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Abstract

We specify bulk coordinates in Jackiw-Teitelboim (JT) gravity using a boundary-

intrinsic radar definition. This allows us to study and calculate exactly diff-invariant

bulk correlation functions of matter-coupled JT gravity, which are found to satisfy

microcausality. We observe that quantum gravity effects dominate near-horizon matter

correlation functions. This shows that quantum matter in classical curved spacetime

is not a sensible model for near-horizon matter-coupled JT gravity. This is how JT

gravity, given our choice of bulk frame, evades an information paradox. This echoes into

the quantum expectation value of the near-horizon metric, whose analysis is extended

from the disk model to the recently proposed topological completion of JT gravity

[1]. Due to quantum effects, at distances of order the Planck length to the horizon, a

dramatic breakdown of Rindler geometry is observed.
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1 Introduction and Summary

The goal of this work is to explore the bulk of Jackiw-Teitelboim (JT) quantum gravity,
starting from the boundary observer’s data. This program has attracted a lot of attention
throughout the past years, especially in AdS3/CFT2 where constructions within CFT2 are
endowed with a gravitational interpretation in an emergent asymptotically AdS3 space.

JT gravity is a model of 2d quantum gravity and is the spherically symmetric sector of
3d gravity. More explicitly its action is [2, 3]:

SJT[g,Φ] =
1

16πG

∫
d2x
√
−gΦ (R− Λ) + SGH, (1.1)

in terms of the metric g and the dilaton field Φ.1 It is the universal low-energy limit of
SYK-like models [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], and has attracted a
great deal of attention lately [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Arguably it is the sim-
plest model of quantum gravity that is nontrivial, meaning it has black holes and a nonzero
Hamiltonian. It would then seem to make sense to first investigate questions like bulk recon-
struction in this simplified NAdS2/NCFT1 setup. The idea is that the calculations are now
more tractable than for example in AdS3/CFT2, whilst the theory is still complex enough
to result in nontrivial lessons about quantum gravity.

On a technical level, our exploration of the bulk of this model will cover the following
topics:

• A boundary-intrinsic definition of a bulk frame.

• The exact calculation of local bulk correlation functions of a matter-coupled JT grav-
ity.

• The exact calculation of geometric observables in quantum gravity: the metric and
the geodesic distance between two bulk points.

Let us be more specific.

The first step towards defining local bulk observables in any theory of quantum gravity is
to find a suitable diffeomorphism invariant definition of a bulk frame. This can be achieved

1We focus on negative cosmological constant Λ = −2/L2, and we set L = 1 from here on.
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by anchoring bulk points to the boundary by means of some geometric observable. Indeed,
diffeomorphism gauge invariance is explicitly broken on the boundary, so boundary coordi-
nates are physical. In this 2d set up, the physical coordinate is just the proper time of the
boundary observer, see for example [22, 23]. Any sensible bulk frame should therefore have
a definition in terms of the boundary observers proper time. More generically any bulk
observable should come with a prescription for a boundary intrinsic procedure to obtain
said observable.
One could imagine various such definitions of bulk frames. A popular one is to anchor a bulk
point to the boundary by fixing the geodesic distance between said bulk point and several
reference points on the boundary, see [30, 31] in general and [32, 33, 34, 35, 36, 37, 38]
for AdS3/CFT2 in particular. In 2d we require two such points. We will use a variant of
this and anchor bulk points to the boundary via incoming and outgoing lightrays, or null
geodesics. We imagine placing a fictitious mirror at the location of the bulk point, and
define the spatial bulk coordinate of a point to be one half the time it takes a light ray
emitted by the boundary observer to reflect off said mirror and find its way back to to the
observer’s detector. This procedure is implementing the old radar definition of constructing
a coordinate frame. This light ray definition of defining bulk points was investigated holo-
graphically in generic dimensions in [39].
We wish to emphasize an important point here. Although anchoring bulk points to the
boundary via lightrays seems to be a very natural thing to do, it remains a choice. Whether
or not one would want to make this particular choice is then up for debate. Other possibil-
ities exist, and could be worth investigating. We come back to this in section 1.3.

Given a solvable model of quantum gravity, one natural thing to do would seem to be
to ask about the quantum gravity expectation values of diff-invariant geometric observables
such as the local metric.2 This requires the computation of quantum gravity path integrals
of the type

〈O〉 ≡
∫

[Dg]O(g)e−S[g]. (1.2)

In a generic theory of quantum gravity there are several major obstructions.

• In more than three dimensions, pure gravity is non-renormalizable and does not make
sense as a UV-complete theory. One should then embed Einstein Hilbert gravity in a
non-local completion such as string theory and study its correlation functions.
Two dimensions is special though: the theory is renormalizable, so (1.2) is a sensible
object to study. This also implies bulk locality might a priori be possible even at
Planckian scales. The flipside of course is that the lessons on locality from our 2d
model are not expected to be universally true in higher dimensions, except possibly
in three dimensions. We leave this to future work.

• Secondly, off-shell metrics appearing in the path integral can generically be quite
exotic. Consequently there exists in general no closed expressions for the geometric

2We will be interested in the metric tensor ds2 = g(dx, dx) as a map from the manifoldM to R. This is
a scalar under diffeomorphisms unlike the actual rank (0, 2) tensor field g.
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observables O(g). For example there is generically no easy functional relation between
g and the geodesic distance between two points.
This is where JT gravity is unique. All off-shell metrics in the JT path integral are
known, and we can calculate geometric observables in them. For example, we will
see that the geodesic distance between two bulk points is basically a bulk two-point
function, and that the metric is given by a Schwarzian boundary two-point function.
Both of these can be calculated exactly.3

• Finally there is the technical hurdle of actually being able to calculate the resulting
path integral (1.2). For example, in 3d gravity the calculation of the partition function
O = 1 is still very much an open problem [40, 41, 42], let alone some complicated
correlation function.

Next to purely geometic observables, we will also consider matter-coupled JT gravity, where
the matter sector supplies the operators O(g) and the correlators (1.2) are of the form:∫

[Dg] [DΦ]
(

[Dφ]φ1(g · x1) . . . φn(g · xn)e−Smat[φ,g]
)
e−SJT[g,Φ]. (1.3)

The most important point here is that the locations of the operator insertions are bulk
points as defined via our radar definition, and as such depend explicitly on the bulk metric
g, as emphasized by the notation g · x.4

We will be interested primarily in this work in understanding the validity of the semi-
classical approximation of (1.3). When can we describe correlators of the type (1.3) in
terms of quantum matter on a classical background g0:∫

[Dφ]φ1(g0 · x1) . . . φn(g0 · xn)e−Smat[φ,g0] ? (1.4)

Here, g0 is the saddle of JT gravity with no operator insertions, and one should keep in
mind the explicit dependence on g0 in the coordinate locations.
Conversely, when is it not valid to use the semiclassical approximation? This is when back-
reaction becomes important. In JT gravity, the model remains exactly solvable including
matter backreaction.

3The boundary two point function has been calculated numerous times in the literature [43, 44, 45, 46,
47, 48, 49, 50].

4Let us give a preliminary introduction to this phenomenon within our specific context. We can think
of the metrics in the JT gravity path integral as different patches of the AdS2 Poincaré coordinate patch
with coordinates X. Naively when considering matter-coupled JT gravity one might think of correlators
of operators like φ(X). One might then be led to think that the matter correlator will return some fixed
answer independent of the shape of the patch, and factor out of the gravitational path integral. However,
any suitable boundary intrinsic definition of bulk points, such as our radar definition, implies that the
location of the bulk point g · x in Poincaré coordinates X depends on the shape of this patch. The bulk
point effectively becomes fuzzy, and this will result in nontrivial quantum gravitational effects.
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We will find (perhaps unsurprisingly) that both at late times as well as in the very-near-
horizon region, such quantum gravity effects become important. Though intuitive, this has
implications for the information paradox in JT gravity. One of the assumptions of the
Hawking calculation is that quantum matter on classical curved spacetime is a valid ap-
proximation to quantum gravity in the near-horizon region. We find here via very explicit
calculation an example of a matter-coupled quantum gravity theory for which this does not
hold. We comment on this in section 6. The conclusion is that JT quantum gravity seems
currently the only sensible theory of quantum gravity in which we can actually calculate
path integrals of the type (1.2). This is the topic of section 4.

An important remark is that the quantum gravity path integral (1.2) requires an addi-
tional input of information: we need to specify what kind of metrics should contribute.
At the very least we should constrain the asymptotics of the metric near the holographic
boundary. On top of this, there is the question of which Euclidean topologies may con-
tribute. The boundary of Euclidean AdS2 is a circle. This can be filled in by a disk, but
also by higher genus Riemann surfaces. Whether or not these higher genus contributions are
included in the path integral (1.2) is a choice that defines the quantum gravity theory we
are working with. This makes contact with the old question on whether topology-changing
dynamics is present in quantum gravity or not.
Throughout most of this work we will focus on the JT disk theory dual to Schwarzian
quantum mechanics:

S[f ] = −C
∫
dt {f, t} , {f, t} ≡ f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

(1.5)

with {f, t} the Schwarzian derivative of f . Here, the field f accounts for all physically
inequivalent frames on the disk that satisfy R = −2 [22, 23]. This is a manifestly unitary
model with a continuous density of states ρ∞(E) = θ(E) sinh 2π

√
E.

When we investigate the near-horizon metric in sections 4.2 and 6, and the near-horizon
matter correlation functions in section 2.2, the specifics of this density of states turn out
to be crucial. More microscopic models of quantum gravity, such as the SYK model, have
a spectrum ρL(E) with more fine structure than the universal Schwarzian density of states
ρ∞(E).5 This immediately raises the question how near-horizon physics is affected by this
additional fine structure.
To this end we consider in section 5 and appendices D and E the topologically complete
JT model, where higher genus Euclidean contributions are included. The resulting theory
of quantum gravity was recently shown to have a non-perturbative completion as a matrix
integral [1, 51, 52]. The theory should be thought of as a statistical average over individual
unitary realisations, much like SYK. Each of the individual realizations has a discrete den-
sity of states. Taking the statistical average results in a continuous spectral density ρL(E).

This work is structured as follows.

5The latter is recovered in the parametric limit L→∞.
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In section 2, we couple JT gravity to bulk CFT matter. This is the main section of
this work. We calculate and discuss the local bulk two-point function. The focus is on
understanding how and when quantum gravity effects cause significant modifications from
semi-classical CFT correlators. We find that quantum gravity effects dominate near-horizon
physics. In addition, we compare correlators in pure and thermal states, to understand when
a form of the Eigenvalue Thermalization Hypothesis (ETH) holds, and how the theory goes
away from it.6

In section 3, we interpret the results from section 2 as defining local bulk operators in
quantum gravity. This interpretation is strengthened by an investigation of the analytic
structure.
In section 4, we discuss the exact quantum expectation value of the metric operator as
measured by a boundary observer. He observes a breakdown of semiclassical gravity close
to the horizon, in line with the general lessons from section 2. In particular, at distances
of order the Planck length `P from the horizon, he finds an answer that is not the Rindler
metric, but instead has singular behavior.
In section 5, we consider the gravitational matrix integral discussed in [1]. Our goal is to
understand how finite L matrix integral effects affect the metric. We find that they take
over at distances of order `P/L from the horizon. In this new parametric region, the break-
down of semiclassical gravity is even more dramatic than the effects observed in the JT disk
model. In all we are led to believe that the statement quantum gravity effects dominate near
horizon physics is rather universal.
In section 6, we discuss implications for the information paradox. In particular we high-
light how the importance of non-perturbative effects in the gravitational coupling C for
near-horizon physics, follows from the late time power-law decay of boundary correlation
functions.7 Similar conclusions hold for finite L matrix integral effects. This disproves one
of the assumptions that make up the information paradox. Therefore the paradox is averted.
At least that is, within JT gravity, and given our choice of bulk frame.

1.1 Defining a Bulk Frame

Performing the path integral over Φ in (1.1) localizes the path integral on bulk metrics that
are locally AdS2. In particular this means all such metrics can be thought of as cut-outs of
Poincaré AdS2 described by the coordinates:

ds2 =
1

Z2
(dZ2 − dT 2). (1.6)

The boundary observer can be though of as living on a wiggly boundary curve Z(t) = εḟ(t).
His proper time t is then related to the Poincaré time T by the map T = f(t). This field
f is the only physical degree of freedom in the system [22, 23, 21], and it is weighed with a

6ETH was studied within this class of models in [53, 54, 55, 26].
7See [56, 57, 58, 59] for the original arguments and [60, 61, 62, 63, 64, 65] for the specific case of

AdS3/CFT2 .
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Schwarzian action (1.5).

From the perspective of the boundary observer (i.e. in his frame), the path integral over f
is interpreted as a path integral over inequivalent bulk metrics, as in Figure 1.
He constructs the bulk frame as explained above, by shooting light rays into the bulk and
collecting them back. As such, he associates coordinates v = t − z and u = t + z to every
bulk point, where v = t1 is the time on his clock at which he sends the signal and u = t2
the time at which he receives the signal.8

We can describe this same experiment in the Poincaré frame with identical outcome: a ligh-
tray is sent from the boundary at T1 = f(t1), reflects at the fictitious mirror at the location
of the bulk point, and impinges on the boundary at Poincaré time T2 = f(t2). Via this
experiment we associate coordinates V = T1 and U = T2 to this bulk point. Combining all
elements we find an experimentally determined, or boundary-intrinsic map of the Poincaré
frame (U, V ) to the new bulk coordinates (u, v):

U = f(u), V = f(v). (1.8)

Via this map we arrive at the following bulk metric:

ds2(f) =
ḟ(u)ḟ(v)

(f(u)− f(v))2
(dz2 − dt2), (1.9)

with a location-dependent conformal scaling factor, uniquely determined by the physical
field f(t).
As an example consider the thermal boundary reparameterization f(t) = tanh π

β
t which is

a solution to the Schwarzian equation of motion, following from (1.5). We find the thermal
AdS2 bulk metric:

ds2(β) =
4π2

β2

dz2 − dt2

sinh2 2π
β
z
. (1.10)

Notice that our definition of a bulk frame is similar to that of [30], where a preferred frame
(our t-coordinate) was specified in terms of a platform and a geodesic distance measured
perpendicularly into the bulk from this platform.
Let us re-emphasize that our construction is boundary-intrinsic: it is described entirely in
terms of local operations performed by the boundary observer at fixed times on his own
clock. This (holographic) feature is believed to be fundamental in any construction of
quantum gravity, and is actually already contained in the semi-classical description of JT
gravity [20, 23], and the boundary correlators in the Schwarzian theory [45].9

8We have implicitly chosen conformal gauge for the bulk metric

ds2 = eω(z,t)(dz2 − dt2). (1.7)

9Indeed, the boundary bilocal operator insertions are specified at proper times ti, with the time coordinate
t running from −∞ to +∞. It would seem to make little sense to attempt to define an operator in e.g. the
Poincaré time coordinate as it might be behind the horizon (i.e. later than t = +∞).
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T

Z

t

z

Figure 1: Left: Building the bulk frame from the Poincaré perspective (T, Z). For two
reparametrizations (blue and red), we construct the bulk point given two boundary observer
time coordinates t1 and t2. The ticks in the clock-ticking pattern are depicted. The bulk
location is fuzzy in the Poincaré geometry, but the metric is fixed. Right: Building the
bulk frame from the observer’s perspective (t, z). The bulk location is fixed, but the metric
fluctuates.

1.2 Quantum Fluctuations

Within this construction, a diff-invariant local (scalar) bulk operator at the bulk point (u, v)
is specified as O(f(u), f(v)), where the u, v labels are times on the boundary observer’s
clock. We have in effect used our bulk frame (1.9) to define the gravitational dressing of
bulk operators into diff-invariant observables.
As a consequence, the location of this operator in the Poincaré frame depends explicitly on
f(t). The path integral over metrics can be thought of as some statistical averaging, such
that the operator O(U, V ) is fuzzy and smeared out in the Poincaré frame (U, V ). This is
represented in Figure 1 (left).
This fuzziness is important for what follows: it represents the coupling of the bulk matter
degrees of freedom to the boundary graviton f . As a result, the matter correlator does not
factor out of the gravitational path integral (1.3), and we are left with a path integral over
inequivalent frames f(t). For every fixed f(t), the matter correlator in (1.3) is that of a
matter field in AdS2. However, when we path-integrate over the degrees of freedom f(t),
this structure will not be preserved.
Semiclassical gravitational physics (quantum matter on curved space time) is obtained when
the metric path integral collapses to its saddle via localization. This does not happen when
probing late time or near-horizon physics, where quantum fluctuations of the metric become
important. Indeed, we will find that the theory is always effectively strongly coupled in the
near-horizon region.
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1.3 Other Bulk Frames

An important point is that all the calculations that follow hinge on defining observables
using this particular radar definition of bulk coordinates.
Alternative boundary-intrinsic definitions of bulk points construct different observables, and
hence imply a different coupling of bulk matter to the boundary graviton, and in general
could result in different physics. There is no obvious guiding tool here which selects one
such definition as being preferred.

We introduce an alternative definition of bulk points using spatial geodesics in appendix A.
It would be interesting to investigate how matter correlators behave in this set of coordinate
frames, though we see no easy route towards an explicit calculation.
It would be interesting to understand if there are any physical constraints that can guide
us to a specific choice. Our specific choice of frame is directly related to static observers’
observations and constructions done in the bulk by static observers. E.g. building upon
the computations we perform in section 2, it directly leads to a quantum gravitational gen-
eralization of the Unruh effect for an eternal black hole [66]. But how does one define a
frame and associated observables relevant for other observers, e.g. infalling-observer physics?

For now, we will restrict ourselves to making one particular choice and work out (1.3)
within that context. In the remainder of this paper, we thereto stick to the radar definition,
and use the bulk frame (1.9).

2 Matter-coupled JT Gravity

In this section we couple bulk matter to JT quantum gravity (1.1). We will assume the
matter sector Smat[φ, g] does not couple to the dilaton Φ and is a 2d CFT. We consider
matter correlation functions of the form:∫

[Dg] [DΦ]
(

[Dφ]φ1 . . . φne
−Smat[φ,g]

)
e−SJT[g,Φ]. (2.1)

Performing the path integral over Φ, and fixing the bulk diffeomorphism invariance as dis-
cussed above, we localize to a path integral over the metrics (1.9):∫

[Df ]
(

[Dφ]φ1 . . . φne
−Smat[φ,f ]

)
e−S[f ]. (2.2)

We first perform the path integral over the matter sector, before integrating over gravity:

O(f) ≡ 〈φ1 . . . φn〉mat = Zmat[f ]−1

∫
[Dφ]φ1 . . . φne

−Smat[φ,f ]. (2.3)

9



Since all off-shell frames are local conformal transformations of the Poincaré frame, we know
the general expression for O(f).10 In writing (2.3), we have chosen to normalize the CFT
correlation function before evaluating the gravitational path integral. A priori, this seems
relevant as the 2d CFT matter partition function Zmat[f ] depends explicitly on the metric
via the conformal anomaly.11 However, it was shown in appendix C of [50] that in this
particular set-up, the Polyakov-Liouville action, describing the conformal anomaly, reduces
to a boundary Schwarzian action again, but with a prefactor that is subdominant to C from
the gravitational sector. Hence this choice is immaterial for any of the results.12

In the end we are left with a Schwarzian path integral:

〈O〉 ≡
∫

[Df ]O(f)e−S[f ]. (2.6)

Whether or not we can push the calculation to the end, depends only on our ability to
calculate the Schwarzian correlation function of some possibly involved SL(2,R) invariant
operator O(f).

In the remainder of this section we focus on the bulk two-point function. More generic
correlation functions are left to future work.

2.1 Scalar Bulk Two-Point Function

As our first example, we will consider specifically a free massless scalar φ coupled to JT
gravity with total action:

1

2

∫
d2x
√
−g gµν∂µφ∂νφ+ SJT[g,Φ]. (2.7)

The goal is to compute the bulk two-point function 〈φ(p)φ(q)〉 within this full gravitational
theory. We will make comments on the massive case further on.

10An example is a CFT two-point function of a weight h primary field:

Gf (u1, u2) = ḟ(u1)hḟ(u2)hG(f(u1), f(u2)) =

(
ḟ(u1)ḟ(u2)

(f(u1)− f(u2))2

)h
. (2.4)

11Explicitly:

Zmat[f ] = exp

(
− c

92π

∫
d2x

∫
d2x′R(x)G(x, x′)R(x′)

)
, (2.5)

where
∫
R →

∫
R + 2

∮
K for a manifold with boundary as we study here, and G(x, x′) the bulk-to-bulk

Green’s function.
12Our choice has a similar flavor to it as section 3 of [67]. We also remark that the geometric observables

discussed in section 4 must be calculated with this normalization. We remark that for pure boundary
correlators (2.16), this choice is not present. They arise from integrating out a 1d boundary matter CFT,
which has no conformal anomaly to begin with.
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As above, the matter path integral results in the Green’s function of the field φ in the
generically off-shell background f :

Gf (p, q) =

∫
[Dφ]φ(p)φ(q)e−Smat[φ,f ]. (2.8)

The quantum gravity two-point function of the field φ is then:

〈G(p, q)〉 =

∫
[Df ]Gf (p, q)e

−S[f ], (2.9)

following (2.6). The Lorentzian CFT two point function on the Poincaré half-plane (1.6) is
well-known:13

G(P,Q) = ln

∣∣∣∣(T − T ′)2 − (Z − Z ′)2

(T − T ′)2 − (Z + Z ′)2

∣∣∣∣ = ln

∣∣∣∣(U − U ′)(V − V ′)(U − V ′)(V − U ′)

∣∣∣∣, (2.10)

which is found by including an image charge at Z → −Z to enforce Dirichlet boundary
conditions at Z = 0 [68].14 The field φ being a scalar, we write:

G(f(p), f(q)) = ln

∣∣∣∣(f(u)− f(u′))(f(v)− f(v′))

(f(v)− f(u′))(f(u)− f(v′))

∣∣∣∣. (2.11)

Notice that this is an SL(2,R)-invariant quadrulocal operator, as it is just (the log of) a
crossratio.15 An observation is now the following:∫ u

v

dt

∫ u′

v′
dt′

ḟ(t)ḟ(t′)

(f(t)− f(t′))2
= ln

∣∣∣∣(f(u)− f(u′))(f(v)− f(v′))

(f(v)− f(u′))(f(u)− f(v′))

∣∣∣∣. (2.12)

The integrand on the left-hand side is recognized as the Schwarzian ` = 1 bilocal operator
O`(t, t′), or the boundary-anchored Wilson line. The formula (2.12) relates through the
holographic dictionary m2 = `(`− 1) a boundary primary with ` = 1 to a massless field in
the bulk. It is instructive to replace f(u)→ tanh π

β
f(u). In terms of the new field f(t), the

JT path integral is over metrics that satisfy f(t + iβ) = f(t) + iβ. The relation (2.12) is
then:∫ u

v

dt

∫ u′

v′
dt′

ḟ(t)ḟ(t′)
β
π

sinh π
β
(f(t)− f(t′))2

= ln

∣∣∣∣∣sinh π
β
(f(u)− f(u′)) sinh π

β
(f(v)− f(v′))

sinh π
β
(f(v)− f(u′)) sinh π

β
(f(u)− f(v′))

∣∣∣∣∣.
(2.13)

13Remember that U = T + Z, V = T − Z. We leave a prefactor of 1/4π implicit.
14Note that this is different than the standard CFT expression on a half-space which is found by imposing

Neumann boundary conditions instead.
15Interpreted as a quantum operator, the way we will compute it, we will implicitly consider the time-

ordered quadrulocal operator, i.e. T ln . . .. This is also implicitly done in the complexity computation of
[50] and the entanglement computation of [66].
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Using (2.12), one can write the bulk two-point correlator as:

〈Gbb(u, v, u
′, v′)〉 =

∫ u

v

dt

∫ u′

v′
dt′ 〈G∂∂(t− t′)〉 . (2.14)

=

∫ ∞
−∞

dτ θ(τ − t− |z|)
∫ ∞
−∞

dτ ′ θ(τ ′ − t′ − |z′|) 〈G∂∂(τ − τ ′)〉 . (2.15)

The boundary two-point function is well known: [43, 44, 45, 48, 49, 47]:16

〈G∂∂(t− t′)〉β =

∫
[Df ] O1(t, t′) e−S[f ],

=

∫ ∞
0

dM sinh 2π
√
M e−βM

∫ ∞
0

dE sinh 2π
√
E ei(t−t

′)(E−M) Γ(1± i
√
M ± i

√
E). (2.16)

Performing the double integral, we find the bulk two-point function:17

〈Gbb(t, z, z
′)〉β =

∫ ∞
0

dM sinh 2π
√
M e−βM

∫ ∞
0

dE sinh 2π
√
E eit(E−M)

× sin z(E −M)

E −M
sin z′(E −M)

E −M
Γ(1± i

√
M ± i

√
E). (2.17)

where one recognizes ω−1 sin zω = z sinczω as the Fourier transform of θ(t − |z|). Notice
that the result only depends on the time-difference t. The result is plotted in Figure 2 for
Euclidean times τ = it.
In the remainder of this subsection we present an in-depth analysis of the exact bulk two-
point function (2.17) in Hamiltonian eigenstates and thermal ensembles.

2.1.1 Pure States

Let us first consider pure energy eigenstates |M〉, and discuss 〈G〉M . The density of states

is ρ(M) = sinh 2π
√
M , and the thermal two-point function is the Laplace transform of the

pure state - or microcanonical - two-point function:

〈Gbb〉β =
1

Z

∫ +∞

0

dM sinh 2π
√
Me−βM 〈Gbb〉M . (2.18)

16As compared to the group-theoretic notation used in [45, 47, 29], we have replaced the irrep label ki by
energies Ei = k2i . We have also suppressed the Euclidean regulator e−εE , and left some prefactors and 1/Z
implicit.

17Notice that, as sinx/x|x=0 = 1, there is no additional IR divergence in the bulk two point function as
compared to the boundary two-point function.
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Figure 2: Euclidean bulk-to-bulk two point function (2.17) at finite temperature (β = 2π,
C = 1/2), with one bulk point at (t = 0, z′ = 5) and the second bulk point at (it, z), as a
function of z. Blue: it = 0.1, Green: it = 0.5, Orange: it = 1, Red: it = π.

We obtain:18

〈G(t, z, z′)〉M =

∫ ∞
0

dE sinh 2π
√
E e−it

(E−M)
2C zsinc

z(E −M)

2C

× z′sinc
z′(E −M)

2C
Γ(1± i(

√
M ±

√
E)), (2.19)

where we have reintroduced the appropriate C dependence. Notice immediately that the
analytic structure of this formula is that of a two-point function of local bulk operators
(see also section 3.2). In particular the integral is finite and smooth except at the lightcone
singularities at t ± z ± z′ = 0.19 Let us denote for future reference the smallest absolute
value of t ± z ± z′ by tLC. This is a measure for how far from the lightcone we are (see
Figure 3). In Figure 4 we plotted the exact (2.19) and the classical (2.23) pure state bulk
two point functions.

For the ensuing discussion it is useful to replace E by the energy injection ω = E −M .
There are several interesting parametric regimes in this formula determined by tLC. We
define a macroscopic black hole as a system for which the integral (1.10) is dominated by its
saddle, i.e. a system in the thermodynamic limit. Such states have

√
M ∼ C/β, in terms

of its Hawking temperature β−1.

• Suppose tLC � C/M . The integral (2.19) is then dominated by ω � M . Near
the lightcone, all pure state correlators are identical to the zero-temperature correla-
tors. The amplitude (2.19) is effectively taken at M = 0 and one recovers the zero-
temperature result where the energy injection of the bilocal is indeed a UV effect. One

18A direct calculation of 〈M | Ĝ |M〉 is also straightforward via BF techniques. The state |M〉 turns out
to be an eigenstate of the operator Ĝ.

19Notice that the exact answer (2.19), unlike the semiclassical approximation (2.23) further on has no
singularities [50, 60] at τ = ±inπ/

√
M .

13



t+z f(u,v)

f(u',v')
t

z

u
v v=v'

u=u'

u=v'

v=u'

t-z

Figure 3: Two scalar operators φ at (u, v) and (u′, v′). Singularities in the propagator
〈φ(u, v)φ(u′, v′)〉 are encountered on the four lines of lightcone separated events: two direct
lines, and two indirect lines obtained by reflection on the holographic boundary.

finds:

〈G(t, z, z′)〉M ≈ ln

∣∣∣∣ (t+ z + z′)(−t+ z + z′)

(t+ z − z′)(−t+ z − z′)

∣∣∣∣. (2.20)

As we are close to the lightcone this expression reduces to the logarithmic lightcone
divergence:

〈G(t, z, z′)〉M = ln
tLC

C
. (2.21)

This could have been obtained from a direct series-expansion of the quadrulocal opera-
tor (2.12) around any of the four options t±z±z′ = 0 in the Schwarzian path integral.
Quantum gravitational effects are irrelevant near the lightcones, and the singularity
comes entirely from the matter piece.

• Suppose C/M � tLC � C.20 The integral (2.19) is now dominated by ω � M .
Rescaling ω → 2Cω, we obtain:

2C
√
M

∫ ∞
−∞

dωe−iωt(zsinczω) (z′sincz′ω)e
2πCω√
M Γ(1± 2iωC/

√
M). (2.22)

Doing the Fourier transform we recover the semiclassical answer for a mass M black
hole:21

ḠM(t, z, z′) = ln

∣∣∣∣∣ sinh
√
M

2C
(t+ z + z′) sinh

√
M

2C
(−t+ z + z′)

sinh
√
M

2C
(t+ z − z′) sinh

√
M

2C
(−t+ z − z′)

∣∣∣∣∣. (2.23)

Physically, the semiclassical result holds here because we are considering small per-
turbations on top of a black hole state ω �M . This means backreaction is negligible.

20More precisely we require that the absolute values of all the light cone coordinates t ± z ± z′ satisfy
these constraints. In what follows, for notational purposes we will often not be this explicit.

21One can check this by inserting f(τ) = tanh
√
Mτ in (2.11).
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Figure 4: Exact (full) and semi-classical (dashed) pure state bulk two-point functions
〈Gbb(t, z, z

′)〉M and ḠM(t, z, z′) for different values of M (C = 1/2). Evaluated at z′ = 5
(black vertical line) and for a range of z values. Blue: it = 0.1. Green: it = 0.5. Orange:
it = 1. Red: it = 2.

• There is a transient regime tLC ∼ C/M where backreaction does become important:
the energy injection ω is of order the black hole mass M . This transient region is
clearly visible in Figure 4. For macroscopic black holes M ∼ C2, this regime is absent
and there are no UV-modifications of the semiclassical answer.
The conclusion is that this type of UV backreaction only becomes important for light
black hole states.

The regimes of late time t � C and z � C deserve special attention, they are discussed
separately in section 2.3.

As a side remark, note that within the semi-classical regime, one could consider a region far
from the singularities: C/

√
M � tLC � C , the Riemann-Lebesgue theorem can be used,

which allows a lowest order Taylor expansion. This eliminates the last two terms in (2.22),
and we end up with the convolution integral of two Heaviside distributions, resulting in a
ramp like-structure that appears in all the plots in Figure 4 as the asymptotes. Notice that
this is zero for |t| > z + z′. As we will discuss in section 2.3 this is where IR - quantum
gravity - effects take over and the semi-classical approximation fails.
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2.1.2 Thermal Ensemble

For the thermal ensemble, we encounter the same parametric regimes as for the pure state,
where we again postpone z, t� C.

• For tLC � β2/C we are in the region close to the lightcones that is effectively zero
temperature β =∞.

• For β2/C � tLC � C the semiclassical formula (2.24) holds. Notice that this is true
regardless of the ratio β/C. If in addition β/C � 1, we end up with (2.23), which is
to be evaluated on the on-shell black hole mass Mβ = 4π2C2/β2. This then holds for
all short to medium separations tLC � C.

• There is a transient regime dominated by UV effects as in Figure 4 for tLC ∼ β2/C.
In the thermodynamic limit β/C � 1, the relative error vanishes and there are no UV
effects.

It has been suggested [69] that outside of the horizon, pure states and thermal states are
geometrically identical, and that they only differ in what is on and behind the horizon. We
would like to put this to the test: how and when are observations in pure black hole states
different from observations in thermal states?
As we shall discuss further on in section 2.3, the main difference is in late time and near-
horizon correlation functions. But clearly both states are also generically different when we
back away from the thermodynamic limit β/C � 1. Take thereto tLC � C. The thermal
state answer is then:

〈G(t, z, z′)〉β ≈
∫
dM sinh 2π

√
Me−βMḠM(t, z, z′), (2.24)

that is we approximate each pure state expectation value by its semiclassical answer. The
integral is dominated by a saddle Mβ = 4π2C2/β2 [26]. Let us include the first correction
in β/C. We find:22

1

Z

∫ +∞

0

dM

(√
M − 2πC

β

)
sinh

(
2π
√
M
)
e−

βM
2C ≈ 1

2π
+O

(√
C

β
e−

2π2C
β

)
(2.25)

The thermal propagator is then the pure state propagator (2.23), but with each of the four
terms replaced by:

ln sinh
π

β
τ → ln sinh

π

β
τ +

1

4πC

τ

tanh π
β
τ
≈ ln sinh

[(
π

β
+

1

4πC

)
τ

]
+O

(
β

C

)
. (2.26)

22One should use Ḡk ≈ Ḡkβ + (k − kβ)Ḡ′kβ .
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The thermal two-point function at temperature β−1 is hence that of a classical black hole
with an effective higher temperature:23

β−1 → β−1

(
1 +

β

C

1

4π2

)
= β̃−1. (2.28)

The conclusion is that the first order correction in β/C - away from the thermodynamic
limit - introduces an observable difference between the thermal state ρβ and the pure black
hole state |Mβ〉: ρβ ≈

∣∣Mβ̃

〉 〈
Mβ̃

∣∣. This is of course as it should be in thermodynamics.

2.1.3 Massive Bulk Fields

As a direct extension, one can study correlation functions of a massive bulk field coupled to
JT-gravity, with action:

Smat[g, φ] =
1

2

∫
d2x
√
−g gµν

(
∂µφ∂νφ+m2φ

)
. (2.29)

We treat the resulting correlators in Appendix B.

2.2 CFT Primary Bulk Two-Point Function

The scalar propagator in 2d CFT is special due to its IR properties. For large spatial sep-
arations |z − z′| where we increase z, it goes to a constant on the half-plane. Generic 2d
CFT correlators on the other hand decay as function of |z − z′|. This resonates into the
discussion on near-horizon physics in section 2.3. To this end, we investigate the bulk CFT
two-point functions for primary fields of generic weights (h, h̄).

The CFT two-point function of weight (h, h̄) primaries on the half-plane is:

Gh,h̄(u, u
′, v, v′) =

〈
φh,h̄(u, v)φh,h̄(u

′, v′)
〉

CFT
=

1

(u− u′)2h

1

(v − v′)2h̄
− (u′ ↔ v′). (2.30)

The second term is a mirror term that imposes Dirichlet boundary conditions at the holo-
graphic boundary z = 0 as for the scalar field in (2.10). We only focus on the disconnected
part of the correlator (or we take a free matter sector again). In a generic off-shell back-
ground f , this transforms according to:(

ḟ(u)ḟ(u′)

(f(u)− f(u′))2

)h(
ḟ(v)ḟ(v′)

(f(v)− f(v′))2

)h̄

− (u′ ↔ v′). (2.31)

23In particular, suppose we take z′ > z > t and kβz
′ � 1, then numerically we indeed find:

〈G(t, z, z′)〉β = Z(β)4π

(
C

β
+

1

2π2
+O

(
β

C

))
z′. (2.27)
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This can be viewed as a product of two Schwarzian bilocal operators. In a canonical lan-
guage, we are led to compute〈

Ôh(u, u′)Ôh̄(v, v′)
〉
− (u′ ↔ v′). (2.32)

It is important to note the operator ordering here. Regardless of the ordering of the four
times u, u′, v, v′, the bilocal operators are applied as a whole one after the other.24 The
bulk two-point function is thus identical to a time-ordered Schwarzian four-point function,
computed e.g. in [45]. For instance, for a pure state |M〉, one finds:

〈
Gh,h̄(t, z, z

′)
〉
M

=

∫
dEu sinh 2π

√
Eu

Γ(h± i
√
M ± i

√
Eu)

Γ(2`)
ei(u−u

′)(Eu−M)

×
∫
dEv sinh 2π

√
Ev

Γ(h̄± i
√
M ± i

√
Ev)

Γ(2`)
e−i(v−v

′)(Ev−M)

− (u′ ↔ v′), (2.33)

where the second term is the mirrored configuration that implements the Dirichlet boundary
condition

〈
Gh,h̄(t, z, 0)

〉
M

= 0.
Notice that there is holomorphic factorization of the CFT bulk two-point function in a pure
state, i.e. it has the same structure as the CFT bulk two point function in all the off-shell
geometries (2.31). The two chiral sectors of the CFT are only coupled by averaging over
energy eigenstates.

The properties of (2.33) are unsurprising.

• The formula (2.33) has exclusively lightcone singularities, so it has the analytic struc-
ture of propagator of local bulk fields.

• The other regimes are mainly identical to those discussed around equation (2.19).

The main structural difference with the scalar propagator is in its near-horizon behavior,
which we will now discuss.

2.3 Near-Horizon and Late-Time Physics

A statement that is generically true is that late-time effects in physics probe IR collective
quantum effects. Consider for example the Fourier decomposition of the pure state boundary
two point function (2.19):

G∂∂(t) =

∫ ∞
−∞

dω G∂∂(ω) eiωt. (2.34)

24This determines the integration contour for a path integral calculation as one where Wilson lines in the
Euclidean disk do not cross, see for example [47]. This means in particular that no 6j-symbols appear.
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From the theory of Fourier analysis we know that large t probes the fine-grained non-analytic
properties of G∂∂(ω). It is precisely this fine-grained spectrum of a generic theory that is
inherently quantum. For the Schwarzian theory, the function G∂∂(ω) is sharpest near the
vacuum ω + M = 0 where it goes like G∂∂(ω) ∼ θ(ω + M)

√
ω +M . We can thus safely

approximate the late time behavior of the boundary two point function by:25

G∂∂(t) ∼
∫ ∞

0

dE
√
EeiEt ∼ t−3/2. (2.35)

Reintroducing the correct C dependence we see that this approximation holds true whenever
t� C.

Let us return to the pure state scalar propagator 〈φ(t, z)φ(t, z′)〉M in formula (2.19). For late
times the above argument holds and there is a transition from the semiclassical exponential
decay at t� C:

ln

∣∣∣∣∣ sinh
√
M

2C
(t+ z + z′) sinh

√
M

2C
(−t+ z + z′)

sinh
√
M

2C
(t+ z − z′) sinh

√
M

2C
(−t+ z − z′)

∣∣∣∣∣ ∼ e−2
√
M

2C
t sinh 2

√
M

2C
z sinh 2

√
M

2C
z′, (2.36)

to power law behavior at t� C:

〈G(t, z, z′)〉M ∼
√
t+ z − z′ +

√
t− z + z′ −

√
t+ z + z′ −

√
t− z − z′. (2.37)

In the case of additionally z′ � z, we can series expand the above

〈G(t, z, z′)〉M ∼
z′√
t+ z

+
z′√
z − t

. (2.38)

This yields inverse square-root behavior when z � z′ and linear behavior when z � z′,
which is indeed visible in the zero-temperature plot of Figure (5).26 in the asymptotic re-
gions.
Similar formulas can be obtained for the thermal ensemble.

As a rule of thumb, we can understand that in general a transition from semiclassical
behavior to power-law behavior will take place whenever the semiclassical answer gets ex-
ponentially small with some large ever increasing parameter in the exponent. Both regimes
claim a certain region of ω dominates for integrals such as (2.34). One should then calculate
the approximate answers for either of the assumptions, and the largest one wins.

Consider for example the primary two-point functions (2.33). A transition to power-law

25A phase factor eiMt multiplies this result.
26It is also visible in the small M plots of Figure 4, for intermediate time ranges, but is eventually defeated

by the late-time semi-classical constant result.
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Figure 5: Red: Zero-temperature or zero-energy M = 0 bulk two-point function G∞bb as a
function of z for z′ = 1000, t = 1 and C = 1/2. The initial decay close to the lightcone
singularity is logarithmic (2.20). Blue: power law (inverse square-root) behavior at z � z′.
Green: power law (linear) behavior at z � z′.

behavior is observed whenever either of the light cone separations becomes large, say
u − u′ � C.27 In particular this means we will start to see IR quantum gravity effects
if one of the operators approaches the horizon closer than the Planck length z � C.
It is clear that the same should in fact be true for a generic class of correlation functions
in JT gravity. This is in fact precisely the same physics as the universal appearance of
power-law decay in boundary correlation functions at order C time separations. Close to
the horizon, IR quantum gravity effects take over from semiclassical physics. This can be
thought of as a manifestation of the generic fact that the horizon is a probe for ultra-low
energy physics, and hence for quantum effects.28 Any finite-energy excitation at infinity,
gets blueshifted to arbitrarily high energies close to the horizon, and is washed out by the
Riemann-Lebesgue theorem. The result is dominance by the deep IR spectrum.
The scalar two-point function (2.19) is an exception to this mantra: it does not decay at
large spatial separations and in fact becomes independent of z for large z.29 Therefore, it is
insensitive to the near-horizon quantum gravity fluctuations.
We summarize the parametric regions where quantum gravity becomes important in Figure
6.

3 Bulk Reconstruction

Up to this point, we have directly computed bulk n-point correlators. Here we distill the
individual bulk operators contained in this definition, and phrase them in the context of
bulk reconstruction and microcausality.

The radar definition of the bulk points allows us to only access the exterior of the bulk

27Explicit formulas are easily obtained.
28For related comments in gauge theories, see [70, 71, 29].
29This is a manifestation of the well-known pathological IR properties of the 2d scalar propagator.
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Figure 6: Different regimes in the bulk propagator. One of the operators is at the red
dot. UV (zero-temperature) effects dominate when the second operator is close to the
lightcone tLC � C/M (blue). At larger separation, the semiclassical result is exact. For
large separations tLC � C, IR quantum gravity effects dominate resulting in power-law
decay. We show the scalar (2.19) (left) and generic primary two-point function (2.33) (right).

black hole. For a pure state, this is it, but for thermal states we can move one of the bulk
points to the other side of the TFD state by taking t → iβ

2
− t (Figure 7). If we want to

z

TT

Figure 7: Region of spacetime (gray) that can be reconstructed from the boundary using
the radar construction of bulk points. Within the thermal ensemble, bulk operators can be
taken to the other side by setting t→ iβ

2
− t.

define bulk operators behind the horizons (the upper and lower wedge in Figure 7), one way
is to utilize the pullback-pushforward procedure of [31] and use the bulk retarded Green’s
function to write the bulk operator in terms of a linear combination of bulk operators de-
fined on the t = 0 slice. The latter can then be reconstructed from the boundary using our
radar set-up.
An alternative proposal to define interior local operators, is to move an operator as t→ iβ

4
−t.

This is motivated by the coordinate transformation to map the right Rindler patch into the
upper patch. In this case, we define it in terms of the boundary observer’s local time, in a
similar way as the other side of the TFD. However, it is unclear whether such a computation
actually probes interesting physics, as it postulates a priori that the bulk interior makes
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sense in this set-up. We leave a further study of this to future work.

3.1 Local Bulk Operators

For a given metric g, the HKLL prescription [72, 73, 74, 75] associates to a linear combination
of boundary operators Oh:

φ̂m2(t, z; g) =

∫
dτ Km2(t− τ, z; g) Ôh(τ), (3.1)

a local field φm2 in the bulk, defined as an operator in the boundary CFT with m2 = h(h−1).
This formula ignores gravitational as well as self-interactions in the bulk.30 Out of these,
gravitational interactions are arguably conceptually the most interesting and puzzling. Our
goal here is to fully account for gravitational interactions. We will do this in a similar spirit
as (2.6), that is we apply the HKLL procedure for every generically off-shell background
and then path-integrate over these backgrounds.

For simplicity let us focus on a h = 1 primary in the boundary or, via the holographic
dictionary, a m2 = 0 massless scalar in the bulk. This allows checks with formulas from
section 2.1. The generalization to massive fields is included in appendix B.
A generic bulk n-point correlation function is then:

〈φ(t1, z1) . . . φ(tn, zn)〉 =

∫
[Df ]

(∏
i

∫
dτiK(ti − τi, zi; f) 〈O1(τ1) . . .O1(τn)〉CFT

)
e−S[f ],

(3.2)
where we have already carried out the path integral over the dilaton Φ to localize on the
bulk metrics (1.9). For AdS2 in Poincaré coordinates and a primary field φ of weight h = 1
the appropriate kernel is just a Heaviside function [76, 31]: K(T − T ′, Z) = θ(T − T ′− |Z|)
which transforms like a scalar between different frames:

φ(T, Z) =

∫ U

V

dT ′O1(T ′) =

∫ u

v

dt′O1(t′). (3.3)

So the HKLL kernel is independent of f and just a Heaviside distribution:

K(t, z; f) = θ(t− |z|). (3.4)

This means that the path integral over f can be pulled through the kernels. The massless
scalar bulk n-point functions in full quantum JT gravity should then from (3.2) simply
be the n-fold convolution of the Schwarzian n-point functions with Heaviside distributions.
This indeed matches with a direct bulk calculation (2.15).31

30Within a holographic CFT, it would be lowest order in 1/N .
31Starting with a non-interacting 1d CFT on the boundary, all bulk and boundary correlators factor into

two-point functions.
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As an example, consider the zero temperature bulk-to-boundary propagator. Starting with
the zero-temperature boundary two-point function:

〈G∂∂(t)〉∞ =

∫
dE sinh 2π

√
E e−iEt Γ(1± i

√
E)2, (3.5)

and convoluting this once with a Heaviside we obtain the bulk-to-boundary propagator at
zero temperature:

〈Gb∂(t; z)〉∞ =

∫
dE sinh 2π

√
E e−iEt z sinczE Γ(1± i

√
E)2. (3.6)

This is in sync with the extrapolate holographic dictionary: the z′ → 0 limit of the bulk-
to-bulk propagator 〈Gbb(t, z, z

′)〉∞ is z′ 〈Gb∂(t; z)〉∞. A few profiles of the zero temperature
and finite temperature bulk-to-boundary propagators are plotted in respectively Figure 8
and Figure 9.
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Figure 8: Euclidean bulk-to-boundary two point function at zero temperature (C = 1/2),
as a function of radial coordinate z into the bulk. Red: t = 0.5, Orange: it = 1, Yellow:
it = 2, Green: it = 3, Blue: it = 4, Purple: it = 5.

3.2 Bulk Locality

Equation (2.17) is the time-ordered correlation function. The Schwarzian theory has time-
reversal invariance.32 Time-reversal is realized in operator language by an anti-unitary (and
anti-linear) operator. Time-reversed correlators can then simply be obtained by complex
conjugating time-ordered expressions.33 For t1 < t2, the time-ordered and anti-time-ordered
two-point functions are respectively:

G+(t1, z1; t2, z2) = 〈φ(t2, z2)φ(t1, z1)〉 , (3.7)

32Taking t→ −t leaves {f, t} invariant.
33This is indeed true for the actual expressions found in [45] using a careful Wick-rotation
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Figure 9: Euclidean bulk-to-boundary two point function at finite temperature (C = 1/2),
with the bulk point at (it, z), as a function of ∆t. Red: z = 0.5, Orange: z = 1, Yellow:
z = 2, Green: z = 3, Blue: z = 5.

and
G−(t1, z1; t2, z2) = 〈φ(t1, z1)φ(t2, z2)〉 = G+(t1, z1; t2, z2)∗. (3.8)

Their difference is the gravitational expectation value of the commutator between the bulk
operators 〈[φ(t1, z1), φ(t2, z2)]〉. At t = 0, (2.17) and (2.33) are real, hence the equal-time
commutators vanish.34

As pointed out earlier, the bulk-to-bulk propagators (2.17) and (2.33) have (logarithmic) di-
vergences exclusively on the lightcone (including reflections off of the holographic boundary)
in the full quantum gravity theory. This analyticity combined with the edge-of-the-wedge
theorem proves that the commutator vanishes for all spacelike separations:

〈[φ(t1, z1), φ(t2, z2)]〉 = 0, (t1, z1) and (t2, z2) spacelike. (3.9)

Thus the local bulk operators φ(t, z) satisfy microcausality in the full JT quantum gravity.
As mentioned in the introduction, we do not really expect local bulk operators in quantum
gravity in spacetime dimensions higher than three, where non-localities at the Planck (or
string) scale proliferate [77, 78, 79].

4 Geometric Observables

In this section we exactly calculate the expectation value of the metric operator in JT quan-
tum gravity. As a warm-up, we consider (a variant of) the geodesic distance.

The goal is to find out if and how quantum geometry, interpreted as expectation values
of geometrical observables, is different from classical geometry. We should stress that it is
not obvious whether this is how one would want to characterize the quantum generalization
of classical geometry, but from a quantum mechanical point of view at these these are well

34In the case of (2.33) this is invariance under the exchange of Eu and Ev.
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defined observable quantities.
As a byproduct we investigate how pure states are geometrically different from thermal
states. It has been suggested [69] that outside of the horizon, pure states and thermal states
are geometrically identical, and that they only differ in what is on and behind the horizon.
We will emphasize that there are significant differences between pure and thermal states in
the very near-horizon geometry.

4.1 Geodesic Distance

In appendix C we review the construction of bulk geodesics in Poincaré AdS2. Consider
now the following function of the isometric invariant (C.6):

d(P,Q) = ln

∣∣∣∣1 +
(Z − Z ′)2 − T 2

4ZZ ′

∣∣∣∣ = ln
∣∣1 + δ2(P,Q)

∣∣. (4.1)

Let us highlight some of the features of this quantity.

• It is related to the geodesic distance D(P,Q) (C.7) between P and Q by

exp
d(P,Q)

2
= cosh

D(P,Q)

2
. (4.2)

There are two interesting regimes here. For d(P,Q)� 1 we have d(P,Q) = D(P,Q),
which we will call large distances. On the other hand, for d(P,Q) � 1 or small
distances we have d(P,Q) = D2(P,Q).
A consequence of the relation (4.2) is that d(P,Q) = 0 is identical to D(P,Q) = 0,
and indeed both vanish only on the lightcone T = ±∆Z. Both quantities diverge only
when either one of the points approaches the boundary Z = 0.35

• We can rewrite (4.1) as:

d(P,Q) = ln

∣∣∣∣(U − V ′)(U ′ − V )

(U − V )(U ′ − V ′)

∣∣∣∣. (4.3)

Comparing this with (2.10) we observe that d(P,Q) is obtained from the scalar bulk
two-point function G(P,Q) by exchanging V and U ′:

d(U, V, U ′, V ′) = G(U,U ′, V, V ′). (4.4)

This means we have direct analytical control of this observable.36

35There is also a divergence on the reflected lightcone T = ±(Z + Z ′).
36We have no knowledge of a similar exact calculation for the actual geodesic distance D(P,Q).
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We are interested in calculating the quantum gravity expectation value of the observable
d(p, q). To calculate the path integral over all metrics (1.9) we require the distances in the
off-shell metrics (1.9). Since the distance is a scalar we readily obtain:

df (p, q) = ln

∣∣∣∣(f(u)− f(v′))(f(v)− f(u′))

(f(u)− f(v))(f(u′)− f(v′))

∣∣∣∣. (4.5)

The quantum gravity expectation value of d(P,Q) then follows from the exact bulk propa-
gator (2.17):37

〈d(u, v, u′, v′)〉 = 〈Gbb(u, u
′, v, v′)〉 . (4.7)

It is useful to make the mapping (4.7) more explicit. Suppose z′ ≥ z and z′ − z ≥ t such
that the points are spacelike separated. We find:

tG = z + z′, zG =
z′ − z − t

2
, z′G =

z′ − z + t

2
, (4.8)

for the coordinates (tG, zG, z
′
G) to be used in the bulk two-point function in order to obtain

the distance in coordinates (t, z, z′). This allows us to directly map conclusions about the
bulk two-point function such as differences between classical and exact pure state results,
as well as differences between pure state and thermal state results, to similar conclusions
about expectation values of the geodesic distance operator.

We will not discuss this in detail, and only mention the main point: there is a sharp
difference between pure states and thermal states when we probe in the near-horizon re-
gion. This is also the region where a dramatic breakdown of semi-classical gravity can be
observed and the geodesic distance gets severely modified by IR quantum gravity effects.
Consider e.g. t = 0 and the situation where both endpoints are in the very near-horizon
region z′ > z � C with also z′− z � C. From (4.7) we infer there has been a transition to
power-law behavior. From (2.37) we find the equal-time pure state geodesic distance:

〈d(z, z′)〉M ∼ 2
√
z + z′ −

√
2z −

√
2z′, (4.9)

independent of M . For thermal states we find a very different power-law behavior:

〈d(z, z′)〉β ∼
2

z + z′
− 1

2z′
− 1

2z
. (4.10)

37Alternatively, one might calculate the geodesic distance from the boundary two-point function:

〈d(p, q)〉 =

∫ u

u′
dt

∫ v

v′
dt′ 〈G∂∂(t− t′)〉 . (4.6)
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4.2 Metric

The quantity d(p, q) can be used to determine the expectation value of the metric operator.
The coordinate invariant definition of the metric tensor g is the square of the geodesic
distance between points that are infinitesimally separated:

ds2 = g(dx, dx) = D2(p, p+ dx) = d(p, p+ dx), (4.11)

since for small distances, d(p, q) = D2(p, q). We wish to emphasize again at this point that
this metric observable has a completely boundary-intrinsic, operational definition, so this is
an observable that the boundary observer has access to. Remember that bulk coordinates
were defined by sending in lightrays from the boundary, the bulk metric is obtained as the
geodesic distance between infinitesimally separated such bulk points.

Differentiating (4.5), we obtain for a generic off-shell f :

df (p, p+ dx) = ln

∣∣∣∣1− (f(u)− f(u+ du))

(f(u)− f(v))

(f(v)− f(v + dv))

(f(u)− f(v))

∣∣∣∣ =
ḟ(u)ḟ(v)

(f(u)− f(v))2
du dv.

(4.12)
This means we obtain 〈ds2(t, z)〉 by computing the boundary two-point function (2.16) with
t→ u and t′ → v:〈

ds2(t, z)
〉

=

∫
[Dg] [DΦ] ds2(t, z)e−S[g,Φ] = 〈G∂∂(2z)〉 (dz2 − dt2). (4.13)

Notice that this is by construction a scalar. Notice also that the causal structure of the exact
metric is the same as that of the classical metric (the path of light rays is not affected).
As before in equation (2.31), we should specify an operator ordering, or equivalently a con-
tour for the path integral, whenever we promote a classical object such as (4.12) to an

operator. We want the metric ˆds2 ≡ ĝ - as a quantum mechanical operator - to be Her-
mitian. The bilocal operator Ô(t)Ô(t′) that is used to compute the boundary two-point

function, is not Hermitian: (Ô(t)Ô(t′))† = Ô(t′)Ô(t).38 A suitable Hermitian metric oper-

ator is obtained as the average of both time-orderings Ô(t)Ô(t′) + Ô(t′)Ô(t), and this is
how one should read the two-point function in (4.13). The anti-time-ordered bilocal was
considered in section 3.2, and is the complex conjugate of the time-ordered one. So the
factor 〈G∂∂(2z)〉 in (4.13) is to be read as the real part of (2.16).

For example for a pure state the result is:

〈
ds2
〉
M

= (dz2 − dt2)

∫
dE sinh (2π

√
E) cos 2z(E −M) Γ(1± i

√
M ±

√
E). (4.14)

This observable (4.14) has the following features.

38The local operators Ô are Hermitian.
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• Near the boundary the metric reduces to the Poincaré metric (dz2 − dt2)/z2. Again
this result could have been inferred directly from the path integral as every metric ds2

f

reduces to the Poincaré metric for u ≈ v via a Taylor series.

• In the regime C/M � z � C and M ∼ C2, the above integral is dominated by
E = M + ω with ω �M and we recover the classical metric of a mass M black hole:

ds2
M = M

dz2 − dt2

sinh2
√
M

2C
2z
, (4.15)

which has a horizon at z =∞. For light black holes there is a transient regime close
to the asymptotic boundary where UV effects cause deviations from this semiclassical
answer, as in Figure 4. For regular sized black holes there is no such regime. Let us
focus on these from hereon.
Closer to the horizon at C/

√
M � z, this classical metric reduces to the Rindler

metric:39

ds2
M = 4Me−

2
√
M
C

z(dz2 − dt2). (4.16)

As we have come to expect, funny things start to happen when we probe very close to the
horizon. There is now a transition in the measured metric (4.14) from the semiclassical
Rindler approximation (4.16), to power law behavior dictated by nonperturbative quantum
gravity effects. The switchover between the Rindler (4.16) and the quantum gravity regime
occurs at z ≈ C. In the classical Rindler metric (4.16), the proper distance ρ from this
point to the classical horizon is

`P = C e−
√
M , (4.17)

to be interpreted as the Planck length in this 2d set-up.40

When we probe much closer than this Planck length to the classical horizon ρ � `P , the
measured metric is nothing like classical Rindler space. For example for a thermal state we
find up to a prefactor: 〈

ds2
〉
β

=
dz2 − dt2

z3
. (4.18)

We illustrate the different regimes of expectation value of the bulk metric in Figure 10. For
pure states we find that the scaling factor is z−3/2 instead of the z−3 in (4.18), as in (2.35).
So the near-horizon metric in a pure state is fundamentally different from the thermal one.
Let us make some comments.

• It is amusing to calculate the curvature tensor associated with this effective metric
(4.13). One should think of this curvature tensor as constructed operationally by the
boundary observer. He constructs a manifold using our radar definition of bulk points,
and endows this effective classical manifold with the effective metric (4.14). He then

39This is Rindler space in tortoise coordinates ρ = e−
√
M
C z, τ = 2

√
Mt, with metric ds2 = ρ2dρ2 − dτ2.

40Note that for a macroscopic black hole M ∼ C2 the exponential factor is immensely small.
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Figure 10: Bulk geometry as found by our radar definition. Quantum effects become impor-
tant and deform the effective geometry at a distance of z ≈ C , i.e. at the Planck scale `P
from the horizon (red). Outside of this region, there is a band (gray) that extends outwards
to the black hole scale z ≈ C/

√
M that bounds the Rindler approximation to the classical

geometry.

measures the effective curvature tensor by parallel transporting a vector around a
small loop on the effective manifold. This operational result will be different from the
mathematical curvature R = −2, because the points along the loop are now defined
using our definition of bulk points, and not as fixed Poincaré coordinates. For z � C,
he finds the classical answer R〈g〉β = −2. For z � C however, he finds from (4.18):

R〈g〉β = −3z. (4.19)

This means he concludes from his very near-horizon experiment (4.18) that there is a
true singularity at the location of the semiclassical horizon z = +∞.

• A related feature is the strong fluctuations of the metric near the horizon of the thermal
system. We could for example calculate the covariance of the metric:41

Cov(g(z1), g(z2)) ≡
〈g(z1)g(z2)〉β − 〈g(z1)〉β 〈g(z2)〉β

〈g(z1)〉β 〈g(z2)〉β
, (4.20)

which probes fluctuations away from the saddle g0(z). In the parametric regions
where semiclassical physics holds, the covariance vanishes. When probing close to the
horizon though, this changes. For example, if we take z1, z2 � C and take furthermore
z1 � z2, the covariance blows up as:

Cov(g(z1), g(z2)) ∼ z
3/2
2 . (4.21)

41We thank Zhuo-Yu Xian for suggesting this.
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So in this sense, the closer we get to the horizon, the more prominent quantum fluc-
tuations become.

• We want to stress that one should not think about this metric expectation value as an
effective metric on which matter fields propagate. This calculation should merely be
considered as additional evidence that quantum gravity effects will generically domi-
nate the expectation value of any operator inserted in the near-horizon region. The
calculations of matter correlators in section 2 should be considered more fundamental
than the toy-calculations in this section, and have implications for the information
paradox, as discussed below in section 6.

With the discussion of section 2.3 in mind, we arrive at a significant conclusion: the fine
structure of the Schwarzian density of states implies that the very near-horizon bulk geom-
etry, as well as all matter correlation functions probing it, are modified at the Planck length
`P .42

Given that the Schwarzian spectrum implies rather radical changes to our classical ideas
on near-horizon physics, this raises the question how near-horizon physics is affected in a
theory whose spectrum has even finer structure than the Schwarzian density of states, such
as SYK. This is the topic of the next section.

As a side comment, note that the pure energy eigenstates |M〉 play a privileged role when
it comes to quantum geometry.
Indeed, all geometric observables we can calculate in JT gravity are, in one way or another,
composed of boundary bilocal operators, essentially due to SL(2,R)-invariance. But since
the Schwarzian bilocal operators commute with the Hamiltonian [45], the energy eigenstates
|M〉 simultaneously diagonalize all geometric observables:

〈M | O |M ′〉 = δ(M −M ′) 〈M | O |M〉 . (4.22)

So the states |M〉 are also geometry eigenstates. One could interpret this as evidence that
it might be more natural to think about pure states as being the quantum generalization of
a classical black hole rather than attributing geometric properties to mixed states such as
the thermal state.43

5 Metric in Topologically Complete JT Gravity

Thus far, we have restricted the JT gravity path integral to Euclidean disk configurations.
Let us now lift this restriction. This results in a genus expansion for all observables [1]. For

42Moreover, we see that at these scales, most observables in JT quantum gravity have very different
expectation values in pure states as compared to thermal states.

43Note that as a consequence, for a fixed energy state |M〉 there are no quantum fluctuations of these
geometrical variables.
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example, the partition function has an expansion:

ZL(β) =
∑
g

Zg(β)L−2g + (non-perturbative). (5.1)

This is shown graphically in Figure 11. Recently, a possible nonperturbative completion of

Z(β)= + (...)+ +

Figure 11: A graphical representation of formula (5.1).

this genus expansion was proposed to be a specific random matrix theory [1, 52].44 This is
completely defined by giving its genus zero or L→∞ density of states:45

ρ∞(E) = Lθ(E) sinh 2π
√
E. (5.3)

We should think of L as some huge parameter L� β/C. We would now like to understand
the near horizon geometry in this arguably more realistic theory of quantum gravity. We will
find that the conclusions on the metric from the previous paragraph hold up to z/C ∼ L,
at which point a new transition takes place.

In Appendix D we point out an interpretation of higher genus Euclidean contributions to
a Lorentzian path integrals. We then derive a formula for the metric expectation value ob-
tained by a boundary observer within this theory. Including the nonperturbative completion
we find (D.15): 〈

ds2
〉
β

=
1

L
(dz2 − dt2)ZL(β − 2iz)Z∞(2iz) + (cc). (5.4)

This is the analogue of formula (4.13) for finite L. Deep in the bulk z � C the bulk metric
expectation value thus reduces to a product of late-time partition functions. Notice that in
the limit L→∞ this reproduces (4.14).

To obtain the very-near-horizon metric we now only require the late-time finite L partition

44Certain features of this model pop up in a double-scaled limit of SYK where one takes both the number
of Majorana fermions N and the effective coupling βJ large, with their ratio held fixed:

C

β
=

N

βJ
. (5.2)

45In the SYK context we would have lnL = N up to a prefactor.
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function ZL(it) of the random matrix model seeded by (5.3). Let us discuss the essential
properties. More details are presented and collected in Appendix E.
The finite L partition function is the Fourier transform of the finite L spectral density ρL(E):

ZL(τ) =

∫
C
dE exp(−τE) ρL(E). (5.5)

At late times, the saddle in the partition function moves further and further down the energy
axis. Structurally the finite L spectral density differs from the Schwarzian one in three ways
that are generic in random matrix theory:

• The sharp edge θ(E)
√
E of the Schwarzian spectrum is replaced by a smooth version.

This is shown in Figure 23. Roughly speaking, this means there should be some time
scale t in the Fourier transform at which we start seeing deviations from the power law
behavior, which assumes a sharp edge. We find the relevant time scale to be t ∼ L2/3

in Appendix E. The partition function picks up a phase factor:

ZL(it) = t−3/2 exp

(
i
t3

L2

1

12

)
. (5.6)

• There are periodic wiggles on the curve. As discussed in Appendix E, the frequency
of these wiggles blow up with increasing energy.46

• There is a transition in ρL(E) from the smooth edge to a nonperturbative tail that
extends all the way along the energy contour C. Its leading behavior is (E.5):

ln ρL(E) = −2LV (E), (5.7)

with the effective potential given in (E.6) and where E can be complex valued. The
late time partition function can then be obtained using the saddle point method. For
t� L this results in (5.6). For t� L we find:

ZL(it) = exp

(
i
t

4

)
, (5.8)

up to some numerical prefactor.

Plugging these formulas into (5.4) and re-introducing the correct C dependence, we obtain
the metric expectation value. In particular in the very-near-horizon regime z/C � L we
find:47 〈

ds2
〉
β

=
1

z3/2
cos

(
1

2

z

C

)
(dz2 − dt2). (5.9)

46See also [52].
47Notice that (5.9) is by no means positive definite. This is no surprise: the metric operator defined

in section 4 is not necessarily positive definite. We view this as evidence that any notion of semiclassical
gravity breaks down at z/C ∼ L.
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We note that the metric goes to zero at some point z ∼ CL2/3, followed by a region where
space and time are exchanged.

Rather than focusing on the specific - not particularly enlightening - result, we feel there
is a deeper lesson. In the very-near-horizon region, the metric expectation value becomes
sensitive to the finite L fine structure of the spectrum. This is the same time scale at which
random matrix effects kick in, in the holographic boundary correlators. We touch on this
for the two-point function in appendix (D.1).48 Clearly, for z/C ∼ L it is safe to say that a
spectacular breakdown happens of any classical notion of gravity, and we become sensitive
to the discrete nature of the underlying microscopic theory.

6 Information Paradox

In semi-classical gravity information is lost. This is in contradiction with a holographic
theory of quantum gravity, which is unitary. The result is the information paradox [80],
which was reincarnated as the firewall paradox [81].
A sharp way to state a paradox is as a set of hypotheses that are all assumed to be true,
but which are in logical contradiction. The paradox is resolved if one can prove one of the
hypothesis wrong [82, 83, 84, 85, 86].
For the information paradox these hypothesis are basically unitary quantum mechanics,
and the assumptions that go into the Hawking calculation [80]. In particular, one of these
assumptions is that quantum gravity effects are suppressed at microscopic distances from
the horizon [82].49 This is necessary to motivate the use of quantum field theory (for the
matter sector) in curved space and in particular in the Rindler geometry, which directly
implies the Hawking-Unruh effect.

This hypothesis is not valid in JT quantum gravity. Let us first focus on the JT disk
model. We have proven through sections 2 and 4 that quantum gravity effects are by no
means suppressed in the near-horizon region. On the contrary, they proliferate: near-horizon
matter correlation functions are dominated by quantum gravity effects. Therefore, quantum
matter on a classical curved spacetime is not a valid approximation of near-horizon quantum
JT gravity, invalidating the Hawking calculation in this context. This is how JT gravity
evades a version of the information paradox.

Let us make some comments.

• This conclusion, like all our results, builds ultimately on our choice to use a radar def-
inition of bulk coordinates to construct observables. Intuitively we expect generically
that quantum gravity effects will dominate in the near-horizon region, since late time
holographic correlation functions seem to demand this. It would still be interesting

48In particular we show that its late-time behavior is identical to that of the spectral form factor discussed
in [10].

49One imagines this to be true because classically, spacetime is weakly curved at the horizon.
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though, to see how these conclusions hold up for a different construction of bulk frame
such as the one discussed in Appendix A.

• The fact that the information paradox is avoided in this model, does not mean we
understand how black hole dynamics and evaporation works in JT quantum gravity.
A full quantum description of black hole evaporation should be the goal.

• In this model, the effective gravitational constant is 1/C which has dimensions of
energy. Therefore, just by dimensional analysis, probing at distances z/C � 1 we end
up with an effectively strongly coupled theory. One cannot therefore turn off quantum
gravitational effects near the horizon.

• We should stress that this conclusion is not based on our calculations in section 4
and in particular it does not rely on any interpretation of (4.13) as a metric. We are
building here only on the calculations of section 2. It is only a posteriori that the
metric operator expection value is suggestive for this interpretation.

It is amusing to link these conclusions to late-time holographic dual correlation functions
and to the fine-structure of the spectrum of the theory, as in section 2.3.
A telltale of information loss in semiclassical gravity is that matter correlation functions
continue to decay exponentially at ever larger separations. The physics behind this is
that information thrown into a classical black hole thermalizes and is eventually lost: the
Hawking radiation is uncorrelated with the information thrown into the black hole. Such
late time thermal decay is forbidden in any theory that includes quantum gravity [56, 57,
58, 59, 60]. Usually any microscopic candidate theory of gravity is thought to possess a
discrete spectrum, which spoils exponential decay at very late times as erratic fluctuations
take over, see for example [10, 84].
Late-time exponential decay is equally forbidden in a theory of quantum gravity with a
continuous spectrum, given some plausible assumptions. Indeed, suppose that the theory
has a lowest energy state (say at ω = 0), and is Laurent expandable around that as ρ(ω) ∼
θ(ω)ωα.50 Consider then for example the two point function, where we assume G(ω) ∼ ωγ

is Taylor expandable:51,52 ∫
dωρ(ω) eiωtG(ω) ∼ 1/tα+γ+1. (6.2)

50We require α > −1 for integrability. This would seem to hold rather generically in quantum physics.
It holds for example for the free Bose and Fermi gas, the bosonic Schwarzian (α = 1/2) and the N = 1, 2
super-Schwarzian (α = −1/2).

51In the Schwarzian theories, the function G is the product of the vertex functions, which are indeed
Taylor-expandable.

52It is interesting to see how the semi-classical gravity theory (t� C) evades this argument. Expanding
the integrands of any correlation function around the classical black hole mass: Ei = M−ωi, where ωi �M ,
one integrates the leading order result over the entire real ωi axis. In terms of the density of states this
means we effectively replace

ρM (ω) = θ(M − ω)e2π
√
M−ω → e

− 2π√
M
ω
, (6.1)

which has no sharp feature and hence does not yield a power-law.
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It is not hard to imagine that such power-law behavior will generically occur for any correla-
tion function provided one of the time separations is larger than some dimensionful coupling
C. It is for example observed in late-time CFT2 correlation functions which are then dual
to (parts of) AdS3 quantum gravity [60, 61, 62, 63, 64, 65].

We are hence led to the following lesson: quantum gravity effects will generically domi-
nate near-horizon physics, because late-time boundary correlation functions transition from
semiclassical quasi-normal mode decay to power-law decay. JT gravity is special at this
point because we are able to exactly compute and prove this quantitatively. This has not
yet been achieved for example in AdS3 quantum gravity, and it would be interesting to make
this more explicit in that case.

An equivalent statement is that the horizon probes the fine-structure of the spectrum of
the quantum gravity theory, much like late-time.

As a further example of this, consider the nonperturbative topological completion of JT
gravity discussed in the previous section and Appendices D and E. In the holographic ran-
dom matrix theory, there is a second transition at times of order L (or sooner) from power
law-behavior to random matrix behavior. An example of this is the plateau structure ob-
served in SYK correlation functions [10]. This transition originates from fine-grained wiggles
on top of the Schwarzian density of states in this model [1]. In the previous section, we
found that similar fine-grained corrections on the Schwarzian density of states result in a
transition in the very-near-horizon metric at distances of order L, away from power law
behavior to random matrix behavior.

7 Concluding Remarks

Let us conclude with some general lessons about quantum gravity.

• To start with, one needs to define a bulk frame to construct diff-invariant observables.
Indeed, since the diff-symmetry is a gauge redundancy in gravity, the only physical
results are expectation values of diff-invariant operators. To define such a bulk frame,
generically in quantum gravity one needs a platform as a reference beacon [30]. In a
holographic theory, this is naturally the holographic boundary itself.

• We defined a Hermitian metric operator in quantum gravity and calculated its expec-
tation value. In doing so, we have to be careful about operator ordering ambiguities
when going from a classical expression to an operator in Hilbert space. In particular,
we choose to define the metric operator as Hermitian, but not necessarily positive
definite.53 We believe that disallowing signature jumps between (+,−) and (−,+)

53A positive definite operator whose classical expression is the metric (4.12) could be obtained as
Ô1/2(−z)Ô1/2(z)Ô1/2(z)Ô1/2(−z), that is we use two ` = 1/2 bilocals. As in (2.31) and implied by the
operator ordering, one inserts the bilocals as a whole one after another. The calculations that follow are
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(crossing horizons) is not something you should impose on a theory of quantum grav-
ity by hand.54 The local signature should rather follow from an exact calculation.
We learned that in the very-near-horizon region, there are strong quantum fluctuations
of the metric, and the expectation value of the metric operator deviates strongly from
the semiclassical answer. One would expect generically that such phenomena occur in
any theory of quantum gravity.

• Close to the classical black hole horizon, we found that quantum gravitational effects
dominate matter correlators. This represents severe backreaction. On hindsight, this
is not surprising. In fact, based on a mapping between late-time holographic boundary
correlation functions and near-horizon physics we expect this to be true in any sensible
theory of quantum gravity. Some evidence that effective field theory breaks down has
also been obtained in string theory [87, 88, 89, 90, 91]. It would be interesting to make
this explicit in 3d gravity for example.
An important point that is manifest in JT gravity, is that this backreaction cannot be
avoided in the following sense. No matter how light one chooses a certain operator,
or how tiny one makes GN , there is always a region close to the horizon where quan-
tum gravitational fluctuations will become important. In this region, the Hawking
calculation can then not be trusted for that particular field.

• JT gravity on a disk (dual to the Schwarzian) has a remarkable degree of locality
present all the way to the Planck scale. This is embodied by the perfectly local analytic
structure of bulk matter correlation functions. It would seem that no such conclusion
can hold in more than three dimensions, where gravity is non-renormalizable and we
would need e.g. strings which are inherently nonlocal.
The full SYK model certainly has some degree of bulk non-locality [8]. This suggest
that bulk locality in JT gravity may be lost when we lift its constraints and consider
instead the topologically complete model dual to a random matrix theory. We leave
this to future work.

The big questions regarding black holes are thus left unanswered. Can we obtain a solvable
quantum mechanical model of black hole evaporation? What happens to an infalling ob-
server? It seems that JT gravity presents our best chance of answering these questions at
the moment.

Even though our computations are explicitly done in 1+1d, there are embeddings of the
JT model within higher-dimensional gravity. For instance, the authors of [25, 92, 28, 93]
argue that certain charged or rotating black holes in higher dimensions are approximated

very analogous as the one we presented in this work. For example, up to normalization we find for z � C:〈
ds2
〉
M

=
〈
ds2
〉
β

=
1

z3
(dz2 − dt2), (7.1)

and similarly for the finite L version.
54Doing the opposite would seem to remove the possibility to create and destroy black hole horizons

dynamically.
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in the near-horizon, near-extremal regime by JT dynamics. In this configuration, the curve
separating the near-horizon region from the far region can analogously be used to set up our
bulk frame (1.9). Whereas there are dynamical gravitons in higher dimensions, requiring
an embedding within e.g. string theory, the s-wave sector is still described by the renor-
malizable 2d JT theory, and we hence expect the lesson on the breakdown of the Rindler
geometry and the information paradox to carry through also in these higher-dimensional
situations.

Let us end with a comment on the equivalence principle in quantum gravity, and some
speculation on the infalling observer.
At several points in this work, it was illustrated that in JT quantum gravity, since all quan-
tities have to be defined operationally, physics in the frame of the boundary observer can be
very different from physics in other frames, even for coordinate-invariant quantities such as
the infinitesimal distance function (4.18), or the bulk two-point function (2.17). This is not
in contradiction with the coordinate invariance from general relativity. For each off-shell
metric, there is a relation (u, v) ↔ (f(u), f(v)) between different frames. This relation
however, does not exist after the path integral over bulk metrics f . As a consequence, one
should not a priori expect general coordinate invariance of observables to hold in full quan-
tum gravity, i.e. after performing the gravitational path integral.
Our definition of bulk frame (1.9) seems to be natural for stationary observers such as the
boundary observer.55 Another frame, for which we have no classical bulk intuition at the
moment, is defined in Appendix A. On the other hand, it is not obvious what is a natural
definition of frame for an infalling observer. In particular, it is not even obvious whether or
not this should be anchored to the asymptotic boundary. It could be that a natural family
of infalling frames is for example the Poincaré family (T, Z) and not the boundary family of
frames (t, z). In this scenario there would be no drama in an infalling frame. Because there
is no generalized coordinate invariance in quantum gravity, this is not a paradox [81] when
combined with our present discussion on stationary observers which do find drama near the
horizon. The description of infalling frames in quantum gravity certainly deserves further
study.
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A Geodesic Localizing

As an alternative definition of a bulk point, we can consider using the geodesic distance mea-
sured from the holographic boundary as the radial coordinate, combined with the dynamical
time variable f(t). The geodesic length is given by56

dL2 =
dZ2

Z2
⇒ L = log

Z

εf ′
. (A.1)

Renormalizing the length by dismissing the log ε term, we perform the radial coordinate
transformation Z = f ′eL, and define a bulk operator as O(T, Z) ≡ O(f(t), f ′(t)eL) in terms
of the boundary proper time t and the (renormalized) geodesic length L (Figure 12).57 Using

T

Z

Figure 12: Set-up of bulk frame using proper time t and the geodesic length L. Both points
are the “the same point”, constructed with the same values of t and L, but using a different
(off-shell) reparametrization map f .

this coordinate, the constructed metric becomes

ds2 = dL2 + 2
f ′′

f ′
dtdL+

(
f ′′2

f ′2
− e−2L

)
dt2. (A.2)

As a check, close to the boundary eL = ε, the metric indeed respects the Poincaré asymp-
totics. The bulk bilocal operator, introduced in section 2, is written in this case as

G(f(p), f(q)) = ln

∣∣∣∣(f(t1)− f(t2))2 + (f ′(t1)eL1 − f ′(t2)eL2)2

(f(t1)− f(t2))2 + (f ′(t1)eL1 + f ′(t2)eL2)2

∣∣∣∣ , (A.3)

and satisfies the correct Z2 → 0 boundary conditions as well. Next to this, the limit eLi → ε
indeed yields the boundary bilocal operator (the integrand of (2.12)). Notice also that the
geometry (A.2) is not in conformal gauge, and is not even time-independent for the thermal

56One readily checks explicitly that the T = const lines are spacelike geodesics.
57This is a version of Wilson line dressing. Note that, due to a lack of angular coordinates, the more

symmetric Coulomb dressing is the same in 1+1d.
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solution f(t) = tan π
β
t.

Whereas this is a suitable definition of fixing the bulk diff-invariance and defining bulk oper-
ators, it is not evident how to compute with this definition. Moreover, it is not immediately
clear what the semi-classical bulk content is of this particular choice (e.g. our lightcone
choice directly leads to the semi-classical Unruh effect [66]).
It would be interesting to see though whether more progress can be made for bulk opera-
tors defined in this way, or even more generally for correlation functions in which the bulk
operators are each defined in different ways.

B Massive Bulk Fields and Global Conformal Blocks

The story in the main text can in principle be extended to massive bulk fields, which we
develop here.

It is useful to introduce another isometric invariant in Poincaré coordinates (T, Z) [72, 76]:

σ(p|q) =
(Z2 + Z ′2)− (T − T ′)2

2ZZ ′
= 2δ2 + 1, (B.1)

in terms of δ introduced in (C.6).58 After performing a reparametrization, the distance
functions δ and σ are:

δ2(p|q; f) = −(f(u)− f(u′))(f(v)− f(v′))

(f(u)− f(v))(f(u′)− f(v′))
, (B.3)

σ(p|q; f) =
(f(u)− f(v))(f(u′)− f(v′))− 2(f(u)− f(u′))(f(v)− f(v′))

(f(u)− f(v))(f(u′)− f(v′))
. (B.4)

In terms of these, the HKLL kernel of (3.4) is generalized in the massive case to:

K(t, z|τ) ∼ 1

f ′(τ)∆−1
lim
z′→0

(z′σ(t, z|τ ; f))∆−1θ(z − |t− τ |), (B.5)

where m2 = ∆(∆ − 1) and the f ′ accounting for the tensor transformation of the kernel,
and where

lim
z′→0

(z′σ(t, z|τ ; f)) = −2
(f(u)− f(τ))(f(v)− f(τ))

(f(u)− f(v))
. (B.6)

58This is also related to the invariant d, introduced in [68], as σ = 1 + d. The geodesic distance itself can
then be written as

D(P,Q) = 2Arcsinhδ = Arccoshσ. (B.2)
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The diff-invariant (dressed) bulk operator can then be constructed as59

Φ̂(u, v; f) =

∫ u

v

dτ

(
(f(u)− f(τ))(f(v)− f(τ))

(f(u)− f(v))f ′(τ)

)∆−1

Of∆(τ)

=

∫ u

v

dτf ′(τ)

(
(f(u)− f(τ))(f(v)− f(τ))

(f(u)− f(v))

)∆−1

O∆(f(τ)), (B.7)

and is expressed fully in terms of operators in the Schwarzian + boundary NCFT1 system.
It satisfies (�−m2)Φ̂ = 0 by construction for m2 = ∆(∆−1). Since the last way of writing
the formula can be simplified by setting t = f(τ) into the standard Poincaré expression,
this bulk operator satisfies the extrapolate dictionary in two ways:

lim
Z→0

Φ̂(u, v; f) ∼ Z∆O∆(f(τ)) = ε∆Of∆(τ), (B.8)

where the first line is in the Poincaré fixed frame, and the second line is in the local time
frame τ .60

For the massive bulk two-point function, one is lead to compute

G(f(p), f(q)) ∼
∫ u1

v1

dτ

∫ u2

v2

dτ ′
(

f ′(τ)f ′(τ ′)

(f(τ)− f(τ ′))2

)∆

×
(

(f(u1)− f(τ))(f(v1)− f(τ))

(f(u1)− f(v1))f ′(τ)

(f(u2)− f(τ ′))(f(v2)− f(τ ′))

(f(u2)− f(v2))f ′(τ ′)

)∆−1

.

(B.9)

Setting t = f(τ) and t′ = f(τ ′), one can write this more easily as:

∫ U1

V1

dt

∫ U2

V2

dt′
(

(U1 − t)(V1 − t)
(U1 − V1)

(U2 − t′)(V2 − t′)
(U2 − V2)

)∆−1(
1

(t− t′)2

)∆

, (B.10)

where Ui = f(ui) and Vi = f(vi).
These integrals are do-able, and we keep track of all prefactors in the computation that
follows. We use the boundary two-point function:

〈O∆(t)O∆(t′)〉bdy =
Γ(∆)

Γ(∆ + 1/2)

(−)∆

2
√
π

1

(t− t′ − iε)2∆
, (B.11)

59We will be more explicit about the prefactors shortly.
60This makes contact with a question of [94], namely which dressing should be used for the bulk operator

to find the extrapolate dictionary.
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and the HKLL kernel in the form:61

K(T |T ′, Z ′) =
Γ(∆ + 1/2)√

πΓ(∆)

(
Z ′2 − (T − T ′)2

Z ′

)∆−1

θ(spacelike) (B.12)

=
1

π
2∆−1/2Γ(∆ + 1/2)

√
Z ′
∫ +∞

0

dω
1

ω∆−1/2
J∆−1/2(ωZ ′) cosω(T − T ′), (B.13)

Finally, using:62

∫ +∞

−∞

∫ +∞

−∞
dtdt′ei(ω−ω

′) (t+t′)
2

ei(ω+ω′) (t−t′)
2

(t− t′ − iε)2∆
= δ(ω − ω′) 4π2

Γ(2∆)
(−)∆ω2∆−1Θ(ω), (B.14)

we can combine the ingredients, and obtain:

G(f(p), f(q)) =

√
ZZ ′

2

∫ +∞

0

dω exp (iω(T − T ′)) J∆−1/2(ωZ)J∆−1/2(ωZ ′) (B.15)

=
Γ(∆)

2∆+1
√
πΓ(∆ + 1/2)

1

σ∆ 2F1

(
∆

2
,
∆ + 1

2
;
2∆ + 1

2
;

1

σ2

)
. (B.16)

The second line uses (an extension of) a formula from [95] and leads to the form of the bulk
Wightman two-point function written down in [72], with σ the reparametrized invariant
given in (B.4). Note that this had to work out, as it is a consistency check on the semi-
classical HKLL formulas themselves.
Using the Kummer-Goursat quadratic transformation and the first Pfaff transformation on
the hypergeometric function, combined with the relation between σ and δ (B.1), with δ2

given by (B.3) as the crossratio of the four times u, v, u′, v′, we can rewrite the answer as:

G(f(p), f(q)) =
Γ(∆)2

4πΓ(2∆)

(
1

δ2

)∆

2F1

(
∆,∆; 2∆;− 1

δ2

)
. (B.17)

This version of the result is in the form written by [68].63 Written in this way, the two-point
function is the global SL(2,R) conformal block for elastic scattering h1 = h2 and h3 = h4.
This is partly explained since both are solutions to the SL(2,R) Casimir equation with
eigenvalue (mass2) ∆(∆− 1).
Note that at ∆ = 1, using z 2F1(1, 1; 2;−z) = ln(1 + z), one finds ln

(
1 + 1

δ2

)
, which is indeed

61All ingredients to perform this computation can be found in [68, 72]. The cosines of the second line are
written as a sum of exponentials, leading to 4 exponentials out of which only a single one contributes, due
to ω, ω′ > 0 and the Heaviside function in (B.14).

62This equation can be found by taking integrals of the functional representation of the Heaviside-function
and is used to treat the boundary two-point function contribution.

63It is in fact half their result and taking both real and imaginary part. This corresponds to the fact that
[68] studied the Hadamard two-point function instead.
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the massless two-point function we computed in the main text, including the normalization
factor of 1/4π.

Whereas (B.17) seems nearly impossible to compute directly within the Schwarzian path
integral, there is hope for (B.9). In particular, the integrand can be seen as the product of
seven bilocals, four of which have negative conformal weight for ∆ > 1. For ∆ ∈ N, these
are negative integers, corresponding to the finite-dimensional irreps of SL(2,R), whose cor-
relation functions were initiated in [96]. Otherwise, they can be found by a simple analytic
continuation of the positive weight bilocals.
When interpreting (B.9) as an operator, we have to take care of the operator ordering, or
equivalently the choice of integration contour in the path integral. The ordering we want
is fixed by the HKLL equation (B.7), and in particular the extrapolate operator dictionary,
where two bulk operators are interpreted in the Schwarzian + NCFT1 quantum system as
the product of the four operators, schematically

∫ ∫
K̂1O1K̂2O2, in this specific order, and

without crossed lines within each K̂ operator. This means the computation we want is given
by the Euclidean diagram:64

ττ ′

v1u1

u2v2

τ

τ ′

(B.18)

where the dashed lines represent the negative weight bilocal lines. The Lorentzian expression
is then found by directly setting τi → iti everywhere in the resulting expression.65 Following
the diagrammatic rules of [45, 46, 47], it is hence possible to arrive at an analytic answer
for the correlation function in this way, though it does not seem to be very illuminating to
write down.
This logic is readily generalizable to higher-point functions, where the HKLL kernel is asso-
ciated to the nested diagrammatic 3-point function that we drew above. Placing the bulk
operators in OTO-configurations, the computation reduces to placing the boundary oper-
ators O out-of-time ordered and hence leads to 6j-symbols, whose appearance is hence a
direct extension to how they appear for boundary correlators.

As mentioned above, we remark that this computation would also be relevant when com-
puting the Schwarzian integral of a global conformal block. This is needed when considering
the connected 4-point function for an interacting boundary NCFT1.

64There is still an ordering ambiguity for the three bilocals within the KHLL kernel K itself, which we
have chosen specifically in this diagram. It would be interesting to study which ordering within K is the
most natural for this computation, which we leave to future work.

65The above discussion on the correct operator ordering is equivalent to analytically continuing the time-
ordered Euclidean expression by going to different sheets of the multi-valued function. By choosing the
correct ordering beforehand, we are already on the correct sheet and only require the simple substitution
τi → iti to obtain the correct Lorentzian answer.
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C Geodesics in AdS2

Within the AdS2 Poincaré patch:

ds2 =
dZ2 − dT 2

Z2
. (C.1)

the geodesic equations for (Z(s), T (s)), s the arclength along the geodesic, are:

ZT ′′ − 2Z ′T ′ = 0, ZZ ′′ − Z ′2 − T ′2 = 0, (C.2)

Using the first of these one proves that(
ZZ ′

T ′
− T

)′
= 0, (C.3)

such that the geodesic satisfies ZZ ′−TT ′ = CT ′ for some constant C. This can be integrated
again to obtain

Z2 − (T − C)2 = ±R2, (C.4)

with the + sign applicable to timelike geodesics and the − sign for spacelike geodesics. This
is a family of hyperbolas centered around (0, C). Notice that this is just the Wick-rotation
T → iT of the Euclidean geodesics, which are circle segments centered around (0, C) or
radius R. Figure 13 (left) shows the Euclidean geodesic between two points P = (Z, T ) and
Q = (Z ′, T ′). In the limit R→ 0 we obtain the lightcone.

Z

T

P=(Z,T)

Q=(Z',T')

qP
qQ

T(t)

T = 0

Figure 13: Left: Euclidean geodesics are circle segments. Right: Geodesic with endpoints
on the holographic boundary at proper time τ apart. In Poincaré coordinates, these end-
points are at T = 0 and T (τ), and the geodesic changes when changing off-shell time
reparametrization T (τ) (blue and red).

Geodesic distances can now readily be calculated: given two points P = (Z, T ) and Q =
(Z ′, T ′) one first determines C and R in function of the parameters (Z,Z ′, T, T ′) and then
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simply integrates along the appropriate geodesic. We demonstrate the Euclidean calculation,
it is easy to Wick-rotate everywhere. We parameterize the circle fragment by Z = R sin θ,
T − C = R cos θ such that ds = dθ/ sin θ. The geodesic distance is then:

D(P,Q) =

∫ Q

P

ds =

∫ θQ

θP

dθ

sin θ
= ln

1 + cos θP
sin θP

1− cos θQ
sin θQ

. (C.5)

Using ln
(
x+
√
x2 + 1

)
= Arcsinh(x) and the relation between R and the coordinates, we

can rewrite this in terms of the isometric invariant of AdS2:

δ(Z,Z ′, T ) =

√
(Z − Z ′)2 + T 2

4ZZ ′
, (C.6)

as
D(P,Q) = 2 Arcsinh δ(P,Q). (C.7)

In the special case that both points are close to the Z = 0 boundary, one can approximate
the Arcsinh by a logarithm. For a τ -dependent Z-coordinate: Z(τ) = εṪ (τ), one can then
write:

D(P,Q) ≈ 2 ln δ(P,Q) ≈ ln
(T1 − T2)2

4Ṫ1Ṫ2

− ln ε2 (C.8)

The UV-piece can be removed by holographic renormalization techniques. The situation is
sketched in Figure 13 (right). This result can be interpreted as the bulk geodesic length be-
tween two boundary events separated by observer time τ , given some time reparametrization
T (τ).66

D Observables in Topologically Complete JT Gravity

As explained in the Introduction, when defining the JT quantum gravity path integral one
has to specify whether or not to allow Euclidean disks with handles ending on the asymptotic
boundary. In the main text we have studied the Schwarzian theory dual to just the disk.
Here we lift this restriction. The JT path integral now has a genus expansion [1]:

ZL(β) =
∑
g

Zg(β)L−2g + (non-perturbative). (D.1)

66When inserting the operator (C.8) into the Schwarzian path integral, we have to decide on how to
order the operators. Writing the bilocal schematically as O1O2, one can compute the log of this bilocal by
computing

∂` O`1O`2
∣∣
`=0

= lnO1 + lnO2 = T lnO1O2, (C.9)

which corresponds to computing the time-ordered logarithm of the operators involved. This is the choice
made implicitly in [50] and [66] when computing complexity, respectively matter entanglement entropy.
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A possible nonperturbative completion for this theory was found as a specific random ma-
trix theory in [1, 52]. The limit L → ∞ of this model is the Schwarzian. Our goal here
is to study the finite L effects on the late-time boundary two-point function and on the
near-horizon metric. This requires we first understand the perturbative expansion of these
objects.

We first remark that it is impossible to directly identify the Euclidean handlebodies with
a Lorentzian spacetime. This would require us to specify a global non-singular killing vec-
tor field flow on the handle body, with the additional constraint here that the flow should
asymptote to the boundary curve time flow. An equivalent task is to specify a set of oriented
Cauchy surfaces on the geometry. For the disk, this is shown in Figure 14, and is similar
to the well-known Rindler time flow in Euclidean signature. Performing this procedure for

 ββ

Figure 14: Cauchy surfaces (left) and time flow (right) on a Euclidean hyperbolic disk.

the disk with the single handle we end up with the set of Cauchy surfaces shown in Figure
15 (left). The associated time flow is shown in Figure 15 (right).67 This timeflow has a

β  β

Figure 15: An attempt to define a family of oriented Cauchy surfaces (left) or equivalently a
global Killing vector field that asymptotes the boundary time flow (right) on a handlebody.
This is impossible: we obtain a contradiction on the dotted line (right).

topological obstruction. Concequently, it does not allow for Wick rotation (see also [51]).

67An important, yet subtle point is that we do not get to choose the topological class of the Killing vector
flow on the hyperbolic Riemann surface. This is completely fixed by specifying a consecutive set of geodesic
identifications on the Poincaré disk that result in the desired handlebody. This results in the flow of Figure
15.
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How should we then interpret the contributions of Euclidean handlebody configurations
to Lorentzian observables in JT gravity? We should treat think of them much like instanton
corrections in QFT. Indeed, consider the genus g contribution:

Zg(β) =

∫
µdµZ(µ, β)Vg,1(µ), (D.2)

This decomposes into a topological piece Vg,1(µ) and a punctured disk amplitude Z1(µ, β)
with an SL(2,R) irrep µ puncture. The former computes the volume of the moduli space of
genus g Riemann surfaces ending on a geodesic of length µ [97, 98, 99].
The latter is a twisted Schwarzian:

Z(β, µ) =

∫
dk cos 2πµk e−βk

2

=

∫
β,µ

[Df ]e−S[f ], (D.3)

where the variables µ, β constrain the integration space to a single Virasoro hyperbolic
coadjoint orbit [96]. The path integral is written in terms of a time reparametrization
f(t) of the observer’s proper time t to the Poincaré time f . The difference being this is

 μ

 β

dμ x∫  μ

Figure 16: A graphical representation of formula (D.2).

a different class of maps as the one considered in the main text. This path integral has
hence a clear Lorentzian interpretation as summing over reparameterizations of hyperbolic
orbit geometries. For example, the saddle solution of (D.3) f(t) = tan πµ

β
t, results in the

spacetime geometry:

ds2(µ, β) =
4π2µ2

β2

dz2 − dt2

sin2 2πµ
β
z
. (D.4)

In particular, the argument to construct a bulk frame in section 1.1 holds regardless of the
specific orbit.
In conclusion, the Lorentzian interpretation of the Euclidean handlebodies is an ensemble of
hyperbolic orbit geometries with some weight P (µ). For example, the perturbative partition
function can be rewritten as:

ZL(β) = Z(β) +

∫
µdµP (µ)Z(µ, β), (D.5)

with:
P (µ) =

∑
g≥1

Vg,1(µ)L−2g. (D.6)
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This means we should think about measurements of geometric observables by the JT gravity
boundary observer as returning a weighted average of geometric observables in all the off-
shell metrics f . The metric expectation value is then calculated perturbatively as:

〈
ds2
〉

=
〈
ds2
〉
β

+

∫
µdµP (µ)

〈
ds2
〉
β,µ
. (D.7)

We will discuss the near-horizon behavior and nonperturbative completion of this quantity
further on.

D.1 Boundary Two-Point Function

First, let us consider the boundary-to-boundary two point function in the topologically
completed JT gravity. This is represented by a Wilson line traversing the Riemann surface.
Summing over topologies leads to the situation of Figure 17, where orientable handles are
attached to both sides of the Wilson line, both connected and disconnected pieces.

...

+

...
...

+ + (self-crossings)

Figure 17: Topological corrections to the boundary two-point function. We sum over topo-
logical excursions on both sides of the Wilson line, with both connected and disconnected
contributions. Also corrections with Wilson lines with self-crossings have to be considered.

The most generic of these topological embedding of a Wilson line can be obtained by intro-
ducing several, say n, punctures and winding the Wilson lines around it, and then gluing it
to some orientable Riemann surface with n geodesic boundaries, which may or may not be
disconnected itself. One then sums over n and all possible glued Riemann surfaces. This
requires the Weil-Petersson volumes Vh,n.68

We can distinguish two classes of configurations: those where the Wilson line crosses it-
self and those where it does not, see Figure 18.
The self-crossing Wilson line configurations are subdominant at late times. Indeed, follow
the Wilson line along its path to its first self-intersection. Out of the four regions that touch
this intersection, at least two of them also reach the boundary. Let us denote the associated
irrep labels by k and p. The late time limit forces us to Taylor expand all functions of k
and p to lowest order. The self-crossing comes with a 6j-symbol [45, 47, 29] which in this

68Note that we can fuse together all punctures on the same side of the Wilson line, without loss of
generality.
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β-it

 μ1

 β-it

it it

 μ1

 μ2
 μ2

Figure 18: Wilson line configuration of the non-self-crossing class (left) and of the self-
crossing class (right).

Taylor expansion goes to: {
p k `
q r `

}
→

{
0 0 `
q r `

}
∼ δ`,0 = 0, (D.8)

hence the IR contribution is subdominant for these configurations. Therefore, at each level
in the perturbative expansion in 1/L2, the dominant contribution will come from Wilson
lines with no self-crossings.
The most general Wilson line configuration with no self-crossing boils down to Figure 18
(left). We can glue this either to two Riemann surfaces each with a single geodesic boundary,
resulting in Weil-Petersson factors of the type Vh,1(µ1)Vg−h,1(µ2), or to a single connected
Riemann surface with two geodesic boundaries resulting in factors Vg,2(µ1, µ2).

At late times t � C, the Wilson line pinches off the two regions, as shown in Figure
19. The vertex functions no longer connects the two pieces of the disk in this regime and is
dominated by IR states:69 70

lim
E,M�1

Γ(`± i
√
E ± i

√
M) = Γ(`)4, (D.10)

The result is that the two-point function decomposes into a product of two disk partition

69It is amusing to note that this is essentially identical to what happens when we insert a very heavy
Wilson line [27] in the semi-classical regime:

lim
`�C

Γ(`± i
√
E ± i

√
M)

Γ(2`)
≈ Γ(`)4

Γ(2`)
. (D.9)

70One should be careful in applying this formula to the connected geometries to Taylor expand only this
part, and not for example the factors cos 2πµ

√
E associated to the geodesic boundaries in (D.3). Indeed,

the Riemann-Lebesgue inspired argument we are using based on factors such as exp(iEt) says that for large
t, the integrals over E are dominates by E ∼ 1/t� 1. This does not necessarily imply that µ

√
E is small.

In fact, we see that generically the integral over µ will be dominated at large t by µ ∼ t2.
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Figure 19: Late time reduction of the boundary two point function to the spectral form
factor (D.11). The Wilson line pinches off distinct regions.

functions, and a two-boundary annular partition function:71

〈G`(t)〉 =
1

L
ZL(β − it)ZL(it) +

1

L
ZL(β − it, it). (D.11)

This quantity is proportional to the spectral form factor [10, 51, 1]. Its gravitational inter-
pretation as Figure 19 (bottom) will be discussed in [1, 52]. Let us just note that, for finite
L, this perturbative series is asymptotic and we need to use the nonperturbatively exact
formula from random matrix theory. The result is a ramp and a plateau. Therefore, at late
times t � C, the boundary two-point function in JT gravity has a ramp and a plateau.
Notice that the relative factor 1/L between the late two-point function and the spectral
form factor matches with the prediction of [51].72

D.2 Metric

Let us do a similar geometric analysis of the metric (D.7). This means we should find out
how the Wilson line is embedded on the Riemann surfaces in order to calculate (D.7).

In the twisted Schwarzian theory (D.3), via (4.13) we find that the Lorentzian bulk metric
is a boundary two-point function. This is calculated as an ` = 1 boundary anchored Wilson
line on a punctured disk.

71The factor 1/L arises because the Euler character of the original Riemann surface is different from the
Euler character of the pinched Riemann surface. Therefore a relative factor 1/L appears when going from
from Figure 19 (top) to Figure 19 (bottom). We have dropped some `-dependent prefactors in writing this
formula.

72We thank Stephen Shenker for bringing this to our attention.
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Notice that for the punctured disk, a boundary-anchored Wilson line can wind around the
puncture as in Figure 20. The expectation value of an ` = 1 Wilson line between boundary

β

 μ

 β

 μ

t2
t1t1 t2

Figure 20: Winding boundary-anchored Wilson line amplitudes for the path integral (D.12):
n = 3 example (left) and n = 0 example (right). Only the case n = 0 calculates the metric.

points τ1 and τ2 that winds the puncture n times is computed by the twisted Schwarzian
path integral: ∫

β,µ

[Df ]
ḟ(τ1)ḟ(τ2)

(f(τ1)− f(τ2 + nβ))2
e−S[f ]. (D.12)

Such winding configurations are included for correlation functions, as we discussed above,
but not for the single-valued metric. The metric is only the n = 0 Wilson line. This follows
from the universal formula (1.9).
One now immediately applies the rules for calculating amplitudes in JT gravity [47, 29] to
obtain for the punctured disk:

〈
ds2
〉
β,µ

= (dz2 − dt2)

∫ ∞
0

dM
cos 2πµ

√
M√

M
e−βM

×
∫ ∞

0

dE sinh 2π
√
E cos 2z(E −M) Γ(1± i

√
M ±

√
E). (D.13)

In the semi-classical regime z � C, the integral over M develops an imaginary saddle point
at
√
M = iλ(C/β) and we recover (D.4). Upon taking z � C in (D.13), we enter the

IR-regime where the integrals over E and M are dominated by their vacuum contribution.
The coupling vanishes as in (D.10) and the Wilson line pinches off the two Euclidean regions
as in Figure 21. We thus obtain for z � C:

〈
ds2
〉
β,µ

=
1

L
(dz2 − dt2)Z (µ, β − 2iz) Z (2iz) + (cc). (D.14)

Using the large z behavior Z(µ,−2iz) ∼ z−1/2 we find a conformal scaling factor z−2 to be
compared with (4.14).

Summing over all Riemann surfaces in (D.7) results in the metric measured by the JT
gravity boundary observer. Graphically, the perturbative formula can be drawn as in Fig-
ure 22: we sum over all Riemann surfaces with an ` = 1 boundary-anchored Wilson line
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β-2iz

2iz

 β-2iz

2iz

→ x μ  μ

Figure 21: Wilson line representation for the metric. For z parametrically large, the Wilson
line pinches off two disk-shaped regions which effectively decouple as in (D.14).

...

2iz

β-2iz

→

...

2izβ-2iz

x

Figure 22: A graphical representation of the near horizon metric (left). A sum over the
gluing parameter µ is implicit in the handlebody. For large z the Wilson line pinches off
the space (right) and we obtain (D.15).

included that is contractible to the boundary. For z � C this pinches off. We end up with
the near-horizon metric:

〈
ds2
〉

=
1

L
(dz2 − dt2)ZL(β − 2iz)Z∞(2iz) + (cc). (D.15)

This is formula (5.4) in the main text. For the finite L partition function we require again
the nonperturbatively exact formula from the matrix integral. This is discussed in Appendix
E.

E Late Time Partition Function in Random Matrix Theory

In this appendix we investigate the late time behavior of the Jackiw-Teitelboim gravity
partition function. We will build on results of [1].73

From [1], we know that a possible nonperturbative completion of the JT gravity genus
expansion is a random matrix theory with L→∞ spectral density:

ρ∞(E) = θ(E) sinh 2π
√
E. (E.1)

73Their paper was yet to appear at the release date of this work, but its content had already partly been
made public during a series of talks. These can be found online [52].
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Most of the random matrix theory facts used in this appendix are explained either in the
didactic book [100] or in the review article [101]. The partition function is the Fourier
transform of the finite L spectral form factor:

ZL(τ) =

∫
C
dE exp(−τE) ρL(E), (E.2)

where we have transitioned to Euclidean times τ = it. We are interested in its behavior for
large τ . For larger and larger values of τ , the integral is dominated by smaller and smaller
values of E.74

For finite L, the support of the spectral density is the full real axis. The partition function
is then dominated by large negative values of E.

Generically, the spectral density can be written as a trans-series of perturbative and non-
perturbative contributions:

ρL(E) =
∑
g

ρg(E)L−2g +
∑
n

e−LSn(E)
∑
m

ρ(n)
m (E)L−m. (E.3)

The genus zero density of states is found by taking the L→∞ limit: ρ0(E) = ρ∞(E). Each
of the fixed higher genus g contributions can be calculated from equation (D.3) as:

ρg(E) = θ(E)

∫
dµ

cos 2πµ
√
E√

E
Vg,1(µ), (E.4)

where we recognize the Weil-Petersson volume of genus g Riemann surfaces with a single
geodesic boundary. We now see that all perturbative corrections to the spectral density have
support only on the positive real axis. This means the only contributions to the spectral
density at large negative energies - which dominate the late time partition function - is from
nonperturbative contributions to the spectral density.

Nonperturbative corrections to the spectral density were discussed in [101].75 For a ma-
trix model for which the support of the spectral density is a single interval (such as gravity),
there is only value of n in (E.3). Consequently, the exponential factor of the nonperturbative
correction to the spectral density (and hence to the negative energy spectral density) is:

ln ρL(E) ≈ S1(E) = −2LV (E), (E.5)

where additive subdominant contributions from the prefactor of (E.3) are left out. The latter
quantity is the effective potential and is specific to each matrix model. It is positive definite

74We assume the integral converges. This holds true for JT gravity given an appropriate choice of E
integration contour C [1]. See in particular Figure 4 in [1].

75In particular see amongst others formulas (1.4.8) and (3.3.9).
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and monotonically rising outside the support S of the perturbative spectral density,76 and
purely imaginary in S. For systems with positive real axis support for the L→∞ spectral
density - such as gravity and the Airy model - it is just:

V (E) = i

∫ E

0

dMρ∞(M). (E.6)

For negative energies one should use the analytic continuation of the genus zero density of
states. This formula allows us to determine the late time behavior of the partition function
(E.2), as it is dominated by large negative energies:

Z(τ) =

∫
C
dx . . . exp

(
τx+ i2L

∫ x

0

dyρ∞(−y)

)
, (E.7)

where we have introduced x = −E. For large τ and L in a double-scaling regime τ ∼ L, we
can use the saddle point method to evaluate the integral. For a saddle at x0(τ) one then
gets the leading behavior:

lnZ(τ) ≈ τx0(τ)− 2LV (x0(τ)). (E.8)

To convince the reader that this works as advertised, we consider per example two matrix
models for which the partition function and finite L spectral density are known exactly.
These are the Gaussian matrix model with semicircle density of states and the Airy model
with density of states ρ∞(E) = θ(E)

√
E. We will check two things: that the negative

energy tail is indeed given by the nonperturbative correction (E.5), and that the Method
of Laplace applied to the resulting density of states agrees with the leading behavior of the
exact late time partition function.

E.1 Example I: Airy

Consider the Airy model with genus zero density of states ρ∞(E) = θ(E)
√
E. This density

of states is structurally of the same type as the gravitational one (E.1): it has support on
the positive real axis. At low energies E � 1 the gravitational density of states (E.1) is
precisely the Airy density of states with a shift E → 4π2E.

The finite L density of states of this model is known exactly [102]:

L

π
ρL(−X) = −X(Ai(X))2 + (Ai′(X))2, X = L2/3E. (E.9)

76This ensures ρL(E) exp−τE is still a distribution ergo integrals over E of test functions weighed by
ρL(E) exp−τE converge.
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Using the asymptotics of the Airy function,77 we recover in the large L regime (E > 0):

ρL(E) ≈
√
E − 1

L

1

4E
sinL

4

3
E3/2, (E.12)

ρL(−E) ≈ 1

L

1

8E
exp

(
−L4

3
E3/2

)
. (E.13)

The high-frequency wiggles (E.12) and the exponential tail (E.13) at negative energies are
the important qualitatively new features. The finite L spectral density (E.9) is shown in

E

rL(E)

E

rL(E)-r (E)8

Figure 23: Left: Spectral density (E.9) for L = 50. Right: Finite L correction on ρ∞(E).

Figure 23 (left). In the L→∞ limit we recover:

ρ∞(E) = θ(E)
√
E. (E.14)

The finite L correction on top of this is shown in Figure 23 (right).

The potential is (E.6):

V (E) = i

∫ E

0

dMρ∞(M) = i
2

3
E3/2. (E.15)

Both the wiggles in (E.12) and the exponential tail in (E.13) are immediately observed to
be of the form (E.5):78

ln ρL(E) = −2LV (E), (E.16)

77For −X � 1:
√
πAi(−X) ≈ X−1/4 sin

2

3
X3/2. (E.10)

For X � 1:
√
πAi(X) ≈ 1

2
X−1/4 exp

(
−2

3
X3/2

)
. (E.11)

78Notice that V (−E) = 4
3E

3/2 which has the desired properties: it is positive definite and monotonically
rising.
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predicted by random matrix theory. Performing the saddle approximation on (E.7) using
the seed spectral density (E.14), we obtain:

lnZ(it) =
L

12

(
τ 3

L3

)
= −i 1

12

t3

L2
. (E.17)

On the other hand, using the Fourier transform of the exact finite L Airy density of states
(E.9), one obtains, up to numerical prefactors:79

Z(it) ∼ t−3/2 exp

(
−i 1

12

t3

L2

)
. (E.19)

This matches precisely with (E.17). Notice that formula (E.5) predicts only the function in
the exponential i.e. the leading behavior of lnZ(it) at late times. A more detailed analyses of
the random matrix theory allows to determine the power-law prefactors in ρL(E) and ZL(it)
[1]. In particular there is a power t−2 in (E.19) coming from the saddle point evaluation
of the E−1 power in ρL(E) in (E.13) and a power t1/2 from the determinant of fluctuations
around the saddle.80 For the very late time behavior of gravity though, this will turn out
not to matter.

E.2 Example II: Gaussian

As a second example, consider the Gaussian Unitary Ensemble (GUE). Its genus zero spec-
tral density is given by the Wigner semi-circle law:

ρ∞(E) = θ(1− E2)
√

1− E2. (E.20)

Close to the each edge 1− |E| � 1, we find a copy of the Airy density of states (E.14), and
there are parametric limits in which this model reduces to the Airy model [102].

Consider the Hermite functions

φn(
√

2LE) = (2nn!
√
π)−1/2Hn(

√
2LE) exp

(
−LE2

)
, (E.21)

79 The Fourier transform of the Airy function is known:∫
dXeiTXAi(X) = exp

(
− i

3
T 3

)
, (E.18)

so the calculation can be done exactly.
80The saddle is x0(τ) ∼ τ2/L2 and det(τ) ∼ x0(τ)−1/2 ∼ 1/τ .
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in terms of the Hermite polynomials Hn(x). The finite L spectral density is [100]:

√
2L

π
ρL(E) =

L−1∑
n=0

φ2
n(
√

2LE)

= φ2
L(
√

2LE)−
(
L+ 1

L

)1/2

φL−1(
√

2LE)φL+1(
√

2LE). (E.22)

In the large L limit, this goes indeed to the semicircle:

ρ∞(E) = θ(1− E2)
√

1− E2. (E.23)

In the region outside of the semicircle support we find from (E.22) the tail of the spectral
density to be:

ln ρL(E) = −2LE2. (E.24)

For the GUE, the effective potential is not just an integral of ρ∞(E) but instead we have
V (E) = E2, see [101]. So formula (E.24) is in sync with (E.5). The Fourier transform of
(E.22) can be done exactly [103]:81

ZL(t) ∼ L
(1)
L−1

(
t2

4L

)
exp

(
− t2

8L

)
, (E.26)

where L
(1)
n is the associated Laguerre polynomial. At times t �

√
L, this function is well

approximated by:

ZL(t) ∼ t−3/2 cos

(
t− 3π

4

)
. (E.27)

This makes contact with the Airy result (E.19) in the same regime t�
√
L.82

In the late time regime t� L, the exact GUE partition function (E.26) goes like

lnZL(t) = − t2

8L
. (E.28)

This matches with the prediction of the saddle point method using the nonperturbative tail
(E.24). One observes a sharp and sudden drop of in |ZL(it)| at times of order t ∼ L. We
can understand this from a Fourier transform point of view by observing that the sharpest

81 The Fourier transform of the Hermite function is another Hermite function:∫
dEeiEtφL(

√
2LE) =

1√
2L
φL(t/

√
2L). (E.25)

82The oscillatory piece originates from the fact that there are two spectral edges to the GUE spectral
density that both contribute.
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features in the spectral density (E.22) are periodic wiggles with an order 1/L spacing.
Higher frequency components are absent, hence the sudden drop of in the Fourier transform
of ρL(E) i.e. |ZL(it)|.
We can then also understand why no such sudden drop of is visible in |ZL(it)| for the Airy
model. The wiggles in the Airy model are described by the term

∼ sinL
4

3
E3/2 (E.29)

in (E.12). The period of the wiggles decreases with increasing energy as ∼ 1/LE1/2. This
means there is no maximal frequency component in ρL(E) for the Airy model.

E.3 Example III: JT Gravity

From (E.6) we have:

V (E) = i

∫ E

0

dM sinh 2π
√
M. (E.30)

As before this will result in high frequency wiggles in S and an exponential tail outside of
S. The frequency of the wiggles as increases with energy as ∼ L sinh 2π

√
E much like it

did for the Airy model. By consequence we expect no sudden drop of in |ZL(it)| at late times.

Notice that this potential is not positive definite not monotonically increasing for large
negative energies. Therefore the theory would be ill defined for the naive contour C = R [1].
An appropriate contour is shown in Figure 4 of [1]. It follows the real axis up to the saddle
point E = −1/4 of V (E), and then flows up the path of steepest descent in the complex E
plane. With this definition ρL(E) exp(−τE) is a good distribution on the contour C.
We arrive at roughly two interesting regimes for ZL(it):

• For t� L, the saddle point x0 is on the part of the contour where the potential (E.30)
reduces to the Airy potential (E.15). We end up with:

lnZL(it) = −i 1

12π2

t3

L2
. (E.31)

As in (E.19) there is a power t−3/2 in ZL(it) from the determinant and a factor 1/E
in ρL(E).

• For t � L the saddle point is on the left-most part of the contour which is just the
point E = −1/4. Indeed, close to this point we may parameterize C as E = −1/4 + is
with s positive. The integral along this path has a saddle at s = 0 by definition of C.
Because the saddle point is independent of t for t� L, we have that:

ZL(it) ≈ exp(τx0(τ)) = exp(it/4), (E.32)

up to some constant. Notice that this is a pure phase, confirming our intuition that
there should be no sudden drop of in |ZL(it)|.
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Based on our observations in the main text we may conclude that for a large class of
boundary correlation functions, there is a transition from the semiclassical black hole saddle
point E = C2/β2 at t � C to the nonperturbative saddle point E = −1/4 for t � L with
t any of the time separations.
It is plausible following the logic of section 2.3 that we should see a similar transition in
bulk matter correlation functions. To verify this one would have to understand bulk matter
correlation functions on higher genus surfaces as well as its nonperturbative completion. We
leave this to future work.
It is interesting that this nonperturbative saddle point is closely related to the appearance
of ZZ branes in JT gravity. This hints at a potential semiclassical interpretation for this
late time transition in correlators as being related to the dominant bulk geometry changing
from a disk to a disk with an additional ZZ boundary inserted. It would be interesting to
understand if there is such a mechanism at play.
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