratory benchmark process and a custom-design submersible object,
identification of velocity profile to step response has been performed. The
proposed structure is that of a fractional order impedance model, describ-
ing the motion of the object in non-Newtonian fluid conditions (i.e. liquid
detergent).

Further use of this model may be the controller design for velocity or
position control purposes.

5. Appendix – General Navier-Stokes equations

The pulsatile flow can be analyzed in terms of periodical functions,
such as the pressure gradient:−∂p

∂z = MP cos(ωt − ΦP ), where z is the
axial coordinate, ω = 2πf is the angular frequency (rad/s), with f the
frequency (Hz), MP the modulus and ΦP is the phase angle of the pressure
gradient. Given its periodicity, it follows that also the pressure and the
velocity components will be periodic, with the same angular frequency ω.
The purpose is to determine the velocity in radial direction u(r, z, t) with
r the radial coordinate, the velocity in the axial direction w(r, z, t), the
pressure p(r, z, t) and to calculate them using the morphological values of
the lungs. In this study, we shall make use of the Womersley parameter
from the Womersley theory developed for the circulatory system, defined

as the dimensionless parameter δ = R
√

ωρ
μ , with R the absolute radius

of the cylinder (pipeline). If the simplest form of axi-symmetrical flow in
a cylindrical pipeline is considered, the simplified Navier Stokes equations

can be written as ∂
∂θ = ∂2

∂θ2 = 0 and with the contour velocity v = 0.
Further on, consider no external forces Fr, Fz. For the infinitesimal segment
modelled, the total pressure drop variations can be neglected and locally
can be divided by density ρ and introduce the dimensionless parameter y =
r/R, 0 ≤ y ≤ 1 in the relation d

dy = d
dr

dr
dy = R d

dr ,
d
dr = 1

R
d
dy . The simplifying
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assumptions can be then applied: i) the radial velocity component is small,
as well as the ratio u/R and the term in the radial direction; ii) the terms
∂2

∂z2 in the axial direction are negligible, leading to the following system:

∂u

∂t
= − 1

ρR

∂p

∂y
+

μ

ρ
[

1

yR2

∂u

∂y
+

1

R2

∂2u

∂y2
− u

R2y2
], (5.1)

∂w

∂t
= −1

ρ

∂p

∂z
+

μ

ρ
[

1

yR2

∂w

∂y
+

1

R2

∂2w

∂y2
], (5.2)

u

Ry
+

1

R

∂u

∂y
+

∂w

∂z
= 0. (5.3)

Given the pressure gradient is periodic, it follows that also the pressure
p(y, z, t) and the other velocity components u(y, z, t), w(y, z, t) are periodic,
as in:

p(y, z, t) = AP (y)e
jω(t−z/c̃),

u(y, z, t) = AU (y)e
jω(t−z/c̃),

w(y, z, t) = AW (y)ejω(t−z/c̃),

(5.4)

where c̃ denotes the complex velocity of wave propagation and j =
√−1.

Further simplifications lead to the following system of equations:

u =
jωR

μc̃
{C1

2

δj3/2
J1(δj

3/2y) +
AP

ρc̃
y}ejω(t− z

c̃
), (5.5)

w = {C1J0(δj
3/2y) +

AP

ρc̃
}ejω(t− z

c̃
), (5.6)

p(t) = AP e
jω(t− z

c̃
), (5.7)

with C1 = −AP
ρc̃

1
J0(δj3/2)

, AP the amplitude of the pressure wave, J0 the

Bessel function of the first kind and zero degree, J1 the Bessel function of
the first kind and first degree, and in which:

− dp

dz
=

jω

c̃
AP e

jω(t− z
c̃
) = MP e

j(ωt−ΦP ) (5.8)

such that

AP e
jω(t− z

c̃
) =

c̃

ω
MP e

j(ωt−ΦP−π/2). (5.9)

In this setup, the effective elastic modulus and wall density, respectively,
may be considered in function of the pipeline rugged structure:

E = κEc + (1− κ)Es,
ρwall = κρc + (1− κ)ρs,

(5.10)

taking into account at each section of the setup the fraction amount κ of
corresponding hard material (index c) and soft material (index s).
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