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ABSTRACT

In this work, we propose a semi-supervised method for classi-
fication of polarimetric synthetic aperture radar (PolSAR) im-
ages. In the proposed method, a 2-level mixture model is con-
structed by associating each component density with a unique
Wishart mixture model (instead of a single Wishart distribu-
tion as that in the conventional Wishart mixture model). This
modeling scheme facilitates the accurate description of data
for the categories, each of which includes multiple subcat-
egories. The learning algorithm for the proposed model is
developed based on variational inference and all the update
equations are obtained in closed form. In the learning algo-
rithm, the spatial interdependencies are incorporated by im-
posing a Markov random field prior on the indicator variable
to alleviate the speckle effect on the classification results. The
experimental results demonstrate the improved performance
of the proposed method compared with the unsupervised ver-
sion and supervised version of the proposed model as well as
an existing method for semi-supervised classification.

Index Terms— Polarimetric synthetic aperture radar
(PolSAR), semi-supervised classification, finite mixture
model, variational inference, remote sensing.

1. INTRODUCTION

Polarimetric synthetic aperture radar (PolSAR) is an ad-
vanced imaging system, which actively emits microwave and
receives back-scattered signals in horizontal and vertical po-
larization [1]. With different combinations of emitting and
receiving polarization, multi-channel PolSAR images are ac-
quired, which provide rich information about the physical
scattering mechanism over the illuminating area and help to
better understand observing targets. PolSAR images have
been pervasively used in various applications such as ship
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detection, agriculture monitoring, and environment surveil-
lance.

For the interpretation of PolSAR images, many unsuper-
vised methods have been proposed. In H/α-Wishart methods,
all the pixels in a PolSAR image are first assigned to eight cat-
egories according to the H/α classification scheme, and then
the resulting classification map is further refined by using the
Wishart classifier to take into account the statistical property
of PolSAR data [2]. Based on this statistical property, the
complex Wishart distribution is introduced as the component
density of a finite mixture model, leading to a Wishart mixture
model (WMM) for unsupervised classification of PolSAR im-
ages [3]. The WMM method associates each of its Wishart-
distributed components with a unique category. Thus, the la-
bels in the unsupervised classification can be obtained by as-
signing each pixel to a component according to Bayes’ rule.
Although the effectiveness of these methods has been verified,
they suffer from the unreliable results, which could be either
too coarse or over-detailed especially for the interpretation of
a large PolSAR image with a great number of categories.

In the aforementioned methods, each category is essen-
tially characterized by a single Wishart distribution. How-
ever, this modeling scheme is not always accurate for a com-
plicated category, which generally involves multiple subcate-
gories. For instance, in an urban area, there could be roads,
trees, and houses, which statistically exhibit different charac-
teristics from each other. Thus, the inaccurate modeling in the
aforementioned methods could lead to the degraded classifi-
cation performance.

PolSAR images generally exhibit a granular “noise” pat-
tern, which results in a severe “salt-and-pepper” appearance
in classification maps of the pixel-wise methods. To im-
prove the quality of the interpretation results, a commonly
used technique to incorporate the local correlation is Markov
random field (MRF), which effectively models the spatial
structure of labels and facilitates the good interpretation of
PolSAR images [4, 5].

In this paper, we propose a two-level Wishart mixture
model (2L-WMM) with a Markov random field prior (2L-
WMM-MRF) for semi-supervised classification of PolSAR



images. Within the framework of finite mixture models, the
proposed 2L-WMM adopts a unique WMM for each compo-
nent (category) to describe the mixture of statistical charac-
teristics in each category. The algorithm for semi-supervised
learning of the proposed model is developed based on varia-
tional inference. In our method, the closed-form update equa-
tions are achieved for convenient implementation. The re-
sulting algorithm resembles an iterative procedure that first
predicts the labels for the unlabeled samples and then adds
all these labels and samples into the training set so as to esti-
mate the parameters for each category. To alleviate the “salt-
and-pepper” effect, the local correlations are incorporated by
further introducing the MRF prior in the two-level mixture
model. The proposed method is tested with a realistic Pol-
SAR image over an agriculture area.

2. PRELIMINARIES

2.1. Statistical properties of PolSAR data

By stacking the back-scattered signals from different po-
larimetric channels, PolSAR data can be represented as a
complex-valued vector S = [Shh, Shv, Svh, Svv]

T [1]. Here,
T is the transpose operator. The subscripts for the vector
entries indicate the emitting and receiving polarizations, in
that order. The multilook covariance matrix is obtained by
averaging the neighboring pixels as [1]

C =
1

L

L∑
i=1

SiS
H
i , (1)

where L is the number of looks, and the superscript H is the
Hermitian transpose operator. Under fully developed speckle
conditions [1], the covariance matrix follows the complex
Wishart distribution [6]

W(C;L,Ω−1) =
LLd

Γd(L)

|C|L−d

|Ω−1|L
exp {−L · tr(ΩC)} , (2)

where Γd(L) = π
d(d−1)

2

∏d−1
i=0 Γ(L − i), and Γ(x) =∫ +∞

0
zx−1 exp{−z}dz is the Gamma function. d is the num-

ber of entries in the vector S. tr(·) and |·| are the trace and the
determinant operator, respectively. The complex Wishart dis-
tribution has been widely used to construct statistical models
for the tasks of interpreting PolSAR images.

2.2. Variational Inference

In variational inference [7], the Bayesian inference is con-
ducted by minimizing the Kullback–Leibler divergence be-
tween the true posterior distribution and the approximated
posterior distribution q(Λ), which is also equivalent to maxi-
mizing the variational lower bound L(q(Λ)) as [7]

max
q(Λ)

L(X, q(Λ)) =

∫
q(Λ) ln

p(X|Λ)p(Λ)

q(Λ)
dΛ, (3)

where Λ = {Λi} and X are the sets of the random variables
and the observations, respectively. p(Λ) is the joint prior dis-
tribution of the all the random variables.

To achieve tractable solutions to the posterior distribution,
the factorized approximation is commonly exploited, which
restricts the approximated posterior distribution to the form
of q(Λ) =

∏
i qi(Λi). With this approximation, the posterior

distribution can be obtained as [7]

q∗(Λi) =
exp

{
Ej 6=i[ln p(X,Λ)]

}∫
exp

{
Ej 6=i[ln p(X,Λ)]

}
dΛi

, (4)

where Ej 6=i[ln p(X,Λ)] =
∫

ln p(X,Λ)
∏
j 6=i(qj(Λj)dΛj).

3. METHODOLOGIES

3.1. Two-Level Wishart Mixture Model

For the modeling problem of multiple subcategories, the den-
sity for each component in a finite mixture model (FMM)
should be sufficiently flexible to describe the statistical char-
acteristics of the data belonging to a complicated category.
To this end, the framework of FMM is used to achieve flexi-
ble and accurate models as component densities, leading to a
mixture of mixture models (i.e., a two-level mixture model).
Thus, by using the WMM as the component densities, we pro-
pose a two-level Wishart mixture model (2L-WMM), i.e.,

p(C) =

M∑
i=1

φi · K∑
j=1

ωijW(C;L,Ω−1ij )

 . (5)

The introduced WMM component in the proposed model is
able to describe a multimodal distribution with great poten-
tial in characterizing multiple subcategories. The mixing co-
efficient φi is associated with the top-level mixture model.
Meanwhile, the mixing coefficient ωij is associated with the
secondary-level mixture model, which helps to model the sub-
categories.

3.2. Variational Inference for Semi-supervised Learning
of the Proposed Model

The proposed 2L-WMM is learned based on the variational
Bayes. To derive the variational learning algorithm, the
Bayesian inference model is first established by introducing
indicator variables and by selecting conjugate prior distribu-
tions [7]. Specifically, hidden indicator variables Z = {zn}
and Y = {yni} are introduced respectively for the top and
the secondary mixture model. zn = [zn1, zn2, · · · , znM ] and
yni = [yni1, yni2, · · · , yniK ] are binary vectors with only
one 1-valued element to indicate which category and sub-
category data n belongs to. The multinomial distribution is
selected as the distribution for these hidden variables. The
prior distributions of the mixing coefficients (i.e., Φ = {φi}



and ω = {ωij}) are assigned with the Dirichlet distributions.
The prior distributions for the component parameters (i.e.,
Ω = {Ωij}) are selected as the complex Wishart distribution.
The complete-data loglikelihood function for the proposed
2L-WMM can be obtained by product rule.

The semi-supervised learning algorithm for the proposed
model is developed by maximizing the following objective
function, depending on both the unlabeled samples (CU) and
the labeled samples (CL):

max
q(Λ)

∫
q(Λ) ln

p(Λ2)pλU(CU,Λ1|Λ2)pλL(CL,Λ1|Λ2)

q(Λ)
dΛ,

(6)
where Λ = {Λ1,Λ2}. Λ1 = {Z,Y} and Λ2 = {Φ,ω,Ω}
are respectively the set of the introduced binary vectors and
the set of all the variables in (5). The numerator in (6) is a
regularized likelihood function based on the shared distribu-
tion (i.e., the proposed 2L-WMM) for labeled and unlabeled
PolSAR data. λU and λL are two positive balance parameters.

Following the variational inference, all the update equa-
tions are derived in closed form as

αi = αi0 +
∑
n∈U

λUE[zni] +
∑
m∈L

λLE[zmi], (7a)

βij = βij0 +
∑
n∈U

λUrnij +
∑
m∈L

λLrmij , (7b)

ηij = ηij0 +
∑
n∈U

LλUrnij +
∑
m∈L

LλLrmij , (7c)

Wij =
1

ηij
{ηij0Wij0 +

∑
n∈U

LλUrnijCn +
∑
m∈L

LλUrmijCm},

(7d)

where rnij = E[zni]E[ynij ] and rmij takes the same form as
rnij . U and L are the index set of the labeled and unlabeled
data, and

E[ynij ] =
exp(E[ln(ωijW(Cn;L,Ωij))])∑K
k=1 exp(E[ln(ωikW(Cn;L,Ωik))])

. (8)

To incorporate the local correlation and alleviate the “salt-
and-pepper” appearance in the classification results, a MRF
prior p(zni = 1|l∂n ; γ) is imposed on the indicator variable
zni, which is thus updated for the unlabeled data by

E[zni] ∝ p(zni = 1|l∂n ; γ) · exp(E[lnφi])

· exp(E[

K∑
j=1

ln(ω
ynij

ij W
ynij (Cn;L,Ωij))])

. (9)

The multiple subcategories in a complicated category is ex-
plicitly considered by the term of summation over K sub-
components in (9). For labeled pixel m belonging to the i-th
category, E[zmi] = 1 and E[zmj ] = 0 for j 6= i. In (9), ∂n
is the neighborhood of pixel n, and γ is the inverse tempera-
ture parameter to control the smoothness in the classification

Fig. 1. The realistic PolSAR image and the classification
maps. (a) The Pauli RGB image of Flevoland data set. (b)
The ground truth. (c) The color codes. (d) The unsupervised
version of the proposed model. (e) The supervised version
of the proposed model. (f) The semi-supervised version of
the proposed model without considering spatial interdepen-
dencies. (g) The RSS method [8]. (h) The proposed method.

results. In the proposed method, the introduced spatial prior
takes the form of

p(zni = 1|l∂n ; γ) =
exp(γ

∑
m∈∂n δ(lm, i))∑M

j=1 exp(γ
∑
m∈∂n δ(lm, j))

, (10)

where l∂n includes the labels of all neighbors of pixel n, and
lm is the label for the neighbor m. δ(lm, i) = 1 if lm = i;
otherwise, δ(lm, i) = 0. In each iteration, the label is updated
by ln = arg maxi E[zni], n ∈ U. According to this criterion,
the classification map can be conveniently obtained.

By alternatively implementing (8), (9), and (7a)-(7d) un-
til the stop criterion is reached, the proposed model can be
learned with all equations updating in a closed form.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed method is tested based on a realistic PolSAR
image acquired by NASA/JPL AIRSAR over Flevoland, the
Netherlands. This image with the size of 750×1024 includes
buildings, water, and various types of crops.

The proposed method is evaluated against the unsuper-
vised version of the proposed model, the supervised version
of the proposed model, the semi-supervised version of the
proposed model without considering the spatial interdepen-
dencies, and an existing semi-supervised method (i.e., the



robust semi-supervised (RSS) classification method [8]) in
terms of both qualitatively and quantitatively. To train these
models, 1% of the labeled samples are randomly selected for
each category. The number of training samples for a category
ranges from 7 to 211, which depends on the total number of
labeled samples in a category. The metrics for quantitative
evaluation include the producer’s accuracy, the overall accu-
racy (OA), and the kappa coefficient (κ). For the unsuper-
vised version, the set of metrics corresponding to the highest
OA in 10 independent tests is presented in Table 1. For the
remaining methods, the average of the metric values over 10
independent tests are reported. In Table 1, unrecognized cate-
gories are indicated by “–”. Since we cannot find the code for
the RSS method, its classification map in Fig. 1 and metric
values in Table 1 are from [8].

According to Fig. 1(d) and the ground truth in Fig. 1(b),
the unsupervised version of the proposed model fails to as-
sign the pixels in the upper black circles to the same category,
and misclassified pixels are observed. This misclassification
is corrected by the semi-supervised version of the proposed
model without considering the spatial interdependencies [see
Fig. 1(f)], implying the effectiveness of the proposed method
in incorporating label information to guide the classification.
The proposed method further improves the classification per-
formance by introducing the spatial interdependencies, which
is confirmed by its larger OA and κ in Table 1.

With only 1% of labels (ranging from 7 to 211 labels for a
category), the supervised version of the proposed model fails
to achieve an accurate classification, in view of the misclas-
sification in the black circle of Fig. 1(e) and its smaller OA
in the second column of Table 1. In contrast, as shown in the
third and the last column of Table 1, both the semi-supervised
version of the proposed model without MRF and the proposed
semi-supervised method achieve better performance due to
the incorporation of the unlabeled samples.

In the result for the RSS method [see Fig. 1(g)], the ar-
eas in the red circles are classified as two separate categories,
which is different from the ground truth. This observation
implies the obvious misclassification for the RSS method. In
contrast, the proposed method achieves the consistent result
with the ground truth according to Fig. 1(h) and Table 1.

5. CONCLUSION

A two-level Wishart mixture model with MRF has been pro-
posed for semi-supervised classification of the PolSAR im-
ages. Within the framework of finite mixture models, WMMs
were introduced as the component densities (rather than a uni-
modal distribution). This modeling scheme facilitated model-
ing subcategories in classification tasks. To alleviate the “salt-
and-pepper” effect, the MRF prior was introduced to incor-
porate the spatial interdependencies. The variational learn-
ing algorithm for the proposed model was achieved with all
the closed-form updates. The experimental results demon-

Table 1. Classification Accuracy with the Flevoland Data Set.

strated the effectiveness of the proposed method in incorpo-
rating both the label information and the spatial interdepen-
dencies.
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