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Samenvatting

Achtergrond. Het ‘leren van representaties’ is een werkwijze in de machine
learning waarbij het doel is om informatie uit data te vatten, door de data-objecten
als vectoren in een (typisch) continue ruimte te plaatsen, bijvoorbeeld een Eu-
clidische ruimte. Zo’n representatie geeft een eenvormige kijk op verschillende
soorten data (tabellen, grafen, beelden) en breidt daarmee de toepassingsmogelijk-
heden van traditionele machine-learning en data-analysemethodes uit. Als gevolg
heeft het leren van representaties voor een revolutie gezorgd in vele subgebieden
van de computerwetenschap, waarvan we hieronder twee voorbeelden geven.

In de exploratieve data-analyse is de hoofdtaak om van data te leren door mid-
del van exploratie. In deze taak coöpereren data scientists vaak met computeral-
goritmes. Mensen zijn ongeëvenaard in het opmerken van interessante visuele
patronen, terwijl computers uitblinken in het manipuleren van hoog-dimensionale
data en zwakker zijn in het identificeren van echt relevante patronen. Daarom
gebruiken data scientists vaak dimensionaliteitsreductiemethodes (DR-methodes),
een specifieke vorm van het leren van representaties, om hoog-dimensionale data
in laag-dimensionale representaties om te zetten. Door deze laag-dimensionale re-
presentaties te visualiseren kunnen data scientists de complexe informatieruimte
navigeren die verborgen zit in hoog-dimensionale data.

Netwerkanalysetaken (zoals het voorspellen van verbindingen en het classifi-
ceren en clusteren van knopen) vereisen dat de eigenschappen van knopen in het
netwerk worden uitgeschreven. Deze eigenschappen zijn typisch vooraf met de
hand bepaald en hebben een combinatorische aard om te berekenen uit een net-
werk. Het extraheren van deze eigenschappen is daardoor vaak computationeel
kostbaar. Recentelijk toont een nieuwe categorie methodes voor het leren van
representaties, zogenoemde ‘netwerkembeddings’, de mogelijkheid aan om au-
tomatisch de eigenschappen van knopen in een netwerk te leren in de vorm van
hoog-dimensionale Euclidische vectoren. Deze hoog-dimensionale vectoren zijn
makkelijk te berekenen en tegelijkertijd in staat rijke informatie uit het netwerk
te vangen. Netwerkembeddings hebben daardoor de prestaties van voorgenoemde
taken in netwerkanalyse substantieel verbeterd.
Tekortkomingen van bestaande methoden. Desondanks de succesvolle toepas-
singen van het leren van representaties observeerden wij dat bestaande metho-
des twee beperkingen hebben. Ten eerste, laag-dimensionale representaties (zo-
als een datavisualisatie) zijn niet in staat de volledige structuur in de data te vat-
ten. Daarom is het wenselijk om data te exploreren door middel van comple-
mentaire laag-dimensionale representaties. Bestaande DR-methodes zijn echter



x SAMENVATTING

typisch ‘statisch’ in de zin dat wanneer ze herhaaldelijk toegepast worden, ze vrij-
wel dezelfde weergave of weergaves geven, die niet noodzakelijk complementair
zijn aan elkaar. Een ander probleem van huidige representatiemethodes is dat deze
met Euclidische ruimtes werken. Ondanks dat Euclidische ruimtes veel wense-
lijke eigenlijkhappen hebben (zoals continuı̈teit), is hun expressieve kracht om de
complexe structuur in de data te representeren fundamenteel beperkt.
Bijdragen. Om deze twee beperkingen aan te pakken stellen we een nieuw raam-
werk voor om representaties te leren. Het raamwerk beschrijft hoe representaties
gevonden kunnen worden door zowel data als voorkennis over de data als invoer
nemen en algoritmes te gebruiken om representaties te construeren die deze voor-
kennis complementeren met een maximum aan informatie over de data. Door
gebruik te maken van het raamwerk kunnen we dus de eerste beperking aanpak-
ken: bereken iteratief een laag-dimensionele visuele representatie die de kennis
bevat in eerdere visualisaties complementeert. Voor de tweede beperking kunnen
we juist de structuur die moeilijk te representeren is in een Euclidische ruimte als
voorkennis opnemen en de een representatie gebruiken om de complementaire in-
formatie the vatten. Door de voorkennis en representatie te combineren verkrijgen
we een beter model van de data. We refereren naar een representatie gevonden via
ons raamwerk als een Subjectief-Interessante Data Representatie (SIDR) en naar
het raamwerk als het SIDR-raamwerk. De term ‘subjectief’ komt van het feit dat
het raamwerk representaties geeft die contrasteren met voorkennis. De term ‘in-
teressante’ is omdat de informatie die verrassend is ten opzichte van wat er van
tevoren geweten is, typisch is wat echt interessant is.

In dit proefschrift introduceren we eerst het SIDR-raamwerk. Vervolgens pre-
senteren we vijf uitvoeringen van het raamwerk, waarbij iedere uitvoering over-
eenkomt met een sleutelpublicatie. Een uitvoering van het SIDR-raamwerk bena-
drukt een aspect van het raamwerk en laat zien hoe het SIDR-raamwerk gebruikt
kan worden om de voorgenoemde twee beperkingen aan te pakken. We bespreken
deze uitvoeringen kort in de rest van deze samenvatting. Allereerst introduce-
ren we de methodes die subjectief-interessante representaties voor verschillende
datatypes vinden, namelijk reëelwaardige tabellen alsook netwerken. In de rest
bediscussiëren we uitvoeringen die gericht zijn op specifieke toepassingen zoals
mens-computer interactie en interpreteerbaarheid.

Lineaire dimensionaliteitsreductiemethodes worden veel gebruikt in explora-
tieve data-analyse. Door data naar een laag-dimensionale ruimte te projecteren
kunnen data scientists de datarepresentatie weergeven en inzichten opdoen. Hoog-
dimensionale data bevat echter typisch een complexe structuur en een enkele laag-
dimensionele representatie is niet in staat de volledige structuur te vatten. Com-
plementaire representaties zijn dus gewenst voor efficiënte data-exploratie. Be-
staande lineair DR-methodes zijn allemaal statisch in de zin dat, afgezien van sto-
chasticiteit in de optimalisatieprocedure, ze vrijwel of exact dezelfde representatie
produceren wanneer ze herhaaldelijk toegepast worden. Om een complementaire
representatie te verkrijgen kan men naar verschillende combinaties van lineaire
projecties kijken. Er is echter geen garantie dat een van de geconstrueerde di-
mensies maximaal complementair is aan de voorkennis van een analist. Voor
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dit doel stellen we een methode voor het leren van lineaire representaties voor,
genaamd Subjectief-Interessante ComponentenAnalyse (SICA). SICA vindt laag-
dimensionale representaties die de voorkennis van een analist complementeren.
Uit uitgebreide empirische studies die we hebben gedaan blijkt de effectiviteit van
SICA in het vinden van complementaire lineaire representaties.

Non-lineaire dimensionaliteitsreductiemethodes genieten de voorkeur boven
lineaire wanneer het doel is om meer complexe structuren in de data te vatten.
Zij lijden echter ook aan de eerder besproken beperkingen, zoals de lineaire DR-
methodes doen. Om dit aan te pakken hebben we ook een methode voor het leren
van non-lineaire representaties ontwikkeld die een uitvoering is van het SIDR-
raamwerk. Omdat de resulterende methode complementaire representaties vindt
door middel van het generaliseren van t-Stochastic Neighbor Embedding (t-SNE)
refereren we ernaar als conditionele t-SNE (ct-SNE in het kort).

Er zijn ook structuren in de data die niet volledig gevat kunnen worden in
Euclidische vectoren. Netwerkdata valt in deze categorie door de complexe struc-
turele eigenschappen zoals multipartietheid, bepaalde graadverdelingen en assor-
tativiteit. Om de netwerkdata beter te modelleren modeleren we eerst de complexe
structuurinformatie als voorkennis. Vervolgens gebruiken we het SIDR-raamwerk
om complementaire informatie te leren, opgeslagen als Euclidische vectoren. Het
combineren van voorkennis en vectorrepresentaties resulteert in een beter model
van de data. We noemen deze methode Conditionele NetwerkEmbedding (CNE).
CNE presteert consistent beter dan de bestaande methodes, op taken zoals verbin-
dingen voorspellen en classificatie van knopen.

De voorgaande uitvoeringen maken aannames over de voorkennis die een ana-
list kan hebben. Het kan echter de voorkeur genieten om de data scientist direct op
te nemen in het proces van het leren van representaties, om iteratief meer inzich-
telijke representaties te ontdekken. Om dit te bereiken hebben we een methode
ontwikkeld voor Subjectief-Interessante Data Exploratie (SIDE). SIDE geeft een
visuele (lineaire) representatie weer aan de gebruiker en staat de gebruiker toe
om interessante clusters te specificeren die zij in de representatie heeft gevonden.
SIDE neemt aan dat de data scientist deze clusterstructuur assimileert en model-
leert de positie van de punten in de clusters als voorkennis. Daarna worden com-
plementaire representaties gezocht die met de voorkennis contrasteren. Meerdere
casusstudies tonen aan dat SIDE nuttig is voor het iteratief en interactief ontdekken
van subjectief-interessante structuren uit data.

Recentelijk is de aandacht voor methodes voor interpreteerbare machine learning
(ML) sterk toegenomen, doordat een groeiend aantal aan reglementen interpreteer-
baarheid vereisen van ML-methodes. De voorgaande uitvoeringen van het SIDR-
raamwerk richten zich niet expliciet op deze toepassing. Het naı̈ef interpreteren
van subjectief-interessant datarepresentaties vereist representaties direct interpre-
teerbare assen te hebben of de representaties op post-hoc te analyseren. In onze
laatste uitvoering, Subjectief-Interessante Subgroep ontDekking (SISD), brengen
we interpreteerbaarheid naar het SIDR-raamwerk door middel van het zoeken naar
subjectief-interessante representaties die tegelijk informatief en beschrijvend zijn.
Empirische studies tonen aan dat SISD inderdaad representaties kan vinden waar-
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van de interessantheid goed verklaard kan worden.
Samenvattend, dit proefschrift presenteert het SIDR-raamwerk dat beschrijft

hoe datarepresentaties gevonden kunnen worden die voorkennis complementeren.
We tonen vijf uitvoeringen die het gebruik van het SIDR-raamwerk op verschil-
lende manieren belichten. Uitgebreide empirische studies tonen de capaciteit aan
van het SIDR-raamwerk om effectief datarepresentaties te vinden die inderdaad
subjectief interessant zijn.
Perspectieven. De resultaten gepresenteerd in dit proefschrift hebben mogelijk
impact in drie richtingen. Ten eerste, nieuwe methoden voor het leren van subjec-
tieve representaties kunnen afgeleid worden van het SIDR-raamwerk. Ten tweede,
de gepresenteerde uitvoeringen van het SIDR-raamwerk kunnen direct toegepast
worden in exploratieve data-analyse. Data scientists kunnen de geı̈ntroduceerde
DR-methodes zoals SICA, ct-SNE en SIDE gebruiken om data te exploreren via
subjectief-interessante visualisaties. De patroonontdekkingsmethode SISD kan
ook toegepast worden om goed-uitgelegde subgroeppatronen te vinden die subjectief-
interessante informatie over de data onthullen. Ten laatste, CNE toont superieure
prestaties in netwerkanalysetaken zoals verbindingen voorspellen en knopen clas-
sificeren. We verwachten dat het integreren van CNE in bestaande netwerkembedding-
gebaseerde machine-learning processen een positieve impact heeft of de prestaties.



Summary

Background. Representation learning is a recently widely popularized machine
learning approach that aims to capture the information in data by embedding the
data objects as vectors in a (typically) continuous space (e.g., Euclidean space).
Such a representation provides a unified view of the different types of data (e.g.,
tabular, graph, image) and thus further extends the application scope of traditional
machine learning and data analytics methods. As a result, representation learn-
ing revolutionized many subfields in computer science, for which we provide two
examples below.

In exploratory data analysis, the main task is to learn from the data via explo-
ration. In this task, human operators often work interactively with computer algo-
rithms. Humans are unmatched in spotting interesting visual patterns, while com-
puters excel in manipulating high-dimensional data and are weaker at identifying
truly relevant patterns. Thus human operators often use dimensionality reduction
methods (DR), a type of representation learning, to transform high-dimensional
data into low-dimensional representations. By visualizing those low-dimensional
representations, the human operators are able to navigate the complex information
space hidden within high-dimensional data.

In network analysis, tasks such as link prediction, node classification, and clus-
tering rely on the features extracted from the network data. The types of features
are typically manually engineered and often have combinatorial nature. Hence
extracting these features is often computationally expensive. Recently, a new cat-
egory of representation learning methods called ‘network embeddings’ demon-
strate the ability to automatically learn node features of a network in the form of
high-dimensional Euclidean vectors. These high-dimensional vectors are easy to
compute and at the same time, able to capture rich information from the network.
As a result, network embeddings substantially improved the performance of the
aforementioned tasks in the network analysis.
Shortcomings in the state-of-art. Despite the successful applications of repre-
sentation learning approaches, we observed they have two limitations. First, since
a low-dimensional representation (e.g., a data visualization) is not able to capture
the complete structure in the data, it is desirable to explore the data via comple-
mentary low-dimensional representations. However, the existing DR methods are
typically ‘static’ in the sense that when applied repeatedly, they provide the same
view or views that do not necessarily complement each other. Another issue of
current representation methods is the data are typically embedded in Euclidean
space. Despite Euclidean space having many desirable properties (e.g., being con-
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tinuous), its expressive power to represent the complex structure in the data is
limited.
Contributions. We propose a representation learning framework to alleviate these
two limitations. The framework delineates how to take data plus certain prior
knowledge about the data as input, and finds a representation of the data that com-
plements the prior and conveys the most information about the data. Using the
framework, we can thus address the first limitation by iteratively computing the
low-dimensional visual representations of the data that complement the knowledge
conveyed by the previous visualizations. For the second limitation, we can encode
the structure that is difficult to represent in the Euclidean space as prior knowl-
edge, and let the representation capture complementary information. Combining
both the prior and the representation, we obtain a better model of the data. We re-
fer to a representation found by the instantiations of our framework as Subjectively
Interesting Data Representation (SIDR) and to the framework as the SIDR frame-
work. The term ‘subjective’ comes from the fact that the SIDR framework outputs
representations that contrast with a priors. The term ‘interesting’ is because the
information that is surprising to what is known a priori is typically what is truly
interesting.

In this thesis, we first introduce the SIDR framework. Then, we present five
instantiations of the framework, each corresponding to a key publication. Each
instantiation of the SIDR framework emphasizes one aspect of the framework and
demonstrates the ability of the SIDR framework to address the two limitations. We
briefly discuss these instantiations in the remainder of this summary. First, we in-
troduce the methods that find subjectively interesting representations for different
data types, namely real-valued tabular data as well as networks. In the remainder,
we discuss the instantiations that focus on more application perspectives such as
human-computer interaction and interpretability.

Linear dimensionality-reduction methods are common tools in exploratory data
analysis. By projecting the data onto a low-dimensional space, the human operator
can visualize the data representation and gain insights. However, high-dimensional
data typically contains a complex structure, and a single low-dimensional repre-
sentation is not able to capture the full structure. Thus complementary representa-
tions are desired for efficient data exploration. Existing linear DR methods are all
static in the sense that, besides the randomness in the optimization procedure, they
produce the same representation if applied repeatedly. To obtain a complementary
representation, one may indeed look at different combinations of the linear projec-
tions. However, there is no guarantee that the constructed dimensions maximally
complement the prior knowledge of an analyst. To this end, we proposed a linear
representation learning method called Subjectively Interesting Component Analy-
sis (SICA). SICA finds low-dimensional representations that complement the prior
knowledge of an analyst. We conducted extensive empirical studies and showed
the effectiveness of SICA in finding complementary linear representations.

Non-linear dimensionality-reduction methods are preferred to the linear ones
when the goal is to capture more complex structure in the data. However, they
also suffer from the limitations discussed above, as the linear DR methods do. To
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address this, we also developed a non-linear representation-learning method that
instantiates the SIDR framework. Because the resulting method finds complemen-
tary representations by generalizing t-distributed Stochastic Neighbor Embedding
(t-SNE), we refer it to as conditional t-SNE (ct-SNE in short).

There are also structures in the data that can not be fully captured using Eu-
clidean vectors. Network data falls into this category due to its complex struc-
tural properties such as (approximate) multipartiteness, certain degree distribu-
tions, assortativity. To better model the network data, we first encode complex
structure information as prior knowledge. Then we use the SIDR framework to
derive a method that models complementary information, stored as Euclidean vec-
tors. Combining both the prior and vector representations results in a better model
of the data. We call the method Conditional Network Embedding (CNE). CNE
consistently outperforms the baseline methods on downstream tasks such as link
prediction and node classification.

The previous instantiations make assumptions about the prior knowledge an
analyst may have. However, it may be more desirable to directly involve the hu-
man analyst in the representation learning process to iteratively discover more in-
sightful representations. To achieve this, we developed a method for Subjectively
Interesting Data Exploration (SIDE). SIDE shows a visual (linear) representation
of a dataset to the user and allows the user to specify the interesting clusters she
found in the data. SIDE assumes the user assimilates this clustering structure and
encode the position of the points in the clusters as prior. Then the complementary
representations that contrast with the prior are sought. Multiple case studies show
SIDE is useful for iteratively and interactively discovering subjectively interesting
structure from data.

Recently, interpretable machine-learning (ML) methods have gained lots of
attention because of a growing number of regulations requiring interpretability
of the ML methods. The previous instantiations of the SIDR framework are not
explicitly focusing on this perspective. Naively, interpreting the subjectively in-
teresting data representations requires either the representation to be sparse or to
be analyzed in a post-hoc manner. In our final instantiation, Subjectively Interest-
ing Subgroup Discovery (SISD), we bring interpretability to the SIDR framework
by jointly searching subjectively interesting representations that are both informa-
tive and descriptive. Empirical studies show SISD can indeed find representations
whose interestingness is well explained.

To sum up, this thesis presents the SIDR framework that formalizes how to find
data representations that complement the prior knowledge of a user. We show five
instantiations that highlight the usage of the SIDR framework in different perspec-
tives. Extensive empirical studies demonstrate the capability of the SIDR frame-
work to effectively find data representations that are indeed subjectively interest-
ing.
Perspectives. Results presented in this thesis have potential impact in three direc-
tions. First, new subjective representation learning methods can be derived from
the SIDR framework. Second, presented instantiations of SIDR framework can be
directly applied in exploratory data analysis. Analysts can use the introduced DR



xvi SUMMARY

methods such as SICA, ct-SNE, and SIDE to explore data via subjectively inter-
esting visualizations. Pattern discovery method SISD can also be applied to find
well-explained subgroup patterns that reveal subjectively interesting information
about the data. Finally, CNE demonstrates superior performance in downstream
tasks (e.g., link prediction, node classification) in graph learning. Integrating CNE
into existing network-embedding based machine learning pipelines is expected to
have positive impact on the performance.
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1
Introduction

1.1 Motivation

Machine learning and data analytics methods heavily rely on the availability of
good data representations (or features). For example, manual feature engineering
is widely adopted in traditional prediction and classification models to boost these
models’ performance. The recent development of deep neural networks automated
the process of identifying and extracting good data representations, which in re-
turn, popularized deep neural networks. Word and network embedding methods
learn representations from textual and network data thus extend the application
scope of traditional machine learning methods. In data analytics, dimensionality
reduction methods are often applied to construct lower-dimensional representa-
tions of data. Visualizing low-dimensional representation allows human analysts
to gain intuition about the data efficiently. The common practices of automati-
cally discovering the representations from raw data are collectively identified as
“representation learning” by the machine learning community.

Despite the success of representation learning in both academia and industry,
it currently has two limitations. First, low-dimensional data representation is typi-
cally insufficient to capture all structure in the data, and the most salient structure
is often already known. Still, it is not obvious how to extract the remaining in-
formation in a similarly effective manner. Another limitation is the original data
can be fundamentally more expressive than data representations that are typically
formulated as vectors in the Euclidean space. This potentially causes the complex
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structure in the data not being fully captured by the representations.
To overcome these limitations, we propose a representation learning frame-

work that delineates how to take a prior about the data as an extra input and finds
a representation that complements this prior. By discounting the known salient
structure in the data, the framework enables complementary structure to be cap-
tured in the representation, providing new insights. Second, a structure that is
difficult for Euclidean vectors to represent can also be encoded as a prior in the
proposed framework. This allows the Euclidean representation to model comple-
mentary information in the data. By combining the prior and the Euclidean rep-
resentation, methods derived from the proposed framework yields a better model
of the data. We term the representation constructed by the methods derived from
our framework as subjectively interesting data representation (SIDR). We use the
term ‘subjective’ because the representation complements a certain prior. We use
the term ‘interesting’ because the information that is surprising to what is known
a priori is typically what is truly interesting [1].

1.2 Contributions

The main contribution of this dissertation is a mathematically principled frame-
work for learning subjectively interesting representations, to which we refer as the
SIDR framework for brevity. Based on this framework, we developed five instan-
tiations. Each instantiation focuses on a different perspective of the framework:
linear representations (Chapter 1), non-linear representations (Chapter 2), network
representations (Chapter 3), representation learning with human in the loop (Chap-
ter 4), and interpretable representations (Chapter 5). In this section, we formally
define the SIDR framework and summarize the five instantiations. These instanti-
ations are discussed in greater detail in the later chapters.

1.2.1 SIDR framework

The SIDR framework consists of three components: (1) a prior distribution that
encodes the known information about data. (2) A conditional distribution that de-
scribes the relationship between data and its representations. (3) An optimization
strategy for finding the most informative data representation that complements the
prior. SIDR quantifies the informativeness of a representation in terms of prob-
ability, which converts the problem of searching for the most informative com-
plementary representation into a mathematical optimization problem. This further
allows the SIDR framework to address the two limitations of current representation
learning methods in a mathematically principled manner.

To formally describe the framework, we first need to introduce a few concepts.
Following the definition in [2, 3], we assume the data is drawn from a set of possi-
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ble values, termed the data space. Their formal definitions are as follows.

Definition 1 (Data space and data). Given a set Ω called the data space, the data
is an element D̂ ∈ Ω with corresponding random variable denoted as D.

In this dissertation, we specify the data D̂ to be a set of data objects. For real-
valued tabular data [4, 5, 6, 7], D̂ consists of |D̂| real vectors with dimensionality
d. We further overload the notation D̂ as a |D̂| × d real-matrix by stacking the
vectors row-wise. This leads to a data space Ω = R|D̂|×d. For a network with a
node set V̂ and a set of links Ê [8], the corresponding data D̂ consists of |V̂| data
objects (|D̂| = |V̂|), where each data object is a set of neighboring nodes (defined
by Ê) of the corresponding node. Thus, the data space is the set of all possible

links between the nodes, namely Ω = 2(V̂
2).

Example. To better understand the concepts in the SIDR framework, we introduce
a running example of exploring data via subjectively interesting linear represen-
tations [4]. In this example, we would like to explore the extended Yale Face
Database B [9, 10]. The dataset contains 1684 frontal images (32× 32 gray-level)
of human subjects under various illumination conditions. Thus, we have real-
valued tabular data which belongs to the data space Ω = R1684×1024. As the first
exploration step, we performed Principal Component Analysis (PCA) [11] on the
data. We observed the top principal components given by PCA (namely the Eigen-
faces) are influenced substantially by the variation in the illumination conditions.
Knowing that the variation of the illumination conditions is the dominant structure
in the data, we would like to explore other structure further via low-dimensional
representations of the data.

In SIDR, data representation is defined as a set of Euclidean vectors that convey
information about certain aspects of the data.

Definition 2 (Data representation). A representation R̂ of data D̂ consists of |D̂|
real-valued k-dimensional vectors, namely R̂ ∈ R|D̂|×k. Given data space Ω, a
representation R̂ of data D̂ corresponds to a subset ΩR̂ of the data space such
that ΩR̂ ⊆ Ω and D̂ ∈ ΩR̂.

Example cont. In our running example, we explore the data via its linear repre-
sentations. The term “linear” means the representation is obtained by projecting
the data onto an orthonormal matrix W ∈ Rd×k, i.e., R̂ = D̂W . Thus represen-
tation of the image data is a set of k-dimensional vectors. Since only a restricted
set of images ΩR̂ ⊆ Ω has the representation R̂ after projecting onto the matrix
W , the representation R̂ corresponds to a subset of the data space ΩR̂.

With the concepts introduced above, we can now define the first component
of SIDR.

Definition 3 (Prior distribution). A prior distribution pD is a probability distribu-
tion over the data space pD : Ω→ R that encodes certain prior knowledge about
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the data. 1

Here we briefly discuss how to encode prior knowledge and subsequently com-
pute the prior distribution. For real-valued tabular data, the prior knowledge can
be quantified using statistics of the data f : Ω→ Rm, where m is the dimension-
ality of the output of measure function f . To derive the prior distribution, we can
pose the statistics as constraints on the expectations of the prior distribution, with
a form: ED∼pD [f(D)] = m̂, where m̂ is a vector of the statistics measured on
the observed data. However, such constraints do not determine the distribution pD
fully, so we determine pD as the distribution with maximum entropy (MaxEnt)
from all distributions satisfying the constraints. The resulting MaxEnt distribution
is the distribution with least injected information other than the information of the
constraints. Finding this distribution is a convex optimization problem which can
often be solved efficiently [3].
Example cont. In our facial image exploration example, the illumination condi-
tions are known to be one of the dominant factors in the data. Thus, each data
object is labeled with one of the illumination conditions. This knowledge can be
translated by declaring that images with the same illumination condition are sim-
ilar to each other. The similarities can be further formalized using a graph with
the edges M connecting all the pairs of nodes (data objects) that share the same
illumination condition. In this way, the prior knowledge regarding similarity be-
tween the data objects can be measured as the average pairwise Euclidean distance
of connected nodes in the graph: E

[
1
|M |

∑
(i,j)∈M ||Di,: −Dj,:||2

]
= m̂, where

m̂ is a constant scalar obtained by computing the same pairwise similarity mea-
sure on the observed data. Maximizing the entropy of the distribution under the
pairwise similarity prior results in a matrix normal distribution [4].

Other priors derived from real-valued tabular data are the magnitude of the
scale of the data [4], the mean and the variance statistics of full or subsets of data
[6, 7]. For network data, the prior knowledge can be the degree of each node (i.e.,
the number of directly connected nodes) and the density of the links within each
community structure of the network [8]. Apart from deriving the prior distribution
using the MaxEnt approach, the prior distribution can also be directly postulated
based on the assumptions made on the data [5].

As the second component of SIDR, the conditional distribution of representa-
tion is defined as follows:

Definition 4 (Conditional distribution). The conditional distribution that describes
the relation between data and its representation is referred to as pR|D.

Using Bayes’ rule, we can further derive the distribution of the data D condi-

1For real tabular data, pD is a density function. For network data, pD is a discrete probability
distribution.
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tioning on R:
pD|R =

pR|DpD

pR
.

where pR is the marginal distribution and can be obtained by marginalizing the
joint distribution pR,D = pR|DpD over D.

The form of the conditional distribution varies for different instantiations. In
the running example, the linear representation random variable R is uniquely
determined by the data random variable D and projection matrix W , namely
R = DW and pR|D = 1. Applying Bayes’ rule, the distribution of the data
given the representation reads: pD|R = pD

pR
, where pR is the marginal density

function obtained by projecting the prior distribution onto matrix W . This formu-
lation of the conditional distribution gives zero probability to the datasets in the
data space that cannot have representation R via projection matrix W , namely
pD = 0 for D /∈ ΩR.

Besides the proposed conditional distribution for linear representations [4, 6,
7], this dissertation also introduces other forms of conditional distributions for
non-linear representations of tabular data [5] and network representations [8]. We
further motivate the choice of conditionings in the later chapters.

Building on the previous two components, we now define the third compo-
nent of SIDR, namely the strategy of finding a representation that both comple-
ments the prior and is maximally informative about the data.

Definition 5 (Search strategy). Given dataset D̂ and posterior probability pD|R,
searching for subjectively interesting representations is to find a representation R̂

with that maximizes the conditional probability of the data:

argmax
R̂

pD|R(D̂|R̂).

Example cont. In our face image data example, since the representations are given
projection matrix W , finding the complementary linear representation is equiva-
lent to maximizing the probability pD|R(D̂|R̂) = pD(D̂)

pR(R̂)
over projection matrix

W . Note this is also equivalent to finding a linear representation R̂ that has the
smallest probability under the marginalized prior distribution (i.e., pR(R̂)). Thus
the resulting representation is maximally informative (measured by the negative
log probability − log pR(R̂) [12]) and also complements the prior. This is exactly
what we aimed for.

1.2.2 SIDR instantiations

We study five instantiations of the SIDR framework with each instantiation focus-
ing on a different perspective of the framework. First, we introduce the methods
that finds subjectively interesting representations for different data types, namely
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real-valued tabular data as well as networks. In the remainder, we discuss the in-
stantiations that focus on more applicative perspectives such as human-computer
interaction and interpretability.

Chapter 2 Linear representation To explore high-dimensional data, dimen-
sionality reduction (DR) methods are typically used to obtain a low-dimensional
(2D/3D) data representation. By visualizing the representation, human analysts
can efficiently explore and find structure in the data. However, existing linear DR
methods yield a single static representation, which in most cases is insufficient
to capture all structure in the data. Furthermore, since different human analysts
have different prior knowledge and interests, they are unlikely to have an equal
interest in the same low-dimensional representation. One may indeed construct
high-dimensional representations, hoping to discover more structure, but there is
no guarantee that the constructed dimensions complement the prior knowledge of
an analyst. To address these issues, we present Subjectively Interesting Compo-
nent Analysis (SICA) [4]. SICA instantiates the SIDR framework by searching
for linear representations that reveal the complementary information (with respect
to the prior knowledge) about the data. SICA is evaluated in both qualitative and
quantitative experiments against several synthetic and real-world datasets. The
experiments suggest that SICA enables users to find low-dimensional linear repre-
sentations while discounting prior information.

Chapter 3 Non-linear representation Comparing to Linear DR methods which
create low-dimensional data representations via linear projection, non-linear DR
methods are more powerful in the sense that they can capture complex non-linear
structure. Despite the popularity of the non-linear DR methods, they all yield a sin-
gle static representation, which is insufficient to capture all structure in the data.
In addition, the salient structure in the representation is often already known. To
effectively explore the data, some new structure needs to be captured in the subse-
quent low-dimensional representations. Thus, we present Conditional t-distributed
Stochastic Neighbor Embedding (ct-SNE) [5], a conditioned version t-distributed
Stochastic Neighbor Embedding (t-SNE) [13]. ct-SNE encodes prior informa-
tion from the lower-dimensional representation in the form of labels, namely the
same-labeled data objects are expected to be more similar and vice-versa. By
discounting the prior information, the low-dimensional representation focuses on
reflecting the proximities that complements the prior. Extensive case studies on
both synthetic and (large) real-world datasets show ct-SNE effectively factors out
prior knowledge and allows the complementary structure to be captured in the
low-dimensional embedding, providing new insights.
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Chapter 4 Network representation Network embedding (NE) methods map
nodes into corresponding Euclidean vector representations hence enabling a vari-
ety of machine learning methods to be applied on network data. This also explains
the exploding popularity of NE methods. However, a problem with existing NE
methods is that networks are fundamentally more expressive than the representa-
tions in Euclidean spaces. For example, network structural properties such as (ap-
proximate) multipartiteness, certain degree distributions, assortativity are difficult
to express using Euclidean vectors. To address such limitation, we propose Con-
ditional Network Embeddings (CNE) [5] that optimize network representations
with respect to certain prior knowledge about the network. Conditioning on struc-
tural information as prior, a Euclidean representation does not need to represent
the structural information but focuses on encoding the complementary informa-
tion. As a result, the combination of prior and representation better captures the
information conveyed by the network. Comparing to the state-of-art methods on a
wide range of networks, CNE shows superior performance in link prediction and
multi-label classification tasks. This proves CNE’s capability of better represent-
ing network data.

Chapter 5 Learning representation with human in the loop SICA and ct-
SNE both find low-dimensional representations that complement the prior infor-
mation. Thus, in theory, they can be applied to find subjectively interesting low-
dimensional representations iteratively. However, both methods lack a mechanism
that accumulates the knowledge learned by a user along with the iterations, which
prevent the user to learn from the data in a progressive manner. We developed
a DR method with such mechanism and termed it Subjectively Interesting Data
Exploration (SIDE) [6]. When exploring data using SIDE, the user can specify
the interesting clusters she found in the data. SIDE assumes users assimilate this
clustered structure and encode the position of the points in the clusters as prior.
Then SIDE finds representation that complements the prior. Finally, the new rep-
resentation is presented to the user, and a new iteration starts. This process can be
iterated until the user runs out of time, or only noises are left in the representation.
Two case studies, one controlled study on synthetic data and another on census
data show SIDE is useful for iteratively and interactively discovering subjectively
interesting structure from data.

Chapter 6 Interpretable representations The previous instantiations yields rep-
resentations that are not easy to interpret. Namely, understanding these repre-
sentations requires either the representations to be sparse or to be analyzed in a
post-hoc manner, e.g., referring to external information. To compute interpretable
representations, we introduce Subjectively Interesting Subgroup Discovery (SISD)
[7]. SISD jointly search representations of a subset of the data objects that have



8 INTRODUCTION

the most informative characteristics compared to the prior and also have concise
descriptions. Empirical studies on four datasets show SISD can indeed find repre-
sentations that are interesting and at the same time well explained by their descrip-
tions.

1.3 Publications

This dissertation consists of key works published in the following conferences,
journal articles, and preprints.

• Bo Kang, Jefrey Lijffijt, Raúl Santos-Rodrı́guez, and Tijl De Bie. SICA:
Subjectively Interesting Component Analysis. Data Mining and Knowledge
Discovery, 32(4):949–987, 2018

This journal paper is a substantial extension of the following conference
paper:

– Bo Kang, Jefrey Lijffijt, Raúl Santos-Rodrı́guez, and Tijl De Bie. Sub-
jectively Interesting Component Analysis: Data Projections That Con-
trast with Prior Expectations. In Proceedings of the 22nd International
Conference on Knowledge Discovery and Data Mining (KDD), pages
1615–1624, 2016

• Bo Kang, Darı́o Garcı́a Garcı́a, Jefrey Lijffijt, Raúl Santos-Rodrı́guez, and
Tijl De Bie. Conditional t-SNE: Complementary t-SNE embeddings through
factoring out prior information. arXiv:1905.10086, 2019

• Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Conditional Network Embeddings.
In International Conference on Learning Representations (ICLR), 2019

• Bo Kang, Kai Puolamäki, Jefrey Lijffijt, and Tijl De Bie. A Constrained
Randomization Approach to Interactive Visual Data Exploration with Sub-
jective Feedback. IEEE Transactions on Knowledge and Data Engineering,
2019

This journal paper is a substantial extension of the following conference
paper:

– Bo Kang, Kai Puolamäki, Jefrey Lijffijt, and Tijl De Bie. A Tool
for Subjective and Interactive Visual Data Exploration. In The Eu-
ropean Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML-PKDD), pages 3–7.
Springer International Publishing, 2016
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• Jefrey Lijffijt, Bo Kang, Wouter Duivesteijn, Kai Puolamäki, Emilia Oikari-
nen, and Tijl De Bie. Subjectively Interesting Subgroup Discovery on Real-
valued Targets. arXiv:1710.04521, 2018

This preprint is a substantial extension of the following conference paper:

– Jefrey Lijffijt, Bo Kang, Wouter Duivesteijn, Kai Puolamäki, Emilia
Oikarinen, and Tijl De Bie. Subjectively interesting subgroup discov-
ery on real-valued targets. In Proceedings of the 34th IEEE Interna-
tional Conference on Data Engineering (ICDE), 2018
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2
Linear Representations

SICA: Subjectively Interesting Component Analysis

Abstract The information in high-dimensional datasets is often too complex for
human users to perceive directly. Hence, it may be helpful to use dimensionality
reduction methods to construct lower dimensional representations that can be visu-
alized. The natural question that arises is how do we construct a most informative
low dimensional representation? We study this question from an information-
theoretic perspective and introduce a new method for linear dimensionality reduc-
tion. The obtained model that quantifies the informativeness also allows us to
flexibly account for prior knowledge a user may have about the data. This enables
us to provide representations that are subjectively interesting. We title the method
Subjectively Interesting Component Analysis (SICA) and expect it is mainly use-
ful for iterative data mining.

SICA is based on a model of a user’s belief state about the data. This belief
state is used to search for surprising views. The initial state is chosen by the user (it
may be empty up to the data format) and is updated automatically as the analysis
progresses. We study several types of prior beliefs: if a user only knows the scale
of the data, SICA yields the same cost function as Principal Component Analysis
(PCA), while if a user expects the data to have outliers, we obtain a variant that we
term t-PCA. Finally, scientifically more interesting variants are obtained when a
user has more complicated beliefs, such as knowledge about similarities between
data points. The experiments suggest that SICA enables users to find subjectively
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more interesting representations.

2.1 Introduction

The amount of information in high dimensional data makes it impossible to inter-
pret such data directly. However, the data can be analyzed in a controlled manner,
by revealing particular perspectives of data (lower dimensional data representa-
tions), one at a time. This is often done by means of projecting the data from the
original feature space into a lower-dimensional subspace. Hence, such lower di-
mensional representations of a dataset are also called data projections, which are
computed by a dimensionality reduction (DR) method.

DR methods are widely used for a number of purposes. The most prominent
are data compression, feature construction, regularization in prediction problems,
and exploratory data analysis. The most widely known DR technique, Principal
Component Analysis (PCA) [32] is used for each of these purposes [2], since it
is computationally efficient, and more importantly, because large variance is often
associated with structure, while noise often has smaller variance.

Other DR methods include linear methods such as Multidimensional Scaling
[25], Independent Component Analysis [17] and Canonical Correlations Analysis
[16], and non-linear techniques such as ISOMAP [35], Locality Preserving Projec-
tions [15], and Laplacian-regularized models [39]. The aforementioned methods
all have objective score functions whose optimization yields the lower-dimensional
representation, and they do not involve human users directly. Hence, we argue that
these methods may well be suitable for, e.g., compression or regularization, but
not optimal for providing most insight.

In exploratory data analysis, data is often visualized along the dimensions
given by a DR method. Humans are unmatched in spotting visual patterns but
inefficient at crunching numbers. Hence, visualizing high dimensional data in hu-
man perceivable yet computer-generated 2D/3D space can efficiently help users to
understand different perspectives of the data [33]. However, since different human
operators have different prior knowledge and interests, they are unlikely to have
equal interest in the same aspect of data. For instance, PCA might be applied to
obtain an impression about the spread of data. But for many users, the structure in
the data with largest variance may not be relevant at all.

To address this issue, Projection Pursuit (PP) [11] was proposed, which finds
data projections according to a certain interestingness measure (IM), designed with
specific goals. With the ability to choose between different IMs, PP balances the
computational efficiency and its applicability. However, because there are many
analysis tasks and users, very many IMs are required, and this has led to an ex-
plosion in the number of IMs. Hence, unlike DR used for a specific analysis task
or a predictive model, it seems to be conceptually challenging to define a generic
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quality metric for DR in the tasks of exploratory data analysis. This is precisely
the focus of this chapter.

In this chapter we present Subjectively Interesting Component Analaysis (SICA),
a dimensionality reduction method that finds subjectively interesting data projec-
tions. That is, projections that are aimed to be interesting to a particular user. In
order to do so, SICA relies on quantifying how interesting a data projection is to
the user. This quantification is based on information theory and follows the prin-
ciples of FORSIED [7]. Here we discuss the central idea of FORSIED and more
detail will follow in Section 2.2.

FORSIED is a data mining framework for quantifying subjective interesting-
ness of patterns. The central idea is that a user’s belief state about the dataset is
modelled as a Maximum Entropy (MaxEnt) probability distribution over the space
of possible datasets. This probability distribution is called the background distri-
bution and is updated as the analysis progresses, based on user interaction and the
patterns in the data provided to the user. One can quantify the probability that a
given pattern is present in data that is randomly drawn from the background distri-
bution. Clearly, the smaller this probability, the more surprising the pattern is, and
the more information it conveys to the user. More specifically, in FORSIED, the
self-information of the pattern, defined as minus the logarithm of that probability,
is then proposed as a suitable measure of how informative it is given the belief
state.

In this chapter, we define a pattern syntax called projection patterns for data
projections that is compatible with FORSIED. By following FORSIED’s princi-
ples, we can quantify the probability of a projection given the user’s belief state.
The lower the probability, the more surprising and interesting the pattern is, since
surprising information about the data is typically what is truly interesting [14].
Because this surprisal is evaluated with respect to the belief state, SICA can evalu-
ate the subjective interestingness of projection patterns with respect to a particular
user.

Contributions. We introduce SICA, a dimensionality reduction method that tracks
a user’s belief about the data and presents subjectively interesting data projections
to the user. To achieve this,

– we define projection patterns, a pattern syntax for data projections (§2.2);

– we derive a measure that quantifies the subjective interestingness of projection
patterns (§2.2);

– we propose a method that finds the most subjectively interesting projections in
terms of an optimization problem (§2.2);

– we define three types of prior beliefs a user may have knowledge about (§2.3);

– we demonstrate that with different prior belief types, SICA is able to (approxi-
mately/exactly) find the subjectively most interesting patterns. In particular, for
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some prior belief types, the subjective interestingness can be efficiently opti-
mized by solving an eigenvalue problem (§2.3);

– we present three case studies and investigate the practical advantages and draw-
backs of our method, which show that it can be meaningful to account for avail-
able prior knowledge about the data (§2.4).

This chapter is an integrated and extended version of papers by De Bie et al.
[9] and Kang et al. [21].

2.2 Subjectively Interesting Component Analysis

SICA allows one to find data projections that reveal unexpected variation in the
data. In this section, we introduce the ingredients needed to achieve this. Namely,
we (a) define an interestingness measure (IM) that quantifies the amount of in-
formation a projection conveys to a particular user, (b) following to the IM, find
interesting data projections for the user. In Section 2.3, we then develop SICA
further for various types of prior beliefs.

2.2.1 Notation

We use upper case bold face letters to denote matrices, lower case bold face letters
for vectors, and normal lower case letters for scalars. We denote a d-dimensional
real-valued dataset as X̂ , (x̂′1, x̂

′
2, . . . , x̂

′
n)′ ∈ Rn×d, and the corresponding

random variable as X. We will refer to Rn×d, the space the data is known to
belong to, as the data space. Dimensionality reduction methods search weight
vectors w ∈ Rd of unit norm (i.e. w′w = 1) onto which the data is projected by
computing X̂w. If k vectors are sought, they will be stored as columns of a matrix
W ∈ Rd×k. We will denote the projections of a data set X̂ onto the column vectors
of W as Π̂W ∈ Rn×k, or formally: Π̂W , X̂W, and analogously for the random
variable counterpart ΠW , XW. We will write I to denote the identity matrix
of appropriate dimensions, and 1n×d (or 1 for short if the dimensions are clear
from the context) to denote a n-by-d matrix with all elements 1ij = 1. We define
the matrix interval with lower bound B and upper bound C denoted by An×m ∈
[Bn×m,Cn×m], which indicates ai,j ∈ [bi,j , ci,j ] for every i, j = {1, 2, . . . , n} ×
{1, 2, . . . ,m}.

2.2.2 Subjective interestingness measure for projections

We now derive an IM for SICA following the framework for subjective interesting-
ness measures (FORSIED) [7, 8]. FORSIED is a data mining framework that spec-
ifies on an abstract level how to model a user’s belief state about a given dataset,
and how to quantify the informativeness of patterns with respect to a particular
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user. It works as follows: in order to measure the subjective interestingness of
projections, SICA needs to maintain a model of the user’s belief state. In addition,
SICA should be able to describe data projections in a pattern syntax compatible
with FORSIED. We discuss both these issues in turn below.

Modeling the user’s belief state

We formalize a user’s belief state as a probability distribution over the data space
[7]:

Definition 6 (Background distribution). The background distribution is a distribu-
tion over the data space Rn×d that represents the user’s belief state: the probabil-
ity it assigns to any measurable subset of Rn×d corresponds to the probability that
the user would ascribe to the data X̂ belonging to that subset. The background dis-
tribution can be represented by a probability density function pX : Rn×d → R+.

For brevity, and slightly abusively, we will often refer to the density function
pX as the background distribution.

Of course, the background distribution is typically not known to the data min-
ing system. Thus, it has to be inferred from limited information provided by the
user. De Bie [8] proposed an intuitive while mathematically rigorous language a
user can employ to express certain beliefs about the data. The language assumes
that important characteristics of the data can be quantified by means of statistics
f : Rn×d → R. Using such statistics, the user can express their beliefs by declar-
ing which value they expect f to have when evaluated on the data. Mathematically,
this then becomes a constraint on the background distribution pX.

Definition 7 (Prior belief constraints). When the user expresses a prior belief by
declaring that they expect a specified statistic f to be equal to a specified value
m̂ ∈ R, they are declaring that their background distribution pX satisfies the
following prior belief constraint:

EX∼pX [f(X)] = m̂. (2.1)

Except in degenerate cases, such constraints will not uniquely determine pX,
such that an additional criterion is required to decide which one to use. Amongst
those satisfying the prior belief constraints, the distribution with the maximum
entropy (MaxEnt) is an attractive choice, given its unbiasedness and robustness.
Further, as the resulting distribution belongs to the exponential family, its inference
is well understood and often computationally tractable.

Formally, a user’s background distribution can thus be obtained by solving the
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following constrained entropy maximization problem:

argmax
pX(X)≥0

−
∫
pX(X) log (pX(X)) dX

s.t.
∫
pX(X)fi(X)dX = m̂i, ∀i,∫
pX(X)dX = 1.

(2.2)

As we will show in Section 2.3, by solving optimization problem (2.2) with differ-
ent types of statistics fi, one can model a wide variety of prior beliefs, and hence
obtain very different types of background distributions.

Projection patterns: a pattern syntax for data projections

In FORSIED1, a pattern is defined as any information that restricts the set of pos-
sible values the data may have. For example, if the user is shown a scatter plot
of the projections in Π̂W, the user will from then on know that X̂W is equal to
Π̂W (up to the resolution of the plot), which clearly constrains the set of possible
values of the data to a subset of Rn×d.

One could thus be tempted to define a projection pattern as a statement of the
kind X̂W = Π̂W. This would tell the user that the projections of the data X̂ onto
the columns of W are found to be equal to the columns of Π̂W.

However, real-valued data projections are often conveyed visually to a user,
and in any case with finite accuracy, e.g. by means of a scatter plot. Because hu-
man eyes as well as the visualization devices (e.g., monitor, projector, and paper)
have finite resolution, the precise value of the projected data can only be deter-
mined up to a certain resolution-dependent uncertainty 2∆1 ∈ Rn×k. With these
considerations2, we formally define the syntax of a projection pattern as follows:

Definition 8 (Projection pattern). Let W ∈ Rd×k be a projection matrix, and let
Π̂W be the value of the projections of the data X̂ ∈ Rn×d onto the columns of
W. Then a projection pattern is a statement of the form:

X̂W ∈
[
Π̂W −∆1, Π̂W + ∆1

]
. (2.3)

1As well as in the only other framework for interactive data mining, CORAND [27]. By a frame-
work for interactive data mining we mean a generic method that can be used to design specific data
mining methods that take into account results previously shown to the user or other prior knowledge
about the data. Such a framework would specify certain aspects of the method while other aspects
are left open and only a guideline is provided on how to fill in that part. E.g., FORSIED specifies to
define the background model as a MaxEnt distribution and the objective to maximize is the Subjective
Interestingness. CORAND mandates another objective score (to maximize the p-value of the data) and
the form of the background distribution is left open; it may be anything. As far as we know, there are
no other works published with a similar spirit.

2To simplify our notation, we assume the resolution parameter being the same through all dimen-
sions. It is indeed an interesting direction to further develop SICA for the resolution varying in different
dimensions.
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Thus, the projection pattern specifies, up to an accuracy of 2∆, the value of the
projections of the data onto the columns of the projection matrix W.

Subjective interestingness of projections

Relying on the background distribution, we can now quantify the subjective inter-
estingness of a projection pattern:

Definition 9 (Subjective interestingness of projection pattern). The subjective in-
terestingness (SI) of a projection pattern is defined as the negative log probability
of the pattern under the background distribution.3 For a projection pattern with
projection matrix W and observed projections Π̂W, it is equal to:

SI(W, Π̂W) = − log
(

Pr
(
XW ∈

[
Π̂W −∆1, Π̂W + ∆1

]))
. (2.4)

The probability of a pattern can be computed by integrating the background
distribution over all X for which XW ∈

[
Π̂W −∆1, Π̂W + ∆1

]
:

Pr
(
XW ∈

[
Π̂W −∆1, Π̂W + ∆1

])
=

∫
X:XW∈[Π̂W−∆1,Π̂W+∆1]

pX(X)dX.

(2.5)
This can be expressed more conveniently in terms of the marginal density function
pΠX

for the projection ΠW , XW of the data:

Pr
(
XW ∈

[
Π̂W −∆1, Π̂W + ∆1

])
=

∫ Π̂W+∆1

Π̂W−∆1

pΠW
(ΠW)dΠW. (2.6)

For sufficiently small ∆, we approximate the integral in Equation (2.6) as the
value of the integrand in the middle of the integration domain times the integration
domain’s volume:4

Pr
(
XW ∈

[
Π̂W −∆1, Π̂W + ∆1

])
≈ pΠW

(Π̂W)(2∆)nk. (2.7)

Then Definition 9 can be reformulated into:

SI(W, Π̂W) ≈ − log
(
pΠW

(Π̂W)
)
− nk log (2∆) . (2.8)

3In FORSIED, the subjective interestingness of a pattern is generally defined by a trade off between
the information content (i.e., negative probability) of the pattern and the descriptional complexity (i.e.,
the amount of effort needed to assimilate the pattern). Here we assume all projections of the same
dataset have the same descriptional complexity. As a result, the descriptional complexity can be ignored
from the definition of SI.

4The tightness of this approximation for the cases in Section. 2.3.1 and 2.3.2 will be investigated in
detail in Appendices A and B.
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Thus, to compute the interestingness of a projection pattern it is sufficient to know
the marginal density function pΠW

. We will compute this marginal density func-
tion in Section 2.3 for a number of background distributions.

2.2.3 Searching subjectively interesting projection patterns

Searching for subjectively interesting projection patterns amounts to finding a set
of weight vectors W ∈ Rd×k that yield projections with the largest SI value. The
resulting weight vectors W linearly transform the original d features of the data
X̂ into k features. Similar to the definition of the (principal) components in PCA,
we refer to those k transformed features as the subjectively interesting components
(SICs) of the data X̂.

The projection matrix W that corresponds to the SICs of data X̂ under back-
ground distribution pX can thus be obtained by finding the W maximizing SI(W, Π̂W).
As X̂W must represent projections, all weight vectors in the columns W must
have unit norm. Additionally, to ensure non-redundancy of the different projec-
tions, we will require the weight vectors to be orthogonal, such that W′W = I.
Substituting X̂W for Π̂W to make the dependencies on the data X̂ and the pro-
jection matrix W explicit, the optimization problem to be solved is thus:

argmax
W∈Rd×k

− log
(
pΠW

(
X̂W

))
,

s.t. W′W = I.

(2.9)

Note that this problem is independent of the resolution parameter ∆. In other
words, as soon as ∆ is small enough for Equation 2.7 to hold to a sufficient ap-
proximation, its precise value is irrelevant to the problem.

It is this problem that we will be solving in Section 2.3 for a number of different
types of background distributions.

2.3 SICA with different types of prior beliefs
In this section, we develop SICA further for three different types of prior beliefs.
Each is discussed in a separate subsection. In Section 2.3.4, we discuss how SICA
can in principle be used for other prior belief types as well, while also highlighting
the difficulties in tackling other prior belief types that may limit the applicability
of SICA in practice.

2.3.1 Scale of the data as prior belief

When the user only has a prior belief about the average variance of a dataset, SICA
will aim to find projections with large variances. As we will show here, SICA with
such prior is equivalent to PCA.
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Prior belief With a given dataset, the user might have certain prior knowledge
about the scale of a dataset. She might believe that the average scale of the data
points, quantified by their squared norms, is some constant σ2d and have no other
knowledge. This can be formalized in a constraint of the form of Equation (2.1):

EX∼pX

[
1

n
Tr (XX′)

]
= σ2d. (2.10)

The corresponding statistic f of prior (2.10) is f(X) = 1
n Tr (XX′).

Background distribution Inserting (2.10) into (2.2), we obtain the following
MaxEnt problem:

argmax
pX(X)≥0

−
∫
pX(X) log (pX(X)) dX

s.t.
∫
pX(X) · 1

n
Tr (XX′) dX = σ2d,∫

pX(X)dX = 1.

(2.11)

The optimal background distribution pX is a product distribution of identical mul-
tivariate Normal distributions with mean 0 and covariance matrix σ2I. This is
summarized in the following theorem:

Theorem 1. Given prior belief (2.10), the MaxEnt background distribution is

pX(X) =

n∏
i=1

px(xi), (2.12)

where px(x) = 1√
(2πσ2)d

exp
(
− x′x

2σ2

)
is multivariate Normal density function

with mean zero and covariance matrix σ2I.

Proof. Through application of the Lagrange multiplier method, we find the La-
grangian for Problem (2.11):

L (pX, λ, µ) = −
∫
pX (X) log (pX(X)) dX− λ(

∫
pX(X) · 1

n
Tr(XX′)dX− σ2d)

+ µ(

∫
pX(X)dX− 1).

(2.13)
Then, finding the function pX that maximize this functional amounts to solving a
Euler-Lagrange equation with Lagrangian L in form (2.13):

∂L
∂pX

− d

dX

∂L
∂p′X

=
∂L
∂pX

+ 0 = 0. (2.14)
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Hence, we compute the functional derivative of the Lagrangian with respect to pX

at X:
∂

∂pX(X)
L = −1− log (pX(X)) +

λ

n
Tr(XX′) + µ. (2.15)

By equating the partial derivative to zero, we obtain an expression of pX parametrized
by λ and µ:

pX(X) = exp

(
µ− 1 +

λ

n
Tr(XX′)

)
= exp(µ− 1) exp

(
λ

n

n∑
i=1

x′ixi

)

=

n∏
i=1

1

Z
exp

(
λ

n
x′ixi

)
,

(2.16)

where Z = exp−1
(
µ−1
n

)
. In order to find optimal solutions for λ and µ, observe

that pX(X) in Equation (2.16) is the product of n identical multivariate Normal
distributions, one for each data point xi, with zero mean and - n2λI as covariance
matrix. As the expected two-norm squared of a multivariate Normal random vector
with zero mean is equal to the trace of its covariance matrix, and as the expecta-
tion of the average two-norm squared of the identically distributed data points is
constrained to be σ2d, this means that σ2d = −dn2λ , such that λ = − n

2σ2 .
Therefore, the MaxEnt background distribution is an independent multivariate

normal distribution, where each independent random variable has zero mean, and
covariance matrix σ2I, i.e., N

(
0, σ2I

)
.

Subjectively interesting patterns Now we can search for subjectively interest-
ing patterns by solving problem (2.9). This requires to first compute distribution
pΠW

as the marginal of the background distribution (2.16).
Given a normal random vector x ∼ N

(
0, σ2I

)
, a projection onto weight vec-

tors W with W′W = I is also normal: x′W ∼ N
(
0, σ2I

)
. Thus, the marginal

density function distribution pΠW
for the projection ΠW = XW is given by:

pΠW
(XW) =

n∏
i=1

k∏
j=1

1√
(2πσ2)

exp

(
−

(w′jxi)
2

2σ2

)

=

n∏
i=1

1√
(2πσ2)k

exp

(
−x′iWW′xi

2σ2

)
=

1√
(2πσ2)nk

exp

(
− 1

2σ2
Tr [W′X′XW]

)
.

(2.17)

Given density function (2.17), we can now use (2.9) to find projection patterns
(XW ∈ [Π̂W − ∆1, Π̂W + ∆1]) that are subjectively interesting. This is only
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true if the approximation (2.7) is good enough. In Appendix. A, we show this
is indeed the case. Thus, substituting the marginal distribution (2.17) into the
objective function of problem (2.9) gives:

− log
(
pΠW

(Π̂W)
)

=
nk

2
log(2πσ2) +

1

2σ2
Tr
[
W′X̂′X̂W

]
. (2.18)

Ignoring the first constant term and constant factor 1
2σ2 , the optimization problem

(2.9) is equivalent to:

max
W∈Rd×k

Tr
[
W′X̂′X̂W

]
s.t. W′W = I.

(2.19)

This is equivalent (up to rotation) to the problem of finding the k dominant princi-
pal component of X in classical PCA5.

2.3.2 t-PCA: magnitude of spread as prior belief

In contrast to believing the data has a certain scale, a user might expect that the
data has certain magnitude of spread. In this subsection, we show that with such
prior expectation, SICA yields an alternative result, that turns out to be more robust
against outliers.

Prior belief Denote γ to be the parameter that expresses the user’s belief about
the magnitude of spread of the data. The user’s expectation about the magnitude
of spread to be some value a is then defined by:

EX∼pX

[
1

n

n∑
i=1

log(1 +
1

γ
x′ixi)

]
= a. (2.20)

If the user is expecting outliers in the data, she may specify γ to be small. This
will up-weight the outliers (who have relatively large 2-norms) such that they con-
tribute more to the expectation. In contrast, by setting a larger γ, the expectation
is focused more on the bulk of the points.

5In this chapter, by performing PCA, we mean the data X is first centered (Xc = X −
1
n

1n×11′n×1X), then the eigenvectors of matrix X′X are computed and sorted in descending or-
der according to the absolute value of the eigenvalues. After sorting, the eigenvectors of X′X with
largest absolute eigenvalues correspond to the top principal components.
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Background distribution with the prior belief (2.20) we need to solve the fol-
lowing optimization problem to obtain the MaxEnt background distribution:

argmax
pX(X)≥0

−
∫
pX (X) log (pX(X)) dX

s.t.
∫
pX(X) · 1

n

n∑
i=1

log(1 +
1

γ
x′ixi)dX = a,∫

pX(X)dX = 1.

(2.21)

Relying on the result by Zografos [40], we find that the optimal solution is a
product of independent multivariate standard t-distributions. Here, we denote a
digamma function as ϕ, and introduce the function κ(ν) = ϕ(ν+d

2 )−ϕ(ν2 ), where
d is the dimension of data X̂. In the sequel, the value ν = κ−1(a) will be used,
i.e., ν depends on the expected magnitude of spread a. The background distribu-
tion with prior belief (2.20) is then defined as:

Theorem 2. Given prior belief (2.20), the MaxEnt background distribution is

pX(X) =

n∏
i=1

p(xi) (2.22)

where p(x) is the density function of a multivariate standard t-distribution with
form:

p(x) =
Γ
(
ν+d

2

)
(πρ)d/2Γ

(
ν
2

) · 1(
1 + 1

ρx′x
) ν+d

2

. (2.23)

where ρ = γν, the correlation matrix is a d-by-d identity matrix I.

Proof. We restate the Theorem 2.1 and the derivation of equation 2.12 from the
paper by Zografos [40]. From this the proof immediately follows.

Theorem 2.1 in [40] sates that for MaxEnt problem:

argmax
px(x)≥0

−
∫
px(x) log (px(x)) dx

s.t.
∫
px(x) log

(
1 + (x− µ)′Σ−1(x− µ)

)
dx = ϕ(m)− ϕ(m− d

2
)∫

px(x)dx = 1.

where x ∈ Rd ,m > (d + 2)/2, E(x) = µ, Cov(x) = 1/(2m − d − 2)Σ.
The solution of this problem is a special case of Pearson’s Type VII multivariate
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distribution with density:

p(x) =
Γ(m)

πd/2Γ(m− d/2)
|Σ|−1/2[1 + (x− µ)′Σ−1(x− µ)]−m.

That is, the multivariate t-distribution with ν degrees of freedom, ν = κ−1(a) >

0, µ = 0, and Σ = γI can be obtained from Pearson’s Type VII distribution using
transformation z =

√
νx + (1−

√
ν)µ and taking m = (ν + d)/2:

p(z) =
Γ((ν + d)/2)

(πνγ)d/2Γ(ν/2)
[1 +

1

νγ
z′z]−(ν+d)/2

=
Γ((ν + d)/2)

(πρ)d/2Γ(ν/2)
[1 +

1

ρ
z′z]−(ν+d)/2

By setting ρ = γν, only one parameter needs to be tuned.

Remark 1. Note that for ρ, ν → ∞, ρ
ν → σ2 this density function tends to

the multivariate Normal density function with mean 0 and covariance σ2I. For
ρ = ν = 1 it is a multivariate standard Cauchy distribution, which is so heavy-
tailed that its mean is undefined and its second moment is infinitely large. Thus,
this type of prior belief can model the expectation of outliers to varying degrees.

Given the reliance on a multivariate t-distribution as the background distribu-
tion, we will refer to this model as t-PCA.

Subjectively interesting patterns According to Kotz and Nadarajah [24], the
marginals of a t-distribution with given correlation matrix are again a t-distribution
with the same number of degrees of freedom. Each marginal is obtained by select-
ing the relevant part of the correlation matrix. This means that the marginal density
function for projection ΠW = XW onto k weight vectors W with W′W = I is

pΠW
(ΠW) =

n∏
i=1

Γ
(
ν+k

2

)
(πρ)k/2Γ

(
ν
2

) · 1(
1 + 1

ρx′iWW′xi

) ν+k
2

. (2.24)

Given density function (2.24), we can now use (2.9) to find projection patterns
(XW ∈ [Π̂W − ∆1, Π̂W + ∆1]) that are subjectively interesting. This is only
true if the approximation (2.7) is good enough. In Appendix. B, we show this
is indeed the case. Thus, substituting the marginal distribution (2.24) into the
objective function of problem (2.9) by gives:

− log
(
pΠW

(Π̂W)
)

=
ν + k

2

n∑
i=1

log

(
1 +

1

ρ
x̂′iWW′x̂i

)
+a constant. (2.25)
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Ignoring some constant factors and terms, searching for the subjectively most in-
teresting pattern is thus equivalent to solve:

max
W∈Rd×k

n∑
i=1

log(ρ+ x̂′iWW′x̂i)

s.t. W′W = I.

(2.26)

Remark 2. By varying ρ, SICA interpolates between maximizing the arithmetic
mean, like PCA does, and maximizing the geometric mean of the square of the
data projections, which is more robust against outliers. To be precise, for ρ = 0

the objective function (2.26) is monotonically related to the geometric mean of the
squared norm of data projections ‖x̂′iW‖2:

exp

[
1

n

n∑
i=1

log(‖x̂′iW‖2)

]
=

(
n∏
i=1

(‖x̂′iW‖2)

) 1
n

. (2.27)

On the other hand, for ρ → ∞, the objective function (2.26) is monotonically
related to arithmetic mean,

lim
ρ→∞

ρ

n

n∑
i=1

log
(
ρ+ ‖x̂′iW‖2

)
− ρ log(ρ)

= lim
ρ→∞

1

n

n∑
i=1

ρ log

(
1 +
‖x̂′iW‖2

ρ

)
+ ρ log(ρ)− ρ log(ρ)

= lim
ρ→∞

1

n

n∑
i=1

log

[(
1 +
‖x̂′iW‖2

ρ

)ρ]

=
1

n

n∑
i=1

‖x̂′iW‖2,

That is, for sufficiently large ρ the objective function is equivalent to the arithmetic
mean, up to factor ρ and additive constant −ρ log(ρ).

To get some insight into the computational complexity of problem (2.26), let us
consider the one dimensional case where we search for weight vector w ∈ Rd×1.
Clearly, the larger w′w, the larger the objective, so the constraint can be relaxed
to w′w ≤ 1. Hence the feasible set of w is convex. Denote si = sign (x̂iw)

as the sign of the scale value x̂iw. For ρ = 0, the objective can be re-written

as
∑n
i=1 log

(
(x̂′iw)2

)
=
∑n
i=1 log det

(
six̂
′
iw 0

0 six̂
′
iw

)
, which is a sum of

log determinant functions of the parameters w. Hence the objective function is
concave. Based on this observation, a possible solution strategy is to enumerate
all possible sign vector s = sign(X̂wi), and first find an optimal w for each of
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Figure 2.1: Synthetic data (§2.3.2) visualized with weight vectors of PCA (red dash-dotted
line), SICA (black dashed lines, ρ = 10, 100, 1000), and PCA fitted excluding the outliers
(green dotted line). (a) data visualized including outliers. (b) data visualized excluding
outliers.

those convex problems. The global optimal solution can then be found over all
enumerations. Although this is not a proof of the complexity of the problem, and
the existence of an efficient algorithm cannot be ruled out, it shows that at least a
naive algorithm needs an exponential time in O((n− 1)d−1).

We solve the problem (2.26) by approximation. Observe that the orthonormal-
ity constraint posed on W leads to problem (2.26) being a Stiefel manifold [30]
optimization problem. This can be addressed fairly efficiently with a standard tool
box. We use the Manopt toolbox [4] to obtain an approximate solution.

Remark 3. For the parameter ρ in constraint (2.20), a user can set it freely ac-
cording to her prior belief. Namely, if the user feels confident about the average
squared norm of the data points, a large ρ should be used, but if the user feels con-
fident only about the order of magnitude of the norms of the data points, a small ρ
should be used. The next example illustrates the effect of different choices for ρ.

Example. As an illustrative example, we compare PCA and SICA on synthetic
data. We generated a dataset consisting of two populations with different covari-

ance structures: 1000 data points sampled from N
(

0,

(
4 0
0 1

))
, and 10 ‘out-

liers’ from N
(

0,

(
16 12
12 13

))
, i.e., X̂ ∈ R1010×2. After sampling, the data

is centered. Figure 2.1a shows the first components resulting from PCA, SICA,
and PCA had there been no outliers. The PCA result is determined primarily by
the outliers. The right plot (Figure 2.1b) shows the components on top of a scatter
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plot without the 10 outliers, illustrating that SICA is hardly affected by outliers.
That is, the lower ρ the more the user’s belief allows for the existence of outliers,
hence SICA shows the projection with fewer outliers as additional information. By
varying the ρ parameter (ρ = 10, 100, 1000), the resulted projection interpolates
between PCA and PCA on data with outliers removed.

2.3.3 Pairwise data point similarities as prior beliefs

In SICA, users may specify not only global characteristics of the data, such as the
expected magnitude of spread, but they can also express expectations about local
characteristics, such as similarities between data points.

Prior belief. Assume the user believes that a data point is similar to another point
or group of points. She may then want to discover other structure within the data,
in addition to the known similarities. Generally speaking, the most interesting/-
surprising information would be a pattern that contrasts with the known similari-
ties. For example, consider a user interested in social network analysis, and more
specifically, interested in finding social groups that share certain properties. Sup-
pose the user has already studied the network structure to some degree, and now it
would be more interesting for her to learn about other properties shared by differ-
ent social groups; other as in properties not aligned with the network structure.

SICA allows the user to encode their beliefs as follows. The data points are
represented as nodes in a graph G = (X, E), and the user can connect all pairs
of points that she expects to be similar with an edge. In this way, the user’s prior
belief regarding similarities among data points can be measured as the average
pairwise Euclidean distance of connected nodes in graph G:

EX∼pX

 1

|E|
∑

(i,j)∈E

||xi − xj ||2
 = b, (2.28)

where b is some constant. Constraint (2.28) on its own still has ambiguity, as a
small b can be due to a belief that connected data points in G are close together,
but also due to a belief that the scale of the data is simply small. Thus, to forestall
the second interpretation, another constraint needs to be imposed which fixes the
expected scale of the data:

EX∼pX

[
1

n

n∑
i=1

||xi||2
]

= c. (2.29)

Background distribution. To obtain the background distribution, the following
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MaxEnt problem needs to be solved:

argmax
pX(X)≥0

−
∫
pX (X) log (pX(X)) dX

s.t.
∫
pX(X) · 1

|E|
∑

(i,j)∈E

||xi − xj ||2dX = b,

∫
pX(X) · 1

n

n∑
i=1

||xi||2dX = c,∫
pX(X)dX = 1.

(2.30)

Denote I as identity matrix and L as the Laplacian of the graph G defined as
L = D−A, with A the adjacency matrix of graph and D the diagonal matrix with
the degrees of nodes on its diagonal. We now show that the solution of problem
(2.30) is a matrix normal distributionMNn×d (M,Σ,Φ), specifically:

Theorem 3. The optimal solution of problem (2.30) is given by a matrix normal
distribution:

X ∼MNn×d

(
0,

(
2

[
λ1

|E|
L +

λ2

n
In

])−1

, Id

)
, (2.31)

namely,

pX(X) =
1

Z
exp

{
Tr

(
−X′

[
λ1

|E|
L +

λ2

n
In

]
X

)}
, (2.32)

with partition function Z = (2π)
nd
2

∣∣∣2 [ λ1

|E|L + λ2

n In

]∣∣∣ d2 .

The proof, provided below, makes clear that the values of λ1 and λ2 depend on
the values of b and c in the constraints, and can be found by solving a very simple
convex optimization problem:

Proof. The Lagrangian for (2.30) is:

L(pX, λ, µ) = −
∫
pX (X) log (pX(X)) dX

− λ1

∫ pX(X) · 1

|E|
∑

(i,j)∈E

||xi − xj ||2dX− b


− λ2

(∫
pX(X) · 1

n

n∑
i=1

||xi||2dX− c

)
− µ

(∫
pX(X)dX− 1

)
,

(2.33)
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whose partial derivative with respect to pX at X reads:

∂

∂pX(X)
L = −1− log (pX(X))− λ1

|E|
∑

(i,j)∈E

||xi − xj ||2 −
λ2

n

n∑
i=1

||xi||2 − µ.

(2.34)
Equating this partial derivative to zero yields:

pX(X) = exp(−1− µ) · exp

− λ1

|E|
∑

(i,j)∈E

||xi − xj ||2 −
λ2

n

n∑
i=1

||xi||2


=
1

Z
exp

{
Tr

(
−X′

[
λ1

|E|
L +

λ2

n
In

]
X

)}
.

(2.35)
Observe that (2.35) is a matrix normal distribution [13] with partition function Z

and parameters M = 0, Σ =
(

2
[
λ1

|E|L + λ2

n In

])−1

, and Φ = Id. Hence, the

matrix-valued random variable X ∈ Rn×d belongs to:

X ∼MNn×d

(
0,

(
2

[
λ1

|E|
L +

λ2

n
In

])−1

, Id

)
, (2.36)

with the partition function

Z = (2π)
nd
2

∣∣∣∣2 [ λ1

|E|
L +

λ2

n
In

]∣∣∣∣ d2 . (2.37)

Remark 4. To compute the multipliers λ1 and λ2, we substitute the distribution
(2.35) back into the Lagrangian (2.33) and solve λ1 and λ2 that minimizes the
following Lagrange dual function using, e.g., gradient based methods:

L(λ) =
d

2
log((2π)n|Σ|) + λ1b+ λ2c,

where Σ =
(

2λ1

|E|L + 2λ2

n In

)−1

. Since L is a real symmetric matrix, we can
simultaneously diagonalize L and In. Denote the eigenvalues of the matrix L to
be σ1, σ2, . . . , σn. Then the determinant of the covariance matrix reads:

|Σ| =
n∏
i=1

(
2λ1σi
|E|

+
2λ2

n

)−1

.

Thus the Lagrange dual function can be further simplified as:

L(λ) = −d
2

n∑
i=1

log

(
2λ1σi
|E|

+
2λ2

n

)
+
nd

2
log(2π) + λ1b+ λ2c.
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Hence, computing the multipliers requires to first compute the eigenvalues of L

(O(n3)), then the evaluation of each gradient step has complexity O(n).

Remark 5. In order to determine suitable values for b and c in the prior belief
constraints, SICA may assume that the user already has a good understanding of
the point-wise similarity (Equation 2.28) and scale (Equation 2.29) of the data
points (or, that the user is not interested in these). Given this assumption, b and
c can simply be set equal to the empirical value of these statistics as measured
in the data. If the user wishes, she could of course specify values herself that
differ from these. More realistically though, she may be able to specify a range of
values for the point-wise similarity and scale. The background distribution should
then be found as the MaxEnt distribution subject to two box constraints, i.e., four
inequality constraints: a lower and a upper bound for pairwise similarity as well
as for the scale measure. Theorem 3 still applies unaltered though: while the four
inequality constraints lead to four Lagrange multipliers, only two may be non-zero
at the optimum (one for each box constraint), as for each box constraint only either
the upper or the lower bound constraint can be tight.

Subjectively interesting patterns As the projection ΠW is a linear transforma-
tion of matrix random variable X, and W is of rank k ≤ n (full column rank), then

ΠW ∼ MNn×k
(

0,
(

2
[
λ1

|E|L + λ2

n In

])−1

, Ik

)
[13]. So the marginal pΠW

of

background distribution (2.31) reads:

pΠW
(ΠW) =

1

Z
exp

{
Tr

(
−Π′W

[
λ1

|E|
L +

λ2

n
In

]
ΠW

)}
. (2.38)

Substituting the marginal distribution (2.38) into the objective function of problem
(2.9), and X̂W for Π̂W, yields:

− log
(
pΠW

(
X̂W

))
= Tr

(
W′X̂′

[
λ1

|E|
L +

λ2

n
In

]
X̂W

)
+ log(Z). (2.39)

Since the second term of (2.39) is constant, it can be safely left out. Thus the
optimization problem (2.9) is equivalent to:

max
W∈Rd×k

Tr

(
W′X̂′

[
λ1

|E|
L +

λ2

n
In

]
X̂W

)
s.t. W′W = I.

(2.40)

The solution to this problem consists of a matrix W ∈ Rd×k whose k column
vectors are the eigenvectors that corresponding to the top-k eigenvalues of the
matrix X̂′

[
λ1

|E|L + λ2

n In

]
X̂ ∈ Rd×d [23].
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Figure 2.2: Communities data (§2.3.3), (a) the actual network, (b) nodes colored according
to their projected values using the first PCA component (c) similar to (b), but for the first
SICA component (our method). The x-axis corresponds to the first feature in the data, while
the position of points on the y-axis is picked at random. The PCA projection picks up the
variance across the clusters, while the SICA projection highlights the variance within the
clusters.

The computational complexity of finding an optimal projection W consists of
two parts: (1) solving a convex optimization problem to obtain the background
distribution. This can be achieved by applying, e.g., a steepest descent method,
which uses at most O(ε−2) steps (until the norm of the gradient is ≤ ε) [28]. For
each step, the complexity is O(n) with n being the size of data. (2) Given the
background distribution, we find an optimal projection, the complexity of which is
dominated by eigenvalue decomposition (O(n3)). Hence, the overall complexity
of SICA with graph prior is O( nε2 + n3).

Example. We synthesized a dataset with 100 users, where each user is described
by 10 attributes, i.e., X̂ ∈ R100×10. The first attribute is generated from a bimodal
Gaussian distribution such that the first attribute clearly separates the users into
two groups. We assume that people within each community are fully connected.
To have a more interesting simulation, we also insert a few connections between
the communities. The second attribute value is uniformly drawn from {−1,+1}
which could resemble, e.g., people’s sentiment towards a certain topic. The re-
maining eight attributes are standard Gaussian noise. After sampling, we centered
the data.

We assume the user has studied the observed connection between all data
points. Hence, the graph-encoded prior expectation is chosen as the actual net-
work structure; i.e., the resulting prior graph consists of the two cliques and a few
edges in-between, see Figure 2.2a.

We compare the primary projections given by PCA and SICA, see Figures
2.2b and 2.2c. For both the PCA and SICA projections, we colored the data points
according to their projected values, i.e., X̂w, where w correspond to the first com-
ponent of PCA/SICA. In Figure 2.2b, we see that the PCA projection gives one
cluster a higher score (green vertices) than the other (blue vertices). Clearly, PCA
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Feature 1 Feature 2 · · ·
PCA 1st component -0.998 0.015 · · ·
SICA 1st component 0.186 0.957 · · ·

Table 2.1: Communities data (§2.3.3), weights of first component for PCA and SICA.

picks up the structure of the two communities defined by the first attribute. In
contrast, SICA assigns both high and low scores within each cluster (Figure 2.2c).
That is, it highlights variance within the clusters. This is to be expected, because
the community structure is very similar to the graph structure, with which we as-
sume the user knows already.

Table 2.1 lists the weight vectors of the projections. As expected, PCA gives
a large weight to the first feature, which has higher variance. However, SICA’s
first component is dominated by the second feature. Hence, by incorporating the
community structure as prior expectation, SICA finds an alternative structure cor-
responding to the second feature.

2.3.4 Discussion: potential and limitations of SICA

Potential of SICA. The three instantiations of SICA discussed in this section are
illustrative of SICA’s potential to take into account prior beliefs of the data analyst,
and to find projections that are interesting with respect to it. The three steps that
need to be followed to instantiate SICA are always the same: (1) Express the
prior belief in the form of constraints on the expected value of certain specified
statistics—i.e. in form of Equation (2.1)—and solve the MaxEnt problem (2.9) to
obtain the background distribution. (2) Compute the marginal density function of
the background distribution for the data projection onto a projection matrix W.
And (3), come up a good optimization strategy. In principle, any data analyst
able to express their prior beliefs in the required form can thus benefit from this
approach.

Limitations of SICA. Yet, each of these steps also implies some important limi-
tations of SICA that should be the subjects of further work. The result of the first
step will always be an exponential family distribution, and hence have an analyti-
cal form. However, expressing prior belief types as required will often be beyond
the capabilities of a data analyst. Also the second step may require considerable
mathematical expertise. Indeed, it may not be possible to express the marginal
distribution in an analytical form such that it may need to be approximated. And
even when it can be expressed analytically, deriving it mathematically may be non-
trivial. Finally, thanks to the orthonormality assumption of the projection matrix,
general purpose (Stiefel) manifold optimization solvers are in principle applicable,
but doing this does not provide any optimality guarantees.
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SICA in practice. For these reasons, SICA as a framework is not directly suitable
for use by practitioners. Instead, it can be used by researchers to develop specific
instantiations of sufficiently broad applicability, which can then be made available
to practitioners. Probably the most powerful example of this is the third instan-
tiation (Section 2.3.3). Indeed, it is a very generic prior belief type for which an
efficient algorithm exists, and which is relatively easy to be used.

2.4 Experiments

In this section, we present several case studies which demonstrate how SICA may
help users to explore various types of real world data. For every case, we specify
some background knowledge a user might have, and encode that knowledge using
previously defined expressions. The encoded beliefs are then provided to SICA
in the form of the background distribution. Third, we analyze the projections
computed by SICA and evaluate whether they are indeed interesting with respect
to the assumed user’s prior. Finally, we summarize the runtime of all experiments
presented in this section.

Note that the purpose of our experiments is not to investigate superiority of
SICA over existing methods for dimensionality reduction. Instead, we aim to
investigate whether and to which extent SICA’s results usefully depend on the
various prior beliefs, in highlighting information that is complementary to them.
Where the answer to this question is positive, SICA is the method of choice—of
course, assuming the prior beliefs are well-specified.

2.4.1 t-PCA on real-world data

Setup. We evaluate the use of SICA with a spread prior (t-PCA) on two datasets.
The Shuttle6 data describes radiator positions (seven position classes: ’Rad Flow’,
’Fpv Close’, ’Fpv Open’, ’High’, ’Bypass’, ’Bpv Close’) in a NASA space shuttle
and consists of 58000 data points and 9 integer attributes, i.e., X̂ ∈ R58000×9.
The 20 Newsgroups7 data describes four newsgroups (four classes) and has 16242

points and 100 integer attributes, i.e., X̂ ∈ R16242×100. Both datasets are centered
such that each attribute has zero mean.

Both of the datasets contain complex structures. Particularly, the shuttle dataset
contains highly imbalanced cluster structure: one of the classes forms 80% of the
population. For both datasets, we assume the user has a prior belief only about
the order of magnitude of the data, i.e., the user would not be surprised by the

6https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle), retrieved
November 18, 2016.

7http://cs.nyu.edu/˜roweis/data.html, retrieved November 18, 2016.

https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
http://cs.nyu.edu/~roweis/data.html
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Figure 2.3: Real world data case study for t-PCA (§2.4.1). The top 2 projections found by
t-PCA (left), PCA (middle), and FastICA (right). Top row: Shuttle; bottom row: 20 News-
Groups. For the Shuttle dataset, the PCA and FastICA projections show highest variances
as well as the most independent dimensions. SICA projection exhibits other, smaller-scale
variation. For the 20 NewsGroup dataset, SICA’s result is qualitatively similar to PCA’s
result but with slightly lower variance. The FastICA’s result is qualitatively different.

presence of outliers. This can be encoded using the spread prior with a small ρ,
e.g., ρ = 10−5 · ( 1

|X|
∑|X|
i=1 ||xi||2)

1
2 .

Results. We compared the results of SICA, PCA, and FastICA8 [18]. FastICA is
a popular PP method that implements ICA. We used FastICA with default param-
eters. The classes for each dataset are plotted in different colors.

Figure 2.3 shows the results of SICA with this prior belief model, for PCA,
and for FastICA. For the Shuttle dataset, PCA and FastICA give visually simi-
lar results: the highest-variance as well as the most independent dimensions ap-
pear to be affected by relatively few data points with large projection values along
them. Especially for PCA, the resulting scatter plot has axes with very large scales.
Hence the data points that correspond to small scale structure are more likely to
be plotted on top of each other, making them harder to discern. SICA, in account-
ing for order of magnitude variations in the norms of data points, is less biased
towards these distant data points. As a result, it prefers lower-variance projections
which exhibit other, smaller-scale variation, which therefore provide information
that complements the user’s expectations.

8In the experiment we used the FastICA package for MATLAB. The package can be downloaded
from https://research.ics.aalto.fi/ica/fastica/

https://research.ics.aalto.fi/ica/fastica/
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Figure 2.4: Faces dataset (§2.4.2), subject one, first 24 lighting conditions. The data set
contains 31 human subjects where each of them has face image taken under 64 lighting
conditions. Each face image contains 32× 32 pixels.

For the 20 Newsgroup dataset, SICA’s result is qualitatively similar to PCA’s
result, although the variance of the SICA projection is slightly lower, arguably in
favor of making the more fine-grained variation in the data more apparent. Fas-
tICA’s result, however, is qualitatively different. It puts all weight on a single
binary attribute, such that its top components project all data points onto just three
points.

2.4.2 Images and lighting, with a graph prior

Setup. We now apply SICA to explore image data. The Extended Yale Face
Database B9 contains frontal images of 38 human subjects under 64 illumination
conditions, for example, see Figure 2.4. We ignored the images of seven subjects
whose illumination conditions are not fully specified. The input dataset then con-
tains 1684 data points, each of which is described by 1024 real valued features ,
i.e., X̂ ∈ R1684×1024. The data is then centered to have a zero mean. The task of
decomposing images in order to account for a number of pre-specified factors has
been addressed in the past (e.g., using a N-mode SVD; Vasilescu and Terzopoulos
36). Here we want to explore how SICA weight vectors change according to the
prior belief of a specific user.

Let us assume that the user already knows there are lighting conditions and is

9This data is available as a preprocessed Matlab file at http://www.cad.zju.edu.cn/
home/dengcai/Data/FaceData.html. The original dataset is described in Georghiades et al.
[12], Lee et al. [26].

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html


CHAPTER 2 37

Figure 2.5: Faces data case study (§2.4.2), top five Eigenfaces for PCA (top) and SICA
(bottom). The Eigenfaces from PCA are influenced substantially by the variation in lighting
conditions, while the Eigenfaces from SICA mainly highlight local facial structures

not interested in them. We can encode such knowledge by declaring that images
(data points) with the same lighting condition are similar to each other. This can be
expressed in a point-wise similarity prior. We construct a graph where each image
is a node and two nodes are connected by an edge if the corresponding images have
the same lighting conditions. The resulting prior graph consists of 64 cliques, one
for each lighting condition.

Results. We compare the weight vectors of the subjectively interesting compo-
nents (SICs) given by SICA and top principal components (PCs) given by PCA,
namely the Eigenfaces from the two methods. We expect PCA to find a mixture
of illumination and facial features, while SICA should find mainly facial struc-
ture. Note that illumination conditions vary similarly across the human subjects,
while facial structures are subject specific. The principal Eigenfaces from PCA
and SICA are presented in Figure 2.5. We observe that the Eigenfaces given by
PCA are influenced substantially by the variation in lighting conditions. These
conditions vary from back-to-front, right-to-left, top-to-down, down-to-top and
left-top-to-right-bottom. Because the images of each subject contain every light-
ing condition, it appears indeed more difficult to separate the subjects based only
on the top PCA components. On the other hand, the Eigenfaces from SICA high-
light local facial structures, like the eye area (first, third and fifth faces), and the
mouth and nose (first, third and fifth faces). Note though that the first and second
SICA Eigenfaces also still pick up some lighting variation, which is confirmed by
the similarity between the top two SICA and PCA components (left upper corner
of Figure 6). The absolute value of the inner product between the first SICA and
PCA components is 0.91 and the value of the second components is 0.93. Note
also that the similarities of most other SICA and PCA components are consider-
ably smaller, confirming that SICA components are indeed truly different from the
PCA components.
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Figure 2.6: Face data case study (§2.4.2), Similarity (absolute value of inner product) be-
tween PCA and SICA top 10 components. The similarity between the top two SICA and PCA
components confirms that SICA top two components still pick up some lighting variation.
The less significant similarity between the other SICA and PCA components indicates SICA
components are indeed truly different from the PCA components.

If SICA succeeds in providing insights that contrasts with the prior beliefs
about the lighting conditions, the projection of an image onto the top SICs can be
expected to separate the subjects better than the projection onto an equal number
of top PCs. To verify this, we computed the 10-fold cross-validation loss (with
respect to the subjects as labels) of a k-Nearest Neighbors (k-NN) classifier on the
projected features with respect to the top PCs and SICs. A projection that sepa-
rates the subjects well will have low classification loss. We applied k-NN on the
SICA/PCA projections with number of components ranging from 1 to 50. Since
our goal here is to evaluate whether top SICs are more likely to correspond to fa-
cial structure than top PCs, rather than achieve best classification accuracy, we fix
k = 3. Figure 2.7a shows that indeed top SICs (orange line) give a better sepa-
ration than top PCs (purple line). In addition, we performed the same experiment
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Figure 2.7: Faces data case study (§2.4.2), (a) average 10-fold cross-validation loss (error
bars gives one standard deviation, the smaller loss the better) for 3-NN subject classification
on the projected data. Top SICs gives better separation of subjects than top PCs. (b)
average 10-fold cross-validation loss (error bars gives one standard deviation, the smaller
loss the better) for 3-NN lighting condition classification. Top PCs gives better separation
of lighting conditions than SICs.

using an SVM (rather than 3-NN) with 10-fold cross validation on the projected
features to perform classification. We measured the average losses over 10 folds
while varying the number of projected features form 1 to 50. The result (Fig-
ure 2.8a) shows SICA is more accurate than PCA when the number of features is
small. PCA then catches up when the number of the dimensions increases.

Conversely, as SICA with the stated prior beliefs should result in a projection
that highlights information complementary to lighting conditions, one can expect
that the top SICs perform worse in separating the different lighting conditions
than the top PCs. To evaluate this, instead of classifying subjects, we used k-
NN to classify different illumination conditions, using the same PCs and SICs as
before. That is, where we told SICA explicitly we were not interested in light
variation. Figure 2.7b shows that PCA indeed gives better 3-NN classification
accuracy than SICA. The result (Figure. 2.8b) obtained by SVM confirms this
with another classifier.

2.4.3 Spatial socio-economy, with a graph prior

Now we use SICA to analyze a socio-economic dataset. The German socio-
economic data [3] was compiled from the database of the German Federal Statis-
tical Office. The dataset consists of socio-economic records of 412 administrative
districts in Germany. The data features used in this case study fall into two groups:
election vote counts and age demographics. We additionally coded for each dis-
trict the geographic coordinates of the district center and which districts share a
border with each other.
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Figure 2.8: Faces data case study (§2.4.2), (a) average 10-fold cross-validation loss (error
bars gives one standard deviation, the smaller loss the better) for SVM subject classification
on the projected data. Top SICs gives better separation of subjects than top PCs. (b)
average 10-fold cross-validation loss (error bars gives one standard deviation, the smaller
loss the better) for SVM lighting condition classification. Top PCs gives better separation
of lighting conditions than SICs.

Vote attribute group

Setup. Let us assume a user is interested in exploring the voting behavior of dif-
ferent districts in Germany. The (real-valued) data attributes about the 2009 Ger-
man elections cover the percentage of votes on the five largest political parties10:
CDU/CSU, SPD, FDP, GREEN, and LEFT. Thus, we have a dataset X̂ ∈ R412×5.
We centered the data attribute-wise by subtracting the mean from each data point.

Let us assume also that the user already knows the East-West divide has still
a large influence. Hence, she may believe the voting behavior of the districts in
the east are similar to each other, and the same goes for the west. This prior
belief can also be encoded as point-wise similarities. By treating each district as a
graph node, we can translate our knowledge into prior expectations, by connecting
similar districts with edges. This results in a graph with two cliques: one clique
consists of all districts in East Germany, the other clique contains the rest.

Results. The projection onto the first PC (Figure 2.9a) shows smooth variation
across the map. Districts in western Germany and Bavaria (south) receive high
scores (red circles) and districts in East Germany (Brandenburg and Thuringa)
have low scores (dark blue circles). Table 2.2 additionally shows the weight
vectors of the top PC and SIC. The PC is dominated by the difference between
CDU/CSU and Left. This is expected, because this indeed is the primary division
in the elections; East Germany votes more Left, while in Bavaria, CSU is very
popular.

10https://en.wikipedia.org/wiki/List_of_political_parties_in_
Germany, retrieved November 18, 2016.

https://en.wikipedia.org/wiki/List_of_political_parties_in_Germany
https://en.wikipedia.org/wiki/List_of_political_parties_in_Germany
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Figure 2.9: German socio-economics data vote attributes (§2.4.3). (a) The geographic
scatter plot of districts with each district colored according to its projective value onto top
PC. The top 10 districts with most positive and most negative projective values are labeled.
The top PC assigns low scores to the districts in East Germany, while it gives rest districts
relatively high scores. (b) The same geographic scatter plot for the top SIC. Although SICA
still shows considerable global variation (in this case between the north and the south), it
also highlights the variations that are more local.

However, SICA highlights a different pattern; the competition between CDU/CSU
and SPD is more local. Although there is still considerable global variation (in this
case between the south and the north), we also observe that the Ruhr area (Dort-
mund and around) is similar to East Germany in that the social-democrats are
preferred over the Christian parties. Arguably, the districts where this happens are
those with a large fraction of working class, like the Ruhr area. Perhaps they vote
more on parties that put more emphasis on interests of the less-wealthy part of the
population.

To investigate this in a more quantitative manner, we applied an SVM to clas-
sify the eastern versus non-eastern districts using the vote data projected onto the
top SICA and PCA components. We measured the 10-fold cross-validation losses
for the projected data’s dimensionality ranging from 1 to 5. Figure 2.10a shows
that the first two PCA components lead to a smaller loss than SICA. This indicates
that the two top PCs indeed reflect more to the eastern and non-eastern division.
The similarity matrix (Figure 2.10b) of the PCs and SICs also shows that the first
and second components of the two methods are different. Notice that the third
SIC (third column) is similar to the first and second PCs. This explains why when
the dimensionality of projected space increased to three, the classification loss of
SICA drops to the same as PCA.
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CDU/CSU SPD FDP GREEN Left
PCA 1st 0.53 -0.13 0.22 0.13 -0.80
SICA 1st 0.72 -0.65 0.10 -0.09 -0.19

Table 2.2: German socio-economics data vote attributes (§2.4.3), weights given by top PCA
and SICA component.

Figure 2.10: German socio-economics data vote attributes (§2.4.3). (a) average 10-fold
cross-validation loss (error bars gives one standard deviation) for eastern and non-eastern
districts classification on the projected data. The top two PCs lead to a smaller loss than
the top two SICs. (b) Similarity (absolute value of inner product) between PCA and SICA
components. The first and second components of the two methods are different. The third
SIC is similar to the first and second PCs

Demographic attribute group

Setup. Next, we assume that the user is interested in exploring the age demo-
graphics of different districts. The demographic attribute group describes the age
distribution of the population (in fractions) for every district, over five categories:
Elderly (age > 64), Old (between 45 and 64), Middle Aged (between 25 and 44),
Young (between 18 and 24), and Children (age < 18), represented by a positive
real-valued vector of length 5. Thus, we have a data set X̂ ∈ R412×5. We then
centered the data attribute-wise.

We assume again the user understands the influence of the historical east-west
divide. We are interested in finding patterns orthogonal to that division. The pop-
ulation density is lower in East Germany than the rest of country. According to
Wikipedia11: “About 1.7 million people have left the new federal states since the
fall of the Berlin Wall, or 12% of the population. A disproportionately high num-
ber of them were women under 35”. Also the Berlin-Institute for Population and
Development12 reports: “the birth rate in East Germany dropped down to 0.77 af-

11https://en.wikipedia.org/wiki/New_states_of_Germany#Demographic_
development, retrieved November 18, 2016.

12http://www.berlin-institut.org/fileadmin/user_upload/Studien/

https://en.wikipedia.org/wiki/New_states_of_Germany#Demographic_development
https://en.wikipedia.org/wiki/New_states_of_Germany#Demographic_development
http://www.berlin-institut.org/fileadmin/user_upload/Studien/Kurzfassung_demografische_lage_englisch.pdf
http://www.berlin-institut.org/fileadmin/user_upload/Studien/Kurzfassung_demografische_lage_englisch.pdf
http://www.berlin-institut.org/fileadmin/user_upload/Studien/Kurzfassung_demografische_lage_englisch.pdf
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Figure 2.11: German socio-economics data demographic attributes (§2.4.3). (a) The geo-
graphic scatter plot of districts with each district colored according to its projective value
onto first PC. The top 10 districts with most positive and most negative projective values
are labeled. The PC again highlights the difference between East and West Germany. (b)
The same geographic scatter plot against first SICA component. The top SIC assigns large
negative scores to East Germany, while it also highlights the large cities.

Elderly Old Mid-Age Young Child
PCA -0.61 -0.42 0.43 0.09 0.51
SICA -0.62 -0.32 0.69 0.19 0.06

Table 2.3: German socio-economics data age demographics (§2.4.3), weights given by first
PCA and SICA component.

ter unification, and raised to 1.30 nowadays compare to 1.37 in the West”. Given
this (in Germany common sense) knowledge, SICA should be able to offer new
insights. Hence, we assume again that the demographics of the districts in East
Germany are similar, and the remaining districts are also similar. Formalizing such
belief as point wise similarities results in a graph with two cliques: one consists of
all districts in East Germany, the other contains the rest.

Results. Projection on the top PC (Figure 2.11a) confirms the user’s prior expec-
tations. There is a substantial difference between East and West Germany. In the
visualization, high projection values (red color) appear mostly in East Germany,
while low values (blue color) appear mostly in the rest of Germany. If we look at
the weights of the top PC (Table 2.3), we find that the projection is based on large
negative weights to people above 44 (Old and Elder), and large positive weights
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Figure 2.12: German socio-economics data age demographics (§2.4.3). (a) average 10-fold
cross-validation loss (error bars gives one standard deviation) for eastern and non-eastern
districts classification on the projected data. The top two PCA components result in a
slightly smaller loss than SICA. (b) Similarity (absolute value of inner product) between
PCA and SICA components. The first and second components of the two methods are very
similar.

to the younger population (age < 45). This confirms that indeed the demographic
status of East Germany deviates.

SICA results in a different projection (2.11b), even though the difference is
more subtle than in the analysis of the voting behavior. Although SICA also as-
signs large negative scores to East Germany, presumably because there are rel-
atively many elderly there, SICA also highlights the large cities, e.g., Munich,
Cologne, Frankfurt, Hamburg, Kiel, Trier. In addition to showing a smooth ge-
ographic East-West trend, SICA also seems to highlight districts whose demo-
graphic status deviates from its surrounding districts. Indeed, from the weight
vector (Table 2.3) we see that these districts are found by considering the number
of middle aged people against the number of elderly. We know that many middle-
aged (24 − 44) working people live in large cities, and, according to the report
from Berlin-Institute for Population and Development, “large cities generally have
fewer children, since they offer families too little room for development”. Indeed,
we find that families live in the neighboring districts, highlighting a perhaps less-
expected local contrast.

Also, to further investigate this more quantitatively, we applied an SVM to
classify the eastern versus non-eastern districts using the projected demographic
attributes. Figure 2.12a shows that the top two PCA components result in a slightly
smaller loss than SICA. This indicates that the top PCs and SICs both correspond
to the eastern and non-eastern division. The similarity matrix (Figure 2.12b) of
PCA and SICA components also shows the first and second components of the
two methods are very similar. However, according to the visualization, the best
(positively) scored districts by SICA (Figure 2.11b) highlight large cities more
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Synthetic
outlier Shuttle 20News

Group
Synthetic

community
Socio-eco.

(age)
Socio-eco.

(vote)
Face

image

SICA 0.12 1.75 8.07 0.03 0.06 0.04 2.26
PCA < 0.01 0.08 0.25 0.01 < 0.01 < 0.01 0.56

Table 2.4: Runtime (in seconds) of SICA and PCA for all experiments (§2.4.4). Each mea-
surement is averaged over ten runs. We used a machine with Intel Quad Core 2.7 GHz CPU
and 16 GB 1600 MHz DDR3 RAM.

than the PCA result (Figure 2.11a). Also the highlighted cities stand out more
from their surrounding area.

2.4.4 Runtime

Table 2.4 summarizes the runtime of PCA and SICA in all experiments presented
in this chapter. In all these cases, SICA takes more time to compute the projections.
For the first three columns (t-PCA cases), we used the solver offered by Manopt
to perform gradient descent over the Stiefel manifold. We tried ten random starts
in all three cases and picked the projection that gives the best objective. The ten
random starts already give stable local optima in all three cases. Note that t-PCA
scales gracefully when the data size increases from Synthetic dataset (1010×2) to
Shuttle (58000× 9) and then 20NewsGroup (16242× 100).

The other four experiments are about SICA with graph prior. Again, SICA
scales well from the Synthetic data (100 × 10) to the socio-economical dataset
(both 412× 5) and then the Face image dataset (1684× 1024). However, although
both SICA and PCA are based on eigenvalue decomposition, SICA spend more
time than PCA. One reason is that in order to construct the Laplacian matrix in
(2.40) SICA needs to loop through the data as well as find the best multipliers.
Note that the current experiments are based on a quick implementation—a more
careful implementation may improve the run time of SICA.

2.5 Related work

SICA is linear, unsupervised, and subjective. Dimensionality reduction (DR) meth-
ods, as indicated by the name, aim to find lower dimensional representation of high
dimensional data. Here “dimension” refers to the number of features that are used
to describe the data. Finding a lower dimensional representation further boils down
to either select a subset of the original features or transform the feature space to
another (low-dimensional) space. Here we mainly discuss the line of work for fea-
ture transformation (extraction), since they are more closely related to our work.

Supervised v.s. Unsupervised. DR methods are often designed with a certain
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goal: to have lower dimensional representations with some specific properties. For
example Principal Component Analysis (PCA) [32, 20] is often used for comput-
ing a presentation of dataset where the data variance is preserved, whereas Canon-
ical Component Analysis (CCA) [16] aims to find pairs of directions in two feature
spaces where the corresponding two datasets are highly correlated. While PCA and
CCA achieve their goals in an unsupervised manner, Linear Discriminant Analy-
sis (LDA) [10], on the other hand, extracts discriminative features according to the
given class labels with a supervised flavor. The new features provided by DR meth-
ods can not only be used for later classification or prediction, but also to explore
the structures in the data, e.g., Self Organizing Map (SOM) [22] for exploratory
data analysis. In order to meet different analysis goals under a unified framework,
Projection Pursuit (PP) [11] was proposed to locate different projections accord-
ing to some predefined “interestingness index”. Different from the previous works,
we seek for data projections that are interesting particularly to the user. Therefore,
SICA aims to propose a generic interestingness measure that does not explicitly
depend on the context of the data or on the specific analytic tasks.

Linear v.s. Non-linear. Orthogonally, when approaching these goals, DR meth-
ods further assume the relationship between the original data and its lower dimen-
sional representation to be either linear or non-linear. The aforementioned methods
(PCA, CCA and LDA) compute new data representations via linear transformation.
Additionally, classical Multidimensional Scaling [25] also finds a linear transfor-
mation that preservers the distances between the data points. We refer the reader
to the survey by Cunningham and Ghahramani [6] and the references therein for a
comprehensive review of linear DR techniques. However, in reality, high dimen-
sional data often obeys certain constraints; data then lies on a low-dimensional
(non-linear) manifold embedded in the original feature space. Non-linear dimen-
sionality reduction methods like SOM approximate such a manifold by a set of
linked nodes. Building upon Multidimensional Scaling, ISOMAP [35] seeks to
preserve the intrinsic geometry of the data by first encoding neighborhood rela-
tions as a weighted graph. This inspired later spectral methods [37, 29] as well as
different manifold learning approaches [1, 15, 39] that try to solve a eigenproblem
in order to discover the intrinsic manifold structure of the data, using an eigen-
decomposition to preserve the local properties of the data. Note that with a graph
prior, SICA computes linear projections in a spectral-method-like manner (§2.3.3).
However, the previously mentioned non-linear DR methods are interested in the
eigenvectors corresponding to the smallest k eigenvalues of the Laplacian, as they
provide insights into the local structure of the underlying graph, while SICA iden-
tifies mappings that target non-smoothness with respect to the user’s beliefs about
the data, while maximizing the variance of the data in the resulting subspace. Inter-
estingly, the resulting optimization problem is not simply the opposite of existing
approaches.
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Objective v.s. Subjective. The aforementioned methods are mainly “objective”
in the sense there that user is not explicitly considered. A notable exception is
the work on User Intent Modeling for Information Discovery [34], where indeed
an explicit relevance model is built to help a user find information relevant to her
search. Their tool also computes a 2D embedding of the search results, account-
ing for their user and session specific relevance. However, they do not introduce
a new theoretically well-motived method to find a low-dimensional subspace that
accounts for background knowledge or intent. That is also not the focus of their
work, which is rather the identification of relevant results. Some other techniques
have been proposed in exploratory data analysis that take into account the user
knowledge to determine interesting projections. For instance, Brown et al. [5]
suggests an interactive process in which the user provides feedback by moving
incorrectly-positioned data points to locations that reflect their understanding. In
a similar manner, Paurat and Gärtner [31] make use semi-supervised least squares
projections but allowing the user to select and rearrange some of the embedded
data points. In the work by Iwata et al. [19], the authors use active learning to se-
lect candidate data points for the user to relocate so that they can achieve their de-
sired visualization. All of these methods, guided by the user, interactively present
different aspects of the data. Finally the work by Weinberger and Saul [38] re-
quire the practitioner to provide auxiliary information, e.g. a similarity graph, that
identify target neighbours for each data point, that is then used to constraint their
optimization problem. This prior knowledge is the structure that one wants to pre-
serve, as opposed to SICA. To our best knowledge, SICA is the first subjective DR
method which finds lower-dimensional data representations that are as interesting
as possible for a particular user. Hence, SICA adds another layer to the family of
dimensionality reduction methods.

2.6 Conclusion

In exploratory data analysis, structures in the data often have different value for
different tasks and data analysts. To address this, the Projection Pursuit literature
has introduced numerous projection indices that quantify the interestingness of a
projection in various ways. However, it still seems to be conceptually challenging
to define a generic quality metric for the tasks of exploratory data analysis. As an
attempt in this direction, we present SICA, a new linear dimensionality reduction
approach that explicitly embraces the subjective nature of interestingness. In this
chapter, we show how the modeling of a user’s belief state can be used to drive
a subjective interestingness measure for DR. Such interestingness measure is then
used to search for subjectively interesting projections of data. Results from several
case study show that it can be meaningful to account for available prior knowledge
about the data.
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Avenues for further work include incorporating multiple prior expectations si-
multaneously (e.g., define multiple (disjoint) groups of similar nodes using graph
prior), to enable more flexible iterative analysis. This involves solving a MaxEnt
optimization problem subject to multiple constraints. We also plan to study how to
improve the interpretability of the projections, e.g., finding projections with sparse
weight vectors. In terms of visualization, an interesting future direction is to in-
vestigate how the SICA result will be affected by removing the assumption of the
resolution being the same through all dimensions. Although that is already pos-
sible, one question is how a user could conveniently input these expectations into
the system. Another open question is to what extend SICA can be applied to non-
linear dimensionality reduction. Finally, alternative types of prior expectations are
also worth examining.
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Appendices

A Probability approximation based on distribution (2.17)

We want to show that given marginal density function (2.17) the probability Pr(XW ∈
[Π̂W−∆1, Π̂W+∆1]) can be approximated well by using the form pΠW

(XW)·
2∆ for sufficiently small ∆. As random variable XW in distribution (2.17) con-
sists of elements that are all independent to each other, it is sufficient to show the
approximation quality for one dimensional normal distribution x ∼ N (0, σ2):

Proposition 1. For one dimensional normal random variable x ∼ N (0, σ2),
the approximation of probability Pr (x ∈ [x−∆,x + ∆]) by px(x) · 2∆ has a
bounded log approximation ratio:∣∣∣∣log

(
Pr (x ∈ [x−∆,x + ∆])

px(x) · 2∆

)∣∣∣∣ ≤
{

∆(2|x|+∆)
2σ2 : |x| ≥ ∆,

3∆2

2σ2 : |x| ≤ ∆.

Thus, for given σ and x, if ∆ is sufficiently small and x∆ tends to 0, the upper
bound of the log approximation ratio tends to zero. Namely, the approximation is
tight.

Proof. Let us first consider the case where x−∆ > 0. Because of the symmetry
of the normal distribution, the result also applies for the case where x+∆ < 0.We
have:
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• Estimation of the probability: 2∆ · 1/
√

2πσ2e−x2/(2σ2).

• Upper bound on the probability: 2∆ · 1/
√

2πσ2e−(x−∆)2/(2σ2).

• Lower bound on the probability: 2∆ · 1/
√

2πσ2e−(x+∆)2/(2σ2).

Then the log approximation ratio can be computed as:

1. for upper bound we have∣∣∣∣∣log

(
2∆ · 1/

√
2πσ2e−(x−∆)2/(2σ2)

2∆ · 1/
√

2πσ2e−x2/(2σ2)

)∣∣∣∣∣ =

∣∣∣∣∣log

(
e−(x−∆)2/(2σ2)

e−x2/(2σ2)

)∣∣∣∣∣
=

∆(2x−∆)

2σ2

2. and for lower bound we have∣∣∣∣∣log

(
2∆ · 1/

√
2πσ2e−(x+∆)2/(2σ2)

2∆ · 1/
√

2πσ2e−x2/(2σ2)

)∣∣∣∣∣ =

∣∣∣∣∣log

(
e−(x+∆)2/(2σ2)

e−x2/(2σ2)

)∣∣∣∣∣
=

∆(2x + ∆)

2σ2

Since x,∆ > 0, the absolute log approximation ratio of lower bound is always
smaller than the ratio achieved by the upper bound, we have for x−∆ > 0:∣∣∣∣log

(
px (x ∈ (x−∆,x + ∆))

px(x) · 2∆

)∣∣∣∣ ≤ ∆(2x + ∆)

2σ2
(41)

Given σ and x, if ∆ is sufficiently small such that x∆ close to 0, then the approx-
imation at x (|x| ≥ ∆) is tight.

Remark 6. In general, for |x| ≥ ∆, the right hand side in inequality (41) can be
replaced by ∆(2|x|+∆)

2σ2

Let us now consider the case where −∆ ≤ x ≤ ∆. Without losing generality,
we assume p(x−∆) > p(x + ∆). This leads to:

• Estimation of the probability: 2∆ · 1/
√

2πσ2e−x2/(2σ2).

• Upper bound on the probability: 2∆ · 1/
√

2πσ2.

• Lower bound on the probability: 2∆ · 1/
√

2πσ2e−(x+∆)2/(2σ2).

Then the log approximation ratio can be computed as:
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1. for upper bound we have∣∣∣∣∣log

(
2∆ · 1/

√
2πσ2

2∆ · 1/
√

2πσ2e−x2/(2σ2)

)∣∣∣∣∣ =

∣∣∣∣log

(
1

e−x2/(2σ2)

)∣∣∣∣ (42)

=
x2

2σ2
(43)

≤ ∆2

2σ2
, (44)

2. and for lower bound we have∣∣∣∣∣log

(
2∆ · 1/

√
2πσ2e−(x+∆)2/(2σ2)

2∆ · 1/
√

2πσ2e−x2/(2σ2)

)∣∣∣∣∣ =

∣∣∣∣∣log

(
e−(x+∆)2/(2σ2)

e−x2/(2σ2)

)∣∣∣∣∣
(45)

=
x∆

σ2
+

∆2

2σ2
(46)

≤ 3∆2

2σ2
(47)

Thus, we have for −∆ ≤ x ≤ ∆:∣∣∣∣log

(
Pr (x ∈ [x−∆,x + ∆])

px(x) · 2∆

)∣∣∣∣ ≤ 3∆2

2σ2
(48)

Given σ, if ∆ is sufficiently small, then the approximation at x (|x| ≤ ∆) is
tight.

B Probability approximation based on distribution (2.24)

We want to show that given marginal density function (2.24) the probability Pr(XW ∈
[Π̂W−∆1, Π̂W+∆1]) can be approximated well by using the form pΠW

(XW)·
2∆ for sufficiently small ∆. As random variable XW in distribution (2.24) con-
sists of elements that are all independent to each other, it is sufficient to show the
approximation quality for a one dimensional t-distribution with degree of freedom
ν:

Proposition 2. The one dimensional r.v. x follows a t-distribution with density
function

px(x) =
Γ(ν+1

2 )
√
νπΓ(ν2 )

(
1 +

x2

ν

)− ν+1
2

.

Hence, the approximation of probability Pr (x ∈ [x−∆,x + ∆]) by px(x) ·
2∆, has a bounded log approximation ratio:∣∣∣∣log

(
Pr (x ∈ [x−∆,x + ∆])

px(x) · 2∆

)∣∣∣∣ ≤
{

∆(2|x|+∆)
x2+ν : |x| ≥ ∆,

∆2

ν max
(
ν+1

2 , 4
)

: |x| ≤ ∆.
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Thus, for given σ, ν (ν > 0), and x, if ∆ is sufficiently small and x∆ tends
to 0, the upper bound of the log approximation ratio tends to zero. Namely, the
approximation is tight.

Proof. Let us first consider the case where x−∆ > 0. Because of the symmetry
of the t-distribution, the result also applies for the case where x + ∆ < 0. Let

1/Zν =
Γ( ν+1

2 )√
νπΓ( ν2 )

, we have:

• Estimation of the probability: 2∆ · 1
Zν

(1 + x2

ν )−
ν+1
2 .

• Upper bound on the probability: 2∆ · 1
Zν

(1 + (x−∆)2

ν )−
ν+1
2 .

• Lower bound on the probability: 2∆ · 1
Zν

(1 + (x+∆)2

ν )−
ν+1
2 .

Then the log approximation ratio can be computed as:

1. for upper bound we have∣∣∣∣∣∣log

2∆ · 1
Zν

(1 + (x−∆)2

ν )−
ν+1
2

2∆ · 1
Zν

(1 + x2

ν )−
ν+1
2

∣∣∣∣∣∣ =

∣∣∣∣log

(
ν + x2 − 2x∆ + ∆2

x2 + ν

)∣∣∣∣
=

∣∣∣∣log

(
1 +

∆2 − 2x∆

x2 + ν

)∣∣∣∣
≤ ∆(∆− 2x)

x2 + ν

2. and for lower bound we have∣∣∣∣∣∣log

2∆ · 1
Zν

(1 + (x+∆)2

ν )−
ν+1
2

2∆ · 1
Zν

(1 + x2

ν )−
ν+1
2

∣∣∣∣∣∣ =

∣∣∣∣log

(
ν + x2 + 2x∆ + ∆2

x2 + ν

)∣∣∣∣
=

∣∣∣∣log

(
1 +

∆2 + 2x∆

x2 + ν

)∣∣∣∣
≤ ∆(∆ + 2x)

x2 + ν

By the assumption x > ∆, we have ∆(∆−2x)
x2+ν ≤ ∆(∆+2x)

x2+ν , that is∣∣∣∣log

(
Pr (x ∈ [x−∆,x + ∆])

px(x) · 2∆

)∣∣∣∣ ≤ ∆(∆ + 2x)

x2 + ν
. (49)

For given σ and x, if ∆ is sufficiently small such that x∆ close to 0, then the bound
∆(∆+2x)

x2+ν is close to zero. Namely, the approximation at x (|x| ≥ ∆) is tight.

Remark 7. In general, for |x| ≥ ∆, the right hand side in inequality (49) can be
replaced by ∆(2|x|+∆)

x2+ν
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Let us now consider the case where −∆ < x < ∆. Without losing generality,
we assume p(x−∆) > p(x + ∆). This leads to:

• Estimation of the probability: 2∆ · 1
Zν

(1 + x2

ν )−
ν+1
2 .

• Upper bound on the probability: 2∆ · 1
Zν

• Lower bound on the probability: 2∆ · 1
Zν

(1 + (x+∆)2

ν )−
ν+1
2 .

Then the log approximation ratio can be computed as:

1. for upper bound we have∣∣∣∣∣log

(
2∆ · 1

Zν

2∆ · 1
Zν

(1 + x2

ν )−
ν+1
2

)∣∣∣∣∣ =

∣∣∣∣log

(
(1 +

x2

ν
)
ν+1
2

)∣∣∣∣
≤ ν + 1

2
log(1 +

∆2

ν
)

≤ ν + 1

2
· ∆2

ν

2. and for lower bound we have∣∣∣∣∣∣log

2∆ · 1
Zν

(1 + (x+∆)2

ν )−
ν+1
2

2∆ · 1
Zν

(1 + x2

ν )−
ν+1
2

∣∣∣∣∣∣ =

∣∣∣∣log

(
ν + x2 + 2x∆ + ∆2

x2 + ν

)∣∣∣∣
=

∣∣∣∣log

(
1 +

∆2 + 2x∆

x2 + ν

)∣∣∣∣
≤
∣∣∣∣log

(
ν + 4∆2

ν

)∣∣∣∣
≤ 4∆2

ν

For given σ and ν, if ∆ is sufficiently small, then the bound ∆2

ν max
(
ν+1

2 , 4
)

is
close to zero. Namely, the approximation at x (|x| ≤ ∆) is tight.
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active intent modeling: Information discovery beyond search. Communica-
tions of the ACM, 58(1):86–92, 2015.

[35] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geomet-
ric framework for nonlinear dimensionality reduction. Science, 290(5500):
2319, 2000.

[36] M. A. O. Vasilescu and Demetri Terzopoulos. Multilinear analysis of image
ensembles: Tensorfaces. In Proceedings of the 7th European Conference on
Computer Vision, pages 447–460, Berlin, Heidelberg, 2002. Springer.

http://www.encyclopediaofmath.org/index.php?title=Stiefel_manifold&oldid=12028
http://www.encyclopediaofmath.org/index.php?title=Stiefel_manifold&oldid=12028


56 LINEAR REPRESENTATIONS

[37] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and Com-
puting, 17(4):395–416, 2007.

[38] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for
large margin nearest neighbor classification. The Journal of Machine Learn-
ing Research, 10:207–244, 2009.

[39] Kilian Q Weinberger, Fei Sha, Qihui Zhu, and Lawrence K Saul. Graph lapla-
cian regularization for large-scale semidefinite programming. In Advances in
Neural Information Processing Systems, pages 1489–1496, 2006.

[40] Konstantinos Zografos. On maximum entropy characterization of pearson’s
type ii and vii multivariate distributions. Journal of Multivariate Analysis, 71
(1):67–75, 1999.



3
Non-linear Representations

Conditional t-SNE: Complementary t-SNE embeddings
through factoring out prior information

Abstract Dimensionality reduction and manifold learning methods such as t-Distributed
Stochastic Neighbor Embedding (t-SNE) are routinely used to map high-dimensional
data into a 2-dimensional space to visualize and explore the data. However, two
dimensions are typically insufficient to capture all structure in the data, the salient
structure is often already known, and it is not obvious how to extract the remaining
information in a similarly effective manner. To fill this gap, we introduce condi-
tional t-SNE (ct-SNE), a generalization of t-SNE that discounts prior information
from the embedding in the form of labels. To achieve this, we propose a condi-
tioned version of the t-SNE objective, obtaining a single, integrated, and elegant
method. ct-SNE has one extra parameter over t-SNE; we investigate its effects
and show how to efficiently optimize the objective. Factoring out prior knowledge
allows complementary structure to be captured in the embedding, providing new
insights. Qualitative and quantitative empirical results on synthetic and (large) real
data show ct-SNE is effective and achieves its goal.
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3.1 Introduction

Dimensionality reduction (DR) methods can be used to create low-dimensional
(typically 2-dimensional; 2-d) representations that are straightforward to visual-
ize and subsequently explore the dominant structure of high-dimensional datasets.
Non-linear DR methods are particularly powerful because they can capture com-
plex structure even when it is spread over many dimensions. This explains the
huge popularity of methods such as t-SNE [13], LargeVis [23], and UMAP [16].

However, DR methods yield a single static embedding and the most prominent
structure present in the data may already be known to the analyst. One may in-
deed construct higher-dimensional embeddings, hoping to uncover more structure,
but there is no guarantee that any of the constructed dimensions is fully comple-
mentary to the prior knowledge of an analyst. Besides, the salient structure that is
already known may be spread across all attributes, hence we cannot just remove
the associated attributes and generally speaking it is not obvious how to visualize
the remaining structure. The question arises: can we actively filter or discount
prior knowledge from the embedding?

To this end, we introduce conditional t-SNE (ct-SNE), a generalization of t-
SNE that accounts for prior information about the data. By discounting the prior
information, the embedding may focus on capturing complementary information.
More concretely, it does not aim to construct an embedding that reflects all the
proximities in the original data (the objective of t-SNE), but it should reflect all
pairwise proximities conditioned on whether we expect that pair to be close or
not.

ct-SNE enables at least three new ways to obtain insight into data:

• The prior knowledge may indeed be available beforehand, in which case we
can straight away focus the analysis on an embedding that is more useful.

• Such prior knowledge may be gained during analysis, leading to an iterative
data analysis process.

• If we observe some specific structure X in an embedding and then factor out
specific information Y, then if X remains present in the embedding, we learn
that X is Y complementary to Y.

Note we use the term prior knowledge, even when this knowledge is not avail-
able a priori, but gained during the analysis. This reflects the knowledge is avail-
able prior to the embedding step.

Example. To demonstrate the idea behind ct-SNE more concretely, consider a ten-
dimensional dataset with 1,000 data points. In dimension 1–4 the data points fall
into five clusters (following a multi-variate Gaussian with small variance), simi-
larly for dimensions 5–6 the points fall randomly into four clusters. Dimensions
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(a)(a)(a)(a) (b)(b)(b)(b) (c)(c)(c)(c)

Figure 3.1: Visualization of 2-d embeddings of synthetic data (see ‘example’ below).

7–10 contain Gaussian noise with larger variance. Figure 3.1a gives the t-SNE
embedding. It shows five large clusters, where some can be somewhat clearly
split further into smaller clusters. The large clusters correspond to those defined
in dimension 1–4. Figure 3.1b is the ct-SNE embedding where we have input the
five colored clusters as prior knowledge. This figure shows four clusters that are
complementary to the five clusters observed in 3.1a. We see they are complemen-
tary because there is no correlation between the colors and the clusters in Fig-
ure 3.1b. These four clusters are indeed those defined in dimensions 5–6. Finally,
Figure 3.1c shows that after combining the labels, ct-SNE yields an embedding
capturing only on the remaining noise.

The implementation of ct-SNE and code for the experiments on public data are
available at https://bitbucket.org/ghentdatascience/ct-sne.

Contributions. This chapter makes the following contributions:

• ct-SNE, a new DR method that searches for an embedding such that a dis-
tribution defined in terms of distances in the input space (as in t-SNE) is
well-approximated by a distribution defined in terms of distances in the em-
bedding space after conditioning on the prior knowledge (Sec. 3.2.2);

• A Barnes-Hut-Tree based optimization method to efficiently find an embed-
ding (Sec. 3.2.3);

• We illustrate that the concept of conditioning embeddings on prior informa-
tion can be applied to other popular non-linear DR methods (mentioned in
Sec. 3.2, with details in Appendix B);

• Extensive qualitative and quantitative experiments on synthetic and real world
datasets show ct-SNE effectively removes the known factors, enables deeper
visual analysis of high-dimensional data, and that ct-SNE scales sufficiently
to handle hundreds of thousands of points (Sec. 3.3).

https://bitbucket.org/ghentdatascience/ct-sne
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3.2 Method

In this section, we first briefly recap the idea behind t-SNE and introduce the ba-
sic notation. Then, we derive ct-SNE and describe a Barnes-Hut based strategy
to optimize the ct-SNE objective. Due to space limitations, we discuss in Ap-
pendix B how the idea of factoring out prior information can be applied to many
other existing non-linear DR methods such as LargeVis and UMAP.

3.2.1 Background: t-SNE

In t-SNE, the input data set X ∈ Rn×d is taken to define a probability distribution
for a categorical random variable e, of which the value domain is indexed by all
pairs (i, j) of indices i, j ∈ [1..n] with i 6= j. This distribution is determined
by specifying probabilities 0 ≤ pij ≤ 1 such that

∑
i 6=j pij = 1, equal to the

probability that e = (i, j). For brevity, below we will speak of the distribution p

when we mean the categorical distribution with parameters pij .
More specifically, in t-SNE, the distribution p is defined as follows:

pij ,Pp(e = (i, j)) =
exp

(
−‖xi − xj‖2/2σ2

)∑
k 6=l exp (−‖xk − xl‖2/2σ2)

. (3.1)

The goal of t-SNE is to find another embedding Y ∈ Rn×d′ , from which another
categorical probability distribution is derived, specified by the values qij defined
as follows:

qij ,Pq(e = (i, j)) =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

. (3.2)

An embedding Y is deemed better if the distance between these two categor-
ical distributions is smaller, as quantified by the KL-divergence: KL(p‖q) =∑
i 6=j pij log

(
pij
qij

)
.

3.2.2 Conditional t-SNE

Let us now assume that each data point xi has a label li associated, with li ∈ [0..L]

for all i ∈ [1..n]. Moreover, let us assume that it is known a priori that same-
labeled data points are more likely to be nearby in X . Our goal is to ensure that
the embedding Y does not reflect that information again. This can be achieved by
minimizing the KL-divergence between the distributions p and r (rather than q),
where r is the distribution derived from the embedding Y but conditioned on the
prior knowledge.

We formalize this using the following notation. The indicator variable δij = 1

if li = lj and δij = 0 if li 6= lj , and the label matrix ∆ is defined by [∆]ij = δij .
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The probability that the random variable e is equal to (i, j), conditioned on the
label matrix ∆ (i.e. the prior information) is denoted as:

rij ,Pq(e = (i, j)|∆) =
P (∆|e = (i, j))Pq(e = (i, j))

Pq(∆)
.

In ct-SNE, this is the probability distribution that needs to be similar to p for the
embedding to be a good one. Note that if we ensure that P (∆|e = (i, j)) is larger
when δij = 1 than when δij = 0, it will be less important for the embedding to
ensure that qij = Pq(e = (i, j)) is large for same-labeled data points, even if pij
is large. I.e., for same-labeled data points, it is less important to be embedded
nearby even if they are nearby in the input representation. This is precisely the
goal of ct-SNE.

To compute Pq(e = (i, j)|∆), we now investigate its different factors. First,
Pq(e = (i, j)) = qij is simply computed as in Eq. (3.2). Second, we need to
determine a suitable form for P (∆|e = (i, j)), based on the above intuition. To
do this, we assume that δij is the sufficient statistic for P (∆|e = (i, j)), i.e.
P (∆|e = (i, j)) = αδijβ1−δij , where α and β can be regarded as the confidence
of points xi and xj being randomly picked to have the same or different labels.
Let us further denote the class size of the l’th class as nl. Then, for this distribution
to be normalized, it must hold that:

1 =
∑
∆

P (∆|e = (i, j)),

=α

(∑
l

(n− 2)!

(nl − 2)!
∏
f 6=l nf !

)
+ β

(
n!∏
l nl!

−
∑
l

(n− 2)!

(nl − 2)!
∏
f 6=l nf !

)
,

=
n!∏
l nl!

(
α

∑
l nl(nl − 1)

n(n− 1)
+ β

(
1−

∑
l nl(nl − 1)

n(n− 1)

))
.

This yields a relation between α and β. It also suggests a ballpark figure for α.
Indeed, one would typically set α > β. For α = β (i.e. the lower bound for α),
they would both be equal to α = β =

∏
l nl!

n! , i.e. one divided by the number
of possible distinct label assignments (this is of course entirely logical). Thus, in
tuning α, one could take multiples of this minimal value.

We can now also compute the marginal probability Pq(∆) as follows:

Pq(∆) =
∑
i 6=j

P (∆|e = (i, j))Pq(e = (i, j)) =
∑
i 6=j

qijα
δijβ1−δij ,

=α
∑

i 6=j:δij=1

qij + β
∑

i 6=j:δij=0

qij .

Given all this, one can then compute the required conditional distribution as fol-
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lows:

rij ,Pq(e = (i, j)|∆) =
P (∆|e = (i, j))Pq(e = (i, j))

Pq(∆)
, (3.3)

=


αqij

α
∑
i6=j:δij=1 qij+β

∑
i6=j:δij=0 qij

if δij = 1,

βqij
α
∑
i6=j:δij=1 qij+β

∑
i6=j:δij=0 qij

if δij = 0.

It is numerically better to express this in terms of new variables α′ , α n!∏
l nl!

and

β′ , β n!∏
l nl!

:

rij =


α′qij

α′
∑
i6=j:δij=1 qij+β

′∑
i6=j:δij=0 qij

if δij = 1,

β′qij
α′

∑
i6=j:δij=1 qij+β

′∑
i6=j:δij=0 qij

if δij = 0,

where the relation between α′ and β′ is:

1 =α′
∑
l nl(nl − 1)

n(n− 1)
+ β′

(
1−

∑
l nl(nl − 1)

n(n− 1)

)
. (3.4)

This has the advantage of avoiding the large factorials and resulting numerical
problems. The lower bound for α′ to be considered is now 1 (in which case also
β′ = 1).

Finally, computing the KL-divergence with p, yields the ct-SNE objective
function to be minimized:

KL(p‖r) =
∑
i 6=j

pij log

(
pij
rij

)
,

=KL(p‖q) +
∑
i 6=j

pij log

(
α′
∑
i 6=j:δij=1 qij + β′

∑
i 6=j:δij=0 qij

α′δijβ′1−δij

)
,

=KL(p‖q) + log

α′ ∑
i 6=j:δij=1

qij + β′
∑

i6=j:δij=0

qij


−

∑
i 6=j:δij=1

pij log(α′)−
∑

i 6=j:δij=0

pij log(β′). (3.5)

Note that the last two terms are constant w.r.t. qij . Moreover, it is clear that for
α′ = β′ = 1, this reduces to standard t-SNE. For α′ > 1 > β′ (and related as
per the Eq. (3.4)), the minimization of this KL-divergence will try to minimize qij
when δij = 1 more strongly (as it is multiplied with the larger number α′) than
when δij = 0 (when it is multiplied with the smaller number β′).
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3.2.3 Optimization

The objective function (Eq. (3.5)) is non-convex w.r.t the embedding Y . Even so,
we find that optimizing the objective function using gradient descent with random
restarts works well in practice. The gradient of the objective function w.r.t. the
embedding of a point yi reads: 1

∇yiKL(p‖r) = 4 (Fattr + Frep) ,

= 4
∑
j

(
pijqijZ(yi − yj)−

δijα
′ + (1− δij)β′

O
· q2
ijZ(yi − yj)

)
.

whereZ =
∑
k 6=l(1+‖yk−yl‖2)−1 andO = α′

∑
i6=j:δkl=1 qkl+β

′∑
i6=j:δkl=0 qkl.

The gradient can be decomposed in attraction and repelling forces between points
in the embedding space. Thus the underlying problem of ct-SNE, just like many
other force-based embedding methods, is related to the classic n-body problem
in physics2, which has also been studied in the recent machine learning litera-
ture [8, 21]. The general goal of the n-body problem is to find a constellation
of n objects such that equilibrium is achieved according to a certain measure
(e.g., forces, energy). In the problem setting of ct-SNE, both the pairwise dis-
tances between points and the label information affect the attraction and repelling
forces. Particularly, the label information strengthens the repelling force (assume
α′ > 1 > β′ > 0) between two points if they have the same label and weakens
the repelling force if two points have different labels. This is desirable behav-
ior because we do not want to reflect the known label information in the resulted
embeddings.

Evaluating the gradient has complexity O(n2), which makes the computation
(both time and memory cost) infeasible when n is large (e.g., n > 100k). As an
approximation of the gradient computation, we adapt the tree-based approximation
strategy described in van der Maaten [27]. To efficiently model the proximity in
high-dimensional space (Eq. (3.1)) we use a vantage-point tree-based algorithm
(which exploits the fast diminishing property of the Gaussian distribution). To
approximate the low-dimensional proximity (Eq. (3.3)) we modify the Barnes-
Hut algorithm to incorporate the label information. The basic idea of the Barnes-
Hut algorithm is to organize the points in the embedding space using a kd-tree
(which for 2-d embeddings is equivalent to a quad tree). Each node of the tree
corresponds to a cell (dissection) in the embedding space. If a target point yi is
far away from all the points in a given cell, then the interaction between the target
point and the points within the cell can be summarized by the interaction between
yi and the cell’s center of mass ycell that is computed while constructing the kd-
tree. More specifically, the summarization happens when rcell/‖yi − ycell‖2 < θ,

1A detailed derivation of the gradient computation can be found in Appendix A.
2https://en.wikipedia.org/wiki/N-body_problem#Other_n-body_

problems

https://en.wikipedia.org/wiki/N-body_problem#Other_n-body_problems
https://en.wikipedia.org/wiki/N-body_problem#Other_n-body_problems
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where rcell is the radius of the cell, while θ controls the strength of summarization,
i.e. the approximation strength. The summarized repelling force in t-SNE reads
Frep = −ncellq

2
i,cellZ(yi − ycell), where ncell is the number of data points in that

cell.
In the ct-SNE approximation, we had to overcome an additional complication

though: we also need to summarize the label information for the points in a cell
when the summarization happens. This can be done by maintaining a histogram
in each cell, and counting the numbers of data points with different labels that
fall into that cell. Then the repelling force of a target point yi can be weighted
proportional to the number of points that have same (different) label(s) within the
cell. Namely:

F approx.
rep = −α

′ncell,l=li + β′(ncell − ncell,l=li)

O
q2
i,cellZ(yi − ycell),

where ncell,l=li is the number of data points in a cell that has the same label as
point yi.

As both tree-based approximation schemes have complexityO (n log n), count-
ing the label will add an extra multiplicative constant L, equal to the number of
label values in the prior information. Thus the final complexity of approximated
ct-SNE is O (L · n log n).

3.3 Experiments
The experiments investigate 4 questions: Q1 Does ct-SNE work as expected in
finding complementary structure? Q2 How should α (or equivalently, β) be cho-
sen? Q3 Could ct-SNE’s goal be achieved also by using (a combination of) other
methods? Q4 How well does ct-SNE scale? Two case studies addressing Q1 are
presented in Sections 3.3.1–3.3.3. Two more case studies addressing Q1 as well as
the experiments addressing Q2–Q4 are summarized in Sec. 3.3.4, and described
in detail in Appendix C.

3.3.1 Datasets used, and experimental settings

The first dataset is a Synthetic dataset consisting of 1000 ten-dimensional data
points, as explained in Section 3.1. The second is a Facebook dataset consisting
of 128-dimensional embedding of a de-identified random sample of 500k Face-
book users in the US. This embedding is generated based purely on the list of
pages and groups that the users follow, as part of an effort to improve the quality
of several recommendation systems at Facebook.

To study Q1, both qualitative and quantitative experiments were performed on
the synthetic dataset. On the Facebook dataset we only conducted a qualitative
evaluation (given the lack of ground truth).
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Qualitative experiment. We qualitatively evaluate the effectiveness of ct-SNE
through visualizations. More specifically, we compare the t-SNE visualization of
a dataset with the ct-SNE visualization that has taken into account certain prior
information that is visually identifiable from the t-SNE embedding. Thus by in-
specting the presence of the prior information in the ct-SNE embedding and com-
paring to the t-SNE embedding, we can evaluate whether the prior information is
removed. Conversely, we test whether information present in the ct-SNE embed-
ding could have been identified from the t-SNE embedding to verify whether it
indeed contains complementary information.

To select the prior information, we first visualize the t-SNE embedding and
manually select points that are clustered in the visualization. Then we perform a
feature ranking procedure to identify the features that separate the selected points
from the rest. This is done by fitting a linear classifier (logistic regression) on
the selected cluster against all other data points. By inspecting the weights of
the classifier, we can identify the feature that contributes the most to the classifier.
Repeating this feature ranking procedure for other clusters, we aim to find a feature
that correlates with the majority of the clusters in the t-SNE visualization. This
feature is then treated as prior information and provided as input to ct-SNE. In the
reported experiments, the most prominent feature was always categorical, so all
points with the same value were treated as being in a cluster to define the prior.
We apply exact ct-SNE on Synthetic and approximated ct-SNE (θ = 0.5) on the
Facebook dataset.

We also evaluated whether ct-SNE can continuously provide new insights, by
repeatedly applying the cluster selection and feature ranking procedure on ct-SNE
embeddings.

Quantitative experiment. In this experiment, we quantify the presence of certain
prior information in a ct-SNE embedding that also take the same prior information
as input. For example, if ct-SNE encodes the prior information using labels, the
strong presence of certain prior information is equivalent to the high homogeneity
of the encoded labels in the embedding, i.e., points that are close to each other
in the embedding often have the same label. To quantify such homogeneity, we
developed a measure termed normalized Laplacian score defined as follows. Given
an embedding Y and parameter k, we denote Ak as the adjacency matrix of the
k-nearest graph computed from the embedding. Then, the Laplacian matrix of the
kNN graph has the form Lk = Ak −Dk where Dk = diag(sum(Ak, 1)). We
further normalize the Laplacian matrix (D−1/2

k LkD
−1/2
k ) to obtain a score that is

insensitive to the node degrees. Given a label vector f with L values where each
label l has nl points, and denote the one-hot encoding for each label l as fl, then
the normalized Laplacian score can be computed as:∑

l∈[0..L]

nl
n
f ′lD

−1/2
k LkD

−1/2
k fl. (3.6)
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Figure 3.2: The homogeneity of cluster labels in t-SNE and several ct-SNE embeddings of
the synthetic dataset for k (a parameter of the Laplacian score) ranging from 10 to 100,
for the three label sets: (a) f1−4, (b) f5−6, and (c) f1−6. Colored lines give the scores for
different embeddings: t-SNE (blue), ct-SNE with prior f1−4 (orange), ct-SNE with prior
f5−6 (green), and ct-SNE with prior f1−6 (red).

This score is essentially the pairwise difference (in terms of labels) between the
data points that are connected according to the kNN graph. If a label is locally
consistent (homogeneous) in an embedding, the feature difference among the kNN
graph neighborhood is small, which results in a small Laplacian score. Conversely,
a less homogeneous label over the kNN graph would have a large Laplacian score.
Thus, if ct-SNE removes certain prior information from its embedding, then the
embedding should have a large Laplacian score on the labels that encode the prior
information.

3.3.2 Case study: Synthetic dataset

Qualitative experiment. The t-SNE visualization of the synthetic dataset shows
five large clusters (Fig. 3.1a). Feature ranking (Sec. 3.3.1) shows these clusters
correspond to the clustering in dimensions 1-4 of the data. Taking the cluster
labels in dimensions 1-4 (f1−4) as prior, ct-SNE gives a different visualization
(Fig. 3.1b). The feature ranking further shows the ct-SNE embedding indeed re-
veals the clusters in the dimension 5-6 of the data. We further combine the labels
f1−4 and f5−6 by assigning a new label to each combinations of the label in f1−4

and f5−6, denoted as f1−6. ct-SNE with f1−6 yields an embedding based only on
the remaining noise (Fig. 3.1c).

Quantitative experiment. We computed the normalized Laplacian scores (Eq. (3.6))
of the t-SNE and several ct-SNE embeddings. Subfigures in Fig. 3.2a–c give the
Laplacian score for three label sets: f1−4, f5−6, and f1−6. Fig. 3.2a shows that
labels f1−4 are less homogeneous (higher Laplacian score) in the ct-SNE em-
beddings with prior f1−4 and f1−6 than in the t-SNE embedding, indicating that
ct-SNE effectively discounted the prior from the embeddings. Both the t-SNE em-
bedding and ct-SNE with prior f5−6 clearly pick up the cluster in f1−4, as indi-
cated by the very low Laplacian score. Similarly, Figures 3.2b,c show that ct-SNE
removes the prior information effectively for labels f5−6 and f1−6, respectively,
given the associated priors.
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Figure 3.3: Visualization of 2-d embeddings of the Facebook dataset. Left column: t-SNE
embedding, right column: ct-SNE embedding with region as prior. The two rows show
identical embeddings but with different cluster markings (colors). See Section 3.3.3 for
further info.

3.3.3 Case study: Facebook dataset

Qualitative experiment. Applying t-SNE on the Facebook dataset gives a visu-
alization with many visually salient clusters (Fig. 3.3a). Computing the feature
ranking for classification of selected clusters shows that the geography (i.e., the
states) contributes to the embedding the most. This is further confirmed by col-
oring the data points according to the geographical region in the visualization as
shown in Fig. 3.3a: most of the clusters are indeed quite homogeneous with respect
to geography.

To understand the effect of an embedding like this in a downstream recom-
mendation system, an analyst would want to know what type of user interests the
embedding is capturing. For this, the regional clusters are not very informative. To
alleviate that we can encode the region as prior for ct-SNE so that other interest-
ing structures can emerge in the visualization. Using the same coloring scheme,
ct-SNE shows a cluster with large mass that consists of users from different states
(Fig. 3.3b). There are also a few small clusters with mixed color scattered on the
periphery of the visualization. The visualization indicates that geographical infor-



68 NON-LINEAR REPRESENTATIONS

mation is mostly removed in the ct-SNE embedding. This is further confirmed by
selecting clusters (highlighted in red color) in ct-SNE embedding (Fig. 3.3d) and
highlighting the same set of points in the t-SNE embedding (Fig. 3.3c). The cluster
highlighted in the ct-SNE embedding spreads over the t-SNE embedding, indicat-
ing these users are not geographically similar. Indeed, feature ranking (Sec. 3.3.1)
indicates that the selected group of users (Fig. 3.3d) share an interest in horse rid-
ing: they tend to follow several pages related to that topic. Interestingly, we noticed
that some of the clusters in the ct-SNE embedding are also clustered in the t-SNE
embedding. These clusters are indeed not homogeneous in terms of the geograph-
ical regions. For example, the cluster highlighted in blue in the ct-SNE embedding
(Fig. 3.3d) also exists in the t-SNE embedding (Fig. 3.3c). Using feature ranking
as above we found that these clusters are not homogeneous in terms of geography,
but in terms of users’ interest in Indian culture. While these clusters can thus also
be seen in the t-SNE embedding, ct-SNE removes the irrelevant (region) cluster
structure, such that those other clusters become more salient and easy to observe.

3.3.4 Summary of additional experimental findings

Two other case studies (App. C–C) on the UCI adult dataset [4] and a DBLP ci-
tation network dataset [24] confirm the ability of ct-SNE visualizations to reveal
insightful clusters after conditioning on prior information that dominates the t-SNE
visualizations (Q1). In Appendix C we also analyzed the sensitivity of the ct-SNE
embedding with respect to the hyperparameter α′ (or β′) (Q2). By varying the
hyperparameter, we found ct-SNE yields low-dimensional embeddings that better
approximate the original data than t-SNE (i.e., smaller KL-divergence). The anal-
ysis also shows that using a small β′ (e.g., β′ = 0.01) is a good rule of thumb when
using ct-SNE for visualization. To answer Q3, we compared ct-SNE to two non-
trivial baselines that remove the known factors from the high-dimensional data
using either an adversarial auto-encoder (AAE [15]) or canonical correlation anal-
ysis (CCA [10]) and then apply t-SNE for visualization (App. C). We show that
these baselines are either difficult to tune (AAE-based baseline) or have limited ap-
plicability (CCA-based baseline), while ct-SNE has essentially only one parameter
to tune, and does not suffer from the limitations of the CCA baseline. Finally, we
conducted a runtime experiment (App. C) showing that the approximated ct-SNE
can efficiently embed large, high-dimensional data, without substantial quality loss
(Q4).

3.4 Related work

Many dimensionality reduction methods have been proposed in the literature. Ar-
guably, n-body problem based methods such as MDS [26], Isomap [25], t-SNE
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[13], LargeVis [23], and UMAP [16] appear to be the most popular ones. These
methods typically have three components: (1) a proximity measure in the input
space, (2) a proximity measure in the embedding space, (3) a loss function com-
paring the proximity between data points in the embedding space with the proxim-
ity in the input space. ct-SNE belongs to this class of DR methods. It accepts both
high-dimensional data and priors about the data as inputs, and searches for low-
dimensional embeddings while discounting structure in the input data specified as
prior knowledge.

As a core component of ct-SNE is the prior information specified by the user,
it can be considered an interactive DR method. Closely related to ct-SNE, there is
a group of interactive DR methods that adjust the algorithms according to a user’s
inputs [e.g., 12, 20, 5, 1, 2, 17]. These methods contrast with ct-SNE in that the
user feedback must be obeyed in the output embedding, while for ct-SNE the prior
knowledge defined by the user guides what is irrelevant to the user.3

3.5 Conclusion
We introduce conditional t-SNE to efficiently discover new insights from high-
dimensional data. ct-SNE finds the lower dimensional representation of the data
in a non-linear fashion while removing the known factors. Extensive case studies
on both synthetic and real-world datasets demonstrate that ct-SNE can effectively
remove known factors from low-dimensional representations, allowing new struc-
ture to emerge and providing new insights to the analyst. A tree-based optimiza-
tion method allows ct-SNE to scale to a high dimensional dataset with hundreds
of thousands of data points.
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Appendices

A Detailed derivation of the gradient of the ct-SNE objective
function

Here we derive in detail the gradient of the ct-SNE objective function. Denote the
euclidean distance between points as dij , ‖yi−yj‖2. The derivative of dij with
respect to embedding yi reads:

∇yidij =
yi − yj
dij

.

Denote the cost (KL-divergence) by C:

C = KL(p‖r)

= C1 + C2 −
∑

k 6=l:δkl=1

pkl log(α′)−
∑

i6=j:δ=0

pkl log(β′),

where

C1 = KL(p‖q),

and

C2 = log

α′ ∑
k 6=l:δkl=1

qkl + β′
∑

k 6=l:δkl=0

qkl

 .

Following the derivation from t-SNE paper, the derivative of C1 with respect to yi
reads:

∇yiC1 = 4
∑
j

(pij − qij)(1 + ‖yi − yj‖2)−1(yi − yj).

To compute the derivative of C2 with respect to yi, we first have:

∇yiC2 = 2
∑
j

∂C2

∂dij
· yi − yj

dij
.
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Denote O = α′
∑
i6=j:δkl=1 qkl + β′

∑
i6=j:δkl=0 qklThe derivative of C2 with re-

spect to dij can be computed as:

∂C2

∂dij
=

1

O

∂

∂dij

α′ ∑
k 6=l:δkl=1

qkl + β′
∑

k 6=l:δkl=0

qkl


=

1

O

α′ ∑
k 6=l:δkl=1

∂qkl
∂dij

+ β′
∑

k 6=l:δkl=0

∂qkl
∂dij


=

1

O

(
α′
(
− 2δijqij(1 + d2

ij)
−1dij + 2

∑
k 6=l:δkl=1

qklqij(1 + d2
ij)
−1dij

)

+ β′
(
− 2(1− δij)qij(1 + d2

ij)
−1dij + 2

∑
k 6=l:δkl=0

qklqij(1 + d2
ij)
−1dij

))

=
1

O

(
2α′
(
− δij +

∑
k 6=l:δkl=1

qkl

)
qij(1 + d2

ij)
−1dij

+ 2β′
(
− (1− δij) +

∑
k 6=l:δkl=0

qkl

)
qij(1 + d2

ij)
−1dij

)

= 2

(
1− δijα

′ + (1− δij)β′

O

)
· qij(1 + d2

ij)
−1dij .

Thus we have derivative of C2 with respect to yi

∇yiC2 = 4
∑
j

(
1− δijα

′ + (1− δij)β′

O

)
· qij(1 + d2

ij)
−1 · (yi − yj).

Finally, we have derivative:

∇yiC = ∇yiC1 +∇yiC2

= 4
∑
j

(
pij −

δijα
′ + (1− δij)β′

O
· qij

)
· (1 + ‖yi − yj‖2)−1(yi − yj).

B On generalizing the idea of ct-SNE

The idea of removing known factors from low-dimensional representations can
be generalized to other n-body problem based DR methods. Oftentimes, the gra-
dient of the n-body problem based methods can be viewed as a summation of
attraction forces and repelling forces. Removing a known factor thus amounts to
re-weighting the attracting and repelling forces such that points that have the same
label repel each other and points with different labels attract each other. For ex-
ample, LargeVis [23] differs from t-SNE by modeling input space proximity using
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random KNN graph. Thus we can use the same conditioning idea as in ct-SNE
to remove the known factors in LargeVis. However, for Uniform Manifold Ap-
proximation and Projection (UMAP) [16], conditioning is not readily applicable.
In contrast to t-SNE, UMAP uses fuzzy sets to model the proximity in both in-
put space and embedding space. Then the cross entropy between two fuzzy sets
serves as loss function to compare the modeled proximity between input space and
the embedding space. In the UMAP setting, it is not straightforward to condition
the lower dimensional proximity model on the prior. But we can still directly re-
weight the repelling forces: for data points with the same label, the pushing effect
is strengthened by α; for samples with different labels, the pushing effect is weak-
ened by multiplying with β, with assumption α > 1 > β > 0. However, without
proper conditioning, parameter α and β loose their probabilistic interpretation and
along with it their one-to-one correspondence (as in ct-SNE), thus both parameters
α and β need to be set.

C Extended experiments
Datasets

In this section, we introduce two additional datasets:

UCI Adult dataset. We sampled 1000 data points from the UCI adult dataset
[4] with six attributes: the three numeric attributes age, education level, and work
hours per week, and the three binary attributes ethnicity (white/other), gender, and
income (>50k).

DBLP dataset. We extracted all papers from 20 venues4 in four areas (ML/D-

M/DB/IR) of computer science from the DBLP citation network dataset [24]. We
sampled half of the papers and constructed a network (122, 962 nodes5) based on
paper-author, paper-topic, paper-venue relations. Finally, we embedded the net-
work into a 64 dimensional euclidean space using node2vec [9] with walk length
80, window size 10. In our experiment, both p and q are set to 1. Under this setting,
node2vec is equivalent to DeepWalk [18].

Case study: UCI Adult dataset

Qualitative experiment. Fig. 4a shows t-SNE gives an embedding that consists
of clusters grouped according to combinations of three attributes: gender, ethnic-
ity and income (>50k). By incorporating the attribute gender as prior, the ct-SNE
embedding (Fig. 4b) contains clusters with a mixture of male and female points,

4These venues are: NIPS, ICLR, ICML, AAAI, IJCAI, KDD, ECML-PKDD, ICDM, SDM,
WSDM, PAKDD, VLDB, SIGMOD, ICDT, ICDE, PODS, SIGIR, WWW, CIKM, ECIR.

5The network consists of 43, 346 paper nodes, 63, 446 author nodes, 16, 150 topic nodes and 20
venue nodes.
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(a) (b) (c) (d)

Figure 4: Visualization of 2-d embeddings of the UCI Adult dataset. Points are visually
encoded according to their attributes. gender: female (orange color), male (blue color);
ethnicity: white (circle), other (triangle); income (>50k): true (unfilled marker), false
(filled marker). (a) t-SNE embedding shows clusters that are grouped according to the
combinations of all three attributes. (b) With attribute gender as prior, ct-SNE embedding
shows four clusters each has a mixture of points with different genders, indicating the gender
information is removed. (c) With attribute ethnicity as prior, ct-SNE embedding also shows
four clusters but each has a mixture of points with different ethnicities. (d) Incorporating
the combination of attributes gender and ethnicity as prior, the resulted ct-SNE embedding
shows two clusters that are correlated with the remaining attribute: income (>50k).
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Figure 5: The homogeneity of cluster labels in t-SNE and several ct-SNE embeddings of
the UCI Adult dataset for k (a parameter of the Laplacian score) ranging from 10 to 100
with step size 10. Colored lines correspond to scores for different embeddings: t-SNE
(blue), ct-SNE with prior gender (orange), ct-SNE with prior ethnicity (green), and ct-
SNE with prior ethnicity & gender (red). Subfigures give homogeneity scores for various
labels: (a) gender (b) ethnicity (c) gender & ethnicity. (a) The attribute gender has lower
homogeneity (high Laplacian score) in the ct-SNE embedding with gender or ethnicity &
gender as prior than in t-SNE embedding and ct-SNE embedding with ethnicity as prior.
(b) The attribute ethnicity has lower homogeneity in the ct-SNE embedding with ethnicity
or ethnicity & gender as priors than in the t-SNE embedding and ct-SNE with gender as
prior) embeddings. (c) The attribute ethnicity & gender has high homogeneity in the t-SNE
embedding only.

indicating the gender information is removed. Instead, by incorporating the at-
tribute ethnicity the ct-SNE embedding (Fig. 4c) contains clusters with a mixture
of ethnicities. Finally, incorporating the combination of attributes gender and eth-
nicity as prior, the ct-SNE embedding contains data points grouped according to
income (Fig. 4d).

Quantitative experiment. We analyzed the homogeneities (Laplacian scores)
of attributes gender, ethnicity and income (>50k) measured on both t-SNE and
ct-SNE embeddings. Fig. 5a shows ct-SNE with prior gender removes the gen-
der factor from the resulted embedding, while ct-SNE with prior ethnicity makes
the gender factor in the resulted embedding clearer. Similarly, Figure. 5b,c show
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Figure 6: Visualization of 2-d embeddings of the DBLP dataset. Left column: t-SNE em-
bedding, right column: ct-SNE embedding with area as prior. The rows contains different
cluster markings. (a) t-SNE embedding shows a clustering according to four areas in com-
puter science (red - machine learning, green - data mining, blue - data base, orange -
information retrieval). (b) ct-SNE embedding shows a different clustering, with area infor-
mation removed. (d) Newly emerged visual clusters (magenta - topic ‘privacy’, dark green
- topic ‘data stream’, orange - topic ‘computer vision’) in ct-SNE embedding spread over
in the t-SNE embedding (c). (d) Clusters (grass green - topic ‘clustering’, purple - topic
‘active leraning’) stood-out in the ct-SNE embedding also exists in the t-SNE embedding
(c). These are a few out of many clusters that we found to exhibit a much more informative,
interest-centric structure than the t-SNE projection.

ct-SNE removes the prior information effectively for labels ethnicity and ethnic-
ity&gender respectively, given the associated priors.

Case study: DBLP dataset

Qualitative experiment. Applying t-SNE on the DBLP dataset gives a visual-
ization with many visual clusters (Fig. 6a). Feature ranking for classification of
the selected clusters shows the topics that contribute the most to the visualization.
Moreover, we used mpld36 (an interactive visualization library) to inspect (i.e.,
hovering over data points and check tooltips) the metadata of t-SNE plot. Upon

6https://mpld3.github.io

https://mpld3.github.io
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Figure 7: Visualizing the effect of different β′s (α′s) have on the ct-SNE embeddings. The
embeddings are computed on the synthetic dataset with the prior information to be the
cluster labels in dimensions 1-4. (a) The values of ct-SNE objective (green), t-SNE objective
(blue), and ct-SNE prior term (orange) against different β′s. ct-SNE achieves smaller KL-
divergence than t-SNE. (b) ct-SNE embedding with β′ = 0.2 has smallest KL-divergences
but is not the best visualization. (c) ct-SNE embedding with β′ = 0.01 gives a better
visualization.

inspection, the visualization appears to be globally divided according the four ar-
eas. This is further confirmed by coloring the data points according to the four
areas: most of the clusters are indeed quite homogeneous with respect areas

Knowing from the t-SNE visualization the papers are indeed divided according
to areas, the area structure in the visualization is not very informative anymore.
Thus we can encode the area as prior for ct-SNE so that other interesting structures
can emerge. Using the same color scheme, ct-SNE shows a visualization that has
many clusters with mixed colors (Fig. 6b). This indicates the area information is
mostly removed in the ct-SNE embedding. This is further confirmed by selecting
clusters in ct-SNE embedding (Fig. 6d) and highlight the same set of points in the
t-SNE embedding (Fig. 6c). The clusters highlighted in the ct-SNE visualization
often consists of clusters (topics) from different areas (i.e., t-SNE clusters with
different colors) that spread over the t-SNE visualization. Indeed, feature ranking
indicates that papers in the selected ct-SNE cluster have similar topics in e.g.,
‘privacy’, ‘data steam’, ‘computer vision’. Finally, we noticed that some clusters
in ct-SNE (Fig. 6d) embedding also exist in the t-SNE embedding (Fig. 6c). Using
feature ranking as above we found these clusters are not homogeneous in terms of
area of study, but in terms of topics (e.g., ‘clustering’, ‘active learning’), indicating
a tightly connected research community behind the topic. Thus, by removing the
irrelevant area structure using ct-SNE, clusters that persists in both visualizations
become more salient and easier to observe.

Parameters sensitivity

To understand the effect of the parameter α′ (or equivalently, β′) on ct-SNE em-
beddings (Q3), we study ct-SNE embeddings on the synthetic dataset with the
prior fixed to be the cluster labels in dimensions 1–4. First, we try to understand
the relation between the ct-SNE objective and the parameter α′ (or equivalently,
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β′). We evaluated the ct-SNE objective (Eq. 3.5) on the ct-SNE embeddings ob-
tained by ranging β′ (and α′ correspondingly) from 0.01 (strong prior removal
effect) to 1.0 (no prior remove effect, equivalent to t-SNE) with step size 0.1. We
also evaluated the t-SNE objective (first term in Eq. 3.5) and the second term in
Eq. 3.5 (the only term that depends on the prior, subsequently referred to as the
prior term) for the ct-SNE embeddings associated with various β′s.

Fig. 7a visualizes the values of the ct-SNE objective, t-SNE objective, and ct-
SNE prior term against different β′s. Observe that by using a prior, the ct-SNE
embedding achieves a better approximation to the higher dimensional data. That
is, ct-SNE achieves a lower KL-divergence (lowest at β′ = 0.3) than t-SNE does
(β′ = 1). This is because the prior term in the ct-SNE objective can be negative.
Although the t-SNE objective increases when β′ decreases, it is compensated by
the negative value contributed by the prior term. Indeed, by factoring out certain
prior from the lower dimensional embedding, the necessity of the embedding to
represent the prior is alleviated, enabling ct-SNE to have more freedom to approx-
imate the high-dimensional proximities.

Interestingly, we observe that the embedding with smallest KL-divergence
does not necessarily give better visualization (e.g., clear separation of the clus-
ters). We visualize the ct-SNE embedding that achieves smallest KL-divergence
(β′ = 0.3, Fig. 7b) and compare it with the ct-SNE embedding that has strongest
prior removal effect but larger KL-divergence (β′ = 0.01, Fig. 7c). Although the
embedding with stronger prior removal effect has larger objective value, it gives a
clearer clustering than in the embedding with smaller KL-divergence (β′ = 0.3).
As a result, the clusters in dimensions 5–6 are easier to identify. Hence, we pro-
pose as rule of thumb when using ct-SNE for visualization to use small β′ (e.g.,
β′ = 0.01).

Baseline comparisons

In this section, we compare ct-SNE with two non-trivial baselines. The basic idea
is to first remove the known factor from the dataset, and perform t-SNE to pro-
duce lower dimensional representations. Here we use a non-linear and a linear
method to remove the known factors: adversarial auto-encoder (AAE) and canon-
ical correlation analysis (CCA). The implementation of the baselines and code
for comparison experiments are also available at https://bitbucket.org/
ghentdatascience/ct-sne.
Baseline: AAE and t-SNE. Adversarial auto-encoder (AAE) [15] can be used to
learn a latent representation that prevents the discriminator from predicting certain
attributes [14]. In order to remove prior information from the low-dimensional
representation of a dataset using AAE, we can configure the discriminator to pre-
dict the prior attributes, and using the auto-encoder to adversarially remove the
prior from the latent representation of the dataset.

https://bitbucket.org/ghentdatascience/ct-sne
https://bitbucket.org/ghentdatascience/ct-sne
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(a)(a)(a)(a) (b)(b)(b)(b) (c)(c)(c)(c)

Figure 8: Visualization of 2-d embeddings obtained by applying the AAE based approach
on the synthetic dataset. The data points are colored according to the cluster label in
dimensions 1-4. The data points are also plotted using different markers based on the
cluster labels in dimensions 5-6. (a) The AAE based approach successfully removed the
clustering information in dimensions 1-4, but failed to reveal the clusters in dimensions
5-6 (b) AAE successfully removed the clustering information in dimensions 5-6 and also
reveals the clusters in dimensions 1-4 (c) AAE failed to remove the clustering information
in dimensions 1-6.

We adopt the AAE configuration described by Edwards and Storkey [6]. AAE
is in general difficult to tune: it has 8 hyperparameters (4 network structure pa-
rameters, 2 weights in the objective, and 2 learning rates) and a few design choices
about the network architecture (e.g., the number of layers in each subnetwork and
activation functions). We tried different parameter settings and managed to remove
the clustering label information in dimensions 1–4 (Fig. 8a) and 5–6 (Fig. 8b) from
the data. In Figure 8a, the AAE approach manages to remove the prior informa-
tion, but it fails to pick up the complementary structure in the data (clusters in
dimensions 5–6). It also fails to remove the prior information (cluster labels in
dimension 1–6) in Figure 8c. Comparing to this baseline, ct-SNE practically has
only one parameter (β′) to tune, which often can be set to a small positive number
(e.g., 0.01).

Baseline: CCA and t-SNE. Canonical correlation analysis [10] aims to find a
linear transformation for two random variables such that the correlation between
transformed variables is maximized. To remove the prior information from data
using CCA, one approach is to first find the (at most) d − 2 subspace (d is the
dimensionality of the data) in which the transformed data and the prior information
(one hot encoding of the labels) have the largest correlation. Then the data is
whitened by projecting it onto the null space (at least 2-d) of the subspace found in
the first step. By doing so, the whitened data is less correlated to the known factor.

Another variant of the CCA-based approach is directly projecting the data onto
the 2-dimensional subspace found by CCA in which the transformed data and la-
bels has smallest correlation. To be consistent, we also apply t-SNE to the trans-



78 NON-LINEAR REPRESENTATIONS

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

Figure 9: Visualization of 2-d embeddings obtained by applying CCA-based approaches
and ct-SNE on a synthetic 5 dimensional dataset. (a) Projecting data onto the null space of
CCA top components and then apply t-SNE gives an embedding that picks up the 10 large
clusters (plotted with different markers) but failed to pick up the structure of two small
clusters (colored differently) within each large cluster. (b) Projecting the data onto CCA
components with least correlation and then apply t-SNE also fails to pick up the two-cluster
structure within the large clusters. (c) ct-SNE removes the 10 cluster information in the
embedding and shows clearly the two cluster structure within each larger cluster.

formed data.
Our experimental results show the CCA-based approaches can easily remove

label information that is orthogonal to other attributes in the data. For example,
in the UCI Adult dataset, the gender information is orthogonal to the ethnicity
and income, which can be easily removed using the CCA approach. However, the
CCA-based approach performs poorly when the known factor is correlated with
other attributes. Moreover, the CCA-based approaches also have the limitation that
the number of the projection vectors is upper-bounded by the dimensionality of the
data. If the number of unique values of an attribute exceeds the dimensionality of
the data, the CCA projection would not be able to remove the label info entirely
from the data. To illustrate our points, we synthesized a 5-dimensional dataset with
1,000 data points. The data points are grouped into 10 clusters each corresponding
to a multi-variate Gaussian with random location and small variance. Additionally,
each cluster is separated into two small clusters (one contains 20% points of the
cluster, and another includes the rest) along one randomly chosen axis. Figure 9a,b
shows both the CCA approaches pick up only the 10 large clusters (differentiated
using marker shape) but failed to pick up the structure of two small clusters (plotted
in different colors) within each large cluster. On the other hand, ct-SNE removes
the 10 cluster information in the embedding and shows each large cluster can be
further separated in to two smaller clusters.

Thus, the CCA-based baselines perform poorly when the known factor is cor-
related with other attributes. Moreover, the number of the projection vectors in
CCA-based baselines is upper-bounded by the dimensionality of the data. Mean-
while, ct-SNE does not have these limitations.
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name size dim. exact apprx. (θ = 0.5)
Synthetic 1,000 10 0.06 0.01
UCI Adult 1,000 6 0.07 0.01

DBLP 43,346 64 503.97 0.45
Synthetic 500,000 128 100,278 9.1

Table 1: Average runtime (in seconds) of exact and approximated ct-SNE in computing one
gradient update step. To measure the runtime of ct-SNE on a dataset with similar size as
the Facebook dataset, we scaled the Synthetic dataset up to 500, 000 data points with 128
dimensions.

Runtime

We measure the runtime of the exact ct-SNE and the approximated version (θ =

0.5) on a PC with a quad-core 2.3GHz Inter Core i5 and a 2133MHz LPDDR3
RAM. By default, the maximum number of iterations of ct-SNE gradient update
is 1,000. For larger datasets and prior attributes that have many values, more iter-
ations are required to achieve a convergence. For example, the synthetic dataset
(1,000 samples and 10 dimensions) requires fewer than 1,000 iterations to con-
verge while the Facebook dataset (500,000 examples and 128 dimensions) requires
3,000 iterations to converge. Table. 1 shows that approximated ct-SNE is efficient
and applicable to large data with high dimensionality, while exact ct-SNE is not.

D Extended related work

Many dimensionality reduction methods have been proposed in the literature. Ar-
guably, n-body problem based methods7 such as MDS [26], Isomap [25], t-SNE
[13], LargeVis [23], and UMAP [16] appear to be the most popular ones. These
methods typically have three components: (1) a proximity measure in the input
space, (2) a proximity measure in the embedding space, (3) a loss function com-
paring the proximity between data points in the embedding space with the prox-
imity in the input space. When minimizing the loss over the embedding space, the
data points (i.e., the n bodies) have pairwise interactions and the embedding of all
points needs to be updated simultaneously. Since the optimization problem is not
convex, local minima are typically accepted as output. ct-SNE belongs to this class
of DR methods. It accepts both high-dimensional data and priors about the data as
inputs, and searches for low-dimensional embeddings while discounting structure
in the input data specified as prior knowledge. Closely related, in the multi-maps
t-SNE work [28] factors that are mutually exclusive are captured by multiple t-
SNE embeddings at once. Comparing to multi-map t-SNE, ct-SNE allows users
to disentangle information in a targeted (subjective) manner, by specifying which
information they would like to have factored out.

7In Section 3.2.3 we provide more information on the n-body problem
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As a core component of ct-SNE is the prior information specified by the user,
it can be considered an interactive DR method. Existing papers on interactive DR
can be categorized into two groups. The first group aim to improve the explain-
ability and computation efficiency of existing DR methods via novel visualizations
and interactions. iPCA [11] allows users to easily explore the PCA components
and thus achieve better understanding of the linear projections of the data onto
different PCA components. Cavallo and Demiralp [3] helps the user to understand
low-dimensional representations by applying perturbations to probe the connec-
tion between input attributed space and embedding space. Similarly, Faust et al.
[7] introduce a method based on perturbations to visualize the effect of a specific
input attribute on the embedding, while Stahnke et al. [22] introduce ‘probing’ as
a means to understand the meaning of point set selections within the embedding.
Steerable t-SNE [19] aims to make t-SNE more scalable by quickly providing a
sketch of an embedding which is then refined only upon the user’s interests.

The second group of interactive DR methods adjust the algorithms according
to a users’ inputs. SICA [12] and SIDE [20] explicitly model the user’s belief state
and find linear projections that contrast to it. These two methods are linear DR
methods thus cannot present non-linear structures in the low-dimensional repre-
sentations. Work by Dıaz et al. [5] allows users to define their own metric in the
input space, after which the low-dimensional representation reflects the adjusted
importance of the attributes. This method puts the burden on the user for direct
manipulation of the input space metric. Many variants of existing DR methods
have been introduced where user feedback entails editing of the embedding, and
such manually embedded points are used as constraints to guide the dimension-
ality reduction [e.g., 1, 2, 17]. These methods contrast with ct-SNE in that the
user feedback must be obeyed in the output embedding, while for ct-SNE the prior
knowledge defined by the user guides what is irrelevant to the user.
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4
Network Representations

Conditional Network Embeddings

Abstract Network Embeddings (NEs) map the nodes of a given network into d-
dimensional Euclidean space Rd. Ideally, this mapping is such that ‘similar’ nodes
are mapped onto nearby points, such that the NE can be used for purposes such as
link prediction (if ‘similar’ means being ‘more likely to be connected’ or ‘having
similar neighborhoods’) or classification (if ‘similar’ means ‘being more likely to
have the same label’). In recent years various methods for NE have been intro-
duced, all following a similar strategy: defining a notion of similarity between
nodes, a distance measure in the embedding space, and a loss function that penal-
izes large distances for similar nodes and small distances for dissimilar nodes.

A difficulty faced by existing methods is that certain networks are fundamen-
tally hard to embed due to their structural properties: (approximate) multipartite-
ness, certain degree distributions, assortativity, etc. To overcome this, we introduce
a conceptual innovation to the NE literature and propose to create Conditional
Network Embeddings (CNEs); embeddings that maximally add information with
respect to given structural properties (e.g. node degrees, block densities, etc.). We
use a simple Bayesian approach to achieve this, and propose a block stochastic
gradient descent algorithm for fitting it efficiently. We demonstrate that CNEs
are superior for link prediction and multi-label classification when compared to
state-of-the-art methods, and this without adding significant mathematical or com-
putational complexity. Finally, we illustrate the potential of CNE for network
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visualization.

4.1 Introduction

Network Embeddings (NEs) map nodes into d-dimensional Euclidean space Rd
such that an ordinary distance measure allows for meaningful comparisons be-
tween nodes. Embeddings directly enable the use of a variety of machine learning
methods (classification, clustering, etc.) on networks, explaining their exploding
popularity. NE approaches typically have three components [10]: (1) A measure
of similarity between nodes. E.g. nodes can be deemed more similar if they are
adjacent, have strongly overlapping neighborhoods, or are otherwise close to each
other (link and path-based measures) [9, 18, 20], or if they have similar functional
properties (structural measures) [19]. (2) A metric in the embedding space. (3)
A loss function comparing similarity between node pairs in the network with the
proximity of their embeddings. A good NE is then one for which the average loss
is small.

Limitations of existing NE approaches A problem with all NE approaches is
that networks are fundamentally more expressive than embeddings in Euclidean
spaces. Consider for example a bipartite network G = (V,U,E) with V,U two
disjoint sets of nodes andE ⊆ V ×U the set of links. It is in general impossible to
find an embedding in Rd such that v ∈ V and u ∈ U are close for all (v, u) ∈ E,
while all pairs v, v′ ∈ V are far from each other, as well as all pairs u, u′ ∈ U .
To a lesser extent, this problem will persist in approximately bipartite networks, or
more generally (approximately) k-partite networks such as networks derived from
stochastic block models.1 This shows that first-order similarity (i.e. adjacency) in
networks cannot be modeled well using a NE. Similar difficulties exist for second-
order proximity (i.e. neighborhood overlap) and other node similarity notions. A
more subtle example is a network with a power law degree distribution. A first-
order similarity NE will tend to embed high degree nodes towards the center (to
be close to lots of other nodes), while the low degree nodes will be on the periph-
ery. Yet, this effect reduces the embedding’s degrees of freedom for representing
similarity independent of node degree.

CNE: the idea To address these limitations of NEs, we propose a principled
probabilistic approach—dubbed Conditional Network Embedding (CNE)—that al-
lows optimizing embeddings w.r.t. certain prior knowledge about the network, for-

1For example multi-relational data can be represented as a k-partite network, where the schema
specifies between which types of objects links may exist. Another example is a heterogeneous infor-
mation network, where no schema is provided but links are more or less common depending on the
(specified) types of the nodes.
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malized as a prior distribution over the links. This prior knowledge may be derived
from the network itself such that no external information is required.

A combined representation of a prior based on structural information and a
Euclidean embedding makes it possible to overcome the problems highlighted in
the examples above. For example, nodes in different blocks of an approximately k-
partite network need not be particularly distant from each other if they are a priori
known to belong to the same block (and hence are unlikely or impossible to be
connected a priori). Similarly, high degree nodes need not be embedded near the
center of the point cloud if they are known to have high degree, as it is then known
that they are connected to many other nodes. The embedding can thus focus on
encoding which nodes in particular it is connected to.

CNE is also potentially useful for network visualization, with the ability to
filter out certain information by using it as a prior. For example, suppose the
nodes in a network represent people working in a company with a matrix-structure
(vertical being units or departments, horizontal contents such as projects) and links
represent whether they interact a lot. If we know the vertical structure, we can
construct an embedding where the prior is the vertical structure. The information
that the embedding will try to capture corresponds to the horizontal structure. The
embedding can then be used in downstream analysis, e.g., to discover clusters that
correspond to teams in the horizontal structure.

Contributions and outline Our contributions can be summarized as follows:

• This chapter introduces the concept of NE conditional on certain prior knowl-
edge about the network.

• Section 4.2 presents CNE (‘Conditional Network Embedding’), which real-
izes this idea by using Bayes rule to combine a prior distribution for the net-
work with a probabilistic model for the Euclidean embedding conditioned
on the network. This yields the posterior probability for the network con-
ditioned on the embedding, which can be maximized to yield a maximum
likelihood embedding. Section 4.2.2 describes a scalable algorithm based
on block stochastic gradient descent.

• Section 4.3 reports on extensive experiments, comparing with state-of-the-
art baselines on link prediction and multi-label classification, on commonly
used benchmark networks. These experiments show that CNE’s link pre-
diction accuracy is consistently superior. For multi-label classification CNE
is consistently best on the Macro-F1 score and best or second best on the
Micro-F1 score. These results are achieved with considerably lower-dimensional
embeddings than the baselines. A case study also demonstrates the useful-
ness of CNE in exploratory data analysis of networks.
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• Section 4.4 gives a brief overview of related work, before concluding the
chapter in Section 4.5.

• All code, including code for repeating the experiments, and links to the
datasets are available at: https://bitbucket.org/ghentdatascience/
cne.

4.2 Methods
Section 4.2.1 introduces the probabilistic model used by CNE, and Section 4.2.2
describes an algorithm for optimizing it to find an optimal CNE. Before doing that,
let us introduce some notation. An undirected network is denoted G = (V,E)

where V is a set of n = |V | nodes and E ⊆
(
V
2

)
is the set of links (also known

as edges). A link is denoted by an unordered node pair {i, j} ∈ E. Let Â denote
the network’s adjacency matrix, with element âij = 1 for {i, j} ∈ E and âij = 0

otherwise. The goal of NE (and thus of CNE) is to find a mapping f : V → Rd
from nodes to d-dimensional real vectors. The resulting embedding is denoted
X = (x1,x2, . . . ,xn)′ ∈ Rn×d.

4.2.1 The Conditional Network Embedding model

The newly proposed method CNE aims to find an embedding X that is maximally
informative about the given network G, formalized as a Maximum Likelihood
(ML) estimation problem:

argmax
X

P (G|X). (4.1)

Innovative about CNE is that we do not postulate the likelihood function P (G|X)

directly, as is common in ML estimation. Instead, we use a generic approach to
derive prior distributions for the network P (G), and we postulate the density func-
tion for the data conditional on the network p(X|G). This allows one to introduce
any prior knowledge about the network into the formulation, through a simple ap-
plication of Bayes rule2: P (G|X) = p(X|G)P (G)

p(X) . The consequence is that the
embedding will not need to represent any information that is already represented
by the prior P (G).

Section 4.2.1 describes how a broad class of prior information types can be
modeled for use by CNE. Section 4.2.1 describes a possible conditional distribu-
tion (albeit an improper one), the one we used for the particular CNE method in
this chapter. Section 4.2.1 describes the posterior distribution.

2Note that this approach is uncommon: despite the usage of Bayes rule, it is not Maximum A
Posteriori (MAP) estimation as the chosen embedding X is the one maximizing the likelihood of the
network.

https://bitbucket.org/ghentdatascience/cne
https://bitbucket.org/ghentdatascience/cne
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The prior distribution for the network

We wish to be able to model a broad class of prior knowledge types in the form
of a manageable prior probability distribution P (G) for the network. Let us first
focus on three common types of prior knowledge: knowledge about the overall
network density, knowledge about the individual node degrees, and knowledge
about the edge density within or between particular subsets of the nodes (e.g. for
multipartite networks). Each of these can be expressed as sets of constraints on
the expectations of the sum of various subsets S ⊆

(
V
2

)
of elements from the

adjacency matrix: E
{∑

{i,j}∈S aij

}
=
∑
{i,j}∈S âij , where the expectation is

taken w.r.t. the sought prior distribution P (G). In the 1st case, S =
(
V
2

)
; in the 2nd

case, S = {(i, j)|j ∈ V, j 6= i} for information on the degree of node i; and in the
3rd case S = {(i, j)|i ∈ A, j ∈ B, i 6= j} for specified sets A,B ∈ V .

Such constraints do not determine P (G) fully, so we determine P (G) as the
distribution with maximum entropy from all distributions satisfying all these con-
straints. Adriaens et al. [1], van Leeuwen et al. [22] showed that finding this distri-
bution is a convex optimization problem that can be solved efficiently, particularly
for sparse networks. They also showed that the resulting distribution is a prod-
uct of independent Bernoulli distributions, one for each element of the adjacency
matrix:

P (G) =
∏

{i,j}∈(V2)

P
âij
ij (1− Pij)1−âij , (4.2)

where Pij ∈ [0, 1] is the probability that {i, j} is linked in the network under
this distribution. They showed that all these Pij can be expressed in terms of
a limited number of parameters, namely the unique Lagrange multipliers for the
prior knowledge constraints in the maximum entropy problem. In practice, the
number of such unique Lagrange multipliers is far smaller than n.

The three cases discussed above are merely examples of how constraints on
the expectation of subsets of the elements of the adjacency matrix can be useful in
practice. For example, if nodes are ordered in some way (e.g. according to time),
it could be used to express the fact that nodes are connected only to nodes that are
not too distant in that ordering. Moreover, the above results continue to hold for
constraints that are on weighted linear combinations of elements of the adjacency
matrix. This makes it possible to express other kinds of prior knowledge, e.g.
on the relation between connectedness and distance in a node order (if provided),
or on the network’s (degree) assortativity. A detailed discussion and empirical
analysis of such alternatives is deferred to further work.
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The distribution of the data conditioned on the network

We now move on to postulating the conditional density P (X|G). Clearly, any
rotation or translation of an embedding should be considered equally good, as we
are only interested in distances between pairs of nodes in the embedding. Thus,
the pairwise distances between points, denoted as dij , ‖xi − xj‖2 for points
xi,xj ∈ Rd, must form a set of sufficient statistics.

The density should also reflect the fact that connected node pairs tend to be
embedded to nearby points, while disconnected node pairs tend to be embedded
to more distant points. Let us focus initially on the marginal density of dij con-
ditioned on G. The proposed model assumes that given âij (i.e. knowledge of
whether {i, j} ∈ E or not), dij is conditionally independent of the rest of the ad-
jacency matrix. More specifically, we model the conditional distribution for the
distances dij given {i, j} ∈ E as half-normal N+ [11] with spread parameter
σ1 > 0:3

p (dij |{i, j} ∈ E) = N+

(
dij |σ2

1

)
, (4.3)

and the distribution of distances dkl with {k, l} 6∈ E as half-normal with spread
parameter σ2 > σ1:

p (dkl|{k, l} /∈ E) = N+

(
dkl|σ2

2

)
. (4.4)

The choice of 0 < σ1 < σ2 will ensure the embedding reflects the neighborhood
proximity of the network. Indeed, the differences between the embedded nodes
that are not connected in the network are expected to be larger than the differ-
ences between the embedding of connected nodes. Without losing generality (as it
merely fixes the scale), we set σ1 = 1 through out this chapter.

It is clear that the distances dij cannot be independent of each other (e.g. the
triangle inequality entails a restriction of the range of dij given the values of dik
and djk for some k). Nevertheless, akin to Naive Bayes, we still model the joint
distribution of all distances (and thus of the embedding X up to a rotation/transla-
tion) as the product of the marginal densities for all pairwise distances:

p(X|G) =
∏

{i,j}∈E

N+

(
dij |σ2

1

)
·
∏

{k,l}/∈E

N+

(
dkl|σ2

2

)
. (4.5)

This is an improper density function, due to the constraints imposed by Euclidean
geometry. Indeed, certain combinations of pairwise distances should be assigned
a probability 0 as they are geometrically impossible. As a result, p(X|G) is also
not properly normalized. Yet, even though p(X|G) is improper, it can still be used
to derive a properly normalized posterior for G as detailed next.

3A half-normal distribution, with density denoted here as N+(·|σ2), is a zero-mean normal dis-
tribution with standard deviation σ, conditioned on the random variable being positive. Of course the
standard deviation of the conditioned normal distribution is not equal to σ, so we refer to σ more
loosely as its spread parameter.
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The posterior of the network conditioned on the embedding

The (also improper) marginal density p(X) can now be computed as:

p(X) =
∑
G

p(X|G)P (G) =
∑
G

∏
{i,j}∈E

N+

(
dij |σ2

1

)
Pij ·

∏
{k,l}/∈E

N+

(
dkl|σ2

2

)
(1− Pkl),

=
∏
i,j

[
N+

(
dij |σ2

1

)
Pij +N+

(
dij |σ2

2

)
(1− Pij)

]
.

We now have all ingredients to compute the posterior of the network conditioned
on the embedding by a simple application of Bayes’ rule:

P (G|X) =
p(X|G) · P (G)

p(X)
=

∏
{i,j}∈E

N+

(
dij |σ2

1

)
Pij

N+ (dij |σ2
1)Pij +N+ (dij |σ2

2) (1− Pij)

·
∏

{k,l}/∈E

N+

(
dkl|σ2

2

)
(1− Pkl)

N+ (dkl|σ2
1)Pkl +N+ (dkl|σ2

2) (1− Pkl)
.

(4.6)

This is the likelihood function to be maximized in order to get the ML embedding.
Note that, although it was derived using the improper density function p(X|G),
thanks to the normalization with the (equally improper) p(X), this is indeed a
properly normalized distribution.

4.2.2 Finding the most informative embedding

Maximizing the likelihood function P (G|X) is a non-convex optimization prob-
lem. We propose to solve it using a block stochastic gradient descent approach,
explained below. The gradient of the likelihood function (Eq. 4.6) with respect to
the embedding xi of node i is:4

∇xi log (P (G|X)) = 2
∑

j:{i,j}∈E

(xi − xj)P (aij = 0|X)

(
1

σ2
2

− 1

σ2
1

)

+ 2
∑

j:{i,j}/∈E

(xi − xj)P (aij = 1|X)

(
1

σ2
1

− 1

σ2
2

)
. (4.7)

As
(

1
σ2
2
− 1

σ2
1

)
< 0, the first summation pulls the embedding of node i towards

embeddings of the nodes it is connected to inG. Moreover, if the current prediction
of the link P (aij = 1|X) is small (i.e., if P (aij = 0|X) is large), the pulling
effect will be larger. Similarly, the second summation pushes xi away from the
embeddings of unconnected nodes, and more strongly so if the current prediction

4We refer the reader to the supplementary material for detailed derivations.
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of a link between these two unconnected nodes P (aij = 1|X) is larger. The
magnitudes of the gradient terms are also affected by parameter σ2 and prior P (G):
a large σ2 gives stronger push and pulling effect. In our quantitative experiments
we always set σ2 = 2.

Computing this gradient w.r.t. a particular node’s embedding requires com-
puting the pairwise differences between n proposed d-dim embedding vectors,
with time complexity O(n2d) and space complexity O(nd). This is computation-
ally demanding for mainstream hardware even for networks of sizes of the order
n = 1000 and dimensionalities of the order d = 10, and prohibitive beyond that.
To address this issue, we approximate both summations in the objective by sam-
pling k < n/2 terms from each. This amounts to uniformly sampling k nodes
from the set of connected nodes (where aij = 1), and k from the set of uncon-
nected nodes (where aij = 0).5 This reduces the time complexity to O(ndk).

Note that each of the terms is bound in norm by the diameter of the embedding,
as the other factors are bound by 1 for σ1 = 1, σ1 < σ2. If the diameter were
bounded, a simple application of Hoeffding’s inequality would demonstrate that
this average is sharply concentrated around its expectation, and is thus a suitable
approximation. Although there is no prior bound that holds with guarantee on the
diameter of the embedding, this does shed some light on why this approach works
well in practice. The choice of k will in practice be motivated by computational
constraints. In our experiments we set it equal or similar to the largest degree, such
that the first term is computed exactly.

4.3 Experiments

We first evaluate the network representation obtained by CNE on downstream tasks
typically used for evaluating NE methods: link prediction for links and multi-label
classification for nodes. Then, we illustrate how to use CNE to visually explore
multi-relational data.

4.3.1 experiment setup

For the quantitative evaluations, we compare CNE against a panel of state-of-the-
art baselines for NE: Deepwalk [18], LINE [20], node2vec [9], metapath2vec++
[7], and struc2vec [19]. Table 4.1 lists the networks used in the experiments. A
brief discussion of the methods and the networks is given in the supplement.

For all methods we used their default parameter settings reported in the original
papers and with d = 128. For node2vec, the hyperparameters p and q are tuned

5If a node i has a degree smaller than k, we sample more non-connected neighbors to make sure
that 2k points are used for the approximation of the gradient – and conversely if a node has a degree
larger than n− k.
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Data Type #Nodes #Links #Labels
Facebook [12] Friendship 4,039 88,234 –
arXiv ASTRO-PH [12] Co-authorship 18,722 198,110 –
Gowalla [6] Friendship 196,591 950,327 –
StudentDB [8] Relational/k-partite 403 3,429 –
BlogCatalog [23] Bloggers 10,312 333,983 39
Protein-Protein Int. [4] Biological 3,890 76,584 50
Wikipedia [14] Word co-occurrence 4,777 184,812 40

Table 4.1: Networks used in experiments.

over a grid p, q ∈ {0.25, 0.05, 1, 2, 4} using 10-fold cross validation. We repeat
our experiments for 10 times with different random seeds. The final scores are
averaged over the 10 repetitions.

4.3.2 Link prediction

In link prediction, we randomly remove 50% of the links of the network while
keeping it connected. The remaining network is thus used for training the em-
bedding, while the removed links (positive links, labeled 1) are used as a part of
the test set. Then, the test set is topped up by an equal number of negative links
(labeled 0) randomly drawn from the original network. In each repetition of the
experiment, the node indices are shuffled so as to obtain different train-test splits.

We compare CNE with other methods based on the area under the ROC curve
(AUC). The methods are evaluated against all datasets mentioned in the previous
section. CNE typically works well with small dimensionality d and sample size k.
In this experiment we set d = 8 and k = 50. Only for the two largest networks
(arXiv and Gowalla), we increase the dimensionality to d = 16 to reduce under-
fitting. To calculate AUC, we first compute the posterior P (aij = 1|Xtrain) of the
test links based on the embedding Xtrain learned on the training network. Then the
AUC score is computed by comparing the posterior probability of the test links
and their true labels.

In this task we first compare CNE against four simple baselines [9]: Common
Neighbors (|N(i) ∩N(j)|), Jaccard Similarity ( |N(i)∩N(j)|

|N(i)∪N(j)| ), Adamic-Adar Score
(
∑
t∈N(i)∩N(j)

1
log |N(t)| ), and Preferential Attachment (|N(i)| · |N(j)|). These

baselines are neighborhood based node similarity measures. We first compute
pairwise similarity on the training network. Then from the computed similarities
we obtain scores for testing links as the similarity between the two ending nodes.
Those scores are then used to compute the AUC against the true labels.

For the NE baselines, we perform link prediction using logistic regression
based on the link representation derived from the node embedding Xtrain. The
link representation is computed by applying the Hadamard operator (element wise
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Algorithm Facebook PPI arXiv BlogCat. Wikiped. studentdb Gowalla
Common Neigh. 0.9735 0.7693 0.9422 0.9215 0.8392 0.4160 0.7769

Jaccard Sim. 0.9705 0.7580 0.9422 0.7844 0.5048 0.4160 0.7519
Adamic Adar 0.9751 0.7719 0.9427 0.9268 0.8634 0.4160 0.7719
Prefer. Attach. 0.8295 0.8892 0.8640 0.9519 0.9130 0.9106 0.5626

Deepwalk 0.9798 0.6365 0.9207 0.6077 0.5563 0.7644 0.7156
LINE 0.9525 0.7462 0.9771 0.7563 0.7077 0.8562 0.8173

node2vec 0.9881 0.6802 0.9721 0.7332 0.6720 0.8261 0.7984
metapath2vec++ 0.7408 0.8516 0.8258 0.9125 0.8334 0.9244 0.7769

struc2vec 0.6909 0.7752 0.7182 0.8631 0.8062 0.6290 TimeOut
CNE (uniform) 0.9905 0.8908 0.9865 0.9190 0.8417 0.9300 0.9738
CNE (degree) 0.9909 0.9115 0.9882 0.9636 0.9158 0.9439 0.9818
CNE (block) NA NA NA NA NA 0.9830 NA

Table 4.2: The AUC scores for link prediction. TimeOut means aborted after 24 hours.

multiplication) on the node representation xi and xj , which is reported to give
good results [9]. Then the AUC score is computed by comparing the link proba-
bility (from logistic regression) of the test links with their true labels.

Results The link prediction results are shown in Table 4.2. Even with a uniform
prior (i.e. prior knowledge only on the overall density), CNE performs better than
all baselines on 5 of the 7 networks. With a degree prior, however, CNE out-
performs all baselines on all networks. We attribute this to the fact that the degree
prior encodes information which is hard to encode using a metric embedding alone.
For the multi-relational dataset studentdb, metapath2vec++, which is designed for
heterogeneous data, outperforms other baselines but not CNE (regardless of the
prior information). Moreover, CNE is capable of encoding the knowledge of the
block structure of this multi-relational network as a prior, with each block corre-
sponding to one node type. Doing this improves the AUC further by 3.91% versus
CNE with degree prior (from 94.39% to 98.30%; i.e., a 70% reduction in error).

In terms of runtime, over the seven datasets CNE is fastest in two cases, 12%
slower than the fastest (metapath2vec++) in one case, and takes approximately
twice as long in the four other cases (also metapath2vec++). Detailed runtime
results can be found in the supplementary material.

4.3.3 Multi-label classification

We performed multi-label classification on the following networks: BlogCatalog,
PPI, and Wikipedia. Detailed results are given in the supplement, while Table 4.3
contains an excerpt of the results. All baselines are evaluated in a standard logistic
regression (LR) setup [18].

When using logistic regression also on the CNE embeddings, CNE performs
on-par, but not particularly well (row CNE-LR). This should not be a surprise
though, as potentially relevant information encoded by the prior (the degrees) will
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Algorithm BlogCatalog PPI Wikipedia
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Deepwalk 0.2544 0.3950 0.1795 0.2248 0.1872 0.4661
LINE 0.1495 0.2947 0.1547 0.2047 0.1721 0.5193
node2vec 0.2364 0.3880 0.1844 0.2353 0.1985 0.4746
metapath2vec++ 0.0351 0.1684 0.0337 0.0726 0.1031 0.3942
struc2vec 0.0493 0.1653 0.0669 0.0971 0.1124 0.4019
CNE-LR (degree) 0.1833 0.3376 0.1484 0.1952 0.1370 0.4339
CNE-LP (block+degree) 0.2935 0.4002 0.2639 0.2519 0.3374 0.4839

Table 4.3: The F1 scores for multi-label classification.
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Figure 4.1: (a) 2-d embedding with uniform prior. (b) 2-d embedding with degree prior.

not be reflected in the embedding. However, multi-label classification can easily
be cast as a link prediction problem, by adding to the network a node for each
label, with a link to each node to which the label applies. Predicting a label for a
node then amounts to predicting a link to that label node. To evaluate this strategy,
we train an embedding on the original network plus half the label links, while the
other half of the label links is held out for testing.

For the baselines, this link prediction setup does not lead to consistent im-
provements (see supplement), but for CNE it does (row CNE-LP, where LP stands
for Link Prediction, in Table 4.3). On Micro-F1 it is best or once close second
best (after LINE with LR, see Table 4.3), and on Macro-F1 it greatly outperforms
any other method, suggesting improved performance mainly on the less frequent
labels.

4.3.4 Visual exploration of multi-relational data

Here we qualitatively evaluate CNE’s ability to facilitate visual exploration of
multi-relational data, and how a suitable choice of the prior can help with this. To
this end, we use CNE to embed the studentdb dataset directly into 2-dimensional
space. As a larger σ2 in general appears to give better visual separation between
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node clusters, we set σ2 = 15.
For comparison, we first apply CNE with uniform prior (overall network den-

sity). The resulting embedding (Fig. 4.1a) clearly separates bachelor student/-
courses/program nodes (upper) from the master’s nodes (lower). Also observe that
the embedding is strongly affected by the node degrees (coded as marker size =
log degree): high degree nodes flock together in the center. E.g., these are students
who interact with many other smaller degree nodes (courses/programs). Although
there are no direct links between program nodes (green) and course nodes (blue),
the students (red) that connect them are pulling courses towards the corresponding
program and pushing away other courses.

Next, we encode the individual node degrees as prior. As in this case the de-
gree information is known, the embedding in addition shows the courses grouped
around different programs, e.g.: “Bachelor Program” is close to course “Calcu-
lus”; “Master Program Computer Network” is close to course “Seminar Computer
Network”; “Master Program Database” is close to course “Database Security”;
“Master Program Software Engineering” is close to courses “Software Testing”.

Thus, although this last evaluation remains qualitative and preliminary, it con-
firms that CNE with a suitable prior can create embeddings that clearly convey
information in addition to the given prior.

4.4 Related Work

NE methods typically have three components [10]: (1) A similarity measure be-
tween nodes, (2) A metric in embedding space, (3) A loss function comparing
proximity between nodes in embedding space with the similarity in the network.
Early NE methods such as Laplacian Eigenmaps [3], Graph factorization [2],
GraRep [5], and HOPE [15] optimize mean-squared-error loss between Euclidean
distance or inner product based proximity and link based (adjacency matrix) sim-
ilarity in the network. Recently, a few NE methods define node similarity based
on paths. Those paths are generated using either the adjacency matrix [LINE, 20]
or random walks (Deepwalk, Perozzi et al. 18, node2vec, Grover and Leskovec
9, methapath2vec++, Dong et al. 7, and struc2vec Ribeiro et al. 19). Path based
embedding methods typically use inner products as proximity measure in the em-
bedding space and optimize a cross-entropy loss. The recent struc2vec method
[19] uses a node similarity measure that explicitly builds on structural network
properties. CNE, unlike the aforementioned methods, unifies the proximity in em-
beddings space and node similarity using a probabilistic measure. This allows
CNE to find a more informative ML embedding.

The question of how to visualize networks on digital screens has been studied
for a long time. Recently there has been an uplift in methods to embed networks
in a ‘small’ number of dimensions, where small means small as compared to the
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number of nodes, yet typically much larger than two. These methods enable most
machine learning methods to readily apply to tasks on networks, such as node clas-
sification or network partitioning. Popular methods include node2vec [9], where
for example the default output dimensionality is 128. It is not designed for direct
use in visualization, and typically one would fit a higher-dimensional embedding
and then apply dimensionality reduction, such as PCA [16] or t-SNE [13] to vi-
sualize the data. CNE finds meaningful 2-d embeddings that can be visualized
directly. Besides, CNE gives a visualization that conveys maximum information
in addition to prior knowledge about the network.

4.5 Conclusions
The literature on NE has so far considered embeddings as tools that are used on
their own. Yet, Euclidean embeddings are unable to accurately reflect certain kinds
of network topologies, such that this approach is inevitably limited. We proposed
the notion of Conditional Network Embeddings (CNEs), which seeks an embed-
ding of a network that maximally adds information with respect to certain given
prior knowledge about the network. This prior knowledge can encode information
about the network that cannot be represented well by means of an embedding.

We implemented this conceptually novel idea in a new algorithm based on a
simple probabilistic model for the joint of the data and the network, which scales
similarly to state-of-the-art NE approaches. The empirical evaluation of this al-
gorithm confirms our intuition that the combination of structural prior knowledge
and a Euclidean embedding is extremely powerful. This is confirmed empirically
for both the tasks of link prediction and multi-label classification, where CNE out-
performs a range of state-of-the-art baselines on a wide range of networks.

In our future work we intend to investigate other models implementing the
idea of conditional NEs, alternative and more scalable optimization strategies, as
well as the use of other types of structural information as prior knowledge on the
network.
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Appendices

A Derivation of the gradient

Denote the Euclidean distance between two points as dij , ||xi − xj ||2. The
derivative of dij with respect to embedding xi of node i reads:

∇xidij =
xi − xj
dij

Then the derivative of the log posterior with respect to xi is given by:

∇xi log (P (G|X)) =
∑

j:{i,j}∈E

(
∂ log (P (G|X))

∂dij
+
∂ log (P (G|X))

∂dji

)
∇xidij

+
∑

j:{i,j}/∈E

(
∂ log (P (G|X))

∂dij
+
∂ log (P (G|X))

∂dji

)
∇xidij

= 2
∑

j:{i,j}∈E

∂ log (P (G|X))

∂dij

xi − xj
dij

+ 2
∑

j:{i,j}/∈E

∂ log (P (G|X))

∂dij

xi − xj
dij

Using shorthand notation Nij,σ1 = N+

(
dij |σ2

1

)
and Nij,σ2 = N+

(
dij |σ2

2

)
,

we can compute the partial derivative ∂ log(P (G|X))
∂dij

for {i, j} ∈ E as:

∂ log (P (G|X))

∂dij
=

∂

∂dij

∑
{i,j}∈E

log (Nij,σ1
Pij)− log (Nij,σ1

Pij +Nij,σ2
(1− Pij))

=
Nij,σ1

Pij · −dijσ2
1

Nij,σ1
Pij

−
Nij,σ1

Pij · −dijσ2
1

+Nij,σ2
(1− Pij) · −dijσ2

2

Nij,σ1
Pij +Nij,σ2

(1− Pij)

= −dij
σ2

1

+ P (aij = 1|X)
dij
σ2

1

+ P (aij = 0|X)
dij
σ2

2

Similarly, the partial derivative ∂ log(P (G|X))
∂dij

for {i, j} /∈ E reads:

∂ log (P (G|X))

∂dij
= −dij

σ2
2

+ P (aij = 1|X)
dij
σ2

1

+ P (aij = 0|X)
dij
σ2

2

.

The partial derivatives ∂Nmn,σPmn
∂dij

are nonzero only when m = i and n = j,
which gives the final gradient:

∇xi log (P (G|X)) = 2
∑

j:{i,j}∈E

(xi − xj)P (aij = 0|X)

(
1

σ2
2

− 1

σ2
1

)

+ 2
∑

j:{i,j}/∈E

(xi − xj)P (aij = 1|X)

(
1

σ2
1

− 1

σ2
2

)
(8)
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Figure 2: The posterior distribution P (aij = 1|X) and P (aij = 0|X) with different prior
probability Pij and σ2

B Deriving the log probability of posterior P (G|X)

logP (G|X) = log
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(9)

C Effects of the σ1 and σ2 parameters

CNE seeks the embedding X that maximizes the likelihood P (G|X) for given G.
To understand the effect of parameter σ1 and σ2 we plot the posterior P (aij =

1|X) as well as P (aij = 0|X) in Figure 2. The plot shows a large σ2 corresponds
to more extreme minima of the objective function (Fig2a), thus results in stronger
push and pulling effect in the optimization. Large link probability in the network
prior further strengthen the pushing and pulling effects (Fig 2b). The flat area in
Figure 2b (σ2 = 10) allows connected nodes to keep some small distance from
each other, and larger σ2 also allows larger corrections to the prior probabilities
(both Fig 2a and Fig 2b), but also makes the optimization problem harder.
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D Baseline methods used in experiments

We used the following baselines in the experiments:

• Deepwalk [18]: This embedding algorithm learns embedding based on the
similarities between nodes. The proximities are measured by random walks.
The transition probability of walking from one node to all its neighbors are
the same and are based on one-hop connectivity.

• LINE [20]: Instead of random walks, this algorithm defines similarity be-
tween nodes based on first and second order adjacencies of the given net-
work.

• node2vec [9]: This is again based on random walks. In addition to its pre-
decessors, it offers two parameters p, q that interpolates the importance of
BFS and DFS like random walk in the learning.

• metapath2vec++ [7]: This approach is developed for heterogeneous NE,
namely, the nodes belong to different node types. methapath2vec++ per-
forms random walks by hopping from a node form one type to a node from
another type. It also utilizes the node type information in the softmax based
objective function.

• struc2vec [19]: The method first measures the structural information by
computing pairwise similarity between nodes using a range of neighborhood
sizes. This results in a multilayer weighted graph where the edge weights on
the same layer are derived from the node similarity computed on one neigh-
borhood size. Then the embedding is constructed by a random walk strategy
that navigates the multilayer graph.

E Networks used in the experiments

We used the following commonly used benchmark networks in the experiments:

• Facebook [12]: In this network, nodes are the users and links represent the
friendships between the users. The network has 4,039 nodes and 88,234
links.

• arXiv ASTRO-PH [12]: In this network nodes represent authors of papers
submitted to arXiv. The links represents the collaborations: two authors are
connected if they co-authored at least one paper. The network has 18,722
nodes and 198,110 links.

• studentdb [8]: This is a snapshot of the student database from the Univer-
sity of Antwerp’s Computer Science department. There are 403 nodes that
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Figure 3: The entity relationship diagram of the studentdb dataset.

belong to one of the following node types including: course, student, pro-
fessor, program, track, contract, and room. There 3429 links that are the bi-
nary relationships between the nodes: student-in-track, student-in-program,
student-in-contract, student-take-course, professor-teach-course, course-in-
room. The database schema is given in Figure 3.

• Gowalla [6]: This is a undirected location-based friendship network. The
network has 196,591 nodes, 950,327 links.

• BlogCatalog [23]: This social network contains nodes representing bloggers
and links representing their relations with other bloggers. The labels are the
bloggers’ interests inferred from the meta data. The network has 10,312
nodes, 333,983 links, and 39 labels (used for multi-label classifications).

• Protein-Protein Interactions (PPI) [4]: A subnetwork of the PPI network
for Homo Sapiens. The subnetwork has 3,890 nodes, 76,584 links, and 50
labels.

• Wikipedia [14]: This network contains nodes representing words and links
representing the co-occurrence of words in Wikipedia pages. The labels
represents the inferred Part-of-Speech tags [21]. The network has 4,777
nodes, 184,812 links, and 40 different labels.

F Detailed results for multi-label classification

In the multi-label classification setting, each node is assigned one or more labels.
For training, 50% of the nodes and all their labels are used for training. The labels
of the remaining nodes need to be predicted. We train CNE and baselines based
on the full network. Then 50% of the nodes are randomly selected to train a L2
regularized logistic regression classifier. The regularization strength parameter of



102 NETWORK REPRESENTATIONS

the classifier is trained with 10-fold cross-validation (CV) on the training data.
We report the Macro-F1 and Micro-F1 based on the predictions. For the logistic
regression classifier [sklearn, 17] we require every fold to have at least one positive
and one negative label and we removed the labels that occur fewer than 10 times
(number of folds in CV) in the data.

The detailed results of this approach based on logistic regression are shown
in the upper half of Table 4. For CNE (written as CNE-LR to emphasize logistic
regression was used for classifying), the embeddings are obtained with d = 32 and
k = 150 (without optimizing). Somewhat surprisingly, CNE still performs in line
with the state-of-the-art graph embedded methods, although without improving
on them (on BlogCatalog, CNE performs third out of five methods, in PPI and
Wikipedia it performs fourth out of five). This is surprising, given the fact that
CNE yields embeddings that, by design, do not reflect certain information about
the nodes that may be useful in classifying (here, their degree).

Multi-label classification can however be cast as a link prediction problem—
a task we know CNE performs well at. To do this, we insert a node into the
network corresponding to each of labels, and link the original nodes to the label
nodes if they have that label. We can then employ link prediction, exactly as in the
link prediction case (training on the full network, but with only 50% of the edges
between original nodes and label nodes, and the other half for testing), to do multi-
label classification. For CNE, besides a degree prior, we can encode a ’block’ prior
which encodes the average connectivity between original nodes–original nodes,
original nodes–labels, and labels–labels (which is zero, as labels are not connected
to each other). Note that this approach means that also neighborhood-based link
prediction methods can be used for multi-label classification.

The detailed results of this link prediction approach to multi-label classifica-
tion are shown in the lower half of Table 4. CNE-LP (block+degree) (with LP to
indicate it is based on link prediction) consistently outperforms all baselines on
Macro-F1, while on Micro-F1 it is best on two datasets (BlogCatalog and PPI),
and close second-best on one (Wikipedia). We note that while the benefit of this
link prediction approach to multi-label classification is clear (and unsurprising) for
CNE, there is no consistent benefit to other methods. This shows that the superior
performance of CNE-LP for multi-label classification is not (or at least not exclu-
sively) thanks to the link prediction approach, but at least in part also thanks to a
more informative embedding when considered in combination with the prior.

G Runtime experiment

We compare the runtime (in second) of CNE with other baselines in this section.
We use the parameters settings in link prediction task for all methods. Namely, for
CNE, we set d = 8 (For arXiv k = 16 to reduce underfitting) and k = 50. We
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Algorithm BlogCatalog PPI Wikipedia
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Multi-label classification using logistic regression (standard approach):
Deepwalk 0.2544 0.3950 0.1795 0.2248 0.1872 0.4661
LINE 0.1495 0.2947 0.1547 0.2047 0.1721 0.5193
node2vec 0.2364 0.3880 0.1844 0.2353 0.1985 0.4746
metapath2vec++ 0.0351 0.1684 0.0337 0.0726 0.1031 0.3942
struc2vec 0.0493 0.1653 0.0669 0.0971 0.1124 0.4019
CNE-LR (degree) 0.1833 0.3376 0.1484 0.1952 0.1370 0.4339
Multi-label classification through link prediction where labels are nodes:
Common Neigh. 0.2115 0.2931 0.1792 0.1831 0.1212 0.3332
Jaccard Sim. 0.2157 0.1915 0.1799 0.1642 0.0552 0.0486
Adamic Adar 0.2301 0.3198 0.1698 0.1825 0.1035 0.3264
Preferential Attach. 0.2460 0.2084 0.2504 0.0953 0.2890 0.4454
Deepwalk 0.2372 0.2407 0.1848 0.1648 0.0876 0.0440
LINE 0.1599 0.2457 0.1052 0.1100 0.0976 0.2954
node2vec 0.2490 0.3462 0.2081 0.2069 0.1640 0.3057
metapath2vec++ 0.0633 0.1415 0.0571 0.0542 0.2021 0.3673
struc2vec 0.0644 0.1100 0.0631 0.0757 0.0905 0.3485
CNE-LP (degree) 0.2839 0.3929 0.2139 0.2303 0.1825 0.4407
CNE-LP
(block+degree)

0.2935 0.4002 0.2639 0.2519 0.3374 0.4839

Table 4: The F1 scores for multi-label classification.

Algorithm Facebook PPI arXiv BlogCat. Wikiped. studentdb Gowalla
Deepwalk 120.78 116.09 714.68 344.72 138.89 8.34 5717.67

LINE 253.20 203.92 649.98 218.20 232.11 180.35 10988.71
node2vec 86.61 64.96 291.42 1054.73 288.32 6.04 5593.52

metapath2vec++ 130.78 39.59 274.60 332.19 78.14 3.50 333.29
struc2vec 2692.96 1105.41 54218.82 1356.67 1691.79 9245.23 TimeOut

CNE (uniform) 86.89 75.15 728.74 227.11 92.35 7.25 642.14
CNE (degree) 77.80 70.35 579.85 204.48 87.69 6.80 670.26
CNE (block) NA NA NA NA NA 10.68 NA

Table 5: The runtime (in seconds) of embedding methods. TimeOut means aborted after 24
hours.

set stopping criterion of CNE ||∇X||∞ < 10−2 or maxIter < 250 (whichever is
met first). These stopping criteria yield embeddings with the same performance
in link prediction tasks as reported in the chapter. For other methods, we use the
default setting as reported in their original paper. The hyper-parameters p, q of
node2vec are tuned using cross validation. This experiment is performed with
single process/thread on a desktop with CPU 2,7 GHz Intel Core i5 and RAM 16
GB 1600 MHz DDR3. Table 5 summarizes the runtime of all methods against all
datasets we used in the chapter. Over the seven datasets CNE is fastest in two cases,
12% slower than the fastest in one case (metapath2vec++), and approximately
twice slower in the four other cases (also metapath2vec++).
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5
Representation Learning with Human

in the Loop

A Constrained Randomization Approach to Interactive
Visual Data Exploration with Subjective Feedback

Abstract Data visualization and iterative/interactive data mining are growing rapidly
in attention, both in research as well as in industry. However, while there are
plethora of advanced data mining methods and lots of works in the field of visuali-
sation, integrated methods that combine advanced visualization and/or interaction
with data mining techniques in a principled way are rare. We present a framework
based on constrained randomization which lets users explore high-dimensional
data via ‘subjectively informative’ two-dimensional data visualizations. The user
is presented with ‘interesting’ projections, allowing users to express their obser-
vations using visual interactions that update a background model representing the
user’s belief state. This background model is then considered by a projection-
finding algorithm employing data randomization to compute a new ‘interesting’
projection. By providing users with information that contrasts with the background
model, we maximize the chance that the user encounters striking new information
present in the data. This process can be iterated until the user runs out of time
or until the difference between the randomized and the real data is insignificant.
We present two case studies, one controlled study on synthetic data and another on
census data, using the proof-of-concept tool SIDE that demonstrates the presented
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framework.

5.1 Introduction

Data visualization and iterative/interactive data mining are both mature, actively
researched topics of great practical importance. However, while progress in both
fields is abundant, methods that combine them in a principled manner are rare.

Yet, methods that combine state-of-the-art data mining with visualization and
interaction are highly desirable as they could exploit the strengths of both human
data analysts and of computer algorithms. Humans are unmatched in spotting
interesting patterns in low-dimensional visual representations, but poor at reading
high-dimensional data, while computers excel in manipulating high-dimensional
data and are weaker at identifying patterns that are truly relevant to the user. A
symbiosis of human analysts and well-designed computer systems thus promises
to provide the most efficient way of navigating the complex information space
hidden within high-dimensional data. This idea has been advocated within the
visual analytics field already a long time ago [39, 22, 32].
Contributions. In this chapter we introduce a generically applicable method based
on constrained randomizations for finding interesting projections of data, given
some prior knowledge about that data. We present use cases of interactive visual
exploration of high-dimensional data with the aid of a proof-of-concept tool [20]
that demonstrates the presented framework. The method’s aim is to aid users in
discovering structure in the data that the user was previously unaware of.
Overview of the method. The underlying idea is that the analysis process is
iterative, and during each iteration there are three steps (Fig. 5.1).
Step 1. The user is presented with an ‘interesting’ projection of the data, visualized
as a scatter plot. Here, interestingness is formalized with respect to the initial belief
state and the scatter plot shows projections of the data to which the data and the
background model differ most.
Step 2. The user investigates this scatter plot, and may observe structure in the

(1) Data 
Visualization

(2) User
Feedback

(3) Update
Background

Model

User

Algorithm

Figure 5.1: The three steps of SIDE’s operation cycle.
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Figure 5.2: (a) Pairwise scatter plots of a 3-dimensional toy dataset that contains four clus-
ters (indicated by different glyphs/colors). The initial random background model is shown
with gray glyphs. (b) Two-dimensional projection to a direction where the data and the
background model differ most. The user marks three clusters visible in the scatterplot as
shown by ellipsoids. Two of the clusters (blue triangles and orange circles) correspond to
the actual clusters of the toy data, but the third cluster (black) is a combination of two clus-
ters (green boxes and cyan crosses). (c) The information of the three clusters has been ab-
sorbed into the background model which now shows more structure. (d) The next projection
shows the largest difference between the updated background model and the data, which
now clearly highlights the difference between the green (box) and cyan (cross) clusters, for-
merly presented in Fig. 2b to be one (black) cluster. The points in the orange (circle) and
violet (triangle) clusters are exactly on top of the respective background distribution points.
After marking these cluster with ellipsoids the user has completely understood the structure
of the data and after updating the background model matches the data.

data that contrasts with, or add to, their beliefs about the data. We will refer to
observed structures or features as patterns. The user then indicates what patterns
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the user has seen.
Step 3. The background model is updated according to the user feedback given
above, in order to reflect the newly assimilated information.
Next iteration. Then, the most interesting projection with respect to this updated
background model can be computed, and the cyclic process iterates until the user
runs out of time or finds that background model (and thus the user’s belief state)
explains everything the user is currently interested in.
Central objective. Our main goal is to support serendipity, i.e., the discovery of
new knowledge ‘by chance’. However, instead of user randomly guessing feature
combinations that may yield interesting visualizations, we employ an algorithm
that provides projection vectors that provide maximally contrasting information
against an evolving background model. The central idea is that this increases the
chances of finding truly interesting patterns in the data.
Example. Consider the 3-dimensional dataset of four clusters shown in Fig. 5.2.
The raw data and the initial background model are shown in Fig. 5.2a. The clusters
are shown with colored glyphs and the background model that reflects the user’s
initial beliefs is shown with gray markers. Initially, the background model is totally
random (no beliefs).

Step 1 is that the user is presented with an initial scatter plot as shown in
Fig. 5.2b. In step 2, the user marks clusters, as shown also in Fig. 5.2b. Step 3 is
that the background model is updated based on this feedback, which results in a
new background distribution (Fig. 5.2c). In the next iteration, the process repeats
itself; steps 1 and 2 of the second iteration are shown in Fig. 5.2d.

To illustrate the stepwise process, this example was constructed such that the
cluster structure of the data is obvious in any pairwise scatter plot. However, the
objective is that the user can efficiently explore the data, also if the data has very
high dimensionality. In that case, it is beneficial that an algorithm computes mean-
ingful axes (i.e., interesting projections) to use for visualization. In Section 5.3 we
present more extensive walkthrough examples on both synthetic and real data.
Formalization of the background model. To compute interesting projections,
a crucial challenge is the formalization of the background model. To allow the
process to be iterative, the formalization has to allow for the model to be updated
after a user has given feedback on the visualization. There exist two frameworks
for iterative data mining: FORSIED [6, 7] and a framework that we will refer to
as CORAND [14, 24], for COnstrained RANDomization.

In both cases, the background model is a probability distribution over datasets
and the user beliefs are modelled as a set of constraints on that distribution. The
CORAND approach is to specify a randomization procedure that, when applied
to the data, does not affect how plausible the user would deem it to be. That is,
the user’s beliefs should be satisfied, and otherwise the data should be shuffled as
much as possible.
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Given an appropriate randomization scheme, we can then find interesting re-
maining structure that is not yet known to the user by contrasting the real data with
the randomized data. A most interesting projection can be computed by defining
an optimization problem over the difference between the real data and the random-
ized data. Here, the optimization criterion is chosen as the maximal L1-distance
over the empirical cumulative distributions.

New beliefs can be incorporated in the background model by adding corre-
sponding constraints to the randomization procedure, ensuring that the patterns
observed by the user are present also in the subsequent randomized data. Hence,
subsequent projection will again be informative because the randomized and the
real data will be equivalent with respect to the statistics already known to the user.
Outline of this chapter As discussed in Section 5.2, three challenges had to
be addressed to use the CORAND approach: (1) defining intuitive pattern types
(constraints) that can be observed and specified based on a scatter plot of a two-
dimensional projection of the data; (2) defining a suitable randomization scheme,
that can be constrained to take account of such patterns; and (3) a way to identify
the most interesting projections given the background model. The evaluation with
respect to usefulness as well as computational properties of the resulting system
is presented in Section 5.3. Experiments were conducted both on synthetic data
and on a census dataset. Finally, related work and conclusions are discussed in
Sections 5.4 and 5.5, respectively.

NB. This manuscript is an expanded and integrated version of two conference
papers [33, 20]: [33] introduced the algorithmic problem, while [20] presented the
proof-of-concept tool and interface. Besides the integration and changes through-
out, the main differences are this new introduction and the introduction of a stop-
ping criterion (Secs. 5.2.4, 5.3.5).

5.2 Methods

We will use the notational convention that upper case bold face symbols (X) rep-
resent matrices, lower case bold face symbols (x) represent column vectors, and
lower case standard face symbols (x) represent scalars. We assume that our dataset
consists of n d-dimensional data vectors xi. The dataset is represented by a real
matrix X =

(
xT1 xT2 · · · xTn

)T ∈ Rn×d. More generally, we will denote
the transpose of the ith row of any matrix A as ai (i.e., ai is a column vector).
Finally, we will use the shorthand notation [n] = {1, . . . , n}.

5.2.1 Projection tile patterns in two flavours

In the interaction step, the users declare that they have become aware of (and thus
are no longer interested in seeing) the value of the projections of a set of points
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onto a specific subspace of the data space. We call such information a projection
tile pattern for reasons that will become clear later. A projection tile parametrizes
a set of constraints to the randomization.

Formally, a projection tile pattern, denoted τ , is defined by a k-dimensional
(with k ≤ d) subspace of Rd, and a subset of data points Iτ ⊆ [n]. We will
formalize the k-dimensional subspace as the column space of an orthonormal ma-
trix Wτ ∈ Rd×k with WT

τ Wτ = I, and can thus denote the projection tile as
τ = (Wτ , Iτ ). We provide two ways in which the user can define the projection
vectors Wτ for a projection tile τ .
2D tiles. The first approach simply chooses Wτ as the two weight vectors defining
the projection within which the data vectors belonging to Iτ were marked. This
approach allows the user to simply specify that he or she knows the positions
of that set of data points within this 2D projection. The user makes no further
assumptions—they assimilate solely what they see without drawing conclusions
not supported by direct evidence.
Clustering tiles. It is possible that after inspecting a cluster, the user concludes
that these points are clustered not just within the two dimensions shown in the
scatter plot, and wishes for the system to model immediately also other dimensions
in which the selected point set forms a cohesive cluster. This would lead to the
system not considering other projections that highlight this cluster as particularly
informative. To allow the user to express such belief, the second approach takes
Wτ to additionally include a basis for other dimensions along which these data
points are strongly clustered. This is achieved as follows.

Let X(Iτ , :) represent a matrix containing the rows indexed by elements from
Iτ from X. Let W ∈ Rd×2 contain the two weight vectors onto which the data
was projected for the current scatter plot. In addition to W, we want to find any
other dimensions along which these data vectors are clustered. These dimensions
can be found as those along which the variance of these data points is not much
larger than the variance of the projection X(Iτ , :)W.

To find these dimensions, we first project the data onto the subspace orthogonal
to W. Let us represent this subspace by a matrix with orthonormal columns,
further denoted as W⊥. Thus, W⊥TW⊥ = I and WTW⊥ = 0. Then, Principal
Component Analysis (PCA) is applied to the resulting matrix X(Iτ , :)W⊥. The
principal directions corresponding to a variance smaller than a threshold are then
selected and stored as columns in a matrix V. In other words, the variance of each
of the columns of X(Iτ , :)W⊥V is below the threshold.

The matrix Wτ associated to the projection tile pattern is then taken to be:

Wτ =
(
W W⊥V

)
.

The threshold on the variance used could be a tunable parameter, but was set
here to twice the average of the variance of the two dimensions of X(Iτ , :)W.
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5.2.2 The randomization procedure

Here we describe the approach to randomizing the data. The randomized data
should represent a sample from an implicitly defined background model that rep-
resents the user’s belief state about the data. Initially, our approach assumes the
user merely has an idea about the overall scale of the data. However, throughout
the interactive exploration, the patterns in the data described by the projection tiles
will be maintained in the randomization.
Initial randomization. The proposed randomization procedure is parametrized
by n orthogonal rotation matrices Ui ∈ Rd×d, where i ∈ [n], and the matrices
satisfy (Ui)

T = (Ui)
−1. We further assume that we have a bijective mapping

f : [n]× [d] 7→ [n]× [d] that can be used to permute the indices of the data matrix.
The randomization proceeds in three steps:

Random rotation of the rows: Each data vector xi is rotated by multiplication
with its corresponding random rotation matrix Ui, leading to a randomised
matrix Y with rows yTi that are defined by:

∀i : yi = Uixi.

Global permutation: The matrix Y is further randomized by randomly permut-
ing all its elements, leading to the matrix Z defined as:

∀i, j : Zi,j = Yf(i,j).

Inverse rotation of the rows: Each randomised data vector in Z is rotated with
the inverse rotation applied in step 1, leading to the fully randomised matrix
X∗ with rows x∗i defined as follows in terms of the rows zTi of Z:

∀i : x∗i = Ui
T zi.

The random rotations Ui and the permutation f are sampled uniformly at random
from all possible rotation matrices and permutations, respectively.

Intuitively, this randomization scheme preserves the scale of the data points.
Indeed, the random rotations leave their lengths unchanged, and the global per-
mutation subsequently shuffles the values of the d components of the rotated data
points. Note that without the permutation step, the two rotation steps would undo
each other such that X∗ = X. Thus, it is the combined effect that results in a
randomization of the dataset.

The random rotations may seem superfluous: the global permutation random-
izes the data so dramatically that the added effect of the rotations is relatively
unimportant. However, their role is to make it possible to formalize the growing
understanding of the user as simple constraints on this randomization procedure,
as discussed next.
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Accounting for one projection tile. Once the user has assimilated the information
in a projection tile τ = (Wτ , Iτ ), the randomization scheme should incorporate
this information by ensuring that it is present also in all randomized versions of
the data. This ensures that the randomized data is a sample from a distribution
representing the user’s belief state about the data. This is achieved by imposing
the following constraints on the parameters defining the randomization:

Rotation matrix constraints: For each i ∈ Iτ , the component of xi that is within
the column space of Wτ must be mapped onto the first k dimensions of
yi = Uixi by the rotation matrix Ui. This can be achieved by ensuring
that:

∀i ∈ Iτ : WT
τ Ui = (I 0) . (5.1)

This explains the name projection tile: the information to be preserved in
the randomization is concentrated in a ‘tile’ (i.e., the intersection of a set of
rows and a set of columns) in the intermediate matrix Y created during the
randomization procedure.

Permutation constraints. The permutation should not affect any matrix cells with
row indices i ∈ Iτ and columns indices j ∈ [k]:

∀i ∈ Iτ , j ∈ [k] : f(i, j) = (i, j). (5.2)

Proposition 3. Using the above constraints on the rotation matrices Ui and the
permutation f , it holds that:

∀i ∈ Iτ ,xTi Wτ = x∗i
TWτ . (5.3)

Thus, the values of the projections of the points in the projection tile remain unal-
tered by the constrained randomization. Hence, the randomization keeps the user’s
beliefs intact. We omit the proof as the more general Proposition 4 is provided with
proof further below.
Accounting for multiple projection tiles. Throughout subsequent iterations, ad-
ditional projection tile patterns will be specified by the user. A set of tiles τi for
which Iτi ∩ Iτj = ∅ if i 6= j is straightforwardly combined by applying the rele-
vant constraints on the rotation matrices to the respective rows. When the sets of
data points affected by the projection tiles overlap though, the constraints on the
rotation matrices need to be combined. The aim of such a combined constraint
should be to preserve the values of the projections onto the projection directions
for each of the projection tiles a data vector was part of.

The combined effect of a set of tiles will thus be that the constraint on the rota-
tion matrix Ui will vary per data vector, and depends on the set of projections Wτ

for which i ∈ Iτ . More specifically, we propose to use the following constraint on
the rotation matrices:
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Rotation matrix constraints. Let Wi ∈ Rd×di denote a matrix of which the
columns are an orthonormal basis for space spanned by the union of the
columns of the matrices Wτ for τ with i ∈ Iτ . Thus, for any i and τ : i ∈
Iτ , it holds that Wτ = Wivτ for some vτ ∈ Rdi . Then, for each data
vector i, the rotation matrix Ui must satisfy:

∀i ∈ Iτ : WT
i Ui = (I 0) . (5.4)

Permutation constraints. Then the permutation should not affect any matrix cells
in row i and columns [di]:

∀i ∈ [n], j ∈ [di] : f(i, j) = (i, j).

Proposition 4. Using the above constraints on the rotation matrices Ui and the
permutation f , it holds that:

∀τ,∀i ∈ Iτ ,xTi Wτ = x∗i
TWτ .

Proof. We first show that x∗i
TWi = xTi Wi:

x∗i
TWi = zTi UT

i Wi = zTi

(
I
0

)
= zi(1 : di)

T = yi(1 : di)
T = yTi

(
I
0

)
= xTi Wi.

The result now follows from the fact that Wτ = Wivτ for some vτ ∈ Rdi .

Technical implementation of the randomization. To ensure the randomization
can be carried out efficiently throughout the process, note that the matrix Wi for
the i ∈ Iτ for a new projection tile τ can be updated by computing an orthonor-
mal basis for (Wi W). Such a basis can be found efficiently as the columns of
Wi in addition to the columns of an orthonormal basis of W −WT

i WiW (the
components of W orthogonal to Wi), the latter of which can be computed using
the QR-decomposition.

Additionally, note that the tiles define an equivalence relation over the row
indices, in which i and j are equivalent if they were included in the same set
of projection tiles so far. Within each equivalence class, the matrix Wi will be
constant, such that it suffices to compute it only once, tracking which points belong
to which equivalence class.

5.2.3 Visualization: Finding the most interesting two-dimensional
projection

Given the dataset X and the randomized dataset X∗, it is now possible to quan-
tify the extent to which the empirical distribution of a projection Xw and X∗w
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onto a weight vector w differ. There are various ways in which this difference
could be quantified. We investigated a number of possibilities and found that the
L1-distance between the cumulative distribution functions works well in practice.
Thus, with Fx the empirical cumulative distribution function for the set of values
in x, the optimal projection is found by solving:

max
w
‖FXw − FX∗w‖1 .

The second dimension of the scatter plot can be sought by optimizing the same
objective while requiring it to be orthogonal to the first dimension.

We are unaware of any special structure of this optimization problem that
makes solving it particularly efficient. Yet, using the standard quasi-Newton solver
in R [34] with random initialization and default settings (the general-purpose optim
function with method="BFGS"), or the numericjs library for Javascript [27], al-
ready yields satisfactory results, as shown in the experiments below.

5.2.4 Significance of a projection and stopping criterion

Although it has not been written down before, it is conceptually straightforward
in CORAND to assess the statistical significance of any pattern of interest (here
projection), because it is always possible to compute the empirical p-value of a
pattern under the background model.

This works as follows. Denote the score function of a pattern as f(X,X∗),
e.g., the optimized statistic is

f(X,X∗) = max
w
‖FXw − FX∗w‖1 .

This statistic hinges by definition on a comparison between the real data X and the
randomized data X∗. An important question is: how surprising is this statistic?

We can take the viewpoint that we are comparing a certain randomized dataset
X∗, which has no structure except for the constraints that we have defined so far,
to another dataset X. The question that we need to consider is, does the real data
X still have interesting structure with respect to the pattern syntax? Essentially, we
are asking whether f(X,X∗) is surprising given the background model. Equiva-
lently, if X would not contain interesting structure anymore, we expect f(X,X∗)

to be ‘similar’ to f(X∗
′
,X∗), where X∗

′
is another randomized dataset from the

same constraints.
This latter statement about similarity can be made quantified in an empirical p-

value p̂ [29, 24], where we compare f(X,X∗) against f(X∗
′

1 ,X
∗), . . . , f(X∗

′

N ,X
∗)

with X∗
′

i being a randomized version of X∗, employing still the same constraints.
A rationale why X∗

′

i should derived from X∗ and not from X can be found in [13].
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Figure 5.3: Layout of our web app SIDE, with the data visualization and interaction area
(a–e), projection meta information (f, g), and timeline (h).

In full, given N randomizations to compare with, the empirical p-value is

p̂ =
1 +

∑N
i=1 1

(
f(X∗

′

i ,X
∗) ≥ f(X,X∗)

)
N + 1

.

The two-dimensional scatterplot is based on two orthogonal projections that
each have a different value ‖FXw − FX∗w‖1. These can be compared against the
the series f(X∗

′

i ,X
∗) to obtain an empirical p-value for either axis. If the p-value

for an axis is above a threshold that the user finds acceptable, e.g., 0.05, the values
should not be studied. Since constraints can only be added, meaning the model will
be closer to the data, the p-values should be roughly monotonic and the analysis
can be terminated when the threshold is reached. See Section 5.3 for an example.

5.2.5 The risk of false positive observations

One may have the concern that even with the use of a stopping criterion, showing a
user projections that hopefully contain meaningful structure can lead to—or even
increase the chance to—the observation of patterns that are not real. There are
three important aspects to consider here:
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Figure Cluster Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 Dim 7 Dim 8 Dim 9 Dim 10

5.4b

top (1) 0.250 0.467 -0.334 0.347 -0.00263 -0.0331 -0.0201 -0.0506 -0.00254 -0.0610
mid (2) -0.774 -1.45 1.03 -1.07 0.0815 0.103 0.0623 0.157 0.00787 0.189

bottom (3) 0.348 0.0525 0.401 -0.329 0.0859 -0.0694 -0.0212 -0.0307 0.0557 -0.152

Table 5.1: Mean vectors of user marked clusters for the Synthetic data (Section 5.3.2).

1. The proposed approach makes no claims about causality. For example, the
data may be biased, contain errors, there may be missing variables that could
explain observed correlations and patterns. The projections may highlight
information that is spurious in the sense that it pertains to the data collection
process rather than the reality the data was intended to capture. However,
this should be considered a positive feature, because learning about such
artefacts in the data can be greatly beneficial. During interpretation of the
patterns, one should always be cautious and aim to explain the observed
patterns, instead of taking them at face value.

2. The patterning (i.e., arrangement) of the points in the visualizations shown
to a user correspond to projections, which is simply a weighted combination
of the original features. As such, only structure that is present in the data
can be shown.

3. The prototype implementation introduced in the next section shows besides
the data also the randomized version of the data that the projection is aimed
to contrast with. In our experience, it is straightforward to visually observe
whether the structure shown in the visualization has substantial magnitude
as compared to the randomized data. As such, the stopping criterion can be
used to make the system even more robust against the analysis of noise, but it
is usually easy to see when the projections no longer pick up any significant
structure, even without the stopping criterion. See for example Figure 5.7.

5.3 Experiments

We present two case studies to illustrate the framework and its utility. We first in-
troduce a proof-of-concept tool and discuss how this tool implements the concepts
presented in Section 5.2. A description of how the tool may be used in practice is
interweaved with the subsequent case studies. Finally, we present an evaluation of
the runtime performance and the stopping criterion.
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(a)

(b)

Figure 5.4: Example of the first visualization given by SIDE on the synthetic data (Section
5.3.2). Solid dots represent actual data vectors, whereas open circles represent vectors
from the randomized data. Row (a) shows the first visualization, while (b) shows the same
visualization with the three clusters marked by us. Right of the scatter plot are bar charts
that represent the weight vectors that constitute the projection vectors.

5.3.1 Proof-of-concept tool SIDE

The case studies are completed with the a JavaScript version of our tool, which is
available freely online, along with the used data for reproducibility.1[20]

The full interface of SIDE is shown in Figure 5.3. SIDE was designed ac-
cording to the three principles for ‘visually controllable data mining’ [32], which
essentially state that both the model and the interactions should be transparent to
users, and that the analysis method should be fast enough such that the user does
not lose its trail of thought.

The main component is the interactive scatter plot (Figure 5.3e). The scatter
plot visualizes the projected data (solid dots) and the randomized data (open gray
circles) in the current 2D projection. By drawing a polygon, the user can select
data points to define a projection tile pattern. Once a set of points is selected, the
user can press either of the three feedback buttons (5.3c), to indicate these points
form a cluster or to define them as outliers.

1http://www.interesting-patterns.net/forsied/side/

http://www.interesting-patterns.net/forsied/side/
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(a)

(b)

Figure 5.5: Continuation of the visualizations given by SIDE on the synthetic data (Section
5.3.2). Rows (a) and (b) show the second and third visualization.

If the user thinks the points are clustered only in the shown projection, they
click ‘Define 2D Cluster’, while ‘Define Cluster’ indicates they expect that these
points will be clustered in other dimensions as well. ‘Define Outliers’ fully fixes
the location of the selected points in the background model to their actual values,
such that those points do not affect the projections anymore.

To identify the defined clusters, those data points are given the same color, and
their statistics are shown in a table (Figure 5.3g). The user can define multiple
clusters in a single projection, and they can also undo (Figure 5.3d) the feedback.
Once a user finishes exploring the current projection, they can press ‘Update Back-
ground Model’ (Figure 5.3b). Then, the background model is updated with the
provided feedback and a new scatter plot is computed and presented to the user in
an iterative fashion.

A few extra features are provided to assist the data exploration process: to gain
an understanding of a projection, the weight vectors associated with the projection
axes are plotted in bar charts (Figure 5.3f). Below those, a table (Figure 5.3g) lists
the mean vectors of each colored point set (cluster). The exploration history is
maintained by taking snapshots of the background model when updated, together
with the associated data projection (scatter plot) and weight vectors (bar charts).
This history in reverse chronological order is shown in Figure 5.3h.
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The tool also allows a user to revert back to a certain snapshot, to restart from
that time point. This allows the user to discover different aspects of a dataset more
consistently. Finally, custom datasets can be loaded for analysis from the drop-
down menu (Figure 5.3a). Currently our tool only works with CSV files and it
automatically sub-samples the custom dataset so that the interactive experience is
not compromised. By default, two datasets are preloaded so that users can get
familiar with the tool. Notice that, since the tool runs locally in your browser and
there are no server-side computations, you can safely analyse data that you cannot
share or transmit elsewhere.

5.3.2 Synthetic data

In the first case study, we generated a synthetic dataset that consists of 1000 ten-
dimensional data vectors of which dimensions 1–4 can be clustered into five clus-
ters, dimensions 5–6 into four clusters involving different subsets of data points,
and of which dimensions 7–10 are Gaussian noise. All dimensions have equal
variance.

In Figure 5.4a we observe the initial visualization from SIDE. The blue dots
are data points while the open circles correspond to a randomized version of the
data. The randomized data points are shown in order to ground any observed
patterns in the visualization because they show what we should be expecting given
the background knowledge encoded thus far. As this is the initial visualization, the
only encoded knowledge is the overall scale of the data.

Next to the visualization we find two bar charts that visualize the projection
vectors corresponding to the x- and y-axis. We observe the x-axis has loadings
mostly on dimensions 2 and 3 and to a lesser extent 1 and 4. The other loadings
(dimensions 7–10) are so small they likely correspond to noise that is by chance
slightly correlated to the cluster structure in dimensions 1–4. The y-axis is loaded
onto dimensions 2–4.

The distribution of the projected data points clearly contrasts with the random-
ized data, indicating that probably the visualization is showing meaningful struc-
ture. Because the data is 10-dimensional while the scatter plot is 2-dimensional, we
cannot be sure just from the visualization where in the original space the observed
clusters are located. Hence, we mark the three clusters, as shown in Figure 5.4b.

Table 5.1 shows the mean vectors for each of the three clusters. Because this
is synthetic data, the dimensions are meaningless, but normally it should be pos-
sible to understand what the clusters mean and how they differ from each other
based on careful inspection of these numbers. Future use of the tool will have to
show whether these mean statistics are sufficient, or whether additional informa-
tion (e.g., variances) could be helpful or necessary.

Once we understand the meaning of the clusters, we ask for a new visualization
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Figure 5.6: Projections of UCI Adult dataset: (a) projection in the 1st iteration, (b) clusters
marked by user in the 1st iteration, (c) projection in the 2nd iteration, and (d) projection
in the 3rd iteration

(’Update background model’ in the full interface shown in Figure 5.3), which is
then based on a model that incorporates the marked structure.

The subsequent most interesting projection is given in Figure 5.5a. The x-axis
corresponds almost purely to dimension 6, which together with dimension 5 con-
tains the orthogonal cluster structure. The y-axis again corresponds to a subspace
of dimensions 1–4, highlighting that indeed the red cluster actually consists of two
parts.

If we mark the four clusters shown in Figure 5.5a, our model will contain eight
clusters: the red cluster breaks into four parts, the green and orange into two each.
In Figure 5.5b we recover the remaining structure in the data; the x-axis (dimension
5) divides each of the already defined clusters into two, and on the y-axis, there
is again a subspace of dimensions 1–4, which splits the brown-yellow cluster into
two, while the others are unaffected.

We designed this example to illustrate the feedback that a user can give using
the constrained randomizations. Additionally, it shows how the methods succeeds
in finding interesting projections given previously identified patterns. Thirdly, it
also demonstrates how the user interactions meaningfully affect subsequent visu-
alizations.
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Figure axis Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

5.6a X -0.039 -0.001 0.001 0.312 -0.530 -0.193 0.763 0.017 0.008
Y 0.004 -0.004 -0.002 0.816 -0.141 0.465 -0.313 -0.011 0.002

5.6c X 0.081 -0.028 -0.022 -0.259 -0.233 -0.104 -0.380 -0.846 -0.001
Y -0.590 0.541 0.143 -0.233 -0.380 -0.026 -0.293 0.232 0.000

5.6d X 0.119 -0.149 0.047 0.102 0.191 0.104 -0.556 0.0581 -0.769
Y -0.382 -0.626 -0.406 0.346 0.317 -0.0287 0.111 -0.248 0.059

Table 5.2: Projection weight vectors for the UCI Adult data (Section 5.3.3).

Figure Cluster Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

5.6b

top left 35.0 8.67 34.7 0.00 0.00 1.00 0.00 0.667 0.333
bott. left 37.2 9.43 40.3 0.00 1.00 0.00 0.00 0.286 0.071
top right 35.6 1.3 51.1 1.00 0.00 0.00 0.00 0.750 0.250

bott. right 38.4 10.2 41.6 0.00 0.00 0.00 1.00 0.762 0.275

5.6c left 39.0 10.2 43.3 0.0377 0.0252 0.0126 0.925 1.00 0.321
right 36.0 9.95 37.9 0.0339 0.169 0.0169 0.780 0.00 0.102

5.6d left 42.5 11.6 46.3 0.00 0.00 0.00 1.00 1.00 1.00

Table 5.3: Mean vectors of user marked clusters for the UCI Adult data (Section 5.3.3).

5.3.3 UCI Adult data

In this case study, we demonstrate the utility of our method by exploring a real
world dataset. The data is compiled from the UCI Adult dataset2. To ensure
the real time interactivity, we sub-sampled 218 data points and selected six fea-
tures: “Age” (17− 90), “Education” (1− 16), “HoursPerWeek” (1− 99), “Ethnic
Group” (White, AsianPacIslander, Black, Other), “Gender” (Female, Male), “In-
come” (≥ 50k). Among the selected features, “Ethnic Group” is a categorical
feature with five categories, “Gender” and “Income” are binary features, the rest
are all numeric. To make our method applicable to this dataset, we further bi-
narized the “Ethnic Group” feature (yielding four binary features), and the final
dataset consists of 218 points and 9 features.

We assume the user uses clustering tiles throughout the exploration. Each of
the patterns discovered during the exploration process corresponds to a certain
demographic clustering pattern. To illustrate how the constrained randomizations
help the user rapidly gain an understanding of the data, we discuss the first three
iterations of the exploration process. The first projection (Figure 5.6a) visually
consists of four clusters. The user notes that the weight vectors corresponding to
the axes of the plot assign large weights to the “Ethnic Group” attributes (Table 5.2,
1st row). As mentioned, we assume the user marks these points as part of the same
cluster. After marking (Figure 5.6b), the tool informs the user of the mean vectors
of the points within each clustering tile. The 1st row of Table 5.3 shows that each
cluster completely represents one out of four ethnic groups, which may corroborate
with the user’s understanding.

Taking the user’s feedback into consideration, a new projection is generated.

2https://archive.ics.uci.edu/ml/datasets/Adult

https://archive.ics.uci.edu/ml/datasets/Adult
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rand. k ∈ {2, 4, 8, 16}
n d (s) optim. (s) #tries ∆ < 1%
64 16 0.1 {1.0, 1.2, 0.9, 1.2} {10, 10, 9, 8}
64 32 0.5 {1.8, 2.1, 2.4, 2.5} {10, 8, 10, 10}
64 64 2.5 {5.6, 3.5, 4.6, 4.5} {10, 9, 10, 8}
64 128 11.5 {8.9, 10.1, 11.4, 10.2} {10, 10, 8, 9}
128 16 0.2 {2.0, 1.7, 2.4, 2.0} {10, 1, 6, 8}
128 32 0.8 {2.6, 3.5, 4.0, 4.8} {9, 10, 10, 10}
128 64 5.1 {6.7, 5.3, 8.3, 9.6} {8, 10, 10, 9}
128 128 24.5 {13.8, 17.4, 15.2, 20.4} {10, 9, 10, 7}
256 16 0.4 {4.3, 2.6, 3.3, 4.7} {10, 8, 10, 9}
256 32 1.8 {6.3, 8.2, 7.9, 8.8} {8, 9, 10, 10}
256 64 9.2 {12.4, 10.1, 19.2, 16.3} {10, 10, 10, 9}
256 128 39.9 {33.5, 36.3, 30.6, 35.6} {10, 9, 8, 9}
512 16 0.5 {6.7, 6.3, 6.1, 7.5} {10, 9, 10, 10}
512 32 2.4 {16.6, 19.6, 20.2, 17.5} {9, 9, 10, 10}
512 64 13.6 {34.9, 23.5, 22.3, 41.0} {10, 10, 8, 7}
512 128 68.0 {74.5, 68.1, 72.3, 62.8} {10, 1, 9, 9}

Table 5.4: Median wall clock running times, for randomization and optimization over ten
iterations of finding 2D-projections using L1 loss. Also shown is the number of iterations
in which the L1 norm first component ended up within 1% of the result with the largest L1

norm (out of 10 tries). A high number indicates the solution quality is stable, even though
the actual projections may vary.

The new scatter plot (Figure 5.6c) shows two large clusters, each consisting of
some points from the previous four-cluster structure (points from these four clus-
ters are colored differently). Thus, the new scatter plot elucidates structure not
shown in the previous one. Indeed, the weight vectors (2nd row of Table 5.2)
show that the clusters are separated mainly according to the “Gender” attribute.
After marking the two clusters separately, the mean vector of each cluster (2nd
row of Table 5.3) confirms this: the cluster on the left represents male group, and
the female group is on the right. Notice that these clusters also yield other mean-
ingful information, because the projection vectors not only correspond to gender
(Table 5.2, 2nd row). We find in the table of cluster means (Table 5.3, 2nd row)
that the genders are skewed over age, ethnicity, and income.

The projection in the third iteration (Figure 5.6d) consists of three clusters,
separated only along the x-axis. Interestingly, the corresponding weight vector
(3rd row of Table 5.2) has strongly negative weights for the attributes “Income”
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and “Ethnic Group - White”. This indicates the left cluster mainly represents the
people with high income and whose ethnic group is also “White”. This cluster has
relatively low y-value; i.e., they are also generally older and more highly educated.
These observations are corroborated by the cluster mean (Table 5.3, 3rd row).

For this case study, we also measured the performance of SIDE in three com-
ponents: loading data, fit background model then compute new projection, update
visualizations. We repeated the experiment (with two iterations each) ten times on
a desktop with 2.7 GHz Intel Core i5 processor and recorded the wall clock time.
On average, loading Adult dataset takes 11ms, fitting the background model then
computing the new projection takes 7.0s, updating the visualization takes 41ms.

This case study illustrates how the proposed constrained randomization meth-
ods facilitates human data exploration by iteratively presenting an informative pro-
jection, considering what the user has already learned about the data.

5.3.4 Performance on synthetic data

Ideally any interactive data exploration tool should work in close to real time. This
section contains an empirical analysis of an (unoptimized) R implementation of
the method, as a function of the size, dimensionality, and complexity of the data.
Note that limits on screen resolution as well as on human visual perception render
it useless to display more than of the order of a few hundred data vectors, such
that larger datasets can be down-sampled without noticeably affecting the content
of the visualizations.

We evaluated the scalability on synthetic data with d ∈ {16, 32, 64, 128} di-
mensions and n ∈ {64, 128, 256, 512} data points scattered around k ∈ {2, 4, 8, 16}
randomly drawn cluster centroids (Table 5.4). The randomization is done here with
the initial background model. The most costly part in randomization is usually the
multiplication of orthogonal matrices, indeed, the running time of the randomiza-
tion scales roughly as ndx, where x is between 2 and 3. The results suggests that
the running time of the optimization is roughly proportional to the size of the data
matrix nd and that the complexity of data k has here only a minimal effect in the
running time of the optimization.

Furthermore, in 90% of the tests, the L1 loss on the first axis is within 1%

of the best L1 norm out of ten restarts. The optimization algorithm is therefore
quite stable, and in practical applications it may well be be sufficient to run the
optimization algorithm only once. These results have been obtained with unop-
timized and single-threaded R implementation on a laptop having 1.7 GHz Intel
Core i7 processor.3 The performance could probably be significantly boosted by,
e.g., carefully optimizing the code and the implementation. Yet, even with this
unoptimized code, response times are already of the order of 1 second to 1 minute.

3The R implementation used to produce Table 5.4 is available also via the demo page (footnote 1).
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Iteration fx(X,X∗) fy(X,X∗) p̂x p̂y
1 0.127 0.093 0.01 0.01
2 0.084 0.078 0.01 0.01
3 0.080 0.044 0.01 0.01
4 0.028 0.026 0.17 0.14
5 0.000 0.000 1.00 1.00

Table 5.5: Test statistic and empirical p-value for both projections (x and y axes) in a test
run of the synthetic data.

5.3.5 Stopping criterion

Finally, we tested whether the stopping criterion presented in Section 5.2.4 can
indeed quantify whether the current projection is different from the structure level
present due to random noise. We evaluated this in a controlled setting, i.e., us-
ing the synthetic data described in Section 5.3.2, which consists of 1000 ten-
dimensional data vectors of which dimensions 1–4 can be clustered into five clus-
ters, dimensions 5–6 into four clusters involving different subsets of data points,
and of which dimensions 7–10 are Gaussian noise.

Since the data essentially contains cluster structure at three levels (in dimen-
sions 1–6) and noise (dimensions 7–10 are purely random, 1–6 also contain some
noise), we expect that in the fourth iteration the background model does not yet
contain all the exact values of the data, but it contains the cluster structure, assum-
ing the user has properly marked that. Then, because the constraints contain all
real structure, the projection is based purely on random differences between the
real data and the randomized data.

In experiments, we find that not in every run the results are the same, due to
the nondeterministic randomization and optimization procedures. For example, it
is not rare that the background model already contains the exact values of all data
points after three iterations. However, if the run goes indeed as described above,
where the first three iterations show the various clusterings in the data, then the
empirical p-values align perfectly with our expectation: the p-values should be
high after three iterations, and equal to one after four iterations. In the other cases,
the p-values are equal to one already after three iterations.

The test statistic of the projections and the empirical p-value for five iterations
in one test run are given in Table 5.5. We observe that in the first three iterations,
p̂ ≤ 0.01 for both axes. As expected, in the fourth iteration (shown in Figure 5.7)
the projections do not correspond to substantial structure anymore, and p̂ > 0.05

for both axes. In the fifth iteration, the data is completely fixed and hence we find
p̂ = 1.
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Figure 5.7: Projection of the synthetic data, fourth iteration in the empirical p-value test
run. The empirical p-values for the axes are 0.17 and 0.14, indicating the amount of struc-
ture shown is comparable to what is expected in random noise. Notice also that the distri-
bution of the randomized data is very similar to that of the real data and that the projection
vectors are not similarly sparse as in the previous iterations (Figures 5.4 and 5.5), both
signalling that the background model captures all meaningful structure present in the data.

5.4 Related work

Visualization pipeline. The pipeline of visualizing high-dimensional data is rec-
ognized to have three stages [26]:

Data transformation is the act of changing the data into a desired representa-
tion. In this stage methods such as dimensionality reduction (DR), clustering, and
feature extraction are used. As we aim to find informative projections in lower
dimension, we focus on the discussion of DR methods. Dimensionality reduc-
tion for exploratory data analysis has been studied for decades. Early research
into visual exploration of data led to approaches such as multidimensional scaling
[23, 40] and projection pursuit [11, 18]. Most recent research on this topic (also
referred to as manifold learning) is still inspired by the aim of multi-dimensional
scaling; find a low-dimensional embedding of points such that their distances in
the high-dimensional space are well represented. In contrast to Principal Com-
ponent Analysis [31], one usually does not treat all distances equal. Rather, the
idea is to preserve small distances well, while large distances are irrelevant, as
long as they remain large; examples are Local Linear and (t-)Stochastic Neighbor
Embedding [16, 35, 41]. Even that is typically not possible to achieve perfectly,
and a trade-off between precision and recall arises [44]. Recent works are mostly
spectral methods along this line.

Visual mapping aims to encode the information in data space (the outcome
of data transformation) into visual representations. For different types of the input
data, the applicable encoding varies [26, 21]. Our approach takes multivariate real-
valued data as input and visualizes the 2D projections of the data using scatterplots.
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While simple 2D scatter plots allow to track the information learned by user, it
would be possible to simultaneously visualize multiple pairwise relationships. For
example, Scatterplot Matrix (SPLOM) [10] and Parallel Coordinate Plot (PCP)
[38] show pairwise relationships between multiple data data attributes at once.
Based on radial coordinates, visual encodings such as Star Coordinate Plot [19]
and Radviz [17] are also used for simultaneous multivariate data visualization.

View transformation renders the visual encodings on the screen. Visualization
of large number of data points usually has limitations such as high computational
cost, visual cluttering (hence occlusions). To address these issues, continuous scat-
terplots [1] and continuous PCPs [15] as well as splatting scatterplots [28] and
splatting PCPs [49] have been introduced. Such techniques are not yet used in
proof-of-concept tool SIDE but may be useful if users need to anaylze datasets
with very many data points.
User Interaction. Orthogonal to the data visualization pipeline, data visualization
methods and systems can also be categorized by the amount of user interaction
involved. We adopt the categorization proposed by Liu et al. [26]:

Computation-centric approaches have minimum interactivity, where a user
only needs to set the initial parameters. The previously introduced dimensionality
reduction methods all belong to this category.

Interactive exploration approaches fix data transformation models but allow
users to explore the models with interactive visual mappings, e.g., navigate, query,
and filter. For example, SAMP-Viz [48] and the work by Liu et al. [25] first
compute a few data representatives using clustering methods. A user can navigate
through these representatives and study the corresponding visualizations. Voyager
[46] takes user selected data attributes as input and recommends either the visu-
alizations that contains the selected attributes or representative visualizations that
reveal the relationships between other attributes. Although the described recom-
mendation mechanism is rather naive (visualizations are ordered by the types and
names of the corresponding attributes). For each visualization, the authors propose
a rule of thumb for choosing the visual encodings based on cognitive considera-
tions. SeeDB [43] takes a user-specified database query and a reference query as
input. For both queries, SeeDB evaluates all possible aggregate views that defined
by a triplet: a group-by attribute, a measure attribute, and an aggregation function.
Based on the deviation between the aggregative views of user-specified query and
the corresponding one of the reference query, SeeDB visualizes the top k views
that have largest deviation in bar charts.

Model manipulation techniques maintain a model that reflects a user’s inter-
action in order to provide the user new insights. The existing methods (e.g.,
[12, 3, 9]) usually assume the user have a specific hypothesis in mind. Through
interactions, these methods aim to help the user efficiently confirm or reject the hy-
pothesis. On the other hand, we model user’s belief about the data, and update the
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model after a user has studied a new visualization. Our approach exposes as much
new information as possible to the user, thus increasing the user’s serendipity of
gaining new insights about the data.

In order to reflect a user’s interaction in the model, it is important to acknowl-
edge the cognitive aspect of how humans identify [37, 45, 47] and assimilate [5]
visual patterns. As our first attempt, SIDE assumes a user can visually identify the
clusters in 2D scatterplots and internalize the position of the points in the clusters.
One important line of future work is to investigate alternative assumptions about
what a human operator can learn from a scatterplot.
Iterative data mining and machine learning. There are two general frameworks
for iterative data mining: FORSIED [6, 7] is based on modeling the belief state
of the user as an evolving probability distribution in order to formalize subjective
interestingness of patterns. This distribution is chosen as the Maximum Entropy
distribution subject to the user beliefs as constraints, at that moment in time. Given
a pattern syntax, one then aims to find the pattern that provides the most informa-
tion, quantified as the ‘subjective information content’ of the pattern.

The other framework, which we here named CORAND [14, 24], is similar,
but the evolving distribution does not necessarily have an explicit form. Instead,
it relies on sampling, or put differently, on randomization of the data, given the
user beliefs as constraints. Both these frameworks are general in the sense that it
has been shown they can be applied in various data mining settings; local pattern
mining, clustering, dimensionality reduction, etc.

The main difference is that in FORSIED, the background model is expressed
analytically, while in CORAND it is defined implicitly. This leads to differences
in how they are deployed and when they are effective. From a research and de-
velopment perspective, randomization schemes are easier to propose, or at least
they require little mathematical skills. Explicit models have the advantage that
they often enable faster search of the best pattern, and the models may be more
transparent. Also, randomization schemes are computationally demanding when
many randomizations are required. Yet, in cases like the current chapter, a single
randomization suffices, and the approach scales very well. For both frameworks,
it is ultimately the pattern syntax that determines their relative tractability.

Besides FORSIED and CORAND, many special-purpose methods have been
developed for active learning, a form of iterative mining or learning, in diverse
settings: classification, ranking, and more, as well as explicit models for user pref-
erences. However, since these approaches are not targeted at data exploration, we
do not review them here. Finally, several special-purpose methods have been de-
veloped for visual iterative data exploration in specific contexts, for example for
itemset mining and subgroup discovery [2, 8, 42, 30], information retrieval [36],
and network analysis [4].
Visually controllable data mining. This work was motivated by and can be con-
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sidered an instance of visually controllable data mining [32], where the objective
is to implement advanced data analysis method so that they are understandable and
efficiently controllable by the user. Our proposed method satisfies the properties
of a visually controllable data mining method (see [32], Section II B): (VC1) the
data and model space are presented visually, (VC2) there are intuitive visual inter-
actions that allow the user to modify the model space, and (VC3) the method is
fast enough to allow for visual interaction.

5.5 Conclusions

In order to improve the efficiency and efficacy of data exploration, there is a grow-
ing need for generic and principled methods that integrate advanced visualization
with data mining techniques to facilitate effective visual data analysis by human
users. Our aim with this chapter was to present a principled framework based
on constrained randomization to address this problem: the user is initially pre-
sented with an ‘interesting’ projection of the data and then employs data random-
ization with constraints to allow users to flexibly express their interests or beliefs.
These constraints expressed by the user are then taken into account by a projection-
finding algorithm to compute a new ‘interesting’ projection, a process that can be
iterated until the user runs out of time or finds that constraints explain everything
the user needs to know about the data. By continuously providing a user with in-
formation that contrasts with the constructed background model, we maximize the
chance of the user to encounter striking and truly new information presented in the
data.

In our example, the user can associate two types of constraints on a chosen
subset of data points: the appearance of the points in the particular projection or
the fact that the points can be nearby also in other projections. We also provided
case examples on two datasets, one controlled experiment on synthetic data and
another on real census data. We found that in these preliminary experiments the
framework performs as expected; it manages to find interesting projections. Yet,
interestingness can be case specific and relies on the definition of an appropriate
interestingness measure, here the L1 norm was employed. More research into this
choice is warranted. Nonetheless, we think this approach is useful in constructing
new tools and methods for interactive visually controllable data mining in variety
of settings.

Also, a fundamental problem with linear projections is that they may not cap-
ture all types of structure in the data. It would be possible to work in a kernel
space to overcome this or study non-linear manifold learning. However, the defi-
nition of clusters in the visualization does not readily map back to the original data
space. Hence, it is not obvious then how to track the user’s gained knowledge in a
background model. Thus, this remains an open research question.
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We have been actively working to put SIDE into practical use. One interesting
application is a data analysis task called “gating”. Gating is an analysis technique
applied by biologists to flow cytometry data, where cells are data points and each
point is described by a few intensity readings corresponding to emissions of dif-
ferent fluorescent dyes. The goal of gating is to extract clusters (‘gates’) based
on cell’s fluorescence intensities so that the cell types of a given sample can be
differentiated. This is ongoing work.

SIDE is a prototype with several limitations. From a fundamental perspective,
we assume a user can visually recognize the clusters in 2D scatterplots and in-
ternalize the position of the points in the clusters. This may misguide users if
they give feedback and progress through a series of visualizations without making
the effort to truly understand the defined clusters. They may not learn much, but
more importantly because the intent is to provide new information continuously,
there is almost no redundancy between the visualizations so information that is a
combination of two or more previous visualizations is also never shown.

In further work we intend to investigate the use of the FORSIED framework
to also formalize an analytical background model [6, 7], as well as its use for
computing the most informative data projections. Additionally, alternative pattern
syntaxes (constraints) will be investigated. Another future research direction is
the integration of the constrained randomisation methods into software libraries in
order to facilitate the integration of the methods in production level visualization
systems.
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active intent modeling: Information discovery beyond search. Communica-
tions of the ACM, 58(1):86–92, 2015.

[37] Michael Sedlmair, Andrada Tatu, Tamara Munzner, and Melanie Tory. A
taxonomy of visual cluster separation factors. In Computer Graphics Forum,
volume 31, pages 1335–1344, 2012.

[38] Guo-Dao Sun, Ying-Cai Wu, Rong-Hua Liang, and Shi-Xia Liu. A survey
of visual analytics techniques and applications: State-of-the-art research and
future challenges. JCST, 28(5):852–867, 2013.

http://www.numericjs.com/
https://www.R-project.org/
https://www.R-project.org/


CHAPTER 5 135

[39] J. Thomas and K. Cook. Illuminating the Path: Research and Development
Agenda for Visual Analytics. IEEE Press, 2005.

[40] Warren S. Torgerson. Multidimensional scaling: I. theory and method. Psy-
chometrika, 17(4):401–419, 1952.

[41] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
JMLR, 9(Nov):2579–2605, 2008.

[42] Matthijs van Leeuwen and Lara Cardinaels. Viper — visual pattern explorer.
In Proc. of ECML–PKDD, pages 333–336, 2015.

[43] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran,
and Neoklis Polyzotis. S ee db: efficient data-driven visualization recom-
mendations to support visual analytics. VLDB, 8(13):2182–2193, 2015.

[44] Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, and Samuel
Kaski. Information retrieval perspective to nonlinear dimensionality reduc-
tion for data visualization. JMLR, 11(Feb):451–490, 2010.

[45] Hadley Wickham, Dianne Cook, Heike Hofmann, and Andreas Buja. Graph-
ical inference for infovis. TVCG, 16(6):973–979, 2010.

[46] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackin-
lay, Bill Howe, and Jeffrey Heer. Voyager: Exploratory analysis via faceted
browsing of visualization recommendations. TVCG, 22(1):649–658, 2016.

[47] Eugene Wu and Arnab Nandi. Towards perception-aware interactive data
visualization systems. In Data Syst. Interactive Anal. Workshop, 2015.

[48] Huijie Zhang, Quanle Liu, Dezhan Qu, Yafang Hou, and Bin Chen. Samp-
viz: An interactive multivariable volume visualization framework based on
subspace analysis and multidimensional projection. IEEE Access, 2017.

[49] Hong Zhou, Weiwei Cui, Huamin Qu, Yingcai Wu, Xiaoru Yuan, and Wei
Zhuo. Splatting the lines in parallel coordinates. In Computer Graphics
Forum, volume 28, pages 759–766, 2009.





6
Interpretable Representations

Subjectively Interesting Subgroup Discovery
on Real-valued Targets

Abstract Deriving insights from high-dimensional data is one of the core problems in data
mining. The difficulty mainly stems from the fact that there are exponentially many variable
combinations to potentially consider, and there are infinitely many if we consider weighted
combinations, even for linear combinations. Hence, an obvious question is whether we can
automate the search for interesting patterns and visualizations. In this chapter, we consider
the setting where a user wants to learn as efficiently as possible about real-valued attributes.
For example, to understand the distribution of crime rates in different geographic areas in
terms of other (numerical, ordinal and/or categorical) variables that describe the areas. We
introduce a method to find subgroups in the data that are maximally informative (in the
formal Information Theoretic sense) with respect to a single or set of real-valued target
attributes. The subgroup descriptions are in terms of a succinct set of arbitrarily-typed other
attributes. The approach is based on the Subjective Interestingness framework FORSIED to
enable the use of prior knowledge when finding most informative non-redundant patterns,
and hence the method also supports iterative data mining.
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6.1 Introduction

We introduce the central ideas by means of an example. Consider the situation
that a user want to learn about crime demographics, based on the UCI Communi-
ties and Crime data1 [27]. This data contains violent crime rates for all (n = 1994)
districts in the US and over 120 other attributes describing demographic statistics
of those districts. One method to learn about the relation between the ‘number
of violent crimes’ attribute and the demographic attributes is to extract subgroup
patterns, which are sets of data points where violent crime is surprisingly high (or
low) and that share similar statistics for one or several demographic attributes. A
subgroup pattern should be interpreted as ‘for data points that fall within the spec-
ified statistics that describe the subgroup, violent crime is surprisingly low/high’.

For example, the top subgroup pattern—identified through the method intro-
duced in this chapter—states that there are high violent crime rates in districts
where many mothers are unmarried at the moment they give birth to their child
(condition PctIlleg >= 0.39; mean violent crime rate 0.53 in subgroup vs. 0.24

overall). An illustration of the data coverage for this pattern is given in Fig. 6.1.
The subgroup covers 20.5% of the data and may be interesting because the distri-
bution of crime rates within this subgroup deviates substantially from the full data.
If a user would have no prior expectations about the data, this pattern is highly
informative.

Indeed, we may quantify how informative/interesting it is, in the Information
Theoretic sense: the number of bits of information we gain about the data by
learning about this pattern, which depends on the amount of data covered (more is
better) and how much the distribution in the subgroup differs from our expectation
(more is better; in this chapter we consider mean and variance statistics). Typically,
we would like to weight this against how complex the description of the pattern is
(number of attributes used to describe the subgroup plus the number of statistics
presented to the user, fewer is better), such that our aim is to provide a maximal
information rate.

This is precisely the contribution of this chapter. We quantify the Information
Content (IC; the amount of information gained) and Description Length (DL; the
complexity of the description) for subgroup patterns. However, while the example
above has only one target attribute (the violent crime rate), we also do this for
multivariate real-valued targets, in order to enable users to learn about multivariate
distributions. Besides, while the example above is about a surprisingly high mean
(violent crime rate), we quantify the IC and DL for both mean and (co-)variance
statistics.

As hinted at in the example, the IC of a pattern is inherently subjective, i.e.,
particular to a user, because how much you learn depends on your prior knowl-

1http://archive.ics.uci.edu/ml/datasets/communities+and+crime

http://archive.ics.uci.edu/ml/datasets/communities+and+crime
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Figure 6.1: Distribution of violent crime over the full data (light blue area), part covered
by the subgroup ‘high rate of unmarried mothers’ (red area), and distribution within the
subgroup (red dotted line). Height of colored areas given by Gaussian-kernel smoothed
estimates. The subgroup clearly covers a substantial amount of the data where the violent
crime rate is relatively high.

edge. We implement this subjectivity by modeling a background distribution over
the data space that is a Maximum Entropy distribution subject to constraints corre-
sponding to the current knowledge of a user. This approach is known as FORSIED
[6, 7] and also immediately enables iterative mining of non-redundant patterns
without much additional effort.

We have implemented an algorithm to iteratively mine interesting patterns
which is freely available as open source code. We have not studied the algorithmic
problem in detail, but the implementation is based on beam search, a frequently
employed approach in subgroup discovery. That is, it maintains a list of most
interesting patterns of arity k, expands these to arity k+ 1 and selects the most in-
teresting patterns again. Ultimately, it outputs the most interesting pattern found.
It handles categorical, ordinal, and numerical description attributes (the demo-
graphic attributes in the example) and supports time constraints (e.g., stop after 1
minute of mining). The implementation is based on Cortana [23].

In summary, this chapter contributes the following:
1. We define a new pattern syntax for subgroups with a multivariate real-valued
target distribution, called location and spread patterns. (Sec. 6.2.1)
2. We introduce a method to quantify their interestingness in a subjective manner.
(Sec. 6.2.3)
3. Before that, we study how to incorporate prior knowledge into the background
model, including previously identified patterns to enable iterative mining. (Sec.
6.2.2)
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4. We present how to mine high-quality patterns using beam search and gradient
descent. (Sec. 6.2.4)
5. We provide empirical evidence on four datasets that we can effectively find
interesting patterns. (Sec. 6.3)

Discussion of related work is presented in Sec. 6.4, directions for future work
and conclusions are given in Sec. 6.5. All code, including code for repeating the
experiments, and links to the datasets are available at:
http://www.interesting-patterns.net/forsied/sisd/.

6.2 Methods

Overview. The high-level problem addressed in this chapter is:

Problem 1. Main Problem. Iteratively inform the user about the mean and vari-
ance of subsets of data points that can be described concisely in terms of the de-
scription attributes, such that the rate of information gain of the user about the
target attributes is maximized at each iteration.

We first formalize the type of pattern shown to the user (Sec. 6.2.1). To explain
how to find the most interesting patterns of this type (Sec. 6.2.4), we first need
to formalize the background distribution (Sec. 6.2.2) and the interestingness of
patterns (Sec. 6.2.3).

The formalization follows the FORSIED approach: we formalize the user’s
belief state about the target attributes by means of a background distribution, and
quantify the IC of a pattern as the information (in its formal sense) the user gains
about the target attributes by seeing the pattern. The Subjective Interestingness
(SI) of a pattern is then formalized as the (subjective) IC divided by the DL of the
pattern.

Notation. The data consists of a set of n pairs (x̂i, ŷi), i ∈ [n] (where [n] is
shorthand for {1, 2, . . . , n}), called the data points. Here, the so-called description
attributes of the ith data point x̂i ∈

∏
j=1:dx

Xj is assumed to be a tuple of dx

attributes with domains Xj , and ŷi ∈ Rdy is a vector containing the values for dy

real-valued target attributes. We denote Ŷ = (ŷ′1, ŷ
′
2, · · · , ŷ′n)

′. In our setup the
user is interested in gaining an understanding of the behavior of the target attributes
in terms of the descriptions.

For example, the target attributes could contain healthcare-related attributes,
whereas the description attributes could describe lifestyle choices (e.g., smoking
or not, sedentary or active lifestyle, etc). Then, our method would yield insights
into the healthcare target attributes, in terms of the lifestyle descriptions. In the
example in Section 6.1, there is one target attribute (the violent crime rate) and
over 120 description attributes.

http://www.interesting-patterns.net/forsied/sisd/
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Figure 6.2: Patterns found in the synthetic data (§6.2.1,§6.3.1), (a) Data with the embedded
patterns highlighted. (b)—(d) Top ranked pattern discovered in iterations 1—3. Light green
circles are random data points, darker colored crosses the three embedded clusters. The
black star represents the mean of the full data and the black lines are the angles of the most
surprising variance direction. The two axes correspond to the only two target attributes.

We use hatted symbols to indicate these are empirical values. Non-hatted
equivalents will be used to denote the respective random variables, e.g., Y. They
allow us to reason about the amount of uncertainty the user has about the data
points. In general, standard face lower case symbols denote scalars, bold face
lower case symbols denote tuples or vectors, upper case bold face symbols denote
matrices, and upper case calligraphic letters denote sets.

6.2.1 Location and spread patterns

Subgroups, intentions, and extensions. We define patterns in terms of subgroups.
A subgroup is defined by a set of conditions on the description attributes (the value
combination is the subgroup intention) and by the set of data points for which
the description attributes satisfy these conditions (the index set is the subgroup
extension).

The intention is described in a pre-defined formal description language, such
as in the form of a conjunction of conditions on individual metadata attributes. For
Xj = R, such conditions are typically inequality conditions, and forXj categorical
they can be set in-/exclusion conditions. The extension is then specified by the
index set I ⊆ [n] with i ∈ I iff x̂i satisfies the conditions.

Location and spread patterns. Subgroups tend to be informative if the target at-
tribute values of data points in the extension {ŷi|i ∈ I} are unusual in some sense.
The way in which this set is unusual will be quantified by means of statistics—
functions of this set of data points. For example, its empirical mean could be
unusually far from what the user would expect, or its empirical variance around
this mean could be unusually small or large along a certain direction.

To be precise, let us define two statistics fI : Rn×dy 7→ Rdy and gw
I :
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Rn×dy 7→ R as follows:

fI(Y) =
∑

i∈I
yi/ |I| , and (6.1)

gw
I (Y) =

∑
i∈I

(
(yi − ŷI)

′
w
)2
/ |I| , (6.2)

where ŷI =
∑
i∈I ŷi/ |I| and w ∈ Rk is a unit vector, i.e., w′w = 1. The first

statistic (actually a set of dy statistics), when evaluated on Ŷ, quantifies the aver-
age vector of the data points in the extension (i.e., its average location), whereas
the second quantifies the spread around that location. Patterns considered here are
specified by an intention, which uniquely determines the extension I ⊆ [n], a unit
vector w, and the specification of the empirical values of one or both of the statis-
tics fI(Ŷ) and gw

I (Ŷ): we call it a location pattern when the former is specified,
and a spread pattern when the latter is specified. We find that the spread of a sub-
group cannot be interpreted straightforwardly without knowing its location, hence
we only ever provide the user with spread patterns for subgroups for which the
location pattern has been provided first. That is, we only explain the (co-)variance
structure of subgroups for which the user already knows the precise mean value
within the subgroup for all attributes.

Example. For the synthetic data shown in Fig 6.2a, a location pattern is an inten-
tion, e.g., ‘Attribute3 = true’, along with the mean of the subgroup, e.g., the dark
red set of points. A spread pattern is an intention, a direction (a weight vector of
unit length, as in Fig. 6.2b), and the magnitude of the variance in that direction.

6.2.2 Modelling the user’s belief state

As we are interested in quantifying how informative a pattern is to a particular
user, we quantify its informativeness (the IC) with respect to a model for the user’s
belief state. Patterns that contrast more strongly w.r.t. this belief state are more
surprising and thus carry more information for the user. We model the user’s
belief state by the means of a so-called background distribution, represented by
a density function p. This is a distribution over the possible data values (here, a
distribution for Y), which assigns a higher probability density to data values that
are deemed more probable by the user. The general form of this approach is known
as FORSIED [6, 7].

The initial background distribution, with density function p0, can be estimated
as the distribution of Maximum Entropy (MaxEnt) subject to constraints that ex-
press the user’s knowledge, aka. the prior beliefs. The reason to use the Max-
Ent distribution is that this is the only neutral choice, i.e., the only distribution
that contains no other information [5]. Importantly, during the mining process the
background distribution evolves, as each pattern shown to the user changes their
belief state about the data. We first derive the initial background distribution, and
then show how it can be updated to account for location and spread patterns.
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Initial background distribution. To derive the initial background distribution, we
need to assume what prior beliefs the user may have. We consider the case where
the user expects the overall mean of Ŷ to be equal to a specified vector µ, and its
covariance to be equal to a specified matrix Σ. Notice that these need not be equal
to the empirical statistics; they may be anything. The MaxEnt distribution subject
to such expectations is well-known to equal a multivariate Normal distribution
with µ and Σ as parameters:

p0(Y) ∝ exp
(
−
∑n

i=1
(yi − µ)

′
Σ−1 (yi − µ)/2

)
. (6.3)

The evolving background distribution. Given a pattern, the background distri-
bution has to be updated to reflect the user’s acquired knowledge. This can be done
by minimally altering the background distribution while ensuring the statistic is (in
expectation) as specified by the pattern. Here, minimally is naturally measured in
terms of the Kullback-Leibler (KL) divergence. This approach is known as the
principle of minimum discrimination information, a generalization of the MaxEnt
principle.

We postulate, for now, that through subsequent updates in this way, the back-
ground distribution will continue to be a product of multivariate Normal distribu-
tions, although the means and covariances of the different data points may differ.
I.e., after t iterations, the density function of the background distribution will be:

pt(Y) ∝ exp
(
−
∑n

i=1

(
yi − µti

)′
(Σt

i)
−1
(
yi − µti

)
/2
)
, (6.4)

where data points may have differing means µti and covariance matrices Σt
i. This

holds for t = 0 (when µ0
i = µ and Σ0

i = Σ for all i), and the following shows that
updating a distribution to account for location and spread patterns merely changes
the parameter values, leaving the distribution’s parametric form intact.

Background distribution updating for location patterns. To update pt given a
location pattern for a subgroup with extension It+1, we must solve the following
optimization problem:

pt+1 = arg min
q
KL(q || pt) = Eq [log (q(Y)/pt(Y))] (6.5)

subject to Eq
[
fIt+1

(Y)
]

= ŷIt+1
, (6.6)

with the additional technical constraint Eq [1] = 1 that guarantees that the distri-
bution has a proper normalization.

Theorem 4. Let pt be a density function of the form of Eq. equation 6.4. Then,
pt+1 has the same parametric form, with:

µt+1
i = µti +

∑
i∈It+1

(ŷIt+1
− µi)/ |It+1| , (6.7)

for i ∈ It+1, and all other parameters unaltered.
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Proof (outline only for brevity). Given the convexity of the KL-divergence and the
linearity of the constraints, the optimization problem to be solved is convex and
any stationary point is a global minimum. The Karush-Kuhn-Tucker (KKT) sta-
tionarity condition gives us the functional form of pt+1:

pt+1 ∝ pt exp

(
−λ′

∑
i∈It+1

yi

)
, (6.8)

for a vector of KKT multipliers λ. Manipulating this expression shows that pt+1

is still of the form of Eq. (6.4), with µt+1
i = µti + Σt

iλ for i ∈ It+1 and all other
parameters unaltered. The optimal value of λ can be found by ensuring primal
feasibility, yielding that λ =

∑
i∈It+1

(Σt
i)
−1(ŷIt+1 − µi). Substituting this for λ

in the expression for µt+1
i proves the theorem.

Background distribution updating for spread patterns. To update the back-
ground distribution given a spread pattern for a subgroup with extension It+1, we
need to use the constraint

Eq

[
gw
It+1

(Y)
]

= v̂w
It+1

, (6.9)

in the KL-minimization problem, where for conciseness we denote the empirical
variance as v̂w

It+1
, gw
It+1

(Ŷ).

Theorem 5. Let pt be a density function of the form of Eq. equation 6.4. Then,
pt+1, updated for a spread pattern with spread v̂w

It+1
, has the same parametric

form, with:

µt+1
i = µti + λw′(ŷIt+1

− µti)Σt
iw/

(
1 + λw′Σt

iw
)
, (6.10)

Σt+1
i = Σt

i − λΣt
iww′Σt

i/
(
1 + λw′Σt

iw
)
, (6.11)

for i ∈ It+1, and all other parameters unaltered. The optimal value for λ is found
as the (unique) zero of the following equation:

∑
i∈It+1

w′Σt
iw

1 + λw′Σt
iw

+
∑
i∈It+1

(
w′(ŷ − µti)

1 + λw′Σt
iw

)2

= |It+1|v̂w
It+1

.

(6.12)

The proof is omitted for brevity. It is more tedious but analogous to the previ-
ous one.

Accounting for a set of location and spread patterns. If we want to take into ac-
count a set of location and spread patterns, the KL-divergence minimization prob-
lem needs to be solved with a constraint for each of these patterns. The problem
remains convex, however, such that a coordinate-descent approach converges to
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the global optimum. This means iteratively updating the background distribution
for each of the patterns, until convergence. As long as the extensions of the differ-
ent patterns have limited overlaps, as is the case in our experiments, convergence
occurs very rapidly.

Implementation details. Rather than updating the parameters µi and Σi, we ac-
tually update the natural parameters Σ−1

i µi and − 1
2Σ−1

i of these multivariate
Normal distributions. This is numerically and computationally advantageous, but
we feel it provides more insight to discuss the updates to µi and Σi above.

Also note that, maintaining and updating the background distribution may be
costly if implemented naively. Each µti and Σt

i needs to be remembered and up-
dating them involve summations over It+1 terms. Yet, the number of distinct µti
and Σt

i remains limited.2

6.2.3 Subjective Interestingness

Given a background distribution, [6] proposed that the Subjective Interestingness
(SI) of a pattern can be computed as a ratio of two quantities: (a) the Information
Content (IC) of a pattern, which is the negative log probability of the pattern under
the background distribution; and (b) the Description Length (DL), which measures
the effort a user has to make to understand and internalize the pattern.

To describe location patterns, we have to inform the user about the number
of conditions in the pattern’s intention, the conditions themselves, and the mean
values for all attributes (to sufficient accuracy). For spread patterns, instead of the
means, the vector w needs to be described, with its magnitude. All these parts of
the code have constant length, except for the set of conditions, which has a length
proportional to the number of conditions |C|. Thus:

DescriptionLength = γ|C|+ η (+1),

where the +1 applies to spread patterns only because they have one more term
then location patterns.

We discuss determining γ and η in Remark 8 below. Note that it does not
matter whether the DL is reflective of reality in absolute terms, because the actual
SI scores are irrelevant. What matters is the ranking, hence it is desirable that γ is
chosen well relative to η.

As the IC (thus the SI) depends on the pattern type, we derive it first for location
patterns and subsequently for spread patterns.

SI for location patterns. As the background distribution equation 6.4 for the
target values Y of a data record is a normal distribution, the marginal distribution
pfIof the mean fI(Y) of a subgroup I is again a normal distribution, with mean

2Indeed, µti = µtj and Σt
i = Σt

j for all i and j such i, j ∈ Is or i, j 6∈ Is for all s ∈ [t], since
they will have been subjected to the same updates.
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µI =
∑
i∈I µi/|I|, and covariance ΣI =

∑
i∈I Σi/|I|. The IC of a location

pattern with extension I is thus the negative log probability of the pattern. Written
in full:

ICf (I) =− log pfI (fI(Y)) = log
(
(2π)dy |ΣI |

)
/2

+ (fI(Ŷ)− µI)′Σ−1
I (fI(Ŷ)− µI)/2.

(6.13)

The SI of a location pattern with extension I and statistic fI reads:

SIf (I) = ICf (I)/ (γ|CI |+ η) . (6.14)

SI for spread patterns. While the SI of a location pattern can be computed ana-
lytically, evaluating the SI for a spread pattern is more complex. However, it can
be approximated well.

If the patterns assimilated into the background so far do not overlap (i.e., non-
intersecting extensions)3, then after updating the background distribution with lo-
cation information of the pattern, the parameter µi of the background model equals
the observed mean of subgroup ŷI . So we can derive:

(yi − ŷI)′w(w′Σiw)−1/2 ∼ N (0, I) (normal distr.), (6.15)

((yi − ŷI)′w)2/ (w′Σiw) ∼ χ2
1 (Chi-squared, 1 d.f.). (6.16)

Denote the chi-squared random variable by ci,1 = ((yi − ŷI)′w)2/(w′Σiw).
Then, the variance statistic equation 6.2 is a linear combination of chi-squared
random variables:

gw
I (Y) =

∑
i∈I

w′Σiw · ci,1/|I|. (6.17)

The probability density function of a linear combination of chi-squared dis-
tributed random variables has been studied extensively, but a closed form analytic
solution is unknown. Here we choose the state-of-art approximation proposed by
[31]: Writing ai for the coefficient w′Σiw/|I|, they prove that the distribution
of gw

I (Y) can be accurately approximated by an affine function of a chi-squared
random variable cm with m degrees of freedom:

gw
I (Y) = αcm + β, where α =

∑
i∈Is a

3
i∑

i∈Is a
2
i

, (6.18)

β =
∑
i∈Is

ai −
(∑

i∈Is a
2
i

)2∑
i∈Is a

3
i

, m =

(∑
i∈Is a

2
i

)3(∑
i∈Is a

3
i

)2 .
3If the patterns used to update the background distribution do overlap, then µi 6= ŷI even after

the update. So the random variable in Eq. equation 6.16 follows a non-central chi-squared distribution,
hence the linear combination Eq. equation 6.17 also changes. In this case, we approximate the SI with
the same computation for the non-overlapping situation.
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Therefore the approximated probability density function reads:

pgwI (gw
I (Y)) ≈ ((gw

I (Y)− β) /α)
m
2 −1

e−
gwI (Y)−β

2α(
α · 2m2 Γ(m/2)

) .

Thus the IC for a spread pattern with extension I is given as:

ICw
g (I) =− log pgwI (gw

I (Y)) ≈ log
(
2
m
2 Γ(m/2)

)
+ α− (m/2− 1) log ((gw

I (Y)− β) /α)

+ (gw
I (Y)− β) / (2α) . (6.19)

The SI is then given by

SIw
g (I) = ICw

g (I)/ (γ|CI |+ η + 1) . (6.20)

Remark 8. In practice, the SI’s from Eqs. (6.14) and (6.20) are only used for
ranking the patterns, or even just for finding the single most interesting pattern.
The absolute value of the SI is largely irrelevant in practice. Thus, we can set
η = 1 without losing generality, such that only γ remains as a parameter, the
value of which essentially depends on the ‘coding scheme’ used to present the
pattern to the user.

We do know of any principled approach to choose γ well. Notice that the
problem here is not to do model selection in the statistical sense, but rather the DL
should be determined based on aspects of human cognition. In this chapter, we
set γ = 0.1 throughout all the experiments. However, tuning γ biases the results
toward more or fewer conditions to describe the subgroup and hence tuning could
be useful.

6.2.4 Search strategies

Overall approach. We have not studied the complexity formally, but the opti-
mization problem for either pattern type appears to be very difficult. Tiling [12],
a similar and easier-appearing problem, is already NP-hard. The score function
here (the SI) is also not monotonic and, if the cardinality of metadata attributes is
large, pattern enumeration, which then equals exhaustive search, is not a feasible
strategy. For spread patterns, the search problem is essentially a dimensionality
reduction problem. From empirical results, we learn that the search problem can
have many local optima. Besides, there is no structure in the problem that struck
us as easy to use.

Hence, we resort to optimization procedures that are commonly used in either
scenario. In brief, to find location patterns that maximize Eq. equation 6.14, we
employ beam search. For spread patterns, we first search for the best location
pattern and after updating the background distribution with the location, we use
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gradient descent to find the weight vector w that maximizes Eq. equation 6.20 for
that subgroup. The procedures are outlined in more detail below.

Location pattern. Beam search systematically explores the conjunctions of con-
ditions by expanding a limited set of conjunctions that have the largest SI so far.
It evaluates conjunctions of conditions on metadata attributes in a level-wise man-
ner. On each level, a limited list (beam width) of most promising combinations is
maintained. On the next level, the algorithm exhaustively grows the combinations
from the limited pattern list and maintains again the best. The mining process
stops when all possible conjunctions of conditions are explored or a chosen stop-
ping criterion is met, either a maximum search depth or time spent. Then, the best
pattern found throughout the search is given as output.

Spread pattern. Finding the best spread pattern consists of two steps: (1) find the
best location pattern and update the background distribution with that information,
(2) for that location pattern find the most interesting direction in the target space.
We have already described the first step; the second step can be formularized in
terms of the following optimization problem:

max
w

SI(gw
I (Y)) s.t. w′w = 1. (6.21)

Since the description length in SI is fixed for a specific extension I, the prob-
lem (6.21) maximizes the entropy of a χ2 distribution equation 6.19 over the unit
sphere. To optimize w, we apply the off-the-shelf manifold optimization tool
Manopt [4] with the unit sphere as the manifold, and solve it with the gradient-
based solver.4

6.3 Experiments

In this section we evaluate whether our method is able to find good location and
spread patterns in terms of SI and whether the model updates work as expected.
We also studied the pattern descriptions, to see whether the patterns found ap-
pear to be interesting. We conducted experiments on four datasets: one synthetic
and three publicly available ones, of widely varying nature. The results for each
dataset are described in the following subsections. The final subsection considers
the scalability of the methods.

We used the beam search available within the data mining tool Cortana [23],
using the following settings: descriptions on numerical metadata are based on ≥
and ≤ relations with four split points (1/5–4/5 percentiles). The beam width is
set to 40 and the search depth is four conditions. The search logs the best 150
subgroups, with a maximum run time of 5 minutes.

4We computed the gradient analytically, but details are omitted due to lack of space.
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Intention SI Iter1 Iter 2 Iter 3 Iter 4
a3 = ‘1’ 48.35 -1.13 -1.13 -1.13
a5 = ‘1’ 47.49 47.49 -1.13 -1.13
a4 = ‘1’ 39.49 39.49 39.49 -1.13
a4 = ‘0’ ∧ a3 = ‘1’ 36.26 -0.85 -0.85 -0.85
a5 = ‘0’ ∧ a3 = ‘1’ 36.26 -0.85 -0.85 -0.85
a3 = ‘0’ ∧ a5 = ‘1’ 35.62 35.62 -0.85 -0.85
a4 = ‘0’ ∧ a5 = ‘1’ 35.62 35.62 -0.85 -0.85
a3 = ‘0’ ∧ a4 = ‘1’ 29.62 29.62 29.62 -0.85
a5 = ‘0’ ∧ a4 = ‘1’ 29.62 29.62 29.62 -0.85
a5 = ‘0’ ∧ a4 = ‘0’ ∧ a3
= ‘1’ 29.01 29.01 -0.68 -0.68

Table 6.1: Change in SI for the top patterns over four iterations (§6.3.1). All patterns have
size 40.

6.3.1 Synthetic data

Data. We generated a dataset of 620 data points with two real-valued target at-
tributes (attributes 1 and 2) and five binary descriptive attributes. We first sample
500 target values from the 2-D multivariate normal distribution N (0, I) and then
embed three subgroups each consisting of 40 points into the data, see Fig. 6.2a.
Each subgroup has distance 2 from the mean but a different covariance structure:
the variance along the main eigenvector is much larger than the other. The first
three descriptive attributes (attributes 3–5) contain the true labels for subgroups
p1 to p3; the other two (attributes 6 and 7) take values randomly sampled from a
Bernoulli distribution with p = 0.5.

Setup. We set the mean and covariance of the background model equal to the
empirical values of the full data. First, we tested whether our method could retrieve
the embedded patterns. We performed the two-step spread pattern mining process
for three iterations, and at each iteration we selected the top pattern to update
the background distribution. Second, we corrupted the descriptive attributes by
randomly flipping every 0 and 1 with a certain probability. Then, we checked up
to what noise level the subgroups can still be retrieved.

Results. Figures 6.2b—6.2d show the top patterns in the first three iterations. Our
method correctly found the embedded subgroups in the first three iterations by
their displaced location from the expected center. It also retrieved the direction
along which each subgroup’s spread differs most from the full data covariance. Of
course this is not so surprising, because for each embedded subgroup there is a
description attribute setting the subgroup apart from the rest of the data.

To study the mining process in more detail, Table 6.1 shows the change in SI
for the top 10 patterns from the first iteration in subsequent iterations. We observe
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Figure 6.3: SI of subgroups in the synthetic data, (§6.3.1), corresponding to true descrip-
tions when adding and removing points randomly to the subgroups.

that the three embedded subgroups were the highest-ranking patterns in the first
three iterations (indeed they were the top 3 immediately because the subgroups
induced by the true descriptions stand out so clearly from the rest of the data).

Once they were selected and used to update the background distribution, in
the subsequent iterations the SI of the embedded subgroup patterns, and the SI
of the derived patterns, dropped and remained low afterwards. Hence, updating
the background distribution and the influence that should have on the IC scores of
patterns worked as expected.

It can be observed also that the subgroups with more complex descriptions
(e.g., a4 = ‘0’ ∧ a3 = ‘1’) have lower SI, even though the extensions are equivalent
to the corresponding ai = ‘1’ pattern. This is because their DL is higher, while
their extension is equivalent. Note that non-redundancy in the description is indeed
achieved naturally in a principled manner. Also worth noting is that the SI can be
negative. This is due to that the IC is based on a probability density and not a mass.

The result of the retrieval experiment with noise added to the description at-
tributes is given in Fig. 6.3. We find that all embedded patterns can still be re-
covered when the flipping probability is up to 0.22, and partially retrieved up to
0.25. These values correspond to adding a random set of points that is roughly
three and four times the size of the embedded pattern (e.g., (1 − 0.25) · 40 = 30

vs. 0.25 · 480 = 120). We conclude that the method is quite robust against noise.
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(a) (b) (c)

Figure 6.4: Explanation of what makes the first location pattern (Fig. 6.6a) interesting (also
see Fig. 6.5). Presence maps of the first three species in the full data: (a) wood mouse, (b)
mountain hare, and (c) moose.
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Figure 6.5: Explanation of what makes the first location pattern (Fig. 6.6a) interesting
(also see Fig. 6.4). Observed and expected mean and 95% confidence interval of the most
surprising species as ranked by SI.
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(a) (b) (c)

Figure 6.6: Extensions of the top three patterns found in the Mammal data (§6.3.2), (a) The
first pattern covers northern Europe and part of the Alps. The intention is ‘mean temper-
ature in March ≤ −1.68 ◦C’. (b) The second pattern covers the very south of Europe. Its
intention is ‘average monthly rainfall in August ≤ 47.62 mm’. (c) The third pattern covers
parts of eastern Europe. The intention is ‘average monthly rainfall in October≤ 45.25 mm
and mean temperature of wettest quarter ≥ 16.32 ◦C’.

6.3.2 Mammal data

Data. The mammal data encompasses data from The Atlas of European Mammals
and from WorldClim.org, as preprocessed by Heikinheimo et al. [13]. It contains
records about the presence of species in 2220 cells located on a grid that covers Eu-
rope. Each record contains the geolocation, binary labels for the presence/absence
of 124 mammals, as well as 67 climate condition indicators.

Setup. We used the presence/absence indicators as target attributes and climate in-
dicators for descriptions. The location information was used only for visualization
and interpretation. We again set the initial mean and covariance parameters of the
background model equal to the empirical values.

We found that for binary target attributes, spread patterns are not truly inter-
esting. This makes sense, because the variance of a Bernoulli random variable
is uniquely determined by the mean. Hence, a spread pattern becomes a one di-
mensional location pattern. That the attributes are binary is another form of back-
ground knowledge that could in principle be incorporated into the method, but it
would lead to different derivations and we did not study this. Instead, we studied
only location patterns on this data.

Results. The geographic locations of the data points part of the subgroup for
the top patterns found in the first three iterations are visualized in Fig. 6.6. The
subrgoup intentions (combination of values that specifies the subrgoup) are given
in the caption. The top pattern corresponds to locations that are relatively cold in
late winter. In contrast, the second pattern covers locations that have an extremely
dry summer, while the third pattern covers locations with a dry autumn and warm
conditions in the months when most rain falls (which is the summer in that area).

We further investigated the distribution of the mammals within the subgroups.
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Figure 6.7: Geographic locations of data points covered by the top subgroup patterns found
in the first three iterations on the Socio-economics data (§6.3.3): (a) “Children Pop. <=
14.1”, (b) “Middle-aged Pop. >= 26.9”, (c) “Children Pop. >= 16.4”. The contents of
these patterns is roughly as follows: (a) Low numbers of children are present in Eastern
Germany, as well as in three cities with a very high percentage of students (Heidelberg,
Passau, Wuerzburg). Here the Left party is popular is popular at the expense of all other
parties (Fig. 6.8a). (b) These are larger cities with relatively many jobs. Here the Green
party is more popular at the expense of Left. (c) This subgroup is almost the complement of
(a), but not quite (e.g., Saarland and smaller cities in the Ruhr area are not covered). Here
Left is impopular and all others are more popular than the country-wide averages.

Fig. 6.5 shows the mean values for the first pattern, and the mean and 95% confi-
dence interval for the background model for the top five mammal species ranked
by SI. Figures 6.4a–c show the actual occurrences of the top three species across
Europe. The species ranked first is the wood mouse, which is wide-spread in the
middle and southern Europe but not in the northern areas. The second species is
the mountain hare, whose habitat mostly coincides with the area associated to the
found location pattern. This indicates it thrives under harsh temperature condition.
The third species, moose, is also wide-spread mostly in the same area.

By contrasting these ground-truth location maps for the species (Figs. 6.4a–c)
against the subgroup location map (Fig. 6.6), we find that indeed this pattern could
be highly informative. However, while the description is concise, the displace-
ment in the target space does not appear to be sparse (it covers many species). To
comprehend the pattern in full, one should look at all the attributes where the mean
deviates from the expectation, not just at the top five. This means fully understand-
ing the pattern is somewhat difficult.

Finally, notice that these three species correlate and the background model
already accounts for that. Hence, the IC of the subgroup is much less than the sum
over the three attributes if they would be considered individually. Nonetheless, the
IC is very high.

Although not shown, we repeated this exercise for the second and third pat-
tern. The subgroup patterns appear to be informative. For example, ranked by SI,
the most surprising species for the second pattern are the absence of the stoat and
the bank vole, who prefer a moist environment, and the presence of the Iberian
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Figure 6.8: Spread pattern corresponding to the top pattern in Socio-economics data
(§6.3.3, Fig. 6.7a). (a) Expected vs. observed distribution of the subgroup. the y-axis is
ranked by SI, from top to bottom. (b) Expected vs. observed distribution for the pair of at-
tributes with highest SI, after updating the background model with the location pattern. The
contour plot shows the found weight vector (black line) along which the spread of the sub-
group (red dots) has largest difference from the background model (contour lines). (c) The
marginal CDF of background distribution and subgroup along w after updating location.

hare, who indeed lives exclusively in the area of the pattern. Thus, our method
appears to find geographically meaningful location patterns that reveal the rela-
tionship between climate conditions and sets of animals that are absent/present in
the corresponding area.

6.3.3 Socio-economics data case study

Data. The German socio-economic dataset [2] consists of socio-economic records
of 412 administrative districts in Germany. The features are divided into three
groups: election voting counts, age distribution, and workforce distribution. The
voting percentages of the five largest political parties (CDU/CSU, SPD, FDP,
Greens, and Left) in the 2009 German elections are also included. We added the
geographic coordinates of each district center ourselves.

Setup. We used the vote count attributes as targets and the age and the work force
attributes for the descriptions. Geolocations were used only for interpretation.
Again, we set the initial mean and (co-)variance for the background distribution
equal to the empirical values. In this case, that means we assume a user initially
knows the overall voting behavior of the 2009 German elections.

We again performed three iterations of the subgroup discovery algorithm, but
this time we studied both the location and the associated spread pattern in each
iteration. To increase interpretability, we enforced a 2-sparsity constraint on w,
by optimizing it for each pair of target attributes separately and then selecting the
result with the highest SI.

Results. Fig. 6.7 shows the top location patterns found, and Fig. 6.8 some explana-
tion and the spread pattern for the top location pattern. Comparing the distribution
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Figure 6.9: Top spread pattern found in the Water quality data (§6.3.4). (a) Subgroup vs.
background distribution, along with the optimal projection vector w, projected on the two
axes with highest weights. (b) CDF of subgroup and model along w. (c) The weight vector
w itself.
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Figure 6.10: Observed and expected distribution of the top location pattern found in the
Water quality data (§6.3.4), before and after updating location.
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of the pattern against the expected distribution under the model (Fig. 6.8a, red
and blue lines), we observe that the voting behavior in the corresponding districts
deviates substantially from the full population: more votes for Left, fewer for all
others. The intention of the pattern corresponds to districts with relatively few
children; from the map we see the extension covers mainly East Germany.

Once we update the background distribution with the location pattern, the
model mean of the pattern becomes the observed mean, see Fig. 6.8b. Given
the updated background distribution, we find that the spread pattern with highest
SI is related to the covariance between the social democrats (SPD) and Christian
democrats (CDU), with weight vector (0.5704, 0.8214) (see Fig. 6.8c).5 As visu-
alized in Fig. 6.8d, the variance in this direction is much smaller than expected.
Of course since the votes add up to a constant, under the model we also expect
negative correlations between the parties, but for this subgroup the anti-correlation
is much stronger than expected. This indicates these parties really appear to battle
for the same voters. However, we are not sufficiently knowledgeable of German
politics to judge whether this is a solid observation.

Fig. 6.7 also shows the extensions for the top patterns in the second and third
iterations. The second pattern has intention “Middle-aged Pop. >= 26.9” and
contains large cities. Within those districts, the Green party has relatively high
vote counts, which comes at the expense of the Left party. The third pattern,
“Children Pop. >= 16.4”, is mostly a complementary pattern to the first one (see
Fig. 6.7a,c), except that many of the big cities (Munich, Berlin, Cologne, etc.) fall
exactly between the two thresholds (> 14.1, < 16.4). The third pattern indeed
covers locations where Left is unpopular and all other parties receive relatively
many votes compared to the background model. In both the second and third
location pattern, the corresponding spread pattern is a similar low-variance pattern
as in Fig. 6.8. In our subjective opinion, these patterns appear to convey potentially
highly interesting insights into this data.

6.3.4 Water quality data case study

Data. The River Water Quality dataset [10] consists of 1060 water quality records
sampled from rivers in Slovenia. Each record contains measured values for 16
physical/chemical parameters and 14 bioindicators (7 plants, 7 animals), including
a list of all taxa present and their density. The density of each taxon is recorded
by an expert biologist at three different qualitative levels, where 1 means the taxon
occurs incidentally, 3 frequently, and 5 abundantly.

5The 2d-contour plot of the subgroup is aggregated as the average pdf of the background model
for each data point in the subgroup. The mean and covariance are the sub-vector and the sub-matrix
that correspond to attributes indicated by the weight vector. This visualization is not fully accurate, as
not all points have the same parameters. A single multivariate normal cannot represent the background
model accurately.
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Setup. We use the 16 physical/chemical parameters as targets and the 14 bioindi-
cators as descriptors. Mean and (co-)variance of the initial background distribution
were set to the empirical values.

Results. The top location pattern has intention “Amphipoda Gammarus fossarum
<= 0 AND Oligochaeta Tubifex >= 3” and covers 91 records. Fig. 6.10a shows
that the water samples fulfilling the description have an above-average biologi-
cal oxygen demand (BOD), chlorine concentration (Cl), electrical conductivity, as
well as K2Cr2O7 and KMnO4 (indicating chemical oxygen demand, COD).

In the second step our method finds, without enforcing it, a sparse weight vec-
tor placing high weights on BOD and KMnO4 (Fig. 6.10d). The contour plot
(Fig. 6.10b) indicates that along the most interesting spread direction, w, the vari-
ance of the subgroup is much larger than expected. The CDF in Fig. 6.10c also
confirms this. The main conclusion here is that, although the identified patterns
are typically subgroups that are displaced from the center of the data, which is typ-
ically associated with having a smaller variance in comparison to the full data, it
is also possible to find spread patterns corresponding to surprising higher-variance
directions.

6.3.5 Scalability

We have not analyzed the algorithmic complexity of mining optimal location and
spread patterns in detail, nor have we studied extensively how to find good solu-
tions in practice. The computation time of the beam search algorithm can be con-
trolled through the search parameters (number of solutions kept at each iteration,
discretization strategy for numerical attributes, maximum number of conditions
for the description) and it employs a timer. Of course it may not find the optimal
pattern, but this strategy allows it to work on data of any size and dimensionality.
Likewise, the heuristic solution to mine spread patterns typically outputs a pattern
in very little time.

Notice that for both algorithms, the runtime is linear in the number of data
points (i.e., to do the exact same computations on larger data is linear). One may
add attributes without affected the computation time at the mining stage (back-
ground model discussed below), but of course to include them in candidate de-
scriptions leads to an exponential growth in number of possible subgroup defini-
tions. We feel it would be pointless to include a runtime experiment for these steps,
as it is not feasible to compute the optimal solutions as a comparison, except on
very small data.

What we can analyze is the runtime of fitting the background distribution. For
all four real-world datasets, we mined location and spread patterns and measured
the time it took to find the new MaxEnt distribution incorporating both previous
and the newly identified pattern, for 20 iterations. The results are presented in 6.2.
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Location pattern Spread pattern
Iteration GSE WQ Cr Ma GSE WQ Cr
Init 9.167 8.640 9.714 8.453
1 0.13 0.16 0.12 13.72 0.10 0.10 0.11
2 0.09 0.16 0.08 33.09 0.08 0.05 0.08
3 0.12 0.31 0.09 62.61 0.06 0.12 0.09
4 0.25 0.52 0.11 120.44 0.11 0.13 0.13
5 0.33 0.92 0.16 184.33 0.14 0.18 0.20
6 0.49 1.41 0.19 250.23 0.19 0.19 0.27
7 0.68 1.94 0.30 399.90 0.26 0.32 0.44
8 0.91 2.57 0.41 602.54 0.37 0.36 0.50
9 1.16 3.07 0.56 796.38 0.38 0.37 0.65
10 1.49 4.00 0.80 1130.81 0.42 0.46 0.83
11 1.69 5.05 1.02 - 0.42 0.49 1.07
12 1.95 6.17 1.23 - 0.52 0.57 1.32
13 2.56 7.48 1.52 - 0.63 0.65 1.62
14 2.76 9.04 1.95 - 0.68 1.16 2.09
15 3.17 10.60 2.60 - 0.72 1.00 2.86
16 3.51 11.92 3.41 - 0.81 1.06 3.42
17 4.40 14.06 4.15 - 1.12 1.38 5.01
18 4.94 15.95 5.34 - 1.17 1.47 5.69
19 4.99 17.92 6.66 - 1.07 1.57 6.30
20 5.58 19.97 6.71 - 1.24 1.92 6.65

Table 6.2: Runtime measurements to update the background distribution with identified
patterns. First row shows time (in seconds) to fit the initial distribution, consecutive rows the
time until convergence when incorporating additional patterns. As the updates for location
and spread patterns are different, these are reported independently (columns 2–5 and 6–9).
Data sets: German Socio-Economics (GSE; n = 412, dx = 13, dy = 5), Water Quality
(WQ; n = 1060, dx = 14, dy = 16), Crime (Cr; n = 1994, dx = 122, dy = 1),
Mammals (Ma; n = 2220, dx = 67, dy = 124).

We find that after insertion of 10–20 location patterns, the time it takes to find
the MaxEnt distribution becomes noticeable. This may not be so surprising, as
there are at least dy new constraints every time we insert a new location pattern.
For the Mammals data, which has target dimension 124, the time quickly grows
to durations that cannot be considered acceptable for interactive use. We also
observe that for spread patterns, this problem does not occur because they are by
definition of low rank (the weigth vector is not necessarily sparse but it is only a
one-dimensional projection).
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6.4 Related work

The pattern syntax introduced in this chapter can be considered a type of Excep-
tional Model Mining (EMM) [9, 21]. EMM can be seen as a multi-target general-
ization of Subgroup Discovery (SD) [17], which is a single-target supervised form
of Pattern Mining [24]: the broad subfield of data mining where only a part of the
data is described at a time, ignoring the coherence of the remainder.

Tasks similar to SD are Contrast Set Mining [1] and Emerging Pattern Mining
[8]. Both these tasks have not been considered for multiple target attributes simul-
taneously, and hence differ from the current chapter in that they do not directly
help in understanding interactions between variables. The relationships between
Contrast Set Mining, Emerging Pattern Mining, and SD are extensively described
in [20].

Distribution Rules [14] can be seen as an early instance of EMM with only
one target. Umek et al. [29] do consider SD with multiple targets. They approach
the attribute partition in the reverse way of EMM: candidate subgroups are gen-
erated by agglomerative clustering on the targets, and predictive modeling on the
descriptors strives to find matching descriptions.

Redescription Mining by Galbrun et al. [11] is the closest related work to this
chapter. It considers the case where a dataset contains two distinct parts, describ-
ing the same entities from two different viewpoints. Redescription Mining treats
these two parts symmetrically: it seeks descriptions inducing the same subgroup,
resulting in a rule of the form A ' B. In contrast, we consider the setting where
the two parts play distinct roles: one part contains description attributes on which
subgroups are defined, the other part forms the numeric data which we aim to learn
about and hence on which the informativeness of subgroups is evaluated. This then
results in rules of the form A⇒ B.

Interestingly, Galbrun et al. [11, Fig. 8, Tab. 6, 7] also considered the prob-
lem of ‘biological niche finding’ on the Mammal data. However, none of the
subgroups they report are the same as ours. Their version of the data also encom-
passes a slightly larger region, but it is anyway unsurprising that results are quite
different. The score function in Redescription Mining is not based on how much
the subgroups stand out from the overall data, but only on the accuracy of the re-
description and its cover. Hence, we did not further compare the results of our
method with theirs.

‘Subjective Interestingness’ was first used in the context of Association Rule
Mining [25, 28]. These papers formalized the prior belief of a user in a belief
system, and sought association rules that contrasted with these beliefs. We base
our approach on the more recent and systematic approach named FORSIED [6, 7].
This framework has been applied successfully to a variety of data mining prob-
lems, such as mining relational patterns [22], community detection [30], cluster-
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ing [18], and dimensionality reduction [15]. Maximum Entropy modeling for real-
valued data has also been studied before [19], in order to compute the significance
of the Weighted Relative Accuracy in SD. That method targets a different pattern
syntax than what is introduced here and does not apply to EMM.

Finally, Boley et al. [3] recently introduced a score function for single-target
SD where a reduction in variance adds to the interestingness score of a subgroup.
While their approach is less general and the interestingsness score arguably less
principled, they do study the algorithmic complexity of the problem in detail and
derive a tight-optimistic-estimator-based branch and bound algorithm to find the
globally best subgroup pattern very efficiently.

6.5 Discussion and Conclusion

Numerous unsupervised methods exist to make sense of real-valued datasets, most
notably methods for dimensionality reduction and clustering. Labels (or more gen-
erally description attributes as in this chapter) associated with the data points are
then often used to interpret these results, e.g., by measuring enrichment of cer-
tain labels within a cluster, or by coloring data points in a scatter plot of a 2-D
projection of the data with a color depending on the labels of the points, for subse-
quent visual inspection. However, whether such analyses provide explanations or
insights is a matter of coincidence: there is no a priori reason that clusters should
be enriched, and there is no guarantee that equally colored points are grouped in a
scatter plot.

Here, we propose an alternative approach, in directly using the description
attributes to guide the search for surprising multivariate relations in the data. Re-
sulting subgroups are then automatically explained well by the descriptions. Our
approach contrasts with traditional supervised methods in focusing on local pat-
terns: properties of the target attributes that apply only to subsets of the data de-
fined in terms of conditions on their metadata. Arguably, with increasing amounts
and resulting inhomogeneity of datasets, the importance of local patterns is bound
to increase.

Our approach generalizes the literature on Subgroup Discovery and Excep-
tional Model Mining in being applicable for real-valued target attributes of ar-
bitrary dimensionality, and in searching for multivariate local patterns across all
these dimensions, including unusual covariance structures of subgroups in the data.
Moreover, the interestingness of the patterns of this type is formalized in a rigorous
manner, quantifying the amount of information the user gains by observing them.
We have demonstrated that the resulting algorithms are effective and efficient, in
theory and in practice.

In further work, we plan to remove the dependency on third party tools (Matlab
and Cortana) and produce a standalone version of the method for public dissemi-
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nation. Furthermore, it would be interesting to study similar pattern syntaxes for
binary, categorical, and mixed sets of target attributes. Besides, although we have
little hope to improve the search for optimal spread patterns, it may be feasible to
devise a branch-and-bound approach to mine optimal location patterns efficiently.
Indeed this appears to be the most relevant question to be addressed in the future.
Finally, we aim to integrate this method with SIDE [16, 26], our online tool for ex-
ploration of numerical data, which currently does not use any labels or description
attributes.
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[20] P. Kralj Novak, N. Lavrač, and G.I. Webb. Supervised descriptive rule dis-
covery: A unifying survey of contrast set, emerging pattern and subgroup
mining. JMLR, 10:377–403, 2009.

[21] D. Leman, A. Feelders, and A.J. Knobbe. Exceptional model mining. In
Proc. ECML-PKDD, pages 1–16, 2008.

[22] J. Lijffijt, E. Spyropoulou, B. Kang, and T. De Bie. P-n-rminer: A generic
framework for mining interesting structured relational patterns. IJDSA, 1(1):
61–76, 2016.

[23] M. Meeng and A. Knobbe. Flexible enrichment with cortana–software demo.
In Proc. of BeneLearn, pages 117–119, 2011.

[24] K. Morik, J.-F. Boulicaut, and A. Siebes, editors. Local Pattern Detection, In-
ternational Seminar, Dagstuhl Castle, Germany, April 12-16, 2004, Revised
Selected Papers, volume 3539 of LNCS, 2005.

[25] B. Padmanabhan and A. Tuzhilin. A belief-driven method for discovering
unexpected patterns. In Proc. of KDD, pages 94–100, 1998.
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7
Conclusion and Future Work

7.1 Conclusion

Representation learning has gained enormous popularity due to its capability to
capture rich information from the data and its easy-to-compute nature. Despite
the success of representation learning, it currently has two limitations. First, high-
dimensional data often has many aspects, a low-dimensional data representation
is typically insufficient to capture all structure in the data and the most salient
structure is often already known. It is not obvious how to capture the remaining
information in a similarly effective way. Second, the structure in a dataset may
exceed the representational power of Euclidean space. Hence, the data might be
underrepresented.

To address the two issues, this thesis proposes a framework for learning Sub-
jectively Interesting Data Representations (SIDR). The framework delineates how
to take a prior about the data and find data representations that complement the
prior.

First, by discounting the known salient structure, the SIDR framework en-
ables complementary structure to be captured, allowing the remaining information
to be captured effectively. Along this line, we developed a linear dimensional-
ity reduction method called Subjectively Interesting Component Analysis (SICA)
in order to explore the remaining information via linear projections. For com-
plex non-linear structure remaining in the data, we further proposed Conditional
t-distributed Stochastic Neighbor Embedding (ct-SNE), a conditioned version of
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t-distributed Stochastic Neighbor Embedding. SICA and ct-SNE are evaluated in
extensive case studies on both synthetic and (large) real-world datasets. The re-
sults show both methods effectively discount the prior knowledge and allow the
remaining structure in the data to be efficiently explored.

Second, by encoding specific complex structure in the data as prior, the impor-
tant information can be represented more accurately in Euclidean representations
to capture. Combining the prior and the Euclidean representation, representation
learning methods can yield better models of the data. This idea is readily applica-
ble to network embeddings, where network structural properties such as (approxi-
mate) multipartiteness, certain degree distributions, or assortativity are difficult to
express using Euclidean space. By applying SIDR, we derived Conditional Net-
work Embeddings (CNE) that optimizes network representations with respect to
certain prior knowledge about the network. We evaluated the performance of CNE
on standard network analysis tasks such as link prediction and node classifications.
Comparing to heuristic methods and state-of-art NE methods on a wide range of
networks, CNE shows superior performance. This shows CNE is capable of bet-
ter representing network data. Additionally, CNE also demonstrates potential for
network visualization.

To enable real users to explore data using subjectively interesting linear pro-
jections, this thesis also presented an application of SIDR framework on iterative
and interactive visual data analysis, named Subjectively Interesting Data Explo-
ration (SIDE). Using SIDE, users can interactively select or label patterns in low-
dimensional visualizations during their exploration. SIDE accumulates the learned
patterns as prior and presents more informative representations to users. Case
studies on both synthetic and real-world data show SIDE is useful for discovering
subjectively interesting structure from data in an iterative and interactive manner.

Last but not least, this thesis takes a step along the direction for improving the
interpretability of subjectively interesting linear projections. Introduced under the
SIDR framework, Subjectively Interesting Subgroup Discovery (SISD) searches
subjectively interesting representations that are both informative and descriptive.
Case studies on synthetic and real-world datasets show the capability of SISD to
provide interesting representations with concise descriptions.

7.2 Future work

Representation learning can be viewed as a learning process that disentangles the
factors of variation in the observed data [1]. The superior performance of most
representation learning methods is due to the implicit inductive biases (e.g., human
knowledge) for disentangling the factors of variation from data that are encoded
in the methods themselves [2]. As a representation learning framework, SIDR
formalizes how to use priors to explicitly encode the inductive bias introduced by
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a user. This enables us to peel the prior from the data and obtains embeddings
that contain the remaining factors disentangled from the prior. As a result, the un-
modeled information in the embedding become more salient. The combination of
prior and embedding also gives a better model of the data. Under this perspective,
a general research direction for SIDR is to generalize to other data types as well
as to incorporate new types of priors. For time series data, the idea of subjective
interestingness has been used to find informative motives with respect to a given
prior [3]. For other data types such as image, we speculate SIDR framework can be
used to untangle the complex information in the data from Euclidean embeddings
to give a better representation (similar to CNE). Currently the prior types in SIDR
are derived for specific purposes and data types. To extend the applicability of
SIDR, a general language of encoding priors in SIDR would need to be developed.

For dimensionality-reduction instantiations SICA and ct-SNE, a further re-
search direction is to stack the priors that encode information learnt by a user
along his/her exploration and compute the next informative representation. SIDE
achieves this goal. However, it visualizes different aspects of the data in a sequen-
tial manner. As different interactions of the user leads to different (ordering of)
visualizations to be explored, users can easily lose track of the high-level picture
of the data when investigating the different aspects sequentially. One solution is to
keep a tree-like exploration history, and allow user to navigate through the history
for retrospection. The visualization at a ‘tree node’ could be further reloaded in
order to start a different exploration path. Such history tracking can remind users
about the previously explored aspects and help them to piece together a holistic
understanding about the data.

CNE has shown it superior performance in network analysis tasks. However,
it still requires some hyper-parameter tuning when fitting different networks. Al-
though CNE comes with a default hyper-parameter setting, its performance on dif-
ferent dataset still drastically varies based on the characteristics (e.g., size, density,
multipartitienss) of a network. Thus, the next step would be to benchmark CNE
on various types of networks and find the best parameters according to the char-
acteristics of networks and downstream tasks. Additionally, an automatic hyper-
parameter tuning module (e.g., via grid searching, Bayesian optimization) could
be included to fine-tune the hyper-parameters for specific embedding cases.

Evaluation of the methods introduced here are mostly done through case stud-
ies, where the results produced by the methods are analyzed and reasoned against
a set of assumption about the analysts. The main goal here is indeed to show these
methods are able to produce data representations that are subjectively interesting
to users. However, since subjective interestingness is user specific, the evalua-
tion results would be more definitive if they are based on real user studies rather
than a set of abstract assumptions. For this purpose, we could adapt the Creedo
evaluation framework [4] for empirically evaluating knowledge discovery systems.
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Creedo allows user studies to be easily configured for testing how well certain data
analysis methods support real users to perform certain data analysis tasks based on
certain evaluation criteria. That said, we would like to evaluate the usefulness of
SIDR through user studies in the near future.
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