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Abstract With the ongoing rise and ease-of-use of services provided by major
cloud providers, many enterprises migrate their infrastructure and applications to
cloud platforms. However, the success of using many and diverse services leads to
more attack vectors for potential attackers to exploit, that again leads to more diffi-
cult, complex and platform-specific security architectures. This paper is an attempt
to remedy this problem by proposing simplified cloud security using machine learn-
ing techniques. This leads to a more general architecture that uses classifiers such
as decision trees and neural networks, trained with data logged by cloud applica-
tions. More specifically, we collected easy-to-interpret access logs from multiple
web applications which are often the only kind of security information available on
various services on such platforms. The results show a more flexible approach, that
was experimentally validated on cloud platforms and improve detection speed, us-
ing neural networks and J48 decision trees, up to 26-47 times while still maintaining
an accuracy of 98.47% and 97.71% respectively.

1 Introduction

Typical enterprises use multiple cloud solution providers for hosting services. Cloud
platforms come with advantages such as scalability, faster development, higher
cost efficiency with minimal management effort or service provider interaction [3].
Cloud platforms offer a wide range of applications. These include a range of simple
web-based services such as web applications, storage, databases, data analytics, etc.
They also include platforms required by many computationally intensive software

Jaron Fontaine · Adnan Shahid · Eli De Poorter
Ghent University - imec, IDLab, Department of Information Technology, Belgium, e-mail: {jaron.
fontaine,adnan.shahid,eli.depoorter}@ugent.be

Chris Kappler
PwC, e-mail: chris.kappler@pwc.com

1



2 Jaron Fontaine, Chris Kappler, Adnan Shahid, and Eli De Poorter

such as virtual machines, container services, load balancers, etc. With the increasing
popularity of cloud solutions, security becomes more important than ever to ensure
data integrity, availability and confidentiality. Users can access private data on such
services from everywhere, at any time. This makes it possible for intruders to try ac-
cessing or modifying the same resources [18]. Common intrusion detection systems
(IDS) can detect very specific well-defined attacks that intrude certain platforms or
networks. As more cloud service public endpoints are provided to customers, more
attack vectors arise from potential intruders to attack these systems. Deploying mul-
tiple platform- and application-specific intrusion detection systems is a challenging
problem, however, it is not very flexible and demands domain expertise in how vul-
nerabilities are exploited and attacks are executed. Complex detection methods on
many layers of the system will also degrade system performance while scanning
each kind of packet, even safe ones. This paper provides a remedy for this problem
by aiming for a broader system to perform attack detection in cloud services using
web access logs and machine learning (ML) techniques. In this paper we do not try
to implement a full stack detection system, but rather explore the possibilities of
ML that can accelerate and increase the flexibility of attack classification. We target
detection on web applications, using data available in cloud security logs.

Our main contribution is an introduction of a flexible ML approach to per-
form attack detection using logs from web applications. This contribution includes
information-rich features of these logs and proposes configurations of ML algo-
rithms with outstanding performance and minimal time overhead. In contrast to
previous detection methods, our solution does not require domain expertise in a
vast amount of exploits, making deployment almost effortless for web applications
in cloud environments. More specifically, feature selection methods on web applica-
tion logs are used to prove useful features needed for such detection. Accuracy and
computation time trade-offs of ML techniques are demonstrated and compared to
more traditional ruled-based systems. The particular techniques include both simple
and state-of-the-art models such as decision trees, neural networks and ensemble
meta-algorithms.

The remainder of this paper is structured as follows. Section 2 briefly describes
related work. In Section 3 a brief overview lists the available cloud security logs,
followed by datasets used for the training of a log-based intrusion detection model.
In Section 4, focusing on web application logs, feature extraction is performed,
followed by an extensive search for the optimal feature selection method. ML al-
gorithms we used, are examined in Section 5 for the use in attack classification
problems followed by their associated results in Section 6. Next, future research is
presented in 7 by proposing a cloud security dashboard architecture and log aggre-
gation system, together with a hybrid approach for attack and anomaly detection.
Finally, Section 8 concludes the paper.
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Table 1 Overview of related work in the field of attack detection on web or cloud applications.
Paper Supported web attacks Input Data Classification approach Cloud services scaling
[19] DoS & probe attacks Network-layer header data DTree, FNN & SVM
[15] Local access, dos & probe Network-layer header data Autoencoder & FNN
[17] SQL injection & XSS Web application requests SVM, Naı̈ve-Bayes & kNN
[7] Android data theft Network & application data SVM, FNN, DTree & kNN
This 10+ high risk web attacks Cloud-based web app logs DTree, meta-learning & FNN X

2 Related work

This section describes related work on web and network attack detection using ML
techniques. Table 1 compares the related works in terms of their supported web
attacks, input data, approach and support for multiple types of cloud services such
as web applications, databases, cloud storage, etc. The first two papers focus on the
detection of network-related attacks, while the other papers focus on attacks set in
the application layer. Compared to the works explained in more detail below, this
paper focuses on a much broader set of web attack types and extensively compares
accuracy and complexity of multiple state-of-the-art types of ML-based classifiers.
Moreover, our paper focuses on the ability to scale towards multiple cloud services
and supports multiple cloud platforms.

The authors of [19] perform real time detection of attacks using ML techniques
and stream processing. Although their method is robust against new attacks and
achieves high accuracy, they only validate their model’s performance on two kinds
of network-based threats: Denial of Service (DoS) attacks and a probe. Similarly, the
authors of [15] focus on the detection of three kinds of network-based threats: DoS,
probe and remote to local access attacks. They use state-of-the-art ML techniques
such as neural networks and autoencoders. Whereas these solutions can intend host
security from the cloud provider perspective, our approach focuses on a broad set
of attacks, with a big impact on security, targeting cloud customers running many
cloud services and hosting web applications.

The authors of [17] used ML-based detection methods (SVM, Naı̈ve-Bayes,
kNN) for cross-site scripting and SQL injection attacks. Although this paper shows
similar interest in web-based attacks, their focus is smaller and does not cover all
types of attacks that can be targeted towards web cloud services. The paper focuses
on similar ML techniques, except neural networks and achieves comparable accu-
racy, however they used smaller datasets which cannot cover most important attacks
and their solution cannot be directly applied to the datasets that we considered in
this work. [7] combines both network and application (GET/POST request) features
to detect malicious malware on Android devices causing data theft, premium SMS
features and downloading extra malicious code and backdoors. They also used ma-
chine learning approaches such as support vector machines (SVM), neural networks,
decision trees and k-nearest neighbours. More specifically, their model indicates
transmissions to attackers of user sensitive information coming from client-side de-
vices. Our approach detects attacks that attempt to retrieve such information and
also detects attacks that try to modify server-side information.
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3 Cloud web application security logs

This paper focuses on web application logs produced by a Infrastructure as a Service
(IaaS) or Platform as a Service (PaaS). Software as a Service (SaaS) applications
are expected to be monitored and secured by the cloud provider. In addition, SaaS
applications do not often provide the needed details for attack detection.

3.1 Azure, Amazon Web Services and Google Cloud

Microsoft Azure, Amazon Web Services (AWS) and Google Cloud Platform are
the most used cloud platforms by enterprises today [6]. These cloud platforms offer
services to collect and analyse cloud logs such as Azure Diagnostics, Azure Monitor,
Amazon CloudWatch and Google Stackdriver.

The structure of many of these logs is similar to web HyperText Transfer Proto-
col Secure (HTTPS) request logs. Section 3.2 describes web application logs more
in detail, as this paper uses such logs to analyse machine learning performance and
accuracy. Other cloud service specific logs are not tested since there is a need for
cross-cloud platform log aggregation system to connect all cloud service logs. How-
ever, the training and testing phases of such systems is similar to the methods pro-
posed in this paper.

3.2 Web application logs

Web application logs, offered by many PAAS and IAAS, are a good way to demon-
strate the possibility of log aggregation and conversion to a single format. This is
required when using attack detection using machine learning on multiple platforms.
To train the classifiers, various web application logs were collected and converted
to the World Wide Web Consortium (W3C) format [23] that is common in Apache
web servers. Section 3.3 describes the structure of W3C logs as well as attack labels.

3.3 Dataset and labeling

We constructed a dataset with open logs originating from honeypots running web
servers among other services. These logs are available at [2] [1]. Honeypots are
heavily monitored systems that are intentionally vulnerable and try to collect infor-
mation upon exploitation in order to detect new attack trends [20].

These datasets contain raw Apache access log files in the W3C format. A com-
mon problem in ML applications is the absence of labeled datasets. To allow su-
pervised learning, a rule-based labeling approach was utilized. While this restricts
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Fig. 1 Labeled logs used for training attack detection models.

the absolute accuracy that can be achieved, it allows us to continue the research
on the accuracy and detection speed trade-off relative to rule-based intrusion detec-
tion systems and improve attack detection in complex cloud systems. Fig. 1 shows
the structure of W3C logs together with attack classes as labels. These labels were
generated using Apache scalp [10], and detection rules from the PHP-IDS project
[5].

4 Feature selection

We applied feature selection methods to optimize the attack detection speed and ac-
curacy of ML algorithms. First, we discuss features extracted from the logs. Next,
methods of analysing detection accuracy and speed of features are discussed, fol-
lowed by results of feature selection.

4.1 Web security features

The following attack classes are detected by the proposed classifiers:
”Basic directory traversal”, ”SQL injection”, ”Cross-site scripting (XSS)”, ”Com-
mon comment types”, ”Half-/fullwidth encoded unicode HTML breaking”, ”JS
with(), ternary operators and XML predicates”, ”Nullbytes and other danger-
ous characters”, ”Obfuscated JavaScript script injections”, ”Includes and typical
script methods”, ”Find attribute, HTML injection and whitespace.”

A script was developed to extract features in the well-known Comma Separated
Value (CSV) format. Fig. 2 shows the extracted the 28 features from web application
logs. Some features are based on the value of parameters in the HTTPS protocol.
Most features are constructed using a series or combination of special characters.
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Fig. 2 28 web log features used for attack detection.

4.2 Selection methods

Feature selection is the process of determining which features are relevant for ML
algorithms. It can provide detection speed and accuracy improvements by selecting
a subset of the total amount of features [11]. We investigated these claims using
Weka [24]. Weka contains a collection of machine learning algorithms and allows
ranking features (by importance according to the feature selection method) to select
a relevant subset, as described in Section 4.3. We selected the top n ranked features
to compare results from different selection methods, where n is a number of selected
features. Training and testing performances are measured using a J48 classifier. 10-
fold cross validation is used to have a representative accuracy result. The following
feature selection methods were utilized to score features:

No selection: using all the features and collect their performance and accuracy.

Correlation evaluation: this method evaluates Pearson correlation between the val-
ues of features and their corresponding classes [24]. A feature is considered ’good’,
resulting in a high score when there is a high correlation between two variables
(X ,Y ) with feature X and class Y . The correlation coefficient r is calculated using
(1). Values of r will lie between -1 and 1 with 0 having no correlation and 1 high
positive correlation [12].

r =

n

∑
i=1

(xi− x̄i)(yi− ȳi)√
n

∑
i=1

(xi− x̄i)
2

√
n

∑
i=1

(yi− ȳi)
2

. (1)

where xi, x̄i, yi and ȳi correspond to the ith feature value, the mean feature value, the
ith class value and the mean class value, respectively.

Gain ratio: gain ratio uses entropy to evaluate the value of features [24]. Gain ratio
between feature X and class Y is defined by (2).

GainR(Y,X) =
H(Y )−H(Y |X)

H(X)
, (2)

with
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H(X) =−
n

∑
i=1

P(xi) lnP(xi), (3)

and
H(Y |X) = H(Y,X)−H(X). (4)

where P(xi) is the probability of feature X having a value xi out of all possible val-
ues, H(Y,X) is the joint entropy and H(Y |X) is the conditional entropy between
class Y and feature X .

Info gain: info gain is similar to gain ratio, but does not divide in (5) by the entropy
of feature X .

In f oG(Y,X) = H(Y )−H(Y |X). (5)

OneR evaluation: this method uses a simple classifier with only one feature to train
on. The score is determined by the classification accuracy [14].

A desirable metric that indicates the correlation between features was not found
in Weka and could not be tested. Section 4.3 presents results using the discussed
selection methods.

4.3 Results

Table 2 shows the measured accuracy and training time with a selection of the 18 top
ranked features (instead of all the 28 features). Correlation evaluation and gain ratio
have a much lower accuracy than info gain and OneR, but their training timing is
lower. This behaviour occurs because the classifier uses different, sometimes more
valuable, features selected by the selection algorithms. When the model trains using
all the 28 features, results show a higher accuracy of 97.71%, but a slower training
time of 40 seconds. The time to classify instances remained the same. In addition,
we confirmed this observation as the trained decision trees did not change enough
in size. These (deeper) trees contained less features but had more nodes. According
to info gain and OneR, the features which are most informative for ML algorithms
are: the length of requested file and query, the amount of special chars, the amount
of dots and the amount of percentage signs.

We conclude that info gain and OneR are the optimal feature selection methods,
with a preference for info gain because of its faster training time and minimal accu-
racy loss. Further results presented in the paper will use all the 28 features and are
preferred in the security context because of their high accuracy and equal classifica-
tion time compared to the selected subsets of features.
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Table 2 Detection accuracy and training time for 18 selected features. OneR achieves the highest
accuracy and correlation evaluation offers a shorter training time.

Method Accuracy Training time
Correlation evaluation 82.88% 20 seconds
Gain ratio 78.01% 20 seconds
Info gain 97.24% 29 seconds
OneR evaluation 97.25% 32 seconds

5 Machine learning methods

When enterprises make the decision to use a ML-based intrusion detection system
over a rule-based system, they have to know what their advantages and trade-offs
are. When constructing a trained model to detect attacks on multiple platforms, it
is important to focus on generalization because it prevents overfitting. This leads to
bad results on unseen data. ML algorithms also promise execution time advantages
which, if large enough, could be considered over a rule-based system. Additionally,
ML techniques, with deep learning in particular, offer online learning [22]. These
techniques enable the support of new attacks without the need to retrain with the full
dataset and thus allows fast detection of new attack types. Section 5.1 draws a short
overview of the tested algorithms. Next, the test method is explained in Section 5.2,
followed by the results in Section 6.

5.1 Tested algorithms

Reduced Error Pruning (REP) tree is a fast decision tree learner [24]. The tree is
trained using information gain at each leaf. The feature having the most information
gain is used to make two new arcs and nodes. The result is a tree, which is simplified
and shown in Fig. 3. After the training process pruning takes place, where leaves are
removed to mitigate overfitting. textbfRandom trees are similar to REP trees, but do
not apply pruning. At each leaf, a random feature is used to split the tree further into
new leaves. This results in a much faster training process, but is usually sensitive to
overfitting. As a result, the decision tree is much larger.

%
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Fig. 3 Simplified representation of a REP tree decision tree.
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Table 3 Fully-connected neural network architecture for attack detection

Layer Activation function Output dimensions
Input - 28 neurons
Dense layer ReLu 1024 neurons
Dropout layer - 1024 neurons
Dense layer ReLU 256 neurons
Dropout layer - 256 neurons
Dense layer ReLU 64 neurons
Output layer Softmax 11 neurons

J48 is Weka’s implementation of the C4.5 algorithm. This algorithm uses informa-
tion gain or entropy to build the J48 decision tree [21]. A confidence factor of 0.25
was used to ensure pruning operations.
Random trees are similar to REP trees, but do not apply pruning. At each leaf, a
random feature is used to split the tree further into new leaves. This results in a
much faster trainings process, but is usually sensitive to overfitting. As a result, the
decision tree is much larger.
Random forest consists of multiple trees, constructed with random subsets of the
total features [13]. When a trained forest is used to classify, the feature vector is
given to each tree. The class with the greatest occurrence is then chosen by the clas-
sifier. In this paper 100 trees were trained.
Boosting is a ML ensemble meta-algorithm that combines multiple weak classifier
into one strong classifier [8]. Weka’s implementation of boosting is AdaBoost [24].
Multiple iterations modify the weak classifiers to reduce the amount of misclassified
instances. The final boosted classifier uses a weighted sum of the accuracy from all
previous weak classifiers to determine the class. To test this algorithm, a J48 classi-
fier with 15 iterations was used.
Bagging, like boosting, is a ML ensemble meta-algorithm. Multiple random sub-
sets of the total training set are used to train new classifiers. The bagging classifier
chooses the class that is predicted the most, given a feature vector, by all the gener-
ated classifiers [4]. Again, a J48 classifier with 15 iterations was used.
Neural networks such as a multilayer perceptron exist out of connected neurons,
having a non-linear mapping between input and output vectors [9]. The output of
each neuron is the output of the activation function in a neuron, with the sum of
all inputs as parameter. We implemented a Fully-connected Neural Network (FNN)
in Tensorflow, using rectified linear units (ReLU) as activation functions. Table 3
presents the proposed FNN architecture. It contains five dense layers and includes
dropout to improve generalisation. For simplicity and equal comparison to the other
proposed methods, in this paper we did not consider more complex architectures
e.g. Convolutional Neural Networks (CNN). CNN has the advantage of automati-
cally extracting features, a step which we already performed before providing in-
put data. The proposed neural network was configured to perform 1000 iterations
(epochs) and uses a batch size of 256. In each iteration, the weights of each arc in
the network are adapted to better fit the training data. This can be achieved using
back propagation and gradient descent [9].
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5.2 Testing method

Accuracy of the proposed ML algorithms is measured with 10-fold cross validation,
that will detect overfitting by testing 10 times with a 10% random subset and training
with the other 90%. A pareto-efficiency chart is used to illustrate these results. This
chart gives a quick overview if a algorithm is not pareto-efficient, meaning that
there is another algorithm with a higher accuracy and a lower classification time.
Classification time is calculated based on the total time needed to classify all 73165
logs. Numerical results are presented in terms of accuracy, F-score, training and
classification time.

6 Performance and accuracy results

Fig. 4 shows the pareto-efficiency of the random tree, REP tree, J48, bagging, boost-
ing, random forest and neural networks. The rule-based measurement is not shown
on the graph, because the classification time is too extended. However, we can see
which algorithm achieves the most optimal results. Random tree is the fastest in
classifying instances, while the neural network is the most accurate. We can also
see that there should be no reason to choose random forest in this case. Random for-
est is pareto-inefficient, because it is slower and less accurate than boosting and the
neural network. Table 4 shows the accuracy and F-score together with training and
testing times of the tested ML algorithms. Based on Table 4 and Fig. 4, J48 should
be the choice for cases where classification time is important. On the other hand, if
accuracy is critical, neural networks should be used. The (relative) 100% rule-based
method completes classification in 115.74 seconds. This is 47 times slower than J48.
The neural network is 26 times faster than a rule-based method, while only loosing
1.69% accuracy. Taking into account the training time, decision trees show good
scaling when using large datasets. The authors of [25] show that training decision

2 3 4 5 6
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Random tree
REP tree

J48
Bagging

Boosting

Random forest

Neural network

Classification time (s)

Acc. (%)

Fig. 4 Accuracy (Acc.) and classification time on our dataset using the proposed machine learning
techniques.
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Table 4 Performance of rule-based versus machine learning attack detection systems.
NN Rand. tree REP tree J48 Bagging Boosting Rand. forest Rule-based

Accuracy 98.47% 96.91% 97.24% 97.71% 97.90% 98.08% 97.98% 100%
F-score 98.47% 96.90% 96.55% 97.30% 97.90% 98.10% 98.00% 100%
Train time 110.05s 2.69s 4.64s 11.56s 31.59s 98.14s 12.71s n/a
Classification time 4.38s 2.35s 2.36s 2.45s 3.39s 3.46s 5.43s 115.74s

trees has a complexity of O(mnlog(n))+O(n(log(n))2), where m and n correspond
to the amount of features and training instances respectively. Decision trees such
as J48 and REP tree will introduce pruning, that will increase training time, but
decrease the total height of the tree. In addition, a less complex model is produced.
Boosting and bagging are more complex because of their nature of building multiple
decision trees. However, using weak classifiers, that have an accuracy just above
50%, these algorithms will produce less complex models. Unfortunately, we were
not able to achieve good results with the weak classifiers.

To briefly go into more detail, the confusion matrix in Fig. 5 shows the classi-
fication score for each of the 11 classified classes (10 attack classes + safe class).
These results are derived from the best classifier, in our case the fully-connected
neural network. For better readability, the categorical attack names are not dis-
played. The ’safe’ attack class (nr. 10) is classified 99% correctly. Except class nr.
4 ’Half-/fullwidth encoded unicode HTML breaking’ and class nr. 7 ’Includes and
typical script methods’, all other attack classes are classified near perfectly. How-
ever, class nr. 4 and nr. 7 only contain 34 and 130 training examples respectively,
making generalisation harder for these classes. Wrongly detected attack classes are
only infrequently classified as a ’safe’ class, which is unwanted behaviour in the se-
curity context. This accuracy could be strengthened further by training the classifier
only on attack / safe class and increasing the generalisation for attack detection.

As a conclusion, we can verify that neural networks in combination with the
proposed selected features enable near-perfect accuracy and is able to differentiate
all the attacks from the safe logs. Moreover, J48 scores better when considering
classification time. This classifier achieves very good accuracy, while having 44%
less the classification time compared to neural networks. Using ML techniques can
be a viable option if web applications are constrained by the performance of an
intrusion prevention system (IPS). We see 26-47 times higher detection speed, that
can lead to the same improvement when used in an IPS.

7 Future research

Future work should depend on more real-world data, coming from many deployed
cloud services. At the time of writing, hardly any open data is available concerning
this. We urge companies to commence publishing data in an open format, preferably
anonymized, to allow and help future research to collect more results and design
up-to-date systems. Extending this research, consists of implementing ML-trained
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Fig. 5 Confusion matrix of the fully-connected neural network.

models in the real world and preprocessing combined logs of multiple cloud ser-
vices, that generate logs. Next these logs can be transferred to a central system that
processes these logs e.g. an Azure WebJob. An Azure WebJob runs in an infinite
loop, while constantly checking if new data is available to be processed. We used
Weka for .NET in a similar configuration to confirm successful deployment of the
model proposed in this paper. The classified output of such model is then saved to a
central database. These logs can then be visualized on a security cloud dashboard.
This future work requires building a platform that combines logs from multiple
cloud services (other than web applications) while simulating attacks on the plat-
form in order to extend available training data. Another addition can be made by
introducing an online self-learning system. Such system receives input from experts
on the proposed cloud security platform. Experts can e.g. indicate which attacks are
misclassified. Periodically the model is updated, keeping these corrected labels or
new attacks into account. A major advantage, equivalent to the techniques proposed
in this paper, is that we only need to know which attack occurred, without knowing
how the attack is constructed.

Another contribution can be made investigating a hybrid approach by combining
anomaly detection, based on the ML techniques in the proposed model, with a rule-
based system for classifying specific attacks. As shown in [16] attack detection by
only classifying attack or no-attack can perform better than signature-based meth-
ods. More complex rule-based systems can investigate which kind of attack occurred
while the anomaly detection method would have the same performance advantages
as the proposed model in this paper, allowing more real-time detection and mitiga-
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tion of attacks on cloud-based applications. Such contribution can also investigate if
the anomaly detection is able to detect zero-day attacks, that the rule-based system
cannot classify yet.

8 Conclusion

The increasing complexity in the landscape of cloud applications leads to the need of
a more flexible security system. Such system should allow less complex and easier-
to-update detection models. In this work, contributions are made by presenting web
cloud security logs that show similarities with traditional on-premises security logs.
Extra metrics can allow attacks to be classified that influence the performance of
a system, e.g. a distributed denial-of-service attack. Machine learning techniques
are proposed, with the advantage of having more simplicity when training detection
models by quickly adding newly discovered attacks without the knowledge of their
details. These models are applied on web application logs, derived from multiple
servers. Such logs are converted into a single format, that helps easier feature extrac-
tion. Feature selection test scenarios show that information gain offers the highest
accuracy compared to other feature selection methods, while also being the fastest
method. However, using all the features still delivers the highest accuracy. The J48
decision tree offers the overall best results, considering both accuracy and perfor-
mance. This classifier achieves a 47x performance improvement over the traditional
rule-based systems, while only loosing 2.29% accuracy. The neural network offers
the highest accuracy of 98.47% and enables efficient and accurate attack detection,
possible on multiple web services in cloud environments.
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