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Abstract: We present, compare and classify popular families of flexible multivariate distributions.
Our classification is based on the type of symmetry (spherical, elliptical, central symmetry or
asymmetry) and the tail behaviour (a single tail weight parameter or multiple tail weight parameters).
We compare the families both theoretically (relevant properties and distinctive features) and with
a Monte Carlo study (comparing the fitting abilities in finite samples).
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1. Introduction

Probability distributions are the building blocks of statistical modelling and inference. In certain
situations, we might be aware of the data-generating mechanism, and then the choice of the
corresponding distribution is automatic, but in most occasions, we do not possess that information.
It is then important to know which distribution can or cannot be used in what circumstances, as wrong
choices will bias further analysis. An example of such a situation is the 2008 financial crisis where
financial institutions tended to use the multivariate Gaussian distribution for modelling the behaviour
of their assets. The Gaussian distribution, not accounting for extreme events, led to an underestimation
of risks (of course, other factors also contributed to the underestimation of risks, such as, e.g., the
use of unsuitable risk measures). Financial data have the peculiarity of being heavy-tailed and often
exhibit some form of skewness as negative events are usually more extreme than positive events.

Consequently, one needs multivariate distributions that are flexible, in the sense that they can
incorporate skewness and heavy tails. Also, their parameters should bear clear interpretations, and
parameter estimation ought to be feasible. These are the main characteristics that we expect from
good multivariate distributions. The need for such versatile probability laws is also motivated by the
increased computing power of our modern days. More and larger data sets from various domains
get collected and require high-quality analysis. Until the 1970s, the multivariate normal distribution
played a central role in multivariate analysis as well as in practice. However, the incapacity of the
Gaussian distribution to accommodate for instance heavy tails led researchers to search for more
general alternative distributions. A natural extension of the multivariate Gaussian distribution is the
family of elliptical or elliptically symmetric distributions. Even though they retain the property of
elliptical symmetry, and hence cannot model skew data, this family of distributions allows for tails
that are heavier and lighter than tails of the Gaussian distribution and, thus, are more flexible for
data modelling. Numerous statistical procedures therefore have been built under the assumption of
elliptical symmetry instead of multivariate normality.
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The symmetry assumption and the fact that elliptical distributions are governed by
a one-dimensional radial density, i.e., by a single tail weight parameter (see Section 2 for details),
have proven to be too restrictive for various data sets. Financial data obviously are one example.
Meteorological data also often present skewness and heavy tails, a striking example being coastal
floods where, besides the fact that the sea level has risen during in the past century, land-rising and
land-sinking can make an analysis complicated. Genton and Thompson [1] used the multivariate
skew-t distribution (see Section 3.1) to assess flooding risks for Charlottetown in the Gulf of St.
Lawrence. Wind data and rainfall data have also been investigated under the light of flexible
distributions [2], as well as longitudinal data appearing in biostatistics [3], among many more examples.

For all these reasons, more flexible multivariate distributions than the elliptical ones are needed.
Various distinct proposals exist in the literature, based on mixtures, skewing mechanisms and copulas;
see for instance [4–8]. To the best of our knowledge no thorough comparison has ever been done.
In the present paper, we intend to fill this gap.

Given the plethora of distinct proposals, we cannot address all existing distributions. We, therefore,
decided to present those popular flexible families of multivariate distributions that we deem the
most suitable for fitting skew and heavy-tailed data, and discuss their advantages and drawbacks.
Our comparison goes crescendo in the sense that we start from the simplest families and every new
section extends the previous one. These extensions are based on the tail behavior, moving from a single
tail weight parameter to multiple tail weight parameters, and/or the type of symmetry, moving from
spherical, elliptical, central symmetry to skewness. By doing so we introduce a natural classification of
these multivariate distributions that is of use to both theoreticians and practitioners, and is in some
sense a multivariate extension of the comparison in Jones [9]. Parameter estimation in each family
will also be addressed, however, it is but one aspect in our comparison and not the central focus of
this paper.

Our work is organized as follows. Elliptical distributions are described in Section 2. Skew-elliptical
distributions are then presented (Section 3), followed by (multiple) scale and location–scale mixtures of
multinormal distributions (Section 4), multivariate distributions based on the transformation approach
(Section 5), copula-based multivariate distributions (Section 6) and meta-elliptical distributions
(Section 6.1). A new copula-based proposal is given in Section 6.2. A theoretical comparison based on
the properties of each distribution is shown in Section 7, while we conduct a Monte Carlo simulation
study in Section 8. Conclusions are given in Section 9.

The following notation is used throughout the paper. We denote by Z a random d-dimensional
standard normal vector, and by X the resulting final random d-vector following the distribution of
interest. The vector µµµ ∈ Rd represents a location parameter, while the symmetric positive semidefinite
d × d matrix ΣΣΣ stands for a scatter parameter. We use =d for equality in distribution between
random quantities.

2. Spherically and Elliptically Symmetric Distributions

The family of elliptically symmetric distributions was introduced by Kelker [10] (see also [11,12]).
This family represents a natural extension of the multinormal distribution as it allows for both
lighter-than-normal and heavier-than-normal tails whilst keeping the elliptical geometry of the
multinormal equidensity contours.

Many statistical procedures assume the broader assumption of elliptical symmetry instead of
the narrower normality (which is thus encompassed by elliptical symmetry), such as for instance
one-sample location problems [13], semi-parametric density estimators [14], efficient tests and
estimators for shape [15,16], rank-based tests for principal components [17], or the construction
of multivariate Hill estimators [18], to cite a few.
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2.1. Definition, Examples and Properties

A d-dimensional random vector X is said to be elliptically distributed if and only if there exists
a vector µµµ ∈ Rd, a positive semidefinite and symmetric matrix ΣΣΣ ∈ Rd×d and a function ϕ : R→ R+

such that the characteristic function of X is given by t 7→ exp(it′µµµ)ϕ(t′ΣΣΣt), t ∈ Rd. An elliptical random
vector X can conveniently be represented by the stochastic representation

X =d µµµ +RΛΛΛU(k), (1)

where ΛΛΛ ∈ Rd×k has maximal rank k ≤ d and is such that ΛΛΛΛΛΛ′ = ΣΣΣ, U(k) is a k-dimensional random
vector uniformly distributed on the unit hypersphere, and R is a nonnegative random variable
independent of U(k). The scaling matrix ΛΛΛ produces the ellipticity while the non-negative random
variable R regulates the tail thickness. The parameters µµµ and ΣΣΣ respectively endorse the role of location
and scatter parameters. When ΣΣΣ = Id, the d× d identity matrix, then X is spherically symmetric around
µµµ (typically, µµµ then also corresponds to 0) meaning that the density contours are spheres instead of
ellipses. Besides providing a nice intuition for elliptically symmetric distributions, the stochastic
representation (1) renders data generation very simple.

Of particular interest for our investigation is the absolutely continuous case. If R has a density,
then the density of X is of the form

x 7→ cd,g|ΣΣΣ|−1/2g((x−µµµ)′ΣΣΣ−1(x−µµµ)), (2)

where g : R+
0 → R+ is the radial function related to the distribution of R and typically depends on

a tail weight parameter, and cd,g is a normalizing constant. We attract the reader’s attention to the
fact that the radial function g should actually be written gd as it often depends on the dimension
of X (though R is one-dimensional). However, g without index d is the classical notation from the
literature, see e.g. [19], hence we stick to it throughout this paper. An elliptical random vector X with
location µµµ, scatter ΣΣΣ and radial density g is denoted as X ∼ Ed(µµµ, ΣΣΣ, g). Adopting the classical notation
µ`,g =

∫ ∞
0 r`g(r)dr, the density of R is written as r 7→ 1

µd−1,g
rd−1g(r) for r > 0. The existence of the

density thus requires µd−1,g to be finite, and X admits finite moments of order α > 0 if and only if
µd+α−1,g < ∞.

Many well-known and widely used multivariate distributions are elliptical. The multivariate
normal has density

x 7→ 1/
√
(2π)d|ΣΣΣ| exp

(
−1

2
(x−µµµ)′ΣΣΣ−1(x−µµµ)

)
.

The second most popular elliptically symmetric distribution is the multivariate t-distribution with
density

x 7→ Γ [(ν + d)/2]
Γ(ν/2)νd/2πd/2|ΣΣΣ|1/2

[
1 +

1
ν
(x−µµµ)′ΣΣΣ−1(x−µµµ)

]−(ν+d)/2
,

where ν > 0 is the tail weight parameter. The lower the value of ν, the heavier the tails. For the
sake of illustration, we provide in Figure 1 the density contours of the bivariate standard normal
and t-distributions. The symmetric multivariate stable distribution, multivariate power-exponential
distribution, symmetric multivariate Laplace distribution, multivariate logistic, multivariate Cauchy,
and multivariate symmetric general hyperbolic distribution are further examples of elliptical distributions.

A salient feature of elliptical distributions is their closedness under affine transformations. If X ∼
Ed(µµµ, ΣΣΣ, g) as defined by (1), then AX + b ∼ Ek(Aµµµ + b, AΣΣΣA′, g) where A is a k × d matrix and
b ∈ Rk. This directly implies that marginal distributions are also elliptically symmetric, with the same
radial function g. Conditional distributions also remain elliptical, but the radial function now needs to
be updated.
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(a) bivariate standard normal (b) bivariate Student t

Figure 1. Panel (a) shows the contour plot of the bivariate standard normal distribution. Panel (b)
shows the contour plot of the bivariate t-distribution with µµµ = 0, ΣΣΣ = I2 and ν = 1 degree of freedom.

Inference in spherically and elliptically symmetric distributions has been well studied,
see Paindaveine [19] for references. In most elliptically symmetric distributions that are moderate
and thin-tailed, the classical estimation methods (e.g., maximum likelihood, (generalized) method of
moments) work well. Special care needs to be taken with heavy-tailed distributions that lack moment
existence or closed forms of the density, such as the multivariate t-distributions or the elliptical stable
distribution. Alternative estimation procedures for such settings are for instance Indirect Inference [20]
and projections [21]. Popular general estimators for the shape matrix (scatter matrix up to a constant)
are Tyler’s M-estimator [22] or the R-estimator by Hallin et al. [16]. A popular estimator for the tail
dependence has been provided by [23], see also [24].

2.2. Modelling Limitations

Despite its appealing features, the family of elliptically symmetric distributions suffers from two
major limitations in terms of modelling flexibility. On the one hand, they are necessarily (elliptically)
symmetric by construction and, hence, are unable to capture potential skewness present in data sets.
On the other hand, since their density is determined by a one-dimensional random variable R, the
tail weight is governed by a single one-dimensional parameter (one could imagine a radial density
that depends on more than one tail weight parameter; this does not change our reasoning that the
parameters are the same for any dimension of X). For instance, all marginals of the multivariate
t-distribution have the same number of degrees of freedom ν > 0, and hence same tail weight. Thus
the construction of elliptical distributions precludes modelling varying tail weight in distinct directions.

Wrapping up, elliptical distributions represent an important improvement over the multivariate
normal distribution, yet they lack flexibility when it comes to modelling skew and heavy-tailed
multivariate data. This need must be palliated via what we term skew multi-tail distributions. In the
subsequent sections, we review flexible multivariate distributions under the light of our requirements.

3. Skew-Elliptical Distributions

Skew-elliptical distributions are obtained by perturbating or modulating symmetry in elliptical
distributions via multiplication with a skewing function. Let the skewing function Π : Rd×Rd → [0, 1]
satisfy Π(−z, δδδ) + Π(z, δδδ) = 1, z, δδδ ∈ Rd, and Π(z, 000) = 1/2, z ∈ Rd. Let Y be an elliptically symmetric
random d-vector with density (2) and U a uniform random variable on (0, 1), both independent of
each other. Then

X =d

{
Y if U ≤ Π(ΣΣΣ−1/2(Y−µµµ), δδδ)

−Y if U > Π(ΣΣΣ−1/2(Y−µµµ), δδδ)
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follows a skew-elliptical distribution with density

x 7→ 2cd,g|ΣΣΣ|−1/2g((x−µµµ)′ΣΣΣ−1(x−µµµ))Π(ΣΣΣ−1/2(x−µµµ), δδδ). (3)

Whenever δδδ 6= 000, the resulting density is skewed in the direction of δδδ, while at δδδ = 000 the original
elliptical distribution is retrieved. Thus δδδ endorses the role of skewness parameter. An advantage
of this symmetry modulation is that it requires no complicated normalizing constant calculation.
A drawback is that it is designed to model skewness but not tail weight due to the absence of a tail
weight parameter. This is why the multivariate skew-t distribution receives particular attention in
Section 3.1 below.

Skew-elliptical densities of the form (3) have been formally introduced in Genton and Loperfido [25]
under the name generalized skew-elliptical distributions, since the name skew-elliptical had been
formerly used by Azzalini and Capitanio [26] to refer to densities (3) where Π(z, δδδ) = G1(z′δδδ) for G1

some univariate cumulative distribution function (cdf). We drop here, for the sake of simplicity and
since there exists no ambiguity, the word “generalized”.

Skew-elliptical distributions, or slight variations of them, have been further studied in several
works, most prominently in Branco and Dey [27], Azzalini and Capitanio [28] and Wang et al. [29],
the latter two papers dealing also with the even more general skew-symmetric distributions which
are skewed versions of centrally symmetric distributions (a random vector X is said to be centrally
symmetric about µµµ if X−µµµ =d µµµ− X). Recently, Shushi [30] showed that generalized skew-elliptical
distributions are closed under affine transformations. A very good overview of properties and
applications is provided in the monograph Genton [5]; a particular focus of applications in finance
and actuarial science is given by [31]. The literature on these skew distributions has been enhanced
since the seminal paper Azzalini [32] proposed the univariate skew-normal density, later extended to
the multivariate case by Azzalini and Dalla Valle [33]. Their multivariate skew-normal corresponds
to choosing g the radial density of a multivariate normal and Π(z, δδδ) = Φ(z′δδδ) with Φ the cdf of the
univariate standard normal.

Maximum likelihood estimation from skew-elliptical distributions is in principle straightforward,
yet some of its members suffer from a Fisher information singularity in the vicinity of symmetry,
due to collinearity between the scores for location and skewness. The most famous representative
suffering from this flaw is the multivariate skew-normal. Hallin and Ley [34,35] characterized
which skew-elliptical (and more generally, skew-symmetric) distributions suffer from this singularity,
by showing that it only occurs due to an unfortunate matching of the elliptically symmetric density
and the skewing function. Such a Fisher information singularity renders for instance impossible
the construction of likelihood ratio tests for the symmetric sub distributions in such skew-elliptical
distributions. A directly related issue is the existence of a stationary point in the profile log-likelihood
function for skewness in the vicinity of symmetry, see Ley and Paindaveine [36].

3.1. Multivariate Skew-t Distribution

The multivariate skew-t distribution of [28] (throughout this paper, we use the name “multivariate
skew-t” for the distribution proposed by [28]; other skew versions of the multivariate t-distribution
exist in the literature, see for instance [37]) has emerged as a tractable and robust distribution with
parameters that regulate both skewness and heavy tails. It is formally defined as a ratio of a multivariate
skew-normal variate and an appropriate transformation of a chi-square random variable, that is

X =d µµµ + V−1/2Y,

where Y has a multivariate skew-normal distribution and V ∼ χ2
ν/ν with ν > 0, independent of Y.

The density of X is given by
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x 7→ 2td(ΣΣΣ
−1/2(x−µµµ); ν)T1

(
δδδTΣΣΣ−1/2(x−µµµ)

(
ν + d

Qx + ν

)1/2
; ν + d

)
,

where Qx = (x−µµµ)TΣΣΣ−1(x−µµµ), td(x; ν) is the density of a d-dimensional t variate with ν degrees of
freedom, and T1(x; ν + d) is the skewing function and denotes the cdf of the scalar t-distribution with
ν + d degrees of freedom. Figure 2 shows contour plots of the bivariate skew-t density along with the
bivariate skew-normal.

The multivariate skew-t distribution is not closed under conditioning, which is important for
methods that require the study of the conditional distribution of a skew-t. Also, although the skew-t
distribution has the ability to model distributional tails that are heavier than the normal, it cannot
represent lighter tails. A family of multivariate extended skew-t (EST) distributions which offers
a solution for these issues has been introduced by Arellano-Valle and Genton [38]. Finally, we stress
that the multivariate skew-t does not suffer from the above-mentioned Fisher information singularity.

(a) bivariate skew-normal (b) bivariate skew-t

Figure 2. Panel (a) shows the contour plot of the bivariate standard skew-normal distribution with the
skewness parameter δδδ = (1, 2)′. Panel (b) shows the contour plot of the bivariate skew-t distribution
with µµµ = 0, ΣΣΣ = I2, ν = 1 degree of freedom and with the skewness parameter δδδ = (1, 2)′.

4. (Multiple) Scale and Location-Scale Mixtures of Multinormal Distributions

In this section we describe four types of location–scale mixtures of multinormal distributions:
the scale mixtures (Section 4.1), the location–scale mixtures (Section 4.2), the multiple scale mixtures
(Section 4.3), and the multiple location–scale mixtures (Section 4.4). An alternative name from the
literature for scale and location–scale mixtures is variance and mean-variance mixtures. For the sake
of presentation, we only describe inferential issues related to the latter two families of distributions as
they respectively encompass the former two.

4.1. Scale Mixtures of Multinormal Distributions

Scale mixtures of multinormal distributions are typically obtained via the stochastic representation

X =d µµµ +
√

WΛΛΛZ, (4)

where W is a non-negative scalar-valued random variable that is independent of Z and ΛΛΛΛΛΛ′ = ΣΣΣ,
the scatter matrix. The scalar W is called weight variable and we denote its density by fW(·; θθθ)

depending on some parameter θθθ ∈ Rm. In some sense, this weight variable plays the same role as R in
the construction of elliptically symmetric distributions. The resulting density of the scale mixtures of
multinormal distributions then is
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x 7→
∫ ∞

0
φd(x; µµµ, ΣΣΣ/w) fW(w; θθθ)dw, (5)

where we denote by φd(x; µµµ, ΣΣΣ) the density of the d-variate normal distribution with mean µµµ ∈ Rd and
positive-definite scatter matrix ΣΣΣ ∈ Rd×d.

Various choices of W have been explored in the literature, with special focus on Gamma
distributions with density x 7→ γα

Γ(α) xα−1 exp(−γx), x > 0, where α, γ > 0 are respectively a shape and
scale parameter. The multivariate t-distribution is for instance defined as Gaussian scale mixture based
on a Gamma weight variable with parameters α = γ = ν/2. Gaussian mixtures of the form (5) still
belong to the family of elliptically symmetric distributions, and suffer from the limitations mentioned
in Section 2.2.

4.2. Location-Scale Mixtures of Multinormal Distributions

The limitations of elliptical symmetry can be overcome by considering location–scale mixtures
instead of only scale mixtures. Replacing the fixed vector µµµ in (4) with a stochastic quantity m(W)

where m : R+ → Rd is a measurable function, we get the stochastic representation

X =d m(W) +
√

WΛΛΛZ.

A common specification for m(W) is µµµ + Wξξξ where ξξξ ∈ Rd. Location-scale mixtures of multinormal
distributions have the density

x 7→
∫ ∞

0
φd(x; m(w), ΣΣΣ/w) fW(w; θθθ)dw.

The presence of w in the location parameter m(w) implies that location–scale mixtures of multinormal
distributions are not elliptically symmetric. We refer the interested reader to Section 6.2 of McNeil
et al. [39] for more details and references about scale and location–scale mixtures of multinormal
distributions.

4.3. Multiple Scale Mixtures of Multinormal Distributions

A new family of scale mixtures of multinormal distributions has been proposed by Forbes and
Wraith [40] and termed multiple scaled distributions. They replace the scalar weight variable W in (4)
with a d-dimensional weight vector W = (w1, . . . , wd)

′. To simplify their construction, Forbes and
Wraith [40] decompose the matrix ΣΣΣ into DADT , where D is the matrix of eigenvectors of ΣΣΣ and A is
a diagonal matrix with the corresponding eigenvalues of ΣΣΣ. This leads to the stochastic representation

X =d µµµ + DA1/2
[

Z1/
√

W1, . . . , Zd/
√

Wd

]T
, (6)

where Zi, i = 1, . . . , d, are standardized Gaussian random variables and W1, . . . , Wd are d independent
positive variables with respective densities fWi , i = 1, . . . , d. This extension brings more flexibility and,
in particular, allows different tail weights in every direction. The decomposition of ΣΣΣ into DADT

allows an intuitive incorporation of the multiple weight parameters in the Gaussian density inside (5):
φd(x; µµµ, D∆∆∆wADT), where ∆∆∆w = diag(w−1

1 , . . . , w−1
d ). The generalization of the density of the scale

mixture into the density of the multiple scale mixture is therefore defined as

x 7→
∫ ∞

0
· · ·

∫ ∞

0
φd(x; µµµ, D∆∆∆wADT) fW(w1, . . . , wd; θθθ)dw1 . . . dwd, (7)

where fW(w1, . . . , wd; θθθ) is now a d-variate density to be further specified, depending on a vector of
parameters θθθ. By considering independent weights, (7) can be written as
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d

∏
j=1

∫ ∞

0
φ1

([
DT(x−µµµ)

]
j
; 0, Ajjw−1

j

)
fWj(wj; θθθ j)dwj,

where
[
DT(x−µµµ)

]
j denotes the j-th component of the vector DT(x−µµµ), θθθ j the vector of parameters

relevant for Wj and Ajj the j-th diagonal element of the diagonal matrix A.
The stochastic representation (6) is very useful for simulations as well as for the derivation of

properties of multiple scaled distributions. For instance, moments can readily be derived from (6) and
marginal distributions are easy to sample from. Note however that, in general, numerical integration
is required to compute their pdfs.

Setting fWj(wj; θθθ j) to Gamma(wj; νj/2, νj/2) leads to a generalization of the multivariate
t-distribution with density

x 7→
d

∏
j=1

Γ((νj + 1)/2)
Γ(νj/2)(Ajνjπ)1/2

1 +

[
DT(x−µµµ)

]2
j

Ajνj

−(νj+1)/2

.

This multiple scaled t-distribution allows for a number of different shapes which are not elliptically
symmetric, though well centrally symmetric, as can be appreciated from Figure 3.

(a) degrees of freedom ν = (0.2, 0.5) (b) degrees of freedom ν = (2, 10)

Figure 3. Contour plots of bivariate t−distributions resulting from multiple scale mixtures of
multinormal distributions with µµµ = (0, 0)′ and A = diag(4, 4). For D a parameterization via an angle
ξ is used, so D11 = D22 = cos(ξ) and D21 = −D12 = sin(ξ), where Dmd denotes the (m, d) entry of
the matrix D. Panel (a) shows the contour plot for degrees of freedom ν = (0.2, 0.5) and panel (b) for
degrees of freedom ν = (2, 10), with in both cases ξ = π/8.

Parameter estimation by means of maximum likelihood can be performed via the EM algorithm,
see Section 4 of Forbes and Wraith [40] for details. This estimation approach, however, happens to
be very slow in high dimensions. The estimation of D is also problematic, as it is only identifiable
up to a rotation. This implies that one has to make sure that, for instance, the eigenvalues are always
ordered, as otherwise problems in the estimation of the degrees of freedom may appear.
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4.4. Multiple Location-Scale Mixtures of Multinormal Distributions

In order to provide a wider variety of distributional forms, Wraith and Forbes [41] proposed
an extension of their multiple scale mixtures to multiple location–scale mixtures of multinormal
distributions. This extension allows different tail and skewness behavior in each dimension of
the variable space with arbitrary correlation between dimensions. They replace µµµ in (6) with
µµµ + D∆∆∆WADTβββ where βββ ∈ Rd is a skewness parameter. This yields densities of the form

x 7→
∫ ∞

0
· · ·

∫ ∞

0
φd(x; µµµ + D∆∆∆WADTβββ, D∆∆∆WADT)× fW(w1, . . . wd; θθθ)dw1 . . . dwd,

where the weights are assumed to be independent: fW(w1, . . . , wd; θθθ) = fW1(w1; θθθ1) . . . fWd(wd; θθθd).
If fWm(wm; θθθm) is the Generalised Inverse Gaussian (GIG) density, then X follows a generalization
of the multivariate Generalised Hyperbolic distribution, the so-called multiple scaled generalised
hyperbolic distribution (MSGH).

The multiple location–scale mixtures of multinormal distributions provide very flexible
distributional forms. The parameter βββ measures asymmetry and its sign determines the type of
skewness. Each dimension can be governed by a different tail behavior. The marginals are easy to
sample from, but computing their densities involves, in general, numerical integration. Estimation
of the parameters can be done using the EM algorithm, bearing in mind however the identifiability
issues and computational difficulties in high dimensions.

5. Multivariate Distributions Obtained via the Transformation Approach

The idea underpinning the transformation approach is quite simple: start from a “basic” random
vector Y, typically multivariate normal, and turn it into X =d H−1(Y) via some diffeomorphism
H : Rd → Rd (The reason for writing X =d H−1(Y) instead of the apparently more natural X =d H(Y)
can be traced back to the origins of this approach in Edgeworth (1898) who spoke of “Method of
Translation” instead of transformation. The pre-dominance of the (scalar) normal distribution at that
time implied that researchers were searching for a transformation to make their transformed data have
a normal behaviour, hence H(X) which follows the law of Y). Writing f the density of Y, the new
random vector X has density x 7→ f (H(x))|DH(x)|, x ∈ Rd, where DH(x) stands for the determinant
of the Hessian matrix associated with the transformation H. For instance, if Y follows a Nd(µµµ, ΣΣΣ),
then a transformation Ha,b with a ∈ Rd a skewness parameter and b ∈ Rd a tail weight parameter
leads to a multivariate distribution with well-identified location, scatter, skewness and tail weight
parameters, where moreover the tail weight parameter is d-dimensional.

Ley and Paindaveine [36] study the transformation from a general viewpoint. Their focus lies on
producing pure skewing mechanisms, hence their transformations only contain a skewness parameter.
Theorem 3.2 of Ley and Paindaveine [36] details the impact on the tail behaviour of each skewing
transformation.

5.1. Tukey’s Transformation

A well-known one-dimensional example of a transformation distribution is Tukey’s g-and-h
distribution (Tukey [42], see also Hoaglin [43]). A standard normal random variable Z is transformed
to X =d τg,h(Z), where

τg,h(Z) =
(

exp(gZ)− 1
g

)
exp

(
h
2

Z2
)

, (8)

with g ∈ R and h ≥ 0. The resulting random variable X is said to have a g-and-h distribution, where g
is a real constant controlling the skewness and h is a nonnegative real constant controlling the tail
weight. Note that τ0,0(Z) = Z. The g-and-h distribution does not allow a closed-form density since
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τg,h does not possess a closed-form inverse, but the quantiles are explicitly available in terms of the
quantiles of Z.

Field and Genton [2] extended the g-and-h distribution to the multivariate setting. A random
vector X ∈ Rd is said to have a standard multivariate g-and-h distribution, where g = (g1, . . . , gd)

′ ∈ Rd

controls the skewness and h = (h1, . . . , hd)
′ ∈ Rd

+ controls the tail weight, if it can be represented as

X =d (τg1,h1(Z1), . . . , τgd ,hd
(Zd))

′ = τττg,h(Z),

where Z = (Z1, . . . , Zd)
′ has a standard multivariate normal distribution and the univariate functions

τgi ,hi
, i = 1, . . . , d, are defined by (8). Location and scatter parameters can be introduced as usual,

leading to the following stochastic representation:

X =d µµµ +ΣΣΣ1/2τg,h(Z).

By construction, the marginals of ΣΣΣ−1/2(X − µµµ) follow scalar g-and-h distributions. Just as its
one-dimensional antecedent, the multivariate g-and-h distribution does not have a closed-form density
unless g = 000, and one has to resort to some definition of quantiles to estimate its parameters. One issue
of the multivariate g-and-h distribution in higher dimensions is that the number of directions in which
to compute the quantiles grows exponentially.

5.2. SAS Transformation

Another popular univariate transformation leads to the Sinh-Arcsinh (SAS) distribution of Jones
and Pewsey [44], obtained by transforming a standard normal random variable by the inverse of
the sinh-arcsinh function z 7→ Sg,h(z) := sinh(h sinh−1(z)− g), z ∈ R, where g ∈ R is a skewness
parameter and h > 0 a tail weight parameter. After adding a location parameter µ ∈ R and a scale
parameter σ > 0, the resulting SAS-normal or SAS density is of the form

x 7→ h/σ√
2π(1 + (x− µ)2/σ2)

(
1 + S2

g,h

(
x− µ

σ

))1/2
exp

−S2
g,h

(
x−µ

σ

)
2

 .

Heavy-tailed distributions correspond to h < 1 and light-tailed distributions to h > 1, h = 1 yielding
normal-like tails. All non-zero values of g lead to skewed distributions. The SAS distribution enjoys
numerous appealing properties such as parameter interpretability and straightforward parameter
estimation, see Jones and Pewsey [44].

Jones and Pewsey [44] briefly described a multivariate extension of the SAS distribution
(though they did not discuss inference). It is based on transforming the univariate marginals of
a standardized, but correlated, multivariate normal distribution. Skewness and/or tail weight are
modelled on the original scales of the variables. In d dimensions, let R be a correlation matrix and
define the vector X by Yi =d Sgi ,hi

(Xi), i = 1, . . . , d, where Y ∼ Nd(000, R). The density of X then is

x 7→ {(2π)d|R|}−1/2 exp{−Sg,h(x)′R−1Sg,h(x)/2}
d

∏
i=1

{
(1 + x2

i )
−1/2hi

(
1 + S2

gi ,hi
(xi)

)1/2
}

.

The univariate marginals are sinh-arcsinh distributions by construction, while conditional
distributions are not very tractable. Figure 4 shows the contour plots of densities of bivariate
SAS distributions.
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(a) symmetric (b) asymmetric

Figure 4. Panel (a) shows the contour plot for the bivariate SAS with the skewness parameter g = (0, 0)′

and panel (b) the contour plot for the bivariate SAS with g = (1, 1)′. For both cases the tail weight
parameter is h = (0.5, 0.5)′ and the correlation coefficient is ρ = 0.7.

6. Copula-Based Multivariate Distributions

Copulas are a very popular tool to build multivariate distributions as they allow modelling
separately the marginal distributions and the dependence structure. According to Sklar’s Theorem [45],
any multivariate cdf F with marginal distribution functions F1, . . . , Fd can be expressed under the form

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (9)

where C is a copula, which means a cdf of a d-variate random vector uniformly distributed on the
unit d-cube. Vice-versa, any combination of such a copula C and marginal distributions leads to
a multivariate random vector with cdf C(F1(x1), . . . , Fd(xd)).

The idea underpinning the copula construction is that the random vector U =d
(F1(X1), . . . , Fd(Xd))

′, with X = (X1, . . . , Xd)
′ ∼ F, has uniform marginals and takes its values on the

unit d-cube. The dependence structure of X thus is inherited from the dependence structure on the
unit d-cube. This freedom of choice in combining the copula C with the marginal cdfs F1, . . . , Fd is the
main reason for the popularity of copulas. Their first appearance in the statistical literature is often
traced back to Fréchet [46], and the cornerstone references about copulas are the monographs Joe [47]
and Nelsen [6].

Simulation methods for copula-based multivariate distributions depend on the specific type of
copula. The general approach for generating data from these types of distributions is to first sample
from a specific copula C, that is (U1, . . . , Ud)

′ ∼ C, and second obtain X using inverse marginal
distributions, that is Xi =d F−1

i (Ui).
Two famous families of copulas are Archimedean and elliptical copulas:

- A d-variate Archimedean copula is the function

C(u1, u2, . . . , ud) = φ−1(φ(u1) + · · ·+ φ(ud)), (u1, . . . , ud)
′ ∈ [0, 1]d,

where φ : [0, 1]→ [0, ∞] is continuous, decreasing, convex and such that φ(1) = 0. Such a function
φ is called a generator. An important source of generators for Archimedean d-copulas consists of
the inverses of the Laplace transforms of cdfs. Examples of Archimedean copulas are the Gumbel,
Clayton and Frank copula. We refer the interested reader to the above mentioned references for
more details.
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- As the terminology suggests, elliptical copulas are the copulas of elliptically symmetric
distributions. From (9) one readily sees that an elliptical copula is expressed as
F(F−1

g (x1), . . . , F−1
g (xd)) where F is the elliptical cdf and Fg is the same symmetric marginal

cdf for every component (see Section 2.1). They naturally inherit good properties as well as
drawbacks from elliptical distributions. More detailed information about elliptical copulas is
provided in the next section on Meta-Elliptical distributions as these are, de facto, nothing else but
multivariate distributions obtained via elliptical copulas.

In high dimensions, the classical copula construction faces modelling limitations. The statistical
community working on copulas has reacted to this bottleneck by devising vine copulas based on the
pair-copula construction of Joe [48] and Aas et al. [49], and graph theory [50,51]. We do not enter
into details here but refer the reader to Aas et al. [49] and the monograph Kurowicka and Joe [52].
An alternative approach to deal with high-dimensional data via copulas are the factor copulas described
by Oh and Patton [53].

Parameter estimation in copulas can become challenging and various approaches have been
proposed. The natural approach is maximum likelihood estimation for all parameters and the entire
distribution, but it is often computationally unaffordable. Alternatively, a two-step procedure ought
to be considered, where first the margins are estimated followed by the copula parameters. In both
steps, maximum likelihood is used. A third approach is pseudo–maximum likelihood, which is also
a two-step procedure where the marginals are estimated non-parametrically. We refer the reader to
Embrechts and Hofert [54], who in particular discuss estimation in high dimensions, and Joe [47] for
the asymptotics of the two-step approach.

6.1. Meta-Elliptical Distributions

As already mentioned, meta-elliptical distributions are in fact nothing else but distributions based
on elliptical copulas. Fang et al. [55] coined the term as reference to the meta-Gaussian distribution of
Krzysztofowicz and Kelly [56].

Let Y = (Y1, . . . , Yd)
′ be an elliptically symmetric random vector with density (2) where µµµ = 0

and ΣΣΣ = R, the correlation matrix. In accordance with Fang et al. [55], we denote the identical marginal
density and cdf respectively as fg(·) and Fg(·). A random vector X = (X1, . . . , Xd)

′ is then said to be
meta-elliptical with the copula inherited from Y and marginal distributions F1, . . . , Fd with densities
f1, . . . , fd if we have the stochastic representation Xi =d F−1

i (Fg(Yi)) for all i = 1, . . . , d. This leads to
the following density for X:

x 7→ γ(F−1
g (F1(x1)), . . . , F−1

g (Fd(xd)); R)
d

∏
i=1

fi(xi),

where x = (x1, . . . , xd)
′ and γ is the d-variate density weighting function

γ(y1, . . . , yd; R) = |R|−1/2cd,gg(y′R−1y)/
d

∏
i=1

fg(yi).

We borrow the name “density weighting function” from Fang et al. [55] and the reader should bear in
mind that it refers to the density of the elliptical copula. Conditional distribution functions can easily be
derived, as well as dependence properties like the Kendall’s correlation coefficient, see Fang et al. [55].

An interesting example of a meta-elliptical distribution is the multivariate asymmetric
t-distribution proposed by Fang et al. [55]. Note that the terminology “asymmetric t-distribution”,
taken from Fang et al. [55], is not conform with our definition of symmetry and asymmetry, since
actually this distribution is centrally symmetric. Letting tm and Tm respectively be the density and
distribution functions of the scalar t-distribution with m degrees of freedom, its density reads
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x 7→ γ(T−1
m (Tm1(x1)), . . . , T−1

m (Tmd(xd)); R)
d

∏
i=1

tmi (xi),

where

γ(y1, . . . , yd; R) =
Γ((m + d)/2)(Γ(m/2))d−1

(Γ((m + 1)/2))d |R|−1/2
(

1 +
y′R−1y

m

)−m+d
2 d

∏
i=1

(
1 +

y2
i

m

)m+1
2

.

This distribution is said to have (m; m1, . . . , md) degrees of freedom and we use the notation
X ∼ AMtd(m; m1, . . . , md; R). Of course, this asymmetric t-distribution and the classical t-distribution
share the same copula, and the latter is retrieved for m1 = m2 = · · · = md = m.

The AMtd distribution overcomes certain modelling limitations of the elliptically symmetric
distributions since it is able to incorporate different tail weights in each direction. Figure 5
shows the densities of asymmetric t-distributions with different marginal degrees of freedom and
correlation coefficients.

(a) AMt2(2; 10, 10; 0.5) (b) AMt2(2; 10, 0.5; 0)

Figure 5. Panel (a) shows the contour plot for the bivariate asymmetric t−distribution with equal
marginal degrees of freedom (m1 = m2 = 10) and panel (b) shows the contour plot for the bivariate
asymmetric t−distribution with different marginal degrees of freedom (m1 = 10 and m2 = 0.5).
For both cases the degrees of freedom for the copula is m = 2.

6.2. Our Proposal: t-Copula with SAS Marginals

To fully exploit the power of copulas, it is essential to combine a sound copula dependence
structure, such as elliptical or Archimedean copulas, with versatile marginal distributions. Given the
appealing properties of the univariate SAS distribution, we suggest to use them as marginal
distributions in combination with the t-copula described in the previous section. We call the new
distribution the t-SAS distribution.

Letting fgi ,hi
and Fgi ,hi

respectively be the density and distribution functions of the scalar SAS
distribution with parameters gi and hi, i = 1, . . . , d, and using the notations from the previous section,
the density of the t-SAS distribution reads

x 7→ γ(T−1
m (Fg1,h1(x1)), . . . , T−1

m (Fgd ,hd
(xd)); R)

d

∏
i=1

fgi ,hi
(xi).

The only difference with respect to the asymmetric t-distribution thus are the marginals. This new
distribution enjoys all desirable properties: it has a simple data generation mechanism, it can be
symmetric or asymmetric (thanks to the SAS marginals instead of t marginals), where the degree of
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skewness can vary in every direction, the dependence structure is governed by the popular t-copula
while the marginals can be light- or heavy-tailed, and it is multi-tailed. We illustrate the various shapes
of the t-copula with SAS marginals in Figure 6.

(a) g = (0, 0)′ h = (1, 1)′ (b) g = (1, 1)′ h = (0.5, 0.5)′

(c) g = (0, 0)′ h = (0.8, 0.2)′ (d) g = (−1, 0)′ h = (0.8, 0.2)′

Figure 6. Contour plots for a bivariate t-copula with SAS marginals and for four combinations of the
values of marginal SAS distributions. For all cases the degrees of freedom for the t-copula is m = 2.

The t-SAS and the multiple location–scale mixtures of multinormal distributions share the
asymmetric and multi-tailed characteristics, which are key for this article , but a closer look reveals
that these distributions deal with these characteristics differently. The main difference is that the t-SAS
distinguishes between joint tail dependence (through the copula) and marginal tail thickness (through
the marginal distributions). Put it differently, the copula allows to disentangle the tail thickness that
is common to all the elements of the random vector and the tail thickness that is idiosyncratic to
each element of the random vector. By contrast, the multiple location–scale mixtures of multinormal
distributions estimate as many tail parameters as dimensions of the random vector, but do not explain
the commonness in the tails.

7. Classification and Comparison of the Families

Our goal in this section is to compare in a systematic way and classify the distinct families
presented in previous sections in terms of their degrees of flexibility. The comparison is based on
relevant properties that a flexible multivariate distribution ought to possess. Clearly, these properties
may appear subjective, and the reader may favour other properties. The history of flexible modelling
itself tells us that the fathers of this field were not unanimous about what makes a flexible distribution
“good”. We refer the reader to Section 2 of Ley [57] for an overview of the stormy beginnings of this
research domain, especially the competition between Edgeworth and Pearson.

We now explain the motivations behind each chosen criterion, and in how far every distribution
satisfies each criterion. Some criteria may not be fulfilled by all special cases of a family of distributions,
so our comparison is to be understood as the potential that every family possesses. Two further remarks
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should be made: (1) we focus on the multivariate SAS distributions within the family of multivariate
distributions obtained via the transformation approach, and (2) we omit copulas in general and rather
focus on meta-elliptical distributions.

Table 1 summarizes our comparison, which is based on the following six criteria: whether
simulation is feasible, the degree of asymmetry, the flexibility to capture the tail behaviour (which we
denote by single tail or ST versus multi tail or MT), the tractability of the density, the tractability of
marginal distributions, and the easiness of estimation of the parameters. The criterion on asymmetry
deserves further explanations, since there are different types of (a)symmetry. The simplest form of
symmetry is spherical. A random vector X is spherically symmetric (SS) if and only if X − µµµ =d
O(X−µµµ) for every d× d rotation matrix O, is elliptically symmetric (ES) if X =d AY +µµµ where Y is
spherically symmetric about the origin and A is an arbitrary d× d matrix, and is centrally symmetric
(CS) if X− µµµ =d −(X− µµµ). A random vector X that does not satisfy these definitions of symmetry
is asymmetric (AS). In Table 1 a checkmark indicates that a given property is satisfied (a checkmark
between parentheses expresses a partial satisfaction), while a cross means the opposite.

Table 1. Summary of our property-based comparison.

Family of Distributions Simulation Asymmetry Tail TD TMD PE

Spherical SS ST
Elliptical ES ST

Skew-elliptical AS ST
Scale mixtures ES ST 7 7 ( )

Location-scale mixtures AS ST 7 7 ( )
Multiple scale mixtures CS MT 7 7 ( )

Multiple location–scale mixtures AS MT 7 7 ( )
SAS transformation of multinormal AS MT

Meta-elliptical distributions CS MT 7 ( )

SS, ES, CS, AS denote spherical symmetry, elliptical symmetry, central symmetry and asymmetry, while ST and MT
respectively represent single tail parameter and multiple tail parameters. TD stands for tractable density, TMD for
tractable marginal density and PE for parameter estimation.

Now we are ready to delve into the comparison and criteria:

• Simulation: In order to be able to simulate data from every distribution, we need to have
a stochastic representation that underpins a data generating mechanism. All families but copulas
enjoy a stochastic representation, and all families can be simulated.

• Asymmetry: It is natural to require from a flexible distribution to be able to capture asymmetry,
all the more as the symmetric situation is then contained as a special case. Spherically and
elliptically symmetric distributions are, by nature, spherically and elliptically symmetric,
respectively. Scale mixtures of multinormal distributions are also elliptically symmetric, while
multiple scale mixtures of multinormal distributions and meta-elliptical distributions are centrally
symmetric. All other families are able to model skew phenomena via some skewness parameter
and hence fully satisfy this criterion.

• Tail: Like skewness, tail weight ought to be governed by at least a d-dimensional vector
allowing for one parameter per dimension. This criterion is not satisfied by the spherically and
elliptically symmetric distributions as they only contain a one-dimensional tail weight parameter,
and consequently also not by the skew-elliptical distributions as they are directly derived from
them. The same holds true for scale and location–scale mixtures of multinormal distributions.
The remaining distributions can all be termed multi-tail.

• Tractable Density: It is desirable for a distribution to possess a tractable density, be it for the sake
of understanding the roles of the parameters, the development of stochastic properties or for
parameter estimation purposes. By tractable we mean a density that can be written out explicitly
without involving complicated functions such as integrals, for example. The families of spherically
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and elliptically symmetric distributions can be considered as very tractable (although they do
possess complicated special cases such as the scale mixtures of multinormal distributions and the
elliptical α−stable distributions). The same holds then true for the skew-elliptical distributions.
The multivariate SAS distribution also possesses a tractable density. All other distributions do not
have tractable densities.

• Tractable Marginal Distributions: Multivariate distributions should possess tractable marginal
laws, as often one is interested not only in the combined behavior of various components,
but also in their individual behavior. Similarly, tractable conditional distributions are an asset.
However, we did not emphasize the latter as special requirement since a tractable density
combined with tractable marginals inevitably leads to tractable conditional distributions, even if
the latter are not necessarily of a well-known form. We have seen that spherically and elliptically
symmetric distributions are closed under linear transformations, hence they do satisfy this
requirement. The multivariate SAS distribution has SAS marginals and the meta-elliptical
distributions, being based on copulas, allow by construction to have full control over the marginals.
Skew-elliptical distributions also enjoy tractable marginals [30]. The only families of distributions
not completely satisfying this criterion are the (multiple) scale and location–scale mixtures of
multinormal distributions, where it is not difficult to sample from the marginals but computing
their density involves numerical integration.

• Parameter Estimation: It is essential to correctly estimate the parameters of each distribution,
in particular by means of maximum likelihood estimation (for the sake of brevity, we do not
consider here other estimation methods such as moment-based or Bayesian methods). This ensures
that the distributions can serve their purpose in other inferential endeavours such as hypothesis
testing. All considered families satisfy this criterion, albeit some require more special care, such as
for instance the multiple scale or multiple location–scale mixture of multinormal distributions
where an EM algorithm is required, or the α−stable distribution that requires the use of the
fast Fourier transform. In case of meta-elliptical distributions, recently more efficient maximum
likelihood estimation methods have been proposed [58] that decompose the estimation into
marginal estimation and dependence structure estimation.

On basis of this discussion and Table 1, we propose the following classification of the flexible
multivariate families of distributions in terms of their degrees of skewness and tail behavior:

• spherically symmetric distributions (ST, SS)
• elliptically symmetric distributions and scale mixtures of multinormals (both ST, ES)
• skew-elliptical distributions and location–scale mixtures of multinormals (both ST, AS)
• multiple scale mixtures of multinormals and meta-elliptical distributions (both MT, CS)
• multiple location–scale mixtures of multinormals and SAS transformation of multinormal

(both MT, AS)

We believe that this classification further enhances the understanding of multivariate distributions
and can also be a useful guide for both theoreticians and practitioners.

8. Finite Sample Performance Comparison

We assess the fitting abilities in finite samples of a selected group of distributions from the
aforementioned families: multivariate t-distribution, skew-t distribution, multiple scaled t-distribution,
meta-elliptical asymmetric t-distribution, and t-copula combined with SAS marginals. We opt for these
distributions as they all relate to the multivariate t-distribution, and hence are comparable.

To get a fair picture, we generate data from every distribution and fit all other distributions.
The metric comparison is the Bayesian Information Criterion (BIC). We generate data for dimensions 2
and 5 and for sample sizes n = 100, 1000 and 10,000. The number of replications is 100, though the
word “replication” deserves some comments. In all replications, the location and scatter parameters are
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the same, but we have chosen distinct values of skewness and tail weight in order to consider distinct
scenarios. Simulations were coded in R 3.4.2 [59], and the packages sn [60], copula [61], QRM [62] and
fitdistrplus [63] were used. The computer used is a MacBook Pro (Retina, 15-inch, Mid 2015), Processor
2.2 GHz Intel Core i7, Memory 16 GB 1600 MHz DDR3. The code is available upon request.

The results of our simulation study are shown in Tables 2 and 3, along with the computation times
in parentheses. The EM algorithm for estimating the parameters of the multiple scaled t-distribution is
very slow in dimension 5, which, in combination with the parameter identifiability issue mentioned in
Section 4, leads us to leave this distribution out as competitor in the 5-dimensional setting, but we kept
it as data generator.

Table 2. BIC scores and computation times (in seconds, minutes or hours)—dimension 2.

Fitted Distribution Data Generator

t Skew-t Multiple Scaled-t Meta Elliptical-t t-SAS

n = 100
t 787.0882 1274.422 731.9593 918.0995

(20.50 s) ( 59.89 s) (10.49 s) (35.65 s)
skew-t 623.4148 1080.851 668.383 736.6848

(3.43 s) (3.86 s) (3.09 s) (4.20 s)
multiple scaled-t 620.7204 698.6299 667.6790 746.9414

(4.07 min) (3.54 min) (3.63 min) (4.12 min)
meta elliptical-t 617.5156 692.7963 1112.939 776.8259

(12.10 s) (1.02 min) (4.29 min) (3.10 min)
t-SAS 634.0599 694.6652 1075.957 667.4588

(1.31 min) (2.03 min) (9.73 min) (2.72 min)

n = 1000
t 7346.343 11891.12 7849.712 9847.058

(16.62 s) (23.56 s) (17.45 s) (55.87 s)
skew-t 6066.006 10513.17 6620.216 7361.205

(13.74 s) (14.54 s) (14.07 s) (15.58 s)
multiple scaled-t 6091.425 6706.059 6585.36 7490.495

(46.58 min) (33.01 min) (37.33 min) (45.10 min)
meta elliptical-t 6054.726 6609.865 10,945.42 7855.342

(7.31 min) (1.44 min) (1.34 min) (10.26 min)
t-SAS 6095.659 6553.907 10,434.28 6539.835

(19.46 min) (11.83 min) (32.67 min) (11.94 min)

n = 10,000
t 72,318.55 118,699.1 77,715.79 96,475.54

(1.38 min) (38.73 s) (1.49 min) (1.59 min)
skew-t 59,862.13 104,062.7 65,793.52 72,670.13

(2.48 min) (2.56 min) ( 2.79 min) (2.87 min)
multiple scaled-t 60,211.49 66,097.17 65,624.49 74,064.37

(6.65 h) (7.001 h) (7.92 h) (8.90 h)
meta elliptical-t 59,845.96 65,078.95 108,362.4 77,732.89

(11.59 min) (12.92 min) (29.52 min) (1.44 h)
t-SAS 60,115.14 64,506.98 103,324.6 64,959.53

(2.12 h) (1.96 h) (10.17 h) (1.81 h)
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Table 3. BIC scores (in seconds, minutes or hours)—dimension 5.

Fitted Distribution Data Generator

t Skew-t Multiple Scaled-t Meta Elliptical-t t-SAS

n = 100
t 2139.904 2910.327 2431.283 2568.123

(19.13 s) (8.71 s) (12.81 s) (12.35 s)
skew-t 1541.473 3067.713 2367.529 2050.565

( 10.19 s) (10.67 s) (11.59 s) (13.90 s)
meta elliptical-t 1530.399 1591.337 2487.038 2275.882

(4.05 min) (3.49 min) (3.97 min) (4.09 min)
t-SAS 1581.714 1638.517 2509.191 2157.801

(6.12 min) (7.14 min) (6.74 min) (6.92 min)

n = 1000
t 20,440.26 28,311.18 23,663.64 24,483.51

(16.54 s) (14.02 s) (20.48 s) (13.20 s)
skew-t 14,053.25 27,661.15 40,215.95 19,902.44

(39.59 s) (41.76 s) (48.51 s) (47.05 s)
meta elliptical-t 14,026.45 15,169.81 23,467.53 22,220.04

(23.87 min) (23.95 min) (26.24 min) (35.05 min)
t-SAS 14,161.15 15,367.83 23,475.92 21,409.75

(53.33 min) (55.97 min) (56.59 min) (1.01 h)

n = 10,000
t 201,314.9 280,266.2 238,979.6 245,145.6

(1.57 min) (1.67 min) (1.96 min) (1.62 min)
skew-t 139,361.6 298,194.7 338,688.8 197,373.4

(6.38 min) (6.58 min) (7.51 min) (7.94 min)
meta elliptical-t 139,317.2 149,850.3 231,530.1 222,997.3

(4.53 h) (4.69 h) (4.59 h) (6.03 h)
t-SAS 140,195.5 152,159.8 231,812.7 212,482.6

( 9.35 h) (9.15 h) (8.88 h) (9.96 h)

On basis of the results in Tables 2 and 3 (where the best-fitting distributions are indicated in
boldface), we can draw the following conclusions:

• The distributions based on the multivariate t-copula yield in general the best fit.
• For the dimension d = 2, the t-copula combined with SAS marginals outperforms its competitors,

especially for large sample sizes, while for d = 5 the meta-elliptical asymmetric t provides the
best fit.

• For data generated under the t−SAS distribution, the skew-t exhibits the best performance,
which is in line with the fact that it can capture skewness as opposed to the meta-elliptical
asymmetric t that is centrally symmetric. In dimension 2, the multiple scaled t-distribution even
outperforms the meta-elliptical asymmetric t in this case.

• In most situations where the meta-elliptical asymmetric t is the best, the t-copula combined with
SAS marginals has a nearly as good BIC value.

• In no setting does the multivariate t-distribution provide the best fit, nor does the multiple
scaled t-distribution.

• The meta-elliptical asymmetric t and t-SAS are copula-based models and they are computationally
demanding for large sample sizes and dimensions. Hence, they have large computational times.
The same holds for the multiple scaled-t, as the parameters are estimated using the EM algorithm;
it has the largest computational times in dimension 2, as mentioned earlier.

9. Conclusions

We have described popular families of flexible multivariate distributions, with a focus on skewness
and tails. We have compared them in terms of their theoretical properties as well as fitting abilities.
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This comparison allows the reader to draw his/her own conclusions regarding which family to use in
which situation. A further aid in this endeavour is our newly proposed classification.

Although flexibility is a desirable property of a distribution, it comes with the risk of overfitting.
Indeed, the more parameters a distribution possesses, the more flexible it becomes, at the cost
of parameter interpretability and accuracy of the estimators (as well as estimation complexity)
for finite samples. While we do not thoroughly discuss estimation in this work, the distributions
discussed here have parameters that are fairly interpretable. In general terms, the distributions possess
a d-dimensional vector of location parameters, a d(d + 1)/2-dimensional matrix of scatter parameters,
a d-dimensional vector of skewness parameters and a d-dimensional vector of tail weight parameters.
In the simplest distributions, some of these vectors and matrices are not present, while in others,
additional parameters exist (like in the copulas with a tail parameter in the copula function).

Further interesting issues remain to be explored and discussed. For instance, inference in
high-dimensional situations is currently a hot topic, and adapted parameter estimation methods need to
be devised especially for those distributions where EM algorithms are being used. Another extension
is broadening the universe of families. For example, Arellano-Valle et al. [64] proposed multiple
scale-shape mixtures of multivariate skew-normal distributions. Another example is to investigate
the (uni)modality of the distributions considered. Finally, flexible distributions for multivariate data
that take values on non-linear manifolds such as spheres or Stiefel manifolds (see Chapter 2 of [65] for
examples) are worth researching on.
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