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 Abstract: Human operators in the upcoming Industry 4.0 workplace will face accelerating 

job demands such as elevated cognitive complexity. Unobtrusive objective measures of mental 

workload (MWL) are therefore in high demand as indicated by both theory and practice. This pilot 

study explored the wearability and external validity of pupillometry, a MWL measure robustly 

validated in laboratory settings and now deployable in work settings demanding operator 

mobility. In an ecologically valid work environment, 21 participants performed two manual 

assemblies - one of low and one of high complexity - while wearing eye-tracking glasses for pupil 

size measurement. Results revealed that the device was perceived as fairly wearable in terms of 

physical and mental comfort. In terms of validity, no significant differences in mean pupil size 

were found between the assemblies even though subjective mental workload differed 

significantly. Exploratory analyses on the pupil size when attending to the assembly instructions 

only, were inconclusive. The present work suggests that current lab-based procedures might not 

be adequate yet for in-the-field mobile pupillometry. From a broader perspective, these findings 

also invite a more nuanced view on the current validity of lab-validated physiological MWL-

measures when applied in real-life settings. We therefore conclude with some key insights for 

future development of mobile pupillometry.  
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1. Introduction 

As the industrial workplace is steadily changing from a routine work environment to a small-

batch, knowledge driven industry 4.0 workplace (cf., Shalin et al. 1996; Young et al. 2014; Brolin et 

al. 2017; Longo et al. 2017), the demand for operator mental workload (MWL) optimization grows 

prominently. To organize work as a function of optimal mental workload, work designers want to 

gain insight into the cognitive processes and the associated physiological reactions induced by 

specific mental workload antecedents such as task complexity, task switching, instruction format, 

human-cobot communication, etc. (Hoedt, Claeys, Van Landeghem, & Cottyn, 2017; Parmentier, 

Van, Detand, & Saldien, 2019; Stork & Schubö, 2010; Thorvald, Lindblom, & Andreasson, 2017; Van 

Acker, Parmentier, Vlerick, & Saldien, 2018; Young et al., 2014). If not, suboptimal mental 

workload can lead to errors, safety risks, and detrimental effects on operators’ mental and 

physical wellbeing (Matthews 2016; Brolin et al. 2017; Kolbeinsson et al. 2017; Wickens 2017).  

 

In order to measure mental workload, the human factors and ergonomics field builds on a strong 

tradition of subjective measures and (secondary task) performance monitoring (for an overview, 

see Young et al. 2014). These methods indirectly infer MWL through, respectively, operator 

perceptions and, for example, quality rate. Other accounts provide researchers and practitioners 

with more direct methods gauging the physiological resources being spent when attending to 

tasks (for an overview, see Charles and Nixon 2019). Theta brainwaves and suppression of alpha 

brainwaves measured with wearable electroencephalography (EEG) headsets, for instance, have 

shown to be indicators of operator MWL (Wilson and Russell 2003; Ryu and Myung 2005; 

Antonenko et al. 2010; Huang et al. 2013; Hairston et al. 2014; Guru et al. 2015), while functional 

Near-infrared Spectroscopy (fNIRS) measures cerebral blood flow velocity at the frontal brain 

regions to estimate MWL (Ayaz et al., 2013, 2012; Foy & Chapman, 2018; Howard et al., 2015; 

McKendrick et al., 2016). These measures might however be most promising in fixed occupational 

positions (e.g., air traffic control centers, nuclear plant control rooms, motor vehicles, trains, 

airplanes, etc., Young et al. 2014; for an example, see Wanyan et al. 2018) as they could be 

perceived as obtrusive and unsafe when worn in more mobile industrial contexts such as 

assembly work places. Other less obtrusive gauges, such as such as heart-rate parameters and 

electrodermal response (EDR) (Boucsein, 2012; Collet, Salvia, & Petit-Boulanger, 2014; Kocielnik, 

Sidorova, Maggi, Ouwerkerk, & Westerink, 2013; Serino, Matic, Giakoumis, Lopez, & Cipresso, 

2016) could provide one solution for such environments (e.g., when integrated into a wristband) 

but require more research and development on its applicability. Research on heart-rate 

parameters, for instance, showed mixed results (cf., Heine et al. 2017), sometimes with 

parameters being invalid and not sensitive to subtle fluctuations in mental workload (see, e.g., 
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Paas and Van Merriënboer 1994), while EDR has, to our knowledge, not yet been robustly 

validated in mobile settings. A final strongly validated MWL-measure that is sensitive to 

fluctuating MWL levels (Paas, Tuovinen, Tabbers, & van Gerven, 2003) is pupillometry, and 

interestingly, a measure that can now be deployed in mobile situations such as assembly work 

places. 

 

1.1. Pupillometry  

Since Hess and Polt (1960), pupil size has not only been related to changes in light conditions, but 

also to changes in cognitive and emotional load. When cognitive task demands increase, the pupil 

becomes larger, this, in a wide range of cognitive tasks such as solving mathematical equations 

(Kahneman, Tursky, Shapiro, & Crider, 1969), remembering a number of digits (Beatty & 

Kahneman, 1966; Peavler, 1974), Stroop interference (Laeng, Ørbo, Holmlund, & Miozzo, 2011), 

retrieving information from memory (van Rijn, Dalenberg, Borst, & Sprenger, 2012), attentional 

allocation (Verney, Granholm, & Marshall, 2004), visual search (Porter, Troscianko, & Gilchrist, 

2007), cognitive control (van der Wel & van Steenbergen, 2018), etc. Peavler (1974) interestingly 

also found that pupil dilation can reach an asymptote when the limits of working memory are 

exceeded, while Granholm and colleagues (1996) discovered that when demands are too high, 

pupil diameter can in fact decrease again, thus showing a curvilinear relation with task demands. 

The last two decades showed a remarkable revival in pupillometry research because of the cost-

efficiency and precision of pupillometry technology (see, e.g., Sirois and Brisson 2014; Mathôt 

2018; van der Wel and van Steenbergen 2018).  Also in the ergonomics and human factors field 

pupillometry has shown its potential in various contexts. Recarte and Nunes (2003) and Tsai et al. 

(2007) observed that the pupil diameter increases when engaging participants in more 

demanding secondary tasks while driving an automobile. Air traffic controllers revealed to have 

larger pupils under increased task difficulty (cf., Ahlstrom and Friedman-berg 2006; Truschzinski 

et al. 2018) and pupil sizes in participants in a simulated piloting task were larger when task 

demands increased (Causse, Peysakhovich, & Fabre, 2016). Based on real-time pupil dilation data, 

Katidioti et al. (2016) even developed a task-independent interruption management system (IMS) 

while simulating the job context of an employee in an electronics company answering to emails 

and being interrupted by chat messages. In a gaze interactive assembly instruction, Hansen et al. 

(2018) observed a pupil size decrease throughout a LEGO building process, except when the child 

participants had to back-step. Finally, differences between experts and non-experts in surgical 

skill have been related to pupil size (Erridge, Ashraf, Purkayastha, Darzi, & Sodergren, 2017; 

Richstone et al., 2010) and also harder visual-motor aiming tasks (such as with a one-handed 
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grasper in endoscopic surgery) yield higher pupil dilation (Jiang, Zheng, Bednarik, & Atkins, 2015; 

see also, Dalveren, Cagiltay, Ozcelik, & Maras, 2018). 

 

Pupillometry is often restricted to stationary laboratory settings or applied (simulated) pilot, 

driving or air traffic controller settings requiring subjects to remain in a fixed position and engage 

in a limited field of vision - since remote eye-tracking systems otherwise lose track of the eyes (cf., 

Recarte and Nunes, 2003). Marinescu et al. (2018) even suggest their mixed-method approach 

including pupillometry, given the current technological possibilities, to be best suited for  

workplaces where employees are mainly seated. However, head-mounted eye-tracking systems, 

as for example used in driving research (cf., Tsai et al. 2007), allows applied pupillometry research 

to take one step further into the direction of fully mobile mental workload measurement. A 

recent technological development now even made this eye-tracking method more light-weighted 

and small-scaled by integrating eye-tracking cameras into the frame of a pair of glasses, providing 

researchers and practitioners a way to measure pupil size in real mobile work settings where 

users are fairly free to move, gaze into all directions and change positions around the work place 

(see similar applications for eye-tracking purposes in, e.g., Vansteenkiste et al. 2017). In the 

current study, participants wore such eye-tracking glasses (ETG) in a simulated assembly setting 

in which they, although being seated, changed positions between presentation of instructions 

and work table, inspected the assembly components in a naturalistic field of vision, then manually 

interacted with the components, and placed and screwed them together.  

 

The main goal was to explore the wearability (in terms of physical and mental comfort, see 

below) and the external validity of pupillometry in a more mobile, naturalistic assembly 

environment in which, per definition, there is less control over confounding variance caused by 

the wide variety of cognitive, emotional and physical processes involved, such as operator motor 

control, non-restricted eye movement patterns at various eye-to-stimulus distances, but also 

factors external to the operator such as changes in luminance coming from different types of 

stimuli (instead of equiluminance standards in lab experiments, see, e.g., Braem et al. 2015; 

Bombeke et al. 2016) and other unknown error variance. Indeed, all these factors are inherent to 

measurement in real-life, but as well inherent to the limitations of pupillometry and other 

wearable MWL-measures. If the next step from lab measurement to field measurement is to be 

taken, thorough understanding of these factors and their inclusion into measurement protocols 

are imperative for sound validation. Our study was therefore conceptually underpinned as both 

task complexity and pupillometry were embedded within the latest MWL–framework of Van 
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Acker et al. (2018), implying that the study captured and controlled for some key confounding 

MWL related variables such as emotional load, physical load and visual-spatial intelligence. 

 

Contrary to classic pupillometry studies inducing very specific types of MWL separately - e.g., 

arithmetic processing or visual scanning - the current study design moreover was ecologically 

valid as it allowed for a wider, more real-life spectrum of cognitive processing. We did so by 

designing a representative industrial translation of traditional laboratory MWL-manipulations in 

the form of two assemblies - one of low complexity and one of high complexity. Participants 

performed both tasks and had to manually select, orient and screw all parts together, based on a 

set of prescribed instructions. We then assessed wearability of the ETG and subjective MWL and 

took pupil size measures for both the entire assemblies as well as for each of the separate 

consecutive steps within both assembly tasks. 

 

Altogether, the present pilot study is, to our knowledge, the first to apply pupillometry in an 

ecologically valid assembly setting - a setting ever more relevant as the assembly industry is 

convincingly transforming into an Industry 4.0 (Longo et al., 2017) work context in which job 

complexity strongly increases due to the required operator adaptivity and top-notch 

technological support. Indeed, as the smart factory of the future is being equipped with cyber-

physical systems, Internet of Things, and Services, employers want and need to profoundly 

understand the mental load experienced by the crucial human operators in this environment. 

Objective physiological measures are pivotal to these ends. As pupillometry has shown to be a 

strong indicator of MWL under controlled, equiluminant laboratory settings restricting to a 

limited field of view, the present pilot study endeavors to explore for the first time how feasible 

the use of this physiological marker could be when measured with recently developed eye-

tracking glasses and in a low-controllable naturalistic industrial environment.  

 

1.2. Study overview  

In a within-subjects experimental design, participants engaged in an assembly task of high and 

low complexity. For both assemblies, they were first shown pictures of the required end goal, 

were then presented with the instructions for one step and were asked to execute this step. After 

finishing the step, they continued with the following step, until the seventh and final step of the 

assembly was completed.  

 

Following the triangulation method as proposed by Van Acker et al. (2018) (see also Matthews 

2016), we also pinpointed the subjective perceptions following completion of both assemblies 
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next to pupil size. This is important, because mental workload is the result of a wide range of 

interacting variables and subjective measures can help in interpreting physiological data while, 

interestingly, they do not necessarily converge with them (cf., Brookhuis and De Waard 1993; 

Myrtek et al. 1994; Annett 2002; Young et al. 2014; Matthews et al. 2015). For these reasons, we 

asked participants after each assembly task to rate the mental work demands they experienced. 

We  hypothesized that: 

 

• H1: Experienced mental work load will be higher in the high complexity condition, as 

compared to the low complexity condition. 

 

Based on the laboratory and applied pupillometry experiments as discussed above and having 

designed the high complexity assembly not to cause mental overload (cf., the mentioned 

curvilinear relation), we hypothesized that: 

 

• H2: The high complexity condition, as compared to the low complexity condition, will 

induce a larger pupil size when averaging pupil diameter over the entire assembly task.  

 

In line with the previous hypothesis and aiming to explore the sensitivity of the gauge (Matthews, 

Reinerman-Jones, Wohleber, et al., 2015) we compared the separate assembly steps and 

formulated the following hypothesis : 

 

• H3: In each of the consecutive assembly steps, a larger pupil size will be triggered in the 

high complexity condition, as compared to the low complexity condition. 

 

2. Methods 

2.1 Participants 

Some classic laboratory experiments leverage sample sizes in the range of, e.g., N = 12 (Porter et 

al., 2007), N = 15 (Piquado, Isaacowitz, & Wingfield, 2010) and N = 19 (van Rijn et al., 2012), while 

more applied fixed position experiments run trials with sample sizes going from N = 6 (Ahlstrom & 

Friedman-berg, 2006; Recarte & Nunes, 2003) to N = 24, N = 25 (Causse et al., 2016; Truschzinski et 

al., 2018). Because this study was set out as a pilot study exploring the feasibility of mobile 

pupillometry, we therefore decided to collect data of at least twenty participants as to stay in line 

with previous laboratory studies and to stay within the restrictions of what is feasible in the field. 
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A total of 21 university student volunteers and staff affiliated with an engineering university 

faculty (33.3% female, Mage = 23.3, SDage = 3.25), naïve to the manipulation (afterwards, none of the 

participants reported to have an idea about the experimental goal), participated after giving their 

written consent. Since the eye-tracking glasses used cannot be worn on top of corrective glasses, 

people who could not read a computer screen from normal distance and would not be able to 

assemble in the present setting without glasses could not participate. People with corrective 

lenses or corrected to normal vision could still take part in the study (no participant reported to 

have had problems with their vision affecting execution of the assembly on a 7-point Likert scale, 

M = 2.67, SD= 1.46, Min = 1, Max = 4). Because of a technical failure with the pupillometry 

equipment we ended up with data of 19 participants for the pupil size analyses. 

 

2.2 Experimental design 

The study followed a within-subjects design: all participants performed both assemblies. The 

order of the assemblies was randomly counterbalanced. Participants were randomly assigned to 

one of the two orders and had a resting phase in between. In total, the experiment would take 

approximately one hour. 

 

2.3 Designing assembly complexity 

In order to simulate a real-life industrial translation of the standard laboratory MWL-

manipulations such as n-back tasks and digit span tasks (cf., García et al. 2017; or for an overview, 

see van der Wel and van Steenbergen 2018), we designed an assembly of high and one of low 

complexity. We did so based on the task variables predicting assembly difficulty as proposed by 

Richardson et al. (2004, 2006), extended with Pillay's (1997) experimental approach of using non-

familiar assembly objects (see also Norman's, 1983, Shalin et al.'s, 1996, insights on mental models 

in objects). We also added one material-related task variable manipulating complexity. Table 1 

presents a total of 10 manipulated task variables and how they fed into the design of both 

assemblies. In so doing, we aimed to manipulate as much of the differential cognitive processes 

involved in typical assembly tasks as possible, such as perception (e.g., of part features), mental 

rotation (e.g., required orientation of parts), response selection (decision making) and action 

(e.g., motor execution) in commissioning and joining (cf., Shalin et al. 1996; Pillay 1997; Stork and 

Schubö 2010; Van Acker et al. 2018). We then tested and redesigned the composition of both 

assemblies, the display of the parts on the work table and the assembly instructions in an iterative 

design process with subject matter experts (SMEs) along a think aloud approach (cf., Altman 

2007). The final iteration and pilot test confirmed that both assemblies were sufficiently 

distinctive when the SMEs rated the complexity of both assemblies on 7-point Likert-scales when 
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asked for a comparison score, how easy to hard and recognizable the assembly would be for the 

average operator and how hard the selection of the parts, mental rotation and orientation on the 

assembly-in-progress, and finding the correct fastening points would be for the average operator. 
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Task Variable Low Complexity High Complexity 

1. Model 

(Norman, 1983; Pillay, 1997; Shalin 

et al., 1996) 

Simple cubical box familiar to operator's 

mental representation 

Abstract design unfamiliar to operator's 

mental representation 

2. Symmetrical planes 

(Richardson et al., 2004, 2006) 

High amount, for sides and cubical corner 

pieces, within and between parts 

Low amount, for variably shaped sides and 

corner pieces, within and between parts 

3. Components 

(Richardson et al., 2004, 2006) 
Low amount High amount 

4. Component groups 

(Richardson et al., 2004, 2006) 

Low amount (cf., 5 equally shaped and 

sized sides) 

High amount (cf., all components unique in 

shape and size) 

5. Selections 

(Richardson et al., 2004, 2006) 

No redundant components and 

presented on work table in correct order 

Redundant components and mixed 

presentation on work table 

6. Fastenings 

(Richardson et al., 2004, 2006) 
Only minimally required amount High amount 

7. Fastening points 

(Richardson et al., 2004, 2006) 

No redundant holes on sides, and low 

amount of redundant holes and no faulty 

fastenings possible for corner pieces 

High amount of redundant holes and irregular 

distribution over parts of redundant holes for 

sides and corner pieces 

8. Novel (sub-)assemblies 

(Richardson et al., 2004, 2006) 
Low amount 

High amount, all sub-assemblies being 

different 

9. Presenting orientation on 

work table  

(Pillay, 1997; Shalin et al., 1996) 

Correct angle 
All angled 90° randomly to the left or to the 

right along the horizontal plane. 

10. Material 

(added by the authors) 
Low transparency of acrylic glass sides 

High transparency of acrylic glass sides, 

making visual perception more difficult 

 

Table 1: Task variables manipulating assembly complexity. 

 

2.4 Procedures  

Under the guise of participating in a study that is 'exploring how people assemble', participants 

were told that eye-movements would be tracked. They were informed that there was no right or 
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wrong way for them to assemble and that they had all the time they needed to complete the 

assemblies. 

 

The study took place in a quiet room with stable artificial lighting (550 lux). Participants were 

seated during the entire experiment in order to minimize differences in fatigue due to physical 

load. The work station (see Figure 1) consisted of a work table (A) on which all parts were 

displayed (B) and the assembly was to be made, and a table (C) placed at the opposite side for 

the presentation of the instructions, so the participant (D) consecutively had to turn around 180 

degrees between visual intake of the instructions and execution of the assembly step. We 

artificially separated these two assembly phases for two reasons.  

 

Firstly, this separation allowed to present the instructions automatically and in a standardized 

manner. This was important as pilot tests showed that when instructions would be presented at 

the work table, participants would be missing information because of switching back and forth 

between the presented parts and the presented instructions - again obstructing the manipulation 

to be the same for all participants. By running the instructions automatically, we could assure that 

the manipulation would be induced for a minimally same time window for all participants 

(contrary to operator-controlled instructions). Specifically, participants were asked to look at all 

the information presented on the screen of a laptop while not looking at the work table behind 

them, so that all participants were equally exposed to this part of the manipulation.   

 

Secondly, by separating the instructions and the work table, unequal split-attention effects (cf., 

Sweller et al. 1998) were avoided, allowing us to ensure that a similar type of MWL was induced in 

both assemblies. The split-attention effect shows that procedural, compared to integrated 

instructions, induce more mental workload because of dividing attention between different 

information types (e.g., pictures and arrows vs. real-life objects, here, the assembly parts). Since 

the low complexity assembly is inherently easier to process cognitively, this condition would yield 

lower mental workload caused by split-attention as compared to the high complexity condition. 

This study however focused on manipulating complexity inherent to the assembly design (i.e., the 

intrinsic cognitive load caused by the element interactivity, Sweller et al. 1998) and excluded 

possible effects coming from extraneous cognitive load (Sweller, 2010) caused by, i.a., split-

attention.  

 

The instructions were presented on a 16 inch laptop (E) placed on a table, while participants were 

all seated at a normal distance (approximately 60 cm) from the screen. Both assemblies consisted 
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of 7 steps, so that both instructions presented 7 steps, each following the same format. Per step, 

pictures were shown (all equal in size, 1 per slide), along with very brief textual information on 

top of every slide (since we did not aimed to induce verbal processing). Each step first showed a 

picture of the two required parts placed next to the assembly-in-progress and subsequently, 

pictures of the part details. Then, a picture was shown for how to mount the two parts on the 

assembly-in-progress (indicated with arrows), a picture of the required result (with circles for 

where to screw) and pictures with details of this result. The average time windows of the 

instructions were comparable over conditions (Mlow_complexity = 43.17 s; Mhigh_complexity = 41.83 s.).  

 

After viewing the instructions for one assembly step, participants turned around and had to 

select the respective assembly parts needed out of an ordered display of parts for the low 

complexity assembly and a randomized display of parts (but fixed over participants) for the high 

complexity assembly (see Figure 2). Participants thus had to select, per step, two parts out of the 

parts displayed which also contained redundant parts in the high complexity condition. The two 

assemblies, laser cut in acrylic glass (PMMA; for the sides) and 3D-printed in polylactide (PLA; for 

the connection parts, handles and hinges) were to be screwed together with wood screws and a 

manual screw driver (F) (Pozidriv screw drive with magnetic tip).  

 

  

 

Figure 1: Top view on the work station, composed of the work table (A) with the assembly parts (B) and the 

screwdriver and screws (F), a table at the opposite side (C) with a laptop (E) displaying the instructions, and 

the seated participant operator (D). 
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Figure 2 summarizes the sequence of the assembly phases participants typically advanced 

through (based on Stork and Schubö 2010, see also Van Acker et al. 2018, for an assembly model 

case). First, the participant had to attend to the instructions by memorizing the two parts that 

were needed and how to orient them when mounting (i.e., stimulus preprocessing and mental 

rotation). When then facing the work table, visual inspection of the parts displayed on the table 

(i.e., feature extraction and stimulus identification) preceded final decision-making (i.e., executive 

control) on which parts to pick and how to orient them on the assembly-in-progress. Physical 

execution (action execution and motor adjustment) then followed, but iteratively fed back into 

the decision making process in which cognitive processes gauge whether the selected solution 

might indeed be the correct one. If not the case, decisions would be altered and physical 

execution would be performed over again. Because of the nature of complexity manipulation for 

real-life contexts, the high complexity condition would yield more of this trial and error, so that 

the iterative phase of decision making and physical execution would last longer, as compared to 

the low complexity condition. As participants might differ regarding their needed time for 

understanding and executing the prescribed instructions between and within steps, we 

compensated for these variations in our pupillometry analyses, by taking the mean pupil diameter 

per participant, per entire step (i.e., including instructions and execution). 

  

 

Figure 2: Sequence of the assembly phases of one step for the low and high complexity condition. Note 

that before Step 1 of each assembly, pictures of the finished assembly (i.e. the end goal) were shown.  

2.5 Measures 

In line with the suggestions by Van Acker et al. (2018) we assumed that our manipulation of the 

mental workload antecedent assembly complexity (see above), will interact with participants’ 

cognitive architecture and that this task-human interaction will trigger firstly the spending of 
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cognitive resources as expressed by physiological reactions such as changes in pupil size. Indeed, 

by design, the element interactivity inherent to the assembly (cf., Sweller et al. 1998) will mainly 

trigger visual-spatial cognitive processing (i.e., mental rotation, object recognition, motor 

execution, etc., see Pillay 1997; Richardson et al. 2004, 2006) and working memory span 

processing (i.e., for keeping in mind the specific properties of the parts, e.g., amount of fastening 

points, see Stork and Schubö 2010) – all primarily related to the visual-spatial sketchpad part of 

working memory (Baddeley, 1992). As task complexity might also induce cognitive subjective 

experiences in participants according to Van Acker et al. (2018), we also measured this mental 

workload defining attribute through a subjective estimation. 

 

Our resulting operational definition, necessary for solid theory building and comparability 

between empirical studies, stated that: "Mental workload will be reflected in a subjective 

estimation and in the pupil size, revealing an interplay between participants’ limited working 

memory modalities on the one hand and the visual–spatial demands and working memory span 

demands being exposed to on the other”.    

 

2.5.1 Pupillometry 

Pupil size was measured using the Eye Tracking Glasses (ETG) 2w of SensoMotoric Instruments 

(SMI; Teltow, Germany) at a binocular sampling rate of 60Hz. The SMI-ETG is a lightweight (47g) 

eye-tracking system with two small cameras integrated into the bottom rim of the frame of the 

glasses. The system deploys dark pupil tracking and automatic parallax compensation, and has an 

accuracy of 0.5° over all distances. Pupil size data were stored on a customized smartphone 

connected to the glasses with a cable and kept in the participants trouser pocket or waist bag. 

With respect to the analyses, the raw pupil signal was first extracted with the SMI BeGaze 

software. Next, blinks were linearly interpolated and the signal was filtered with a low-pass filter 

of 20Hz (note that we obtained similar findings with the more typical 10Hz filter). The start and 

end of each step in the assembly was used to define epochs for which the average pupil size was 

calculated. We report non-baselined data, but similar results were found when using a 5 second 

baseline that was extracted right before each step. We finally included a covariate in our 

statistical analyses controlling for potential pre-existing individual differences in resting-state 

pupil size (cf., Aminihajibashi, Hagen, Dyhre, Laeng, & Espeseth, 2019) by measuring participants' 

pupil size during the first two seconds in both the low and high complexity condition, to then 

calculate one overall average pupil size over both time periods/tasks. Figure 3 shows a picture of 

the SMI Eye Tracking Glasses. Data of the right pupil were used in all analyses, as common 

practice in pupillometry research. 
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Figure 3: The SMI-ETG worn during the experiment. 

 

2.5.2 Subjective mental workload 

The subjective experience of the mental workload was measured with a questionnaire  averaging 

scores on three items to be rated on a 7-point Likert-scale (ranging from 1 not at all to 7 to a great 

extent; Cronbach's alpha = .82 for the low complexity condition and Cronbach's alpha = .86 for 

the high complexity condition).  

 

Specifically, after completion of each assembly participants were asked to what extent they 

agreed to statements concerning the cognitive load experienced during the assembly process 

(i.e., 'I experienced this assembly as cognitively demanding') and the mental load (i.e., 'I had to 

invest mental effort while performing the assembly' and 'I experienced this assembly as mentally 

demanding'). These items were inspired on the work of cognitive load theory (F. G. Paas, 1992; 

Fred G. W. C. Paas, van Merriënboer, & Adam, 1994), the Subjective Workload Assessment 

Technique (SWAT; Reid and Nygren 1988) and the NASA-TLX (Hart & Staveland, 1988). We hereby 

covered the most prominent literature on subjective mental workload assessment (Rubio, Díaz, 

Martín, & Puente, 2004; Vidulich & Tsang, 1986), and accounted for the criticism on the NASA-TLX 

(de Winter, 2014). 

 

2.5.3. Other measures 
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When simulating a more real-life work environment and thus letting go of a substantive amount 

of experimental control, applied contexts do allow for measuring variables affecting mental 

workload that cannot be experimentally controlled or are not feasible to control experimentally.  

First, participant's visual-spatial intelligence was measured, since this intelligence factor can 

largely affect interpersonal differences in assembly performance (cf., high spatial-ability learners 

devoting more cognitive resources in Mayer and Sims 1994). For this, we had all participants 

complete (a subset of) the Revised Minnesota Paper Form Board test (Stinissen, 1977) 

subsequent to the experiment on a different day (for practical reasons) and obtained a score per 

participant. Secondly, as we wanted to control for the potential effects of moderating variables 

outlined by Van Acker et al. (2018), we also measured self-reported dexterity (on a 7-point Likert-

scale), gender and age (see Van Gerven et al. 2004, for the effects of aging on pupillary response 

under working memory load).  

 

Thirdly, as mental workload can also be affected by emotional load and even physical load 

(Kahneman, 1973; Mandler, 1979; Norman & Bobrow, 1975), especially when measuring 

physiological reactions since they are thought to all draw from the same physiological resources, 

and since pupil size has also been found to be sensitive to emotional load (cf., Goldwater 1972; 

Wang et al. 2013), we also measured emotional and physical load. We subjectively gauged physical 

load with one item measuring to what extent one perceived the assembly as physically 

demanding and emotional load with five items - again with statements on the same 7-point Likert-

scale. For the latter, we selected items from the Dundee Stress State Questionnaire (DSSQ; 

Matthews et al. 2013; Matthews 2016) pinpointing not only the negative emotions frustration and 

irritation, and whether participants felt tense during the assembly, but also by measuring the 

situation appraisal on coping ability and uncertainty potentially leading to these emotions. In so 

doing, we made a variable 'Emotional Load' with these items (Cronbach's alpha = .75 for the low 

complexity condition and Cronbach's alpha = .91 for the high complexity condition). We expected 

both scores to be low, indicated by a subjective rating below the scale midpoint (i.e., 4 on the 7-

point Likert scale) and not to differ per condition.  

 

Fourth, we checked for the work behavior variable task engagement, since the nature of the 

complexity manipulation might cause participants to easily get tired of the task. More precisely, 

the low complexity condition could lead to mind wandering and being fed up with the task, 

potentially associated with irritation and frustration, which importantly, might yield drops in 

assembly quality or higher levels of arousal gauged through pupillometry. A first item therefore 

asked (on the same a 7-point Likert-scale) to what extent the participant's mind started 
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wandering and the second item to what extent the participant was fed up with the task (again 

inspired on the DSSQ, Matthews et al. 2013; Matthews 2016). Since both items can indicate the 

amount of task engagement, but still measure different constructs (as shown by a low 

Cronbach's alpha estimation of internal consistency, being .66 for the low complexity condition 

and .62 for the high complexity condition), two separate variables 'Mind Wandering' and 'Fed Up' 

were included in the analyses.  

 

Finally, as this is the first study applying pupillometry in an assembly context and as participants 

wore the eye-tracking glasses (ETG) in total for around 1 hour, we rated the device on 13 

wearability items, using a 7-point Likert scale going from 1) not at all, to 7) completely. For this, we 

built on the Comfort Rating Scales of Knight et al. (2002), on Gemperle et al.'s (1998) design 

guidelines for wearability and Dunne and Smyth (2007) - all looking into the physical interaction of 

a user's body and the physical form of wearable devices and its effects on perceptions on the self 

and cognitive abilities. In so doing, we translated the parameters as proposed by these authors, 

being e.g., pressure and constriction, thermal balance, texture, moisture transport and freedom 

of movement, into items asking participants to what extent 1, they, after a while, forgot they still 

had the ETG on, 2. they felt that the ETG was moving, 3. caused irritating friction on the skin, 4. 

caused too much heat on the skin, 5. caused too much sweat on the skin, 6. caused too much 

pressure on the skin, 7. the ETG weighed too much, 8. caused pain, 9. obstructed movement, 10. 

they felt tense because of wearing the ETG, 11. the ETG caused distraction, and, 12. caused 

frustration. 

 

To conclude the methods section: we have collected and made available all materials on the Open 

Science Framework - i.e., technical drawings of the assemblies, instructions, pictures of the 

display on the work table, questionnaires and the obtained subjective and physiological data. We 

did so in order to make future iterations on and replications of this approach as feasible as 

possible (see https://osf.io/uhmgv/?view_only=86c2843d9a0744c6a052c36cc503d43c).  

 

3. Results and discussion 

3.1 Task Complexity manipulation check 

Instead of a repeated measures t-test, a Wilcoxon Signed Rank Test on perceived difficulty of the 

assemblies was selected because of violation of normality of the data. It confirmed that the high 

complexity condition was more difficult (Md = 5.00, range: 2-7, N = 21) to the participants as 

compared to the low complexity condition (Md = 1.00, range: 1-4, N = 21), z = -4.04., p < .001 (two-

https://osf.io/uhmgv/?view_only=86c2843d9a0744c6a052c36cc503d43c
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tailed), with a large effect size of r = .62 (with r = z/√(Nx + Ny), Rosenthal 1994). The complexity 

manipulation thus showed to be effective.  

 
3.2 Emotional load, physical load, being fed up and mind wandering 

In order to induce only mental workload, we wanted to minimize emotional and physical load 

processes as much as possible. Our emotional load (EL) variable showed sufficient reliability (see 

above), but lacked normality of data. We therefore first ran a Wilcoxon Signed Rank Test, 

revealing that EL was higher in the high complexity condition (Md = 3.4, range: 1.40-6.20, N = 21), 

as compared to the low complexity condition (Md = 1.4, range: 1-4.20, N = 21), z = -3.83, p < .001, 

with a large effect size of r = .59. Where in the low complexity condition Emotional Load was 

indeed perceived as almost non-existent, EL was thus however perceived as fairly low to average 

in the high complexity condition. The physiological data measured with pupillometry in the high 

complexity condition might thus not represent mental workload exclusively, but also to some 

extent emotional load - which is intelligible, since EL is hard to circumvent when facing complexity 

(cf., Van Acker et al. 2018) and pupil size indicates general arousal levels (Mathôt, 2018). Next, 

subjective ratings on physical load (PHL), showed to be equally low in both conditions (Md = 1, 

rangelow_complexity: 1-2, rangehigh_complexity: 1-2, N = 21), not differing from each other, z = -1.89, p = .06.  

 

Being Fed Up with the assembly, finally, resulted to be non-existent in the high complexity 

condition (Md = 1, range: 1-5, N = 21) but appeared not to differ from the scale midpoint (Md=  4, 

range: 1-6, N = 21) for the low complexity condition thus not meeting our expectation of being 

equally low for both conditions, z = -2.88, p < .01, with a medium effect size of r = .59. Mind 

Wandering was rated as low (Md = 2, range: 1-5, N = 21) in the high complexity condition and again 

appearing average to fairly high (Md = 5, range: 1-7, N = 21) for the low complexity condition, z = -

3.34, p < .01, with a large effect size of r = .52.  

 

3.3 Subjective mental workload experience 

A Wilcoxon Signed Rank Test (selected because of violation of normality of the data) on our MWL 

variable also confirmed our manipulation, validated the subjective rating method, and indicates 

that participants perceived the mental workload to be higher in the high complexity condition 

(Md = 4.67, range: 1.67-7.00, N = 21), as compared to the low complexity condition (Md = 1.67, 

range: 1-4.33, N = 21), z = -4.02, p < .001, with a large effect size of r = .62. Hypothesis 1 was thus 

confirmed. All subjective measures are reported in Figure 4. 
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Figure 4: Overview of the medians of all subjective ratings, N = 21, *p < .01, **p < .001. Note: MWL = mental 

workload; EL = emotional load; PHL = physical load.  

  

Due to the abnormality of the subjective scales and since N = 21 is not sufficient for correlational 

analyses, we refrain from exploring the effects of our moderator variables visual-spatial 

intelligence, dexterity, age and gender here. 

 

3.4 Pupillometry 

The data gathering of two participants was corrupted due to a technical malfunction. Two other 

participants dropped out before completion of the high complexity assembly. Other practical and 

technical impairments made that for some of the following analyses the sample sizes included 

were lower than foreseen, but still elaborate enough to run analyses.  

 

3.4.1. Confirmatory analyses. 

To statistically control for the confounding variables gender, age, dexterity, visual-spatial 

intelligence and resting-state pupil size, as discussed earlier, we first conducted a two-way 

repeated-measures ANCOVA with within-subjects factors Complexity and Step and these 

covariates of which the scores of the latter four were centered as recommended by Schneider et 

al. (2015). None of the covariates were overly correlated with one another (all rs < .53). However, 

no covariate revealed effects adjusting the model to find significant differences, while age and 

visual-spatial intelligence interacted with the independent variable, thereby violating the 

homogeneity of regression slopes assumption for ANCOVA. We hence continued analyses 
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without statistical control and ran a two-way repeated-measures ANOVA with factors Complexity 

and Step. No main effect of Complexity was found, F(1, 11) = 1.40, p = .26 (partial eta squared = .11), 

nor was there a main effect of Step, F(6,6) = 1.90, p = .09 (partial eta squared = .15), or an 

interaction effect between Complexity and Step, F(6,6) = .82, p = .56 (partial eta squared = .07). 

More specifically, a paired samples t-test, showed that the mean pupil size over the entire Low 

Complexity condition was M = 3.35 (SD = .44, N = 19), not significantly differing from the mean 

pupil size over the entire High Complexity condition, being M = 3.42 (SD = .61, N = 19), t = -.62, p = 

.54, two-tailed, Cohen's d = .14. Hypotheses H2 and H3 were thus not supported. Figure 5 provides 

a plot of the two-way repeated measures ANOVA displaying the means and standard errors of all 

assembly steps compared. The error bars reveal the large amount of variation in pupil size.   

 

 

Figure 5: Mean pupil sizes and standard errors of the two-way repeated measures ANOVA for all steps in 

both conditions.  

 

In all, our subjective measures all vouched for differences to be expected in arousal levels. 

Although our pupillometry hypotheses were not backed by significant differences in the data. For 

these confirmatory analyses addressing our hypotheses, the entire sequence of assembly 
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execution as presented in Figure 2 was covered. In the following exploratory set of analyses (i.e., 

as not hypothesized) we wanted to exclude possible noise coming from, e.g., movement and 

random light reflection effects on the work table, by restricting to the first 30s of each assembly 

step. During these time windows participants merely looked at a screen presenting pictures of 

the end goal and instructions of each step.  

 

3.4.2. Exploratory analyses. 

Scrutinizing for possible effects of the first 30s of all steps and now also of viewing pictures of the 

end results right before the first step, also here, we first conducted a two-way repeated-measures 

ANCOVA with factors Complexity and Step and added the covariates gender, age, dexterity, 

visual-spatial intelligence and resting-state pupil size. No covariate revealed effects adjusting the 

model to find significant differences. Resting-state pupil size moreover interacted with 

Complexity thereby violating the homogeneity of regression slopes assumption for ANCOVA. 

Next, a two-way repeated-measures ANOVA with factors Complexity and Step showed no main 

effect of Complexity, F(1, 14) = 3.08, p = .10, partial eta squared = .18, but did reveal a main effect 

for Step, F(2.76, 38.57) = 10.54, p < .001, partial eta squared = .43 (consulting a Greenhouse-Geisser 

estimates of sphericity, ε = .39, correcting the degrees of freedom after violation of the 

assumption of sphericity as shown by Mauchly's Test of Sphericity, χ2(27) = 61.91, p < .001) and did 

not display an interaction effect between Complexity and Step, F(3.51, 49.15) = 1.59, p = .20, partial 

eta squared = .10 (consulting a Greenhouse-Geisser estimates of sphericity, ε = .50, correcting the 

degrees of freedom after violation of the assumption of sphericity as shown by Mauchly's Test of 

Sphericity, χ2(27) = 58.63, p < .01).  

 

Elaborating on the main effect of Steps, a paired samples t-test showed that viewing the first 30s 

of the end goal and the first 30s of the instructions in the final step as well induced a significantly 

larger pupil size in the High Complexity condition compared to the Low Complexity condition (M = 

3.25 vs. M = 3.04 and M = 3.69 vs. M = 3.35, ps < .05, with Cohen's d effect sizes of .54 and .69, 

respectively). The other steps did not reveal significant differences (see Table 2 for all results).  
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 Low Complexity High Complexity  

M SD M SD t df p 

End goal view 3.04 .42 3.25 .64 -2.36 18 .03 

Step 1 2.94 .39 3.05 .61 -1.08 17 .30 

Step 2 3.26 .45 3.30 .53 -.56 17 .59 

Step 3 3.33 .48 3.41 .63 -.74 18 .47 

Step 4 3.28 .46 3.38 .58 -1.30 18 .21 

Step 5 3.32 .49 3.35 .67 -.26 16 .80 

Step 6 3.21 .52 3.40 .61 -1.78 15 .10 

Step 7 3.35 .45 3.69 .74 -2.69 14 .02 

Table 2: Paired samples t-test results comparing pupil dilation (in mm) in the Low vs. High Complexity 

condition for the first 30s of all steps and viewing the end goal. 

 

To look into variations between steps within conditions, we first ran a one-way repeated 

measures ANOVA on Low Complexity (N = 16). Mauchly's Test of Sphericity also here showed 

violation of the assumption of sphericity, χ2(27) = 51.55, p < .01. Greenhouse-Geisser estimates of 

sphericity (ε = .51) corrected the degrees of freedom. Results this time indicated a significant 

difference between the steps within this condition, F(3.58, 53.57) = 6.28, p < .01, with a large 

effect size as shown by a partial eta squared value of .30. Post hoc tests using Bonferroni 

correction revealed that viewing the end goal (M = 3.04, SD = .46) induced a significantly smaller 

pupil than step 7 (M= 3.34, SD = .44), p < .05. Then, the first step (M = 2.92, SD = .41) also appeared 

to trigger a smaller pupil size than step 3 (M = 3.28, SD = .50), p < .05, and compared to step 4 (M = 

3.29, SD = .50), 5 (M = 3.27, SD = .48), 6 (M = 3.17, SD = .49)  and 7 (M = 3.34, SD = .44), all ps < .01.  

 

Finally, for the High Complexity condition (N = 17), Mauchly's Test of Sphericity showed violation 

of the assumption of sphericity, χ2(27) = 76.70, p < .001. Greenhouse-Geisser estimates of 

sphericity (ε = .46) corrected the degrees of freedom. Results showed a significant difference 

between the steps within this condition as well, F(3.22, 51.48) = 5.22, p < .01, with a large effect 

size as indicated by a partial eta squared value of .25. Here, post hoc tests using Bonferroni 

correction showed that the first step (M = 3.07, SD = .62) again induced a significantly smaller 

pupil than step 7 (M= 3.65, SD = .71), p < .01. Remarkably, the pupil size during the last step was 
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the largest of all steps, while this step was the easiest of all since only one component was left on 

the work table.1,2  

 

Concluding, the effect that viewing the end goal and the final step triggered a larger pupil size in 

the High Complexity condition tallies with what we expected from the complexity manipulation, 

but the observation that the other steps did not show significant differences (cf., H3) and that 

both final steps induced the highest pupil sizes was unexpected. In hindsight and tentatively, this 

latter result could fit with the idea that cognitive resources - being partly physiological in nature - 

are limited and hence can become depleted over time, leading to cognitive fatigue (cf., Hockey 

1997). We however consider measurement error also for the exploratory analyses (see Table 2) 

too vast to draw conclusions. 

 

3.5 Wearability 

Finally, descriptive analyses showed that the ETG device was perceived as fairly wearable in terms 

of feeling the device move (M= 2.62), causing irritating friction (M = 2.24), causing too much heat 

on the skin (M = 2.38),  causing too much sweat on the skin (M = 1.90), weighing too much (M = 

2.81), obstructing movement (M = 2.70), feeling tense because of wearing the device (M = 1.81), 

causing distraction (M = 2.48) and causing frustration (M = 1.88). The device did however seem to 

cause too much pressure on the skin (M = 3.81) and some pain (M = 3.29), while it scored low 

when asked if the participant had forgotten to be wearing the device (M = 2.62). Answers to 

open-ended questions suggest that the pain was primarily caused by the frame around the right 

ear and the pressure by the nose bridge part of the frame, pointing at the need for specific 

product redesign iterations.  

 

4. General discussion 

The current pilot study built upon prior laboratory (e.g., Kahneman et al. 1969) and applied (e.g., 

Truschzinski et al. 2018) pupillometry research and was, to our knowledge, the first to apply 

mobile pupillometry in a manual assembly task. We designed a procedure in which assembly 

complexity was systematically manipulated based on assembly complexity literature (Richardson 

et al., 2004, 2006), intrinsic cognitive load was isolated based on cognitive load theory (Sweller, 

 
1 After controlling for our (centered) covariates with a repeated measures ANCOVA, only gender showed to have an 
effect, p < .05 for both conditions. Since eventually only 33.3% of the total sample, N = 19, were female, we withdraw 
from making inferences about this covariate. 
2 Note that we then also ran the same tests within conditions on the mean pupil sizes for the entire steps (cf., the 

confirmatory analyses). After correcting the degrees of freedom, no significant differences between the steps within 
Low Complexity were found, F(2.51, 30.12) = 1.75, p = .19 (partial eta squared = .13), nor within High Complexity, F(2.28, 
31.86) = 1.25, p = .30 (partial eta squared = .08). 
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1994, 1988) and confounding variables present in real-life contexts were methodologically 

accounted for based on the overarching mental workload framework of Van Acker et al (2018). 

Being explorative in nature, this pilot study also served to validate the design of two real-life 

manual assemblies of diverging complexity while allowing to pinpoint the wearability of mobile 

pupillometry. 

 

The complexity manipulation showed to be effective as participants experienced the high 

complexity assembly to be more difficult and reported a higher subjective MWL compared to the 

low complexity condition, thereby confirming our first hypothesis (H1) and conceptually 

replicating Richardson et al. (2004, 2006). However, some degree of unanticipated emotional 

load was observed in the high complexity condition, while the low complexity condition was 

characterized by moderate levels of being fed up with the assembly and mind wandering. The 

former might have caused the pupil dilation data observed to include negative emotional variance 

next to MWL variance. Being fed up with the assembly and mind wandering in the low complexity 

condition did not result in reported negative EL load. Experimentally manipulating MWL in the 

field hence does raise some challenges and also unexpected negative EL or decreased task 

engagement affecting MWL-measurement could be hard to avoid. Future research could do this 

more profoundly in order to grasp the measure's selectivity (Gerald Matthews, Reinerman-Jones, 

Barber, et al., 2015) with, e.g., emotion recognition technology and user centered design 

methodologies (e.g., Jokinen 2015) not only helping in fine-grained MWL-optimization, but more 

general workload-optimization (including emotional load, task engagement, physical load, etc.).  

 

Despite the strong statistical effects for the subjective ratings (H1), the external validity of the 

pupillometry as covered by our hypotheses H2 and H3, was not confirmed. Our exploratory 

analyses unveiled non-conclusive significant effects. Specifically, viewing the end goal of the high 

complexity assembly induced larger pupil sizes when compared to the low complexity condition. 

So did viewing the instructions of the last, easiest step as this step triggered the largest pupil 

sizes of all steps. This latter observation might, tentatively, be explained through cognitive 

fatigue (cf., Hockey 1997), reflecting the depletion of participants’ cognitive resources over time. 

Still, in the case of these exploratory analyses, we coin these observations as non-conclusive, 

since all other assembly steps did not reveal significant effects and also here, measurement error 

was substantial.  

 

These findings together suggest that deploying pupillometry on the shop floor might not yet be 

feasible when following the current laboratory-based procedures as we did. Aiming to foster the 
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development of field-sensitive measurement protocols regarding pupillometry, we formulate 

below five speculative explanations for the lack of measurement sensitivity we observed.   

 

First, the natural variation in luminance coming from the parts of the assembly, the work table, 

screws, etc., varied per momentary participant assembly strategy and might have thwarted the 

signal-to-noise ratio. As shown by  Palinko and Kun (2012a), the pupil not only reacts to ambient 

light, but also to luminance of the light around the fixation point, so that even small visual targets 

in a driving simulator (with an angular radius of 2.5°) showed to affect pupil size. These 

researchers refer to driving contexts in which participants scan visual targets of different size and 

luminance when attending to traffic (e.g. vehicles, traffic signs). The assembly parts, tools, work 

table and instruction pictures that we used also varied in luminance and so do most objects in 

industrial environments. Purely visually attending to objects might thus have caused pupil sizes to 

be more strongly affected by luminance than by MWL, despite of stable ambient artificial light. A 

future solution to this could be to first measure and then subtract the mere light reaction from 

the task-related pupil signal in order to isolate the MWL-related pupil size (Kun, Palinko, & 

Razumenić, 2012; O Palinko & Kun, 2012; Oskar Palinko & Kun, 2012; Oskar Palinko, Kun, Shyrokov, 

& Heeman, 2010), to use machine learning (Haar-like) feature selection (Wang et al., 2013), 

leverage the ratio between low and high frequency bands as in Peysakhovich et al. (2015) or to 

build on Duchowski et al.'s (2018) Index of Pupillary Activity. Note that eventually also the 

constant (re-)focusing of the eye (cf., Mathôt 2018) when attending to a real-life task (instead of 

fixating on a screen at the same distance in laboratory studies) neither helps in attaining a 

feasible signal-to-noise ratio. 

 

A second possible explanation why our hypotheses on the pupil observations were not 

confirmed, might be rooted in the curvilinear relation between task difficulty and pupil size. 

Granholm et al. (1996), intriguingly, noted that higher MWL induces a greater pupil diameter, but 

only up to a point where mental overload causes the pupil size to decrease again. Since we also 

observed moderate levels of negative EL (possibly caused by a negative coping appraisal, as 

measured by one of the EL-scale items), cognitive overload might actually have been 

unintentionally induced. Pupil sizes may hence have recurrently decreased when attending to the 

high complexity condition. Future research is thus needed to explore how laboratory findings on 

a curvilinear trend translate to field settings. Again, such notions stress the importance of 

systematically including EL into cognitive load measurement, since EL could be one indicator of 

cognitive overload.  
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Third, we could have done better at elaborating on what resulted from participants being fed up 

and starting mind wandering when performing the low complexity assembly. One not so far-

fetched inference might be that they engaged in more cognitive processing related to task-

unrelated personal thoughts. This notion might be backed by Franklin et al.'s (2013) seemingly 

contradictory finding that spontaneous mind-wandering in reading tasks induced higher tonic 

pupil dilation (also see, Algermissen, 2019). The reason for this would be that the locus coeruleus-

norepinephrine system, a neurotransmitter system involved in modulating arousal and attention 

and related to pupil dilation, makes people to explore for alternative tasks when the current task 

is perceived as non-relevant (Smallwood et al., 2012), that is, when disengagement from the task 

occurs (Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010). This 'exploration phase' has been related 

to large pupils, while the opposite 'exploitation phase' is accompanied by intermediate pupil sizes 

(Mathôt, 2018). A more profound user-centered approach trying to unveil the underlying 

cognitive and emotional processing while attending to a task hence appears highly desirable 

again, in order to fully understand the physiological outcomes.  

 

Fourth, in the current experiment, participants exerted physical effort when mounting and 

screwing parts together. Interestingly, Jiang et al. (2015) discovered that pupil size increases 

when visual-motor aiming complexity increases. Since our high complexity condition inferred 

more visual-motor aiming execution, this effect on pupil diameter should have in fact confounded 

our observations in favor of our hypotheses. The story becomes more complex however, when 

taking into account Fletcher et al.'s (2017) finding that precise motor movement contrarily causes 

pupil constriction during response preparation and execution. Our exploratory analyses excluded 

movement by using a 30s time window and did yield significant differences, possibly pointing at 

the influence of movement. These effects are however too random to draw conclusions from at 

this stage of mobile pupillometry research. Future work could therefore introduce movement 

capturing technology such as an accelerometer into the measurement protocol and, for instance, 

prior to MWL-measurement map to what extent the specific movements required in a specific 

task affect pupil size. This way and in the long term, machine learning algorithms could also help 

in calibrating MWL-estimates based on movement artifacts, next to the effects of light.  

 

Finally, the deployed statistical power leveraged by a sample size of N = 19 might be too limited to 

support solid pupillometry in such a noisy environment - as compared to controlled laboratory 

environments. Some results suggests this worth considering given that the main effect of the 

Steps for the confirmatory analyses was minimally significant (p = .09), while also the main effects 

of Complexity (p = .10) and Step (p < .001) for the exploratory analyses could suggest that a larger 
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sample size could have yielded a higher signal-to-noise ratio, potentially revealing more significant 

differences. Especially in the light of the missing data as we encountered here (and its 

consequences for the ANOVA's when comparing steps, e.g., N = 12, N = 16) future research could 

try to upscale similar experimental procedures or use a Bayesian sequential approach when 

collecting data (cf., Nathoo and Masson 2016; Etz and Vandekerckhove 2018). Still, the economic 

and practical restrictions of work environments will, in the long run, require sample sizes to be 

substantially smaller than N = 19. With our pilot sized sample, we showed that the above 

suggestions will also have to be addressed before mobile pupillometry could become valid and 

reliable for small sampled trials. 

 

In terms of wearability, the eye-tracking glasses showed to be fairly wearable in terms of mental 

comfort, distraction and physical properties. Some re-design iterations are still required for the 

type of eye-tracking glasses we used, in order not to cause pain and pressure for all people. Also 

the awareness of having the glasses on was prevalent in our setting, posing a second focus for 

future redesign. In all, these data do suggest that mobile pupillometry deploying eye-tracking 

glasses could be feasible in the future in terms of wearability. Interesting here would be to now 

test wearability during a longer time span, in even more mobile situations and to include user 

acceptance measures related to privacy concerns, for example. Also comparison with other 

objective MWL-measures such as EEG and fNIRS would help in differentiating which measures are 

best suited for specific industrial contexts in relation to operator tasks, time windows of interest, 

safety regulations (cf., wearing helmets or safety glasses), etc. 

 

In all, our results could not replicate seminal laboratory work on pupillometry (cf., Beatty & 

Kahneman, 1966; Hess & Polt, 1960; Kahneman et al., 1969; or more recently, Krejtz, Duchowski, 

Niedzielska, Biele, & Krejtz, 2018; Moyes, Sari-sarraf, & Gilbert, 2019) and highlights the challenges 

in reaching external validity. Research on driving (cf., Recarte & Nunes, 2003), air traffic control 

(cf., Ahlstrom & Friedman-berg, 2006) and, for instance, piloting (cf., Causse et al., 2016) and 

surgery performance (cf., Dalveren et al., 2018; Erridge et al., 2017) already made great strides in 

closing this gap. While being seated and at a predominantly stable distance to experimental the 

stimuli, pupillometry in these contexts might become robust as soon as, i.a., variations in 

luminance (Lohani, Payne, & Strayer, 2019) and curvilinear effects can be accounted for. 

Pupillometry validation in assembly work will now need to step into this latter direction too, but 

confounding of physical effort or freedom of head movement will show to be equally important, 

so we foresee. These diverse fields in ergonomics and human factors could strongly benefit from 
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joining forces, in that respect, and learn from the different boundary conditions they are 

confronted with.  

 

Our study in specific took up the challenge of exploring the wearability and external validity of a 

robust laboratory measure integrated into a wearable device, and thereby taps into the needs of 

the assembly workplace. Before user acceptance of mobile pupillometry by companies, but 

especially by operators can be achieved (Van Acker, Conradie, Vlerick, & Saldien, 2019), important 

steps will have to be made and we hope the above-mentioned findings and reflections could help 

in doing so. Additionally, the authors were strongly motivated to address the recent call for field 

research (by, e.g., Maner, 2016), extending the veracity and robustness of controlled 

psychological laboratory experiments in which stimuli are typically simplified and participants 

isolated from the real world (Neisser, 1976). The outcomes of the presented work show how 

challenging field applications of wearable physiological MWL-measurement in specific can be and 

therefore invite a more nuanced view on the current state of science and its implementability. 

More in-depth knowledge on contextual factors intricately affecting measurement validity is 

therefore imperative for future wearable MWL-measurement development. We hope that the 

implementation of confounding variables into measurement interpretation as performed here 

could help stimulate the development of more elaborate contextual measurement procedures. 

 

5. Conclusion 

Objective wearable mental workload measures will be imperative in Industry 4.0. This pilot study 

set out to explore the wearability and external validity of pupillometry, a physiological indicator 

of mental workload. Participants performed an assembly of low and one of high complexity while 

wearing eye-tracking glasses. Overall, the latter were perceived as fairly wearable. While 

subjective mental workload did differ significantly , mean pupil size did not differ between both 

assemblies. Current pupillometry procedures might thus not be suited for in the-field mobile 

pupillometry yet. Some suggestions on possible future directions were therefore proposed. In all, 

we strongly look forward to seeing iterations on this pilot endeavor and hope we have provided 

crucial insights to eventually make real-world mobile pupillometry a MWL-measure of the future. 
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