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Abstract

The connectivity structure of graphs is typically related to

the attributes of the nodes. In social networks for example,

the probability of a friendship between two people depends

on their attributes, such as their age, address, and hobbies.

The connectivity of a graph can thus possibly be understood

in terms of patterns of the form ‘the subgroup of individuals

with properties X are often (or rarely) friends with indi-

viduals in another subgroup with properties Y’. Such rules

present potentially actionable and generalizable insights into

the graph. We present a method that finds pairs of node sub-

groups between which the edge density is interestingly high

or low, using an information-theoretic definition of interest-

ingness. This interestingness is quantified subjectively, to

contrast with prior information an analyst may have about

the graph. This view immediately enables iterative mining

of such patterns. Our work generalizes prior work on dense

subgraph mining (i.e. subgraphs induced by a single sub-

group). Moreover, not only is the proposed method more

general, we also demonstrate considerable practical advan-

tages for the single subgroup special case.

Keywords
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1 Introduction

Real-life graphs (aka networks) often contain attributes
for the nodes. In social networks for example, nodes cor-
respond to individuals and node attributes can include
their age, address, hobbies, etc. A network’s connec-
tivity is usually related to those attributes: individuals’
attributes affect the likelihood of them meeting, and,
if they meet, of becoming friends. Hence, to a certain
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the FWO under the Marie Sklodowska-Curie Grant Agreement

no. 665501.
†IDLab, Ghent University; Firstname.Lastname@UGent.be

extent, it should be possible to understand the connec-
tivity of a graph in terms of those attributes.

One approach to identify the relations between the
connectivity and the attributes is to train a link pre-
diction classifier, with as input the attribute values for
a pair of nodes, and predicting the edge as present or
absent. Such global models often fail to provide insight
though, much like a global classifier on any data type
may fail to provide insight in other classification prob-
lems. To address this, the local pattern mining commu-
nity introduced the concept of subgroup discovery, which
aims to identify subgroups of data points for which a
target attribute has homogeneous and/or outstanding
values. Subgroups are local patterns, in that they pro-
vide information only about a certain part of the data.

Research on local pattern mining in attributed
graphs has so far focused on identifying dense node-
induced subgraphs, dubbed communities, that are co-
herent also in terms of attributes. There are two com-
plementary approaches. The first explores the space of
communities that meet certain criteria in terms of den-
sity, in search for those that are homogeneous. The
second explores the space of rules over the attributes,
in search for those that define subgroups of nodes that
form a dense community. This is effectively a subgroup
discovery approach to dense subgraph mining.

Limitations of the state-of-the-art. Both of
these approaches make use of attribute homophily: the
tendency of links to exist between nodes sharing similar
attributes. While the homophily assumption is often
reasonable, it also limits the scope of application of prior
work to finding dense communities with homogeneous
attributes. A first limitation of the state-of-the-art is
thus its inability to find e.g. sparse subgraphs.

A second limitation is that the interestingness of
such patterns has invariably been quantified by ob-
jective measures—i.e. measures independent of the
data analyst’s prior knowledge. Yet, the most ‘inter-
esting’ patterns found are often obvious and implied
by such prior knowledge (e.g. communities involving
high-degree nodes, or in a student friendship network,
communities involving individuals practicing the same
sport), making them subjectively uninteresting.

586
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

02
/0

9/
21

 to
 1

57
.1

93
.5

.1
84

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



A third limitation of prior work is that the patterns
describe only the connectivity within communities and
not between subgroups of nodes. As an obvious example,
this excludes patterns that describe friendships between
a particular subgroup of female and a subgroup of male
individuals in a social network. The experiments on
real-life networks contain many less obvious examples.

Contributions. We depart from the existing lit-
erature in formalizing a subjective interestingness mea-
sure, building on the ideas from the FORSIED frame-
work [4], and this for sparse as well as for dense sub-
graph patterns. In this way, we overcome the first and
second limitations of prior work discussed above. More-
over, this interestingness measure is naturally applica-
ble for patterns describing the graph density between a
pair of subgroups, to which we will refer as bi-subgroup
patterns. Hence, our method overcomes the third lim-
itation of prior work. Our specific contributions are:
(1) Novel definitions of single-subgroup patterns and
bi-subgroup patterns [Sec. 2]. (2) A formalization of
Subjective Interestingness (SI), based on the analyst’s
evolving prior beliefs [Sec. 3]. (3) A beam-search al-
gorithm to mine the subjectively most interesting bi-
subgroup patterns [Sec. 4]. (4) An empirical evaluation
on real-world data, confirming our method’s ability to
identify subjectively interesting patterns [Sec. 5].

2 Subgroup pattern syntaxes for graphs

This section formalizes single-subgroup and bi-subgroup
patterns for graphs, beginning with some notation.

An attributed graph is denoted as a triplet G =
(V,E,A) where V is a set of n = |V | vertices, and
E ⊆

(
V
2

)
is a set of m = |E| undirected edges1, and

A is a set of attributes a ∈ A defined as functions
a : V → Doma, where Doma is the set of values the
attribute can take over V . For each attribute a ∈ A with
nominal Doma and for each y ∈ Doma, we introduce
a Boolean function sa,y : V → {true, false}, defined
as true for v ∈ V iff a(v) = y. Analogously, for each
a ∈ A with real-valued Doma and for each l < u and
l, u ∈ Doma, we define sa,[l,u] : V → {true, false}, with

sa,[l,u](v) , true iff a(v) ∈ [l, u]. We call these functions
selectors, and denote the set of all selectors as S. A
description or rule W is a conjunction of a subset of
selectors: W = s1 ∧ s2 . . . ∧ s|W |. The extension ε(W )
of a rule W is defined as the subset of vertices that
satisfy it: ε(W ) , {v ∈ V |W (v) = true}. We informally
also refer to the extension as the subgroup. Now a

1We consider undirected graphs without self-edges for the sake
of presentation and consistency with most literature. However, all

our results can be easily extended to directed graphs and graphs
with self-edges.

(a) Graph
Vertex 0 1 2 3 4 5 6 7 8 9 10

a 3.5 2.6 3.8 3.2 1.8 1.2 5.4 0.9 6.7 2.3 3.1
b 1 1 1 1 1 0 0 1 0 0 0
c 0 0 1 0 0 0 1 1 1 1 1
d 1 0 1 1 1 0 0 0 0 1 0

(b) Vertex attributes

Figure 1: Example attributed graph with 11 vertices
(0-10) and 4 associated attributes (a-d). The subgraph
induced by the description (W = sa,[2,4] ∧ sb,1) is
highlighted in red.

description-induced subgraph can be formally defined as:

Definition 1. (Description-induced-subgraph) Given
an attributed graph G = (V,E,A) and a description
W , we say that a subgraph G[W ] = (VW , EW , A) where
VW ⊆ V,EW ⊆ E, is induced by W if:

(i) VW = ε(W ), i.e., the set of vertices from V that is
the extension of the description W , and

(ii) EW = (VW × VW ) ∩ E, i.e., the set of edges from
E that have both endpoints in VW .

Example 1. Fig. 1(a) displays an example attributed
graph with 11 vertices, 18 edges. Each node is annotated
with 1 real-valued attribute (a) and 3 binary attributes
(b, c, d). Consider a description W = sa,[2,4] ∧ sb,1.
The extension of this description is the set of nodes
with attribute a value from 2 to 4 and attribute b as
1, i.e., ε(W ) = {0, 1, 2, 3}. The subgraph induced by W
is formed from ε(W ) and all the edges connecting pairs
of vertices in that set (highlighted with red in Fig. 1(a)).

2.1 Single-subgroup pattern A first pattern syn-
tax we consider informs the analyst about the density of
a description-induced subgraph G[W ]. We assume the
analyst is satisfied by knowing whether the density is
unusually small, or unusually large, and given this does
not expect to know the precise density. It thus suffices
for the pattern syntax to indicate whether the density is
either smaller than, or larger than, a specified value. We
thus formally define the single-subgroup pattern syntax
as a triplet (W, I, kW ), where W is a description and
I ∈ {0, 1} indicates whether the number of edges EW in
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subgraph G[W ] induced by W is greater (or less) than
kW . Thus, I = 1 indicates the induced subgraph is
sparse, whereas I = 0 characterizes a dense subgraph.
The maximum number of edges in G[W ] is denoted by
nW , equal to 1

2 |ε(W )|(|ε(W )| − 1).

2.2 Bi-subgroup pattern We also define a pattern
syntax informing the analyst about the edge density be-
tween two different subgroups. More formally, we define
a bi-subgroup pattern as a quadruplet (W1,W2, I, kW ),
where W1 and W2 are two descriptions, and I ∈ {0, 1}
indicates whether the number of connections between
ε(W1) and ε(W2) is upper bounded (1) or lower bounded
(0) by the threshold kW . The maximum number of con-
nections between the extensions ε(W1) and ε(W2) is de-
noted by nW , |ε(W1)||ε(W2)|− 1

2 |ε(W1∧W2)|(|ε(W1∧
W2)| + 1). Note that single-subgroup patterns are a
special case of bi-subgroup patterns when W1 ≡W2.

Remark 1. Although kW for a pattern (W1,W2, I, kW )
can be any value with which the number of connections
between ε(W1) and ε(W2) (or within ε(W1) when W1 ≡
W2) are bounded, our work focus on identifying patterns
whose kW is the actual number of connections between
these two subgroups (or within this single subgroup when
W1 ≡W2), as such patterns are maximally informative.

3 Formalizing the subjective interestingness

Previous work on mining patterns in attributed graphs
focuses on identifying dense communities, with density
quantified in an objective way (see Sec. 6). However,
given prior information on the graph, the resulting
patterns may be trivial, containing limited information
that is novel to the analyst. Tackling this necessitates
the use of subjective measures of interestingness.

3.1 General approach We follow the approach as
outlined by De Bie [5] to quantify the SI of a pattern.
In this framework, the analyst’s belief state is modeled
by a background distribution over the data space. This
background distribution represents any prior beliefs the
analyst may have by assigning a probability (density)
to each possible value for the data according to how
plausible the analyst thinks this value is. As such, the
background distribution also makes it possible to assess
the surprise in the analyst when informed about the
presence of a pattern. It was argued that a good choice
for the background distribution is the maximum entropy
distribution subject to some particular constraints that
represent the analyst’s prior beliefs about the data. As
the analyst is informed about a pattern, the knowledge
about the data will increase, and the background distri-
bution will change. For details see Sec. 3.2.

Given a background distribution, the SI of a pattern
can be quantified as the ratio of the Information Con-
tent (IC) and the Description Length (DL) of a pattern.
The IC is defined as the amount of information gained
when informed about the pattern’s presence, computed
as the negative log probability of the pattern w.r.t. the
background distribution P . The DL quantifies the code
length needed to communicate the pattern to the ana-
lyst. These are discussed in more detail in Sec. 3.3, but
first we further explain the background distribution.

3.2 The background distribution

The initial background distribution Here we reca-
pitulate how prior beliefs of the following types can be
modelled in a background distribution: (i) on individual
vertex degrees; (ii) on the overall graph density; (iii) on
densities between bins.

Type (i) and (ii): Prior beliefs on individual vertex
degrees and on the overall graph density. Given prior be-
liefs about the degree of each vertex, the maximum en-
tropy distribution is a product of independent Bernoulli
distributions, one for each of the random variable hu,v
defined as 1 if (u, v) ∈ E and 0 otherwise [5]. Denoting
the probability that hu,v = 1 by pu,v, this distribution
is of the form:

P (E) =
∏
u,v

pu,v
hu,v · (1− pu,v)1−hu,v ,

where pu,v =
exp(λru + λcv)

1 + exp(λru + λcv)
.

This can be conveniently expressed as:

P (E) =
∏
u,v

exp((λru + λcv) · hu,v)
1 + exp(λru + λcv)

.

The parameters λru and λcv can be computed efficiently.
For a prior belief on the overall density, every edge
probability pu,v simply equals the assumed density.

Type (iii): Additional prior beliefs on densities
between bins. We can partition nodes in an attributed
graph into bins according to their value for a particular
attribute. For example, nodes representing people in
a university social network can be partitioned by class
year. Then expressing prior beliefs regarding the edge
density between two bins is possible. This would
allow the data analyst to express, for example, an
expectation about the probability that people in class
year y1 is connected to those in class year y2. If the
analyst believes that people in different class years are
less likely to connect with each other, the discovered
pattern would end up being more informative and useful
as it contrasts more with this kind of belief. As
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shown by Adriaens et al. [1], the resulting background
distribution is also a product of Bernoulli distributions,
one for each of the random variable hu,v ∈ {0, 1}):

P (E) =
∏
u,v

exp((λru + λcv + γku,v
) · hu,v)

1 + exp(λru + λcv + γku,v )
,

where ku,v indexes the block formed by the intersecting
part of two bins which vertex u and v belongs to corre-
spondingly, λru ,λcv and γku,v are efficiently computable
parameters. Note that the background distribution can
model a prior belief simultaneously for the edge densi-
ties between bins resulting from multiple partitions.

Updating the background distribution Upon be-
ing represented with a pattern, the background distri-
bution should be updated to reflect the data analyst’s
newly acquired knowledge. The beliefs attached to any
value for the data that does not contain the pattern
should become zero. In the present context, once we
present a pattern (W1,W2, I, k) to the analyst, the up-
dated background distribution P ′ should be such that
φW (E) ≥ kW (if I = 0) or φW (E) ≤ kW (if I = 1) holds
with probability one, where φW (E) denotes a function
counting the number of edges between ε(W1) and ε(W2).
By De Bie [4], it was argued to choose P ′ as the I-
projection of the previous background distribution onto
the set of distributions consistent with the presented
pattern. Then Van Leeuwen et al. [20] showed that the
resulting P ′ is again a product of Bernoulli distribution:

P ′(E) =
∏
u,v

p′u,v
hu,v · (1− p′u,v)1−hu,v

where p′u,v =

{
pu,v if ¬

(
u ∈ ε(W1), v ∈ ε(W2)

)
,

pu,v·exp(λW )
1−pu,v+pu,v·exp(λW ) otherwise.

How to compute λW is also given in [20].

3.3 The subjective interestingness measure
The Information Content (IC). Given a pattern
(W1,W2, I, kW ), and a background distribution defined
by P , the probability of the presence of the pattern is
the probability of getting kW or more (for I = 0), or
fewer than kW (for I = 1) successes in nW trials with
possibly different success probabilities pu,v. While it is
impractical to compute these probabilities exactly, us-
ing the same approach as Van Leeuwen et al. [20] they
can be tightly upper bounded using the general Cher-
noff/Hoeffding bound [10], as follows:

Pr[(W1,W2, I = 0, kW )] ≤ exp

(
−nWKL

(
kW
nW
‖ pW

))
,

Pr[(W1,W2, I = 1, kW )]

≤ exp

(
− nWKL

(
1− kW

nW
‖ 1− pW

))
,

where pW = 1
nW

∑
u∈ε(W1),v∈ε(W2)

pu,v.

KL

(
kW
nW
‖ pW

)
is the Kullback-Leibler divergence

between two Bernoulli distribution with success proba-
bilities kW

nW
and pW respectively. Note that:

KL
( kW
nW
‖ pW

)
= KL

(
1− kW

nW
‖ 1− pW

)
,

=
kW
nW

log
(kW /nW

pW

)
+

(
1− kW

nW

)
log
(1− kW /nW

1− pW
)
.

We can thus write:

Pr[(W1,W2, I, kW )] ≤ exp

(
− nWKL

(
kW
nW
‖ pW

))
.

The IC is the negative log probability of the pattern
being present under the background distribution:

IC[(W1,W2, I, kW )] = − log(Pr[(W1,W2, I, kW )]),

≥ nWKL

(
kW
nW
‖ pW

)
.(3.1)

The Description Length (DL). A pattern with
larger IC is more informative. Yet, sometimes it is
harder for the analyst to assimilate as its description
is more complex. A good SI measure should trade
off IC with DL. The DL should capture the length
of the description needed to communicate a pattern.
Intuitively, the cost for the data analyst to assimilate a
description W depends on the number of selectors in W ,
i.e., |W |. Let us assume communicating each selector in
a description W has a constant cost of α and the cost
for I and kW is fixed. The total description length of a
pattern (W1,W2, I, kW ) can be written as2:

(3.2) DL[(W1,W2, I, kW )] = α(|W1|+ |W2|) + β.

The Subjective Interestingness (SI). Putting
the IC and DL together finally yields the SI:

SI[(W1,W2, I, kW )] =
IC[(W1,W2, I, kW )]

DL[(W1,W2, I, kW )]
,

=

nWKL

(
kW
nW
‖ pW

)
α(|W1|+ |W2|) + β

.(3.3)

2In all our experiments, we use α = 0.3, β = 0.5
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4 Algorithm

This section describes the algorithm for obtaining a set
of interesting patterns. Since the proposed SI interest-
ingness measure is more complex than most objective
measures, heuristic search strategies are inevitable for
tractability, as described next.

4.1 Beam search For mining single-subgroup pat-
terns, we applied a classical heuristic search strategy
over the space of descriptions—the beam search. The
general idea is to only store a certain number (called the
beam width) of best partial description candidates of a
certain length (number of selectors) according to the SI
measure, and to expand those next with a new selector.
This is then iterated. This approach is standard prac-
tice in subgroup discovery (used e.g. in Cortana [12]
and pysubgroup [11]).

4.2 Nested beam search To search for the bi-
subgroup patterns, however, a traditional beam search
over both W1 and W2 simultaneously turned out to be
more difficult to apply effectively: beams large enough
for good quality results turned out to be too demanding.
Instead, a nested beam search strategy, where one beam
search is nested into the other, gives good results. Here,
the outer beam search explores promising selectors for
the description W1, and the inner beam search expands
those for W2. Let us denote the width of the outer
and inner beam by x1 and x2 respectively. The total
number of patterns identified by our algorithm is x1 ·x2.
To maintain a sufficient diversity among the discovered
patterns, we constrain the outer beam to contain at least
x1 different W1 descriptions. Further details are given
in the supplement [6].

4.3 Implementation The implementation builds
on Pysubgroup [11], a Python package for subgroup
discovery implementation. We integrated our nested
beam search algorithm and SI measure into this original
interface. A Python implementation of the algorithms
and the experiments is available.3 All experiments
were conducted on a PC running Ubuntu with i7-7700K
4.20GHz CPU and 32 GB of RAM.

5 Experiments

We evaluate our methods on three real-world networks.
In the following, we first describe the datasets (Sec. 5.1).
Then we discuss the properties of the discovered pat-
terns (single-subgroup patterns in Sec. 5.2 and bi-
subgroup patterns in Sec. 5.3), with a purpose to eval-
uate various aspects of our proposed SI measure. In

3https://bitbucket.org/ghentdatascience/essd_public

Table 1: Dataset statistics summary

Dataset Type |V | |E| #Attributes |S|
Caltech36 undirected 762 16651 7 602

Reed98 undirected 962 18812 7 748
Lastfm undirected 1892 12717 11946 23892

DblpAffs directed 6472 3066 116 232

addition, scalability evaluation for both cases is given.

5.1 Data For our experiments we used four datasets.
Data size statistics are given in Table 1.
Caltech36 and Reed98. Two Facebook social net-
works from the Facebook100 [18] data set, gathered in
September 2005: one for Caltech Facebook users, and
one for Reed University. Node attributes describe the
person’s status (faculty or student), gender, major, mi-
nor, dorm/house, graduation year, and high school.
Lastfm. [3] A social network generated from friend-
ships between Lastfm.com users. A list of most-listened
musical artists and tag assignments for each user is given
in [user, tag, artist] tuples. We took the tags that a user
ever assigned to any artist and assigned those to the user
as binary attributes expressing a user’s music interests.
DblpAffs. A DBLP4 citation network based on a
random subset of publications from 20 conferences5

selected to cover 4 research areas: Machine Learning,
Database, Information Retrieval, and Data Mining.
Only papers for which the authors’ country (or state,
in the USA) of affiliation is available are included. The
resulting 116 countries/states are included as binary
node attributes, set to 1 iff one of the paper’s authors
is affiliated to an institute in that country/state.

5.2 Results on single-subgroup patterns First,
we analyzed single-subgroup patterns on Lastfm using
beam search with beam width 20 and search depth 2.

5.2.1 Evaluation of the identified subgroups
When using the SI measure to perform the pattern dis-
covery, the prior belief is on the individual vertex de-
grees. As a result, single-subgroup patterns’ density
will not be explainable merely from the individual de-
grees of the constituent vertices. For Lastfm, given its
sparsity, incorporating this prior leads to a background
distribution with a small average connection probabil-
ity. In this case, our algorithm tends to identify dense
clusters (i.e. I = 0), as these are more informative.

4https://aminer.org/citation
5IJCAI, AAAI, ICML, NIPS, ICLR, ICDE, VLDB, SIGMOD,

ICDT, PODS, SIGIR, WWW, CIKM, ECIR, KDD, ECML-
PKDD, WSDM, PAKDD, ICDM, SDM
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There exist numerous measures objectively quantifying
the interestingness of a dense subgraph community. We
make a comparison between our SI measure and some
of these objective ones, including the edge density, the
average degree, Pool’s community score [17], the edge
surplus [19], the segregation index [7], the modularity
of a single community [15, 16], the inverse average-ODF
(out-degree fraction) [21] and the inverse conductance.
For space limitations, tables with the most interesting
patterns w.r.t these measures are put in the supple-
ment [6]. The main findings are summarized here.

Each of those objective measures exhibits a par-
ticular bias that arguably makes the attained patterns
less useful in practice. The edge density is easily max-
imized to a value of 1 simply by considering very small
subgraph, and thus top patterns w.r.t this measure are
all those composed of only 2 vertices with 1 connecting
edges. In contrast, using the average degree tends to
find very large communities, because in a large commu-
nity there are many other vertices for each vertex to be
possibly connected to. Although Pool argued that their
measure may be larger for larger communities than for
smaller ones, in their own experiments on Lastfm as well
as in our own results, it yields relatively small commu-
nities. As they explained, the reason was Lastfm’s at-
tribute data is extremely sparse with a density of merely
0.15%. Note the most interesting patterns w.r.t the edge
surplus are the same as those w.r.t the Pool’s measure.
Although these two measures are defined in different
ways, Pool’s measure can be further simplified to a form
essentially the same as the edge surplus (shown in the
supplement [6]). Pursuing a larger segregation index
essentially targets communities which have less cross-
community links than expected. This measure em-
phasizes more strongly the number of cross-community
links, and yields extremely small or large communities
with few inter-edges on Lastfm. Using the modularity
of a single community tends to find rather large commu-
nities representing audiences of mainstream music. The
results for the inverse average-ODF and the inverse con-
ductance are not displayed, because the largest values
for these two measures can be easily achieved by a com-
munity with no edges leaving this community, for which
a trivial example is the whole network.

We argue that the attained patterns by applying
our SI measure are most insightful, striking the right
balance between coverage (sufficiently large) and speci-
ficity (not conveying too generic or trivial information).
The top one characterises a group of 78 idm (i.e., intel-
ligent dance music) fans. Audiences in this group are
connected more frequently than expected, and they al-
together only have 496 connections to those people not
into idm, a small number compared to the number of
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Figure 2: Run time on Lastfm for various |S|

people outside the group (i.e., 1892− 78 = 1814).
This sort of qualitative comparison was also made

on DblpAffs (results in the supplement [6]), for which
the same conclusion as above can be reached.

5.2.2 Scalability Fig. 2 illustrates how the algo-
rithm scales w.r.t the number of selectors in the search
space (i.e., |S|). Both axes are assigned with logarith-
mic scales with base 2. It is clear that the run time
experiences a linear growth as we double the |S| except
a tiny disagreement from the second implementation.

5.3 Results on bi-subgroup patterns To iden-
tify bi-subgroup patterns, we applied the nested beam
search with x1 = 8, x2 = 6, and D = 2. Moreover, we
constrain the target descriptions W1 and W2 to include
at least one common attribute but with various values,
so that the corresponding pair of subgroups ε(W1) and
ε(W2) do not overlap with each other. Under this set-
ting, the attained patterns are more explainable, and
the results are easier to evaluate.

5.3.1 Evaluation of the SI measure The evalua-
tion of the SI measure addresses two questions:
• Is the SI truly subjective, in the sense of being able

to consider data analyst’s prior beliefs? (Task 1)
• How can optimizing SI help avoid redundancy in the

resulting patterns from an iterative mining? (Task 2)
Task 1: The effects of different prior beliefs, and
a subjective evaluation. We consider different prior
beliefs, in search for bi-subgroup patterns w.r.t the SI
on Caltech36 and Reed98. The top 4 patterns under
each prior are presented in Table 2 (for Caltech36 ) and
Table 3 (for Reed98 ). For each pattern, the expected
number of edges between ε(W1) and ε(W2) w.r.t the
background distribution (i.e., pW · nW ) is also shown.

Prior beliefs on the individual vertex de-
grees. We first incorporated prior belief on the individ-
ual vertex degree (i.e. Prior 1). In general, the identified
patterns belong to knowledge commonly held by people,
and are not useful. The top 4 patterns on Caltech36 all
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Table 2: Varying prior beliefs in Caltech36 network

Rank W1 W2 |ε(W1)| |ε(W2)| I kW pW · nW

Prior 1

1 year = 2006 year = 2008 153 173 1 1346 2379.10
2 status = student ∧ year = 2008 status = alumni 167 159 1 842 1783.26
3 status = student ∧ year = 2008 year = 2006 167 153 1 1330 2367.96
4 status = student ∧ year = 2006 year = 2008 152 173 1 1346 2377.53

Prior 1
+ Prior 2

1 dorm/house = 169 dorm/house = 171 99 67 1 194 569.56
2 dorm/house = 169 dorm/house = 166 99 70 1 237 620.42
3 dorm/house = 169 dorm/house = 172 99 91 1 319 706.65
4 dorm/house = 169 dorm/house = 170 99 87 1 300 646.04

Prior 1
+ Prior 2
+ Prior 3

1 status = student ∧ year = 2004 year = 2008 3 173 0 108 25.23
2 status = student ∧ year = 2004 year = 2008 ∧ minor = 0 3 114 0 71 15.67
3 status = student ∧ year = 2004 year = 2008 ∧ gender = male 3 116 0 71 16.97
4 status = student ∧ dorm/house = 166 status = alumni ∧ high school = 19445 53 1 0 51 17.52

reveal people graduating in different years rarely know
each other (rows for Prior 1 in Table 2), in particular
between ones in class of 2006 and ones in class of 2008
(indicated by the most interesting pattern). Although
W2 of the second pattern (i.e., status = alumni) does
not contain the attribute graduation year, it implicitly
represents people who had graduated in former year.
For Reed98, the discovered patterns under Prior 1 also
express the negative influence of different graduation
years on connections (rows for Prior 1 in Table 3).

Prior beliefs on particular attribute knowl-
edge. We then incorporated the prior on the densities
between bins for different graduation years (i.e., Prior
2). All the top 4 patterns on Caltech 36 indicate rare
connections between people living in different dormi-
tories, and this is also not surprising. By additionally
incorporating prior beliefs on the dependency of the con-
nectivity probability on different dormitories (i.e., Prior
3), patterns characterizing some interesting dense con-
nections are attained. For instance, the top one reveals
three people in class of 2004 connect with many in class
of 2008. In fact, these three people’s graduation had
been postponed, as their status is ‘student’ rather than
‘alumni’ in year 2005. These two groups are possible
to become friends, as the starting year for those 2008
cohort is exactly 2004. The forth pattern indicates a
certain alumni knew almost all the students living in
dormitory 166. The reason for that might be worth in-
vestigating, which could be, e.g., this alumni worked in
this dormitory. For Reed98, incorporating Prior 1 and
Prior 2 provides interesting patterns. The top one in-
dicates people living in dormitory 88 are friends with
many in dormitory 89. For an analyst who has precon-
ceived notion such that people living in different dor-
mitories are less likely to know each other (which we
believe is common), this pattern is surprising. Both the
fourth and the seventh patterns reveal a certain person
knew many people in class of 2009.

Summary. As the results show, incorporating
different prior belifs leads to different patterns that
strongly contrast with these beliefs. The SI can quantify
the interestingness subjectively.
Task 2: Evaluation on the iterative pattern
mining. Our method is naturally suited for iterative
pattern mining, in a way to incorporate the newly
obtained pattern into the background distribution for
subsequent iterations. For this task, we used DblpAffs
and Lastfm dataset. Results for Lastfm are displayed
and discussed in the supplement [6]. Here we only
analyze the results on DblpAffs. Table 4 displays top 3
patterns found in each of the four iterations on DblpAffs.

Iteration 1. Initially, we incorporated prior on
the overall graph density. The resulting top pattern
indicates papers from institutes in USA seldom cite
those from other countries.

Iteration 2. After incorporating the top pattern
in iteration 1, a set of dense patterns were identified.
All the top 3 patterns reveal a highly-cited subgroup
of papers whose authors are affiliated to institutes in
California and New Jersey. This is possible as many
of the world’s largest high-tech corporations and rep-
utable universities are located in this region. Examples
include Silicon valley, Stanford university in CA, NEC
Laboratories, AT&T Laboratories in NJ, among others.

Iteration 3. The top 3 patterns in iteration 3
reveal that papers from authors with Chinese affiliations
are rarely cited by papers with authors from other
countries. However, they are frequently cited by papers
with Chinese authors, as indicated by our identified top
single-subgroup pattern in DblpAffs (see supplement
[6]). This indicates researchers with Chinese affiliations
are surprisingly isolated, the reason of which might be
interesting to investigate.

Iteration 4. The top patterns in iteration 4 reveal
that papers from institutions in Washington state are
highly cited by others, in particular by papers from
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Table 3: Varying prior beliefs in Reed98 network

Rank W1 W2 |ε(W1)| |ε(W2)| I kW pW · nW

Prior 1

1 year = 2008 year = 2005 209 117 1 495 1401.97
2 year = 2007 year = 2009 165 158 1 112 661.41
3 status = student ∧ year = 2008 year = 2005 209 117 1 495 1401.97
4 year = 2008 year = 2006 209 131 1 765 1643.38

Prior 1
+Prior 2

1 dorm/house = 89 dorm/house = 88 23 37 0 188 68.80
2 dorm/house = 89 ∧ status = student dorm/house = 88 22 37 0 188 68.45
3 dorm/house = 88 ∧ status = student dorm/house = 89 36 23 0 183 65.47
4 dorm/house = 111 ∧ year = 0 year = 2009 1 158 0 24 0.66
7 dorm/house = 96 ∧ year = 2005 year = 2009 1 158 0 12 0.07

California. Closer inspection revealed that the majority
of these papers are written by authors from Microsoft
Corporation and the University of Washington.

Summary. By incorporating the newly attained
patterns into the background distribution for subse-
quent iterations, our method can identify patterns
which strongly contrast to this knowledge. This results
in a set of patterns that are not redundant and highly
surprising to the data analyst. Note this does not means
we restrict patterns in different iterations not to be as-
sociated with each other. In fact, overlapping could
happen when this is informative.

5.3.2 Evaluation on the run time The run time of
the nested beam search on each dataset, as well as the
|S| and |V | statistics are listed in Table 5. The influence
of the |S| and |V | on the run time is evident.

6 Related work

Real-life graphs often have attributes on the vertices.
Pattern mining considering both structures and at-
tribute information promises more meaningful results,
and thus has received increasing research attention. The
problem of mining cohesive patterns was introduced by
Moser et al. [13]. They define a cohesive pattern as a
connected subgraph whose edge density exceeds a given
threshold, and vertices exhibit sufficient homogeneity in
the attribute space. Gunnemann et al. [9] propose to
combine subspace clustering and dense subgraph min-
ing. The former technique is to determine set of nodes
that are highly similar according to their attribute val-
ues, and the latter is to pursue the cohesiveness of the
attained subgraph. Mougel et al. [14] compute all max-
imal homogeneous clique sets that satisfy some user-
defined constraints. All these work emphasizes on the
graph structure and consider attributes complementary.

Rather than assuming attributes to be complemen-
tary, descriptive community mining, introduced by Pool
et al. [17] aims to identify cohesive communities that

have a concise description in the vertices’ attribute
space. They propose a cohesiveness measure based on
counting erroneous links (i.e., connections that are ei-
ther missing or obsolete w.r.t the ‘ideal’ community
given the induced subgraph). To a limited extent, their
method can be driven by user’s domain-specific back-
ground knowledge, which is a preliminary description
or a set of nodes that are expected to be part of a com-
munity. The search is then triggered by those seed can-
didates. Our proposed SI is more versatile in a sense
that can incorporate more general background knowl-
edge. Galbrun et al. [8] proposes a similar target to
Pool et al.’s, but relies on a different density measure,
which is essentially the average degree. Atzmueller et al.
[2] introduce description-oriented community detection.
They apply a subgroup discovery approach to mine pat-
terns in the description space so it comes naturally that
the identified communities have a succinct description.

All previous works quantify the interestingness in
an objective manner, in the sense that they can not
consider a data analyst’s prior beliefs and thus operate
regardless of context. Also, all previous works focus on
a set of communities or dense subgraphs, overlooking
other meaningful structures such as a sparse or dense
subgraph between two different subgroups of nodes.

7 Conclusion

We presented a method to identify patterns in the form
of (pairs of) subgroups of nodes in a graph, such that
the density of (the graph between) those node subgroups
is interesting. Here, ‘interesting’ is quantified in a
subjective manner, with respect to a flexible type of
prior knowledge about the graph the analyst may have,
including insights gained from previous patterns.

Our approach improves upon the interestingness
measures used in prior work on subgroup discovery
for dense subgraph mining in attributed graphs, and
generalizes it in two ways: in identifying not only dense
but also sparse subgraphs, and in describing the density
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Table 4: Top 3 discovered bi-subgroup patterns of each iteration in DblpAffs network

Rank W1 W2 |ε(W1)| |ε(W2)| I kW pW · nW

Iteration 1
1 USA = 1 USA = 0 3132 3340 1 335 765.827
2 USA= 1 ∧ China = 0 USA = 0 2969 3340 1 288 725.970
3 USA= 1 ∧ Australia = 0 USA = 0 3092 3340 1 320 756.046

Iteration 2
1 NJ (New Jersey) = 0 NJ = 1 ∧ CA (California) = 1 6262 15 0 93 6.909
2 CA = 0 NJ= 1 ∧ CA = 1 5584 15 0 86 6.132
3 NJ= 1 ∧ Israel = 0 NJ= 1 ∧ CA = 1 6153 15 0 93 6.757

Iteration 3
1 China = 0 China = 1 5599 873 1 144 271.022
2 China = 0 China = 1 ∧ IL (Illinois) = 0 5599 861 1 128 266.103
3 China = 0 ∧ USA = 0 China = 1 2630 873 1 64 168.086

Iteration 4
1 CA = 1 CA = 0 ∧ WA = 1 888 184 0 55 11.726
2 WA = 0 WA = 1 6254 218 0 182 97.776
3 CA = 1 ∧ TX (Texas) = 0 CA = 0 ∧ WA = 1 876 184 0 55 11.568

Table 5: Run time of bi-subgroup pattern mining

Dataset |S| |V | Run time (s)

Caltech36 602 762 6855.52
Reed98 748 962 10692.83
Lastfm 200 1892 5954.50

DblpAffs 232 6472 10015.70

between subgroups that may differ from each other.
The empirical results show that the method suc-

ceeds in taking into account prior knowledge in a mean-
ingful way, and is able to identify patterns that provide
genuine insight into the high-level network’s structure.
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