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Networks are a convenient way to represent many interactions among ecological enti-
ties. The analysis of ecological networks is challenging for two reasons. First, there 
is a plethora of measures that can be applied (and some of them measure the same 
property). Second, the implementation of these measures is sometimes difficult. We 
present ’EcologicalNetworks.jl’, a package for the ‘Julia’ programming language. Using 
a layered system of types to represent several types of ecological networks, this packages 
offers a solid library of basic functions which can be chained together to perform the 
most common analyses of ecological networks.

Keywords: ecological networks, graph theory, Julia

The analysis of ecological networks is an increasingly common task in community  
ecology and related fields (Delmas et al. 2018). Ecological networks provide a compact 
and tractable representation of interactions between multiple species, populations or indi-
viduals. The methodology to analyse them, grounded in graph theory, scales from small 
number of species to potentially gigantic graphs of thousands of partners. The structural 
properties derived from the analysis of these graphs can be mapped onto the ecological 
properties of the community they depict. Because there is a large number of questions one 
may seek to address using the formalism of networks (Poisot et al. 2016b), there has been 
an explosion in the diversity of measures offered. As such, it can be difficult to decide on 
which measure to use, let alone which software implementation to rely on.

At the same time, the recent years have seen an increase in the type of applications 
of network theory in ecology. This includes probabilistic graphs (Poisot et al. 2016a), 
investigation of species functional roles in the network (Baker et al. 2014), comparison 
of networks across space and time (Poisot et al. 2012) and on gradients (Pellissier et al. 
2017), to name a few. As the breadth and complexity of analyses applied to ecological 
networks increases, there is a necessity to homogenize their implementation. To the 
ecologist wanting to analyse ecological networks, there are a variety of choices; these 
include enaR (Borrett and Lau 2014) for food webs, bipartite (Dormann et al. 
2008) and BiMat (Flores  et  al. 2016) for bipartite networks, and more general 
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graph–theory libraries such as networkx (Hagberg  et  al. 
2008) and igraph (Csardi and Nepusz 2006), which are 
comprehensive but may lack ecology-specific approaches and 
measures. Additional packages are even more specific, such as 
bmotif for bipartite motifs enumeration (Simmons et al. 
2018), or pymfinder (Mora  et  al. 2018). Most of these 
packages are focused on either food webs or bipartite net-
works, and therefore do not provide a unified ecosystem for 
users to develop their analyses in; more general libraries come 
the closer, but they require a lot of groundwork before they 
can be effectively used to conduct ecological analyses.

In this manuscript, we describe EcologicalNetworks,  
a package for the ‘Julia’ programming language (Bezanson et al. 
2017) released under the MIT license and openly devel-
oped at <https://github.com/PoisotLab/
EcologicalNetworks.jl>. Julia is rapidly emerging 
as a new standard for technical computing, as it offers the 
ease of writing of traditional interpreted languages (like R or 
python) with up to C-like performance. More importantly, 
code performance can be achieved by writing only pure-Julia 
code, i.e. without having to write the most time-consuming 
parts in other languages like C or C++. This results in more 
cohesive, and more maintainable code, to which users can 
more easily contribute. In addition, Julia can be called from 
other languages: the JuliaCall package for R, or pyju-
lia for python, allow users of these languages to seamlessly 
integrate Julia code in their analyses. This incurs a signifi-
cant performance cost which in our opinion justifies learning 
enough of Julia to proficiently perform the analyses, but is 
nevertheless a useful transition tool.

The goal of this package is to provide a general environ-
ment to perform analyses of ecological networks, following 
the best practices in the field as outlined by Delmas  et  al. 
(2018). It offers a hierarchy of types to represent ecological 
networks, and includes common measures to analyse them. 
This package has been designed to be easily extended (with 
examples given in the online documentation), and offers 
small, single-use function, that can be chained together 
to build complex analyses. The advantage of this design is 
that, rather than having to learn the interfaces (and options) 
of many different packages, the analyses can be seamlessly 
integrated in a single environment – this solves the problem 
identified by Delmas et al. (2018), namely that software for 
ecological network research is extremely fragmented. In addi-
tion, many measures and analyses of network structure are 
likely to re-use the same basic components.

Consolidating the methodology within a single pack-
age makes it easier to build a densely connected codebase. 
Whenever possible, we have also overloaded methods for 
the code Julia language, so that the code feels idiomatic. If 
an operation on a network (e.g. what is the total interaction 
strength) can be meaningfully represented by an existing Julia 
function (e.g. sum), it will be made this way; for example, the 
function to re-organize interactions across a network is called 
shuffle (after the Random.shuffle function), and the 
function to randomly draw from a probabilistic network is 

rand. We showcase the usage of EcologicalNetworks 
through a number of simple applications: null-hypothesis 
significance testing, network comparison, modularity opti-
misation, random extinctions and the prediction of missing 
interactions.

Methods and features

Installation instructions for Julia itself are found at < https://
julialang.org/downloads/ > – this manuscript specifically 
describes ver. 0.2 of EcologicalNetworks.jl, 
which works on Julia releases 0.7 and 1.0. The code is released 
under the MIT license. EcologicalNetworks.jl can 
be installed by first entering the package mode of the Julia 
REPL (by typing ]), and typing:
add EcologicalNetworks. The package can then 

be used with using EcologicalNetworks
Functions in the package are documented through the 

standard Julia mechanism (?connectance, for example), 
and a documentation describing the functionalities in the 
package is available online at < http://poisotlab.github.io/
EcologicalNetworks.jl/stable/ >.

We have also developed a companion package, 
‘EcologicalNetworksPlots.jl’, which is 
intended to provide basic network visualisation functions 
(graphs and heatmaps) through the ‘Plots.jl package’. 
EcologicalNetworksPlots.jl can be installed in 
the same way as any other Julia package. After updates to 
either packages, they can be kept up to date following the 
usual process from a Julia project: enter the package mode by 
typing ] at the REPL, then type up. Both packages follow 
semantic versioning.

In this section, we will list the core functions offered by 
the package, discuss the type system, and highlight the most 
important aspects of the user interface. This manuscript has 
been written so that all examples can be reproduced from 
scratch: the code.jl distributed as part of the supplemen-
tary material can be used to generate all figures in the manu-
script, and the Project.toml and Manifest.toml 
have the exact version of every package in the dependency 
chain used (Supplementary material Appendix 1).

Overview of package capacities

The EcologicalNetworks package offers functions 
to perform the majority of common ecological networks 
analyses – we follow the recommendations laid out in 
Delmas  et  al. (2018). The key functions include (but are 
not limited to) species richness (richness); connectance 
(connectance) and linkage density (linkage_den-
sity); degree (degree) and specificity (specific-
ity); null models (null1, null2, null3, null4); 
constrained network permutations (shuffle); random 
networks (rand); nestedness (η and nodf); shortest path 
(number_of_paths, shortest_path); information 
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theoretic analysis (entropy, conditional_entropy, 
mutual_information, information_decom-
position); centrality measures (centrality_katz, 
centrality_closeness, centrality_degree); 
resilience (symmetry, heterogeneity, resil-
ience); motif counting (find_motif); modularity (Q), 
realized modularity (Qr) and functions to optimize them (lp 
and salp for label propagation without or with simulated 
annealing, brim); β-diversity measures (βs, βos, βwn); 
trophic level analysis (fractional_trophic_level, 
trophic_level); complementarity analysis (AJS; 
EAJS; overlap); structural random models (cascade-
model, mpnmodel, nichemodel, nestedhierar-
chymodel). These functions use the rich type system to 
apply the correct method depending on the type of network, 
and rely on a simple user-interface to let users chain them 
together (as explained in the next section). This package is 
not a series of wrappers around functions, that would provide 
ready-made analyses. Instead, it provides functions which can 
be chained, to let users develop their own analyses. As such, 
we believe it is important to think of this package as a library 
for the analysis of ecological networks: the basic components 
can be chained to build entire analyses in a very flexible and 
expressive way.

Type system

Data on ecological networks can vary if the network is uni-
partite or bipartite, and as a function of the nature of the 
information represented by interactions (presence/absence, 
strength or probability). This yields six combinations of par-
titeness × nature of interaction. Because some measures are 
expressed differently depending on the specific type of net-
work, we have designed a complete type system, summarized 
in the Table 1.

Though this may seem excessive, this allows the package 
to take advantages of Julia’s dispatch, i.e. picking the correct 
method of a function based on the type of its arguments. As 
an example, the function for the number of links (links) 
uses specialized measures depending on the type of the net-
work (i.e. quantitative, binary or probabilistic). As such, 
using types also protects the user: if a measure should not be 
applied to a particular type of network, it will not have an 
associated method, and will fail explicitly rather than return-
ing a spurious result.

Unions and abstract types

In addition to the core types, there are a number of 
type unions (Fig. 1). For example, some algorithms will 
work in the same way on all non-probabilistic networks 
(DeterministicNetwork), or on all ecological net-
works (AbstractEcologicalNetwork). The purpose 
of these types is to help users write functions that target the 
correct combination of networks, by writing increasingly spe-
cific methods for types requiring them.

Internal representation of information

All types share a Matrix field A containing the adjacency 
matrix, and either one Vector field S (unipartite case) or two 
Vector fields T and B (bipartite case) containing the species 
(in the bipartite case, the species are divided between the top 
layer T and bottom layer B). Users who wish to inspect the actual 
matrix can use N.A (where N is a network). We recommend 
that users do not access these objects directly; the interactions 
can be accessed in a richer format using interactions, and 
species can be accessed with species. Fortunately, end-users 
will almost never need to understand how data are represented 
within a type – the package is built around a number of high-
level interfaces (see the next section) to manipulate and access 
information about species and interactions. The type system is 
worth understanding in depth when writing additional func-
tions for which performance is important; but in the context 
of other analyses, the functions described in the next section 
should be used and will be sufficient.

Note that by default, species can only be represented by 
either a String or Symbol. This can very easily be changed 
by adding methods to the non-exported is_valid_spe-
cies function. The default declaration is:

is_valid_species(::Type{T}) where  
{T <: Any} = false
is_valid_species(::Type{T}) where  
{T <: Union{Symbol,String}} = true

Should a user want to allow different types, like for exam-
ple MyCustomSpecies, a simple declaration of a new 
method is sufficient:

import EcologicalNetworks: 
is_valid_species

Table 1. Network type system.

Partiteness Int. strength Type Interactions

Unipartite Binary UnipartiteNetwork AbstractBool
Quantitative UnipartiteQuantitativeNetwork Number
Probabilistic UnipartiteProbabilisticNetwork AbstractFloat

Bipartite Binary BipartiteNetwork AbstractBool
Quantitative BipartiteQuantitativeNetwork Number
Probabilistic BipartiteProbabilisticNetwork AbstractFloat
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is_valid_species(::Type{T}) where  
{T <: MyCustomSpecies} = true

Finally, the eltype function can be used to determine the 
types of the species and interactions. For example, we can 
define a simple network (in which case the species names 
will be generated automatically), and look at the type of its 
information:

N = UnipartiteNetwork(rand(Bool, (3, 3)))
eltype(N)
(Bool, String)

Interface

There are a several high-level functions to interact with 
networks. An array of the species can be returned with 
species(N) where N is the networks, and this can fur-
ther be split between rows and columns with, respectively, 
species(N; dims=1) and species(N; dims=2) 
– note that this interface borrows the dims keyword argu-
ment found in almost all Julia functions working across multi-
dimensional arrays, thereby making the package consistent 
with its language. Another high-level function is interac-
tions, which returns a list of tuples, one for each interac-
tion in the network.

In the following section, we will use an example host– 
parasite network to illustrate the core elements of the package 
interface:

N = web_of_life("A_HP_001")
first(interactions(N))
(from = "Ctenophthalmus proximus", 
to = "Microtus arvalis", strength = 2)

We also implement an iteration protocol (for inter-
action in network ...), which returns the same 
objects as the interactions function.

The network itself can be accessed as an array, either using 
the position of the species (which is not advised to do as a 
user, since species are identified by names/symbol), or their 
names. This can be used to get the value of an interaction:
N["Ctenophthalmus proximus", "Microtus 
majori"]
27

There is a shortcut to test the existence of the interaction:
has_interaction(N,  "Ctenophthalmus 
proximus", "Microtus majori")
true

Indexing can also be used to look at a subset of the network, 
in which case a new network is returned. To illustrate this 
function, we will first select all parasites (dims=1) whose 
name starts with Ctenophtalmus:
Ctenophthalmus = filter(
      x -> startswith(x, "Ctenophthalmus"),  
      species(N; dims=1)
)

Figure 1. Union types defined by EcologicalNetworks – all networks belong to the AbstractEcologicalNetwork super-
type. The ability to target specific combinations of types allows to write the correct methods for multiple classes of networks at once, while 
being able to specialize them on specific types.
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5-element Array{String,1}:
 "Ctenophthalmus proximus"
 "Ctenophthalmus hypanis" 
 "Ctenophthalmus inornatus"
 "Ctenophthalmus shovi"   
 "Ctenophthalmus euxinicus"

We can do the same for hosts whose name starts with 
Apodemus:

Apodemus = filter(

    x -> startswith(x, "Apodemus"),  
      species(N; dims=2)
)
2-element Array{String,1}:
 "Apodemus sylvaticus"
 "Apodemus mystacinus"

Finally, the network of interactions between Ctenophtalmus 
sp. and Apodemus sp. is given by:
N[Ctenophthalmus, Apodemus]
5×2 bipartite quantitative ecological 
network (Int64, String) (L: 8)

When using slices, the package is not necessarily preserv-
ing the order of species. The package also uses ranges (the 
simplify function removes species without interactions), 
where : means ‘all nodes in this dimension’ (note that the fol-
lowing is essentially how one would access an array in Julia):
simplify(N[Ctenophthalmus,:])
5×8 bipartite quantitative ecological 
network (Int64, String) (L: 23)

The simplify function will return another network, 
but there is a simplify! variant which will edit the 
network in place. Note that the copy method is also 
defined for networks, so that simplify(N) is equiva-
lent to simplify!(copy(N)) (and is indeed defined 
this way).

Finally, we can get the set of predecessors (species that 
establish interactions with) or successors (species to which 
interactions are established) to a species – for example, the 
parasites of ‘Apodemus sylvaticus’ are:
N[:,Apodemus[1]]
Set(["Ctenophthalmus inornatus",  
"Hystrichopsylla satunini",  
"Ceratophyllus sciurorum", "Ctenophthalmus 
shovi", "Megabothris turbidus", 
"Myoxopsylla jordani", "Amphipsylla 
georgica", "Rhadinopsylla integella", 
"Ctenophthalmus proximus", "Nosopsyllus 
fasciatus", "Leptopsylla segnis", 
"Palaeopsylla caucasica", "Leptopsylla 
taschenbergi", "Amphipsylla rossica",  
"Ctenophthalmu s hypanis", 
"Hystrichopsylla talpae"])

Whenever possible, we have overloaded base methods from 
the language, so that the right syntax is immediately intuitive 

to Julia users. For example, removing interactions whose 
intensity is below a certain threshold is done through the 
isless operation, e.g. we can select the sub-network made 
of interactions stronger than 20:
S = simplify(N ≥ 20)
9×6 bipartite  ecological network (Bool, 
String) (L: 15)

Use-cases

In this section, we will use data on ectoparasites of rodents 
from Eurasia, reported by Hadfield et al. (2014), to illustrate 
a variety of network analyses – null hypothesis significance 
testing for nestedness, pairwise network β-diversity, modular-
ity analysis, simulation of extinctions, and finally the applica-
tion of a machine learning technique to infer possible missing 
interactions.
EcologicalNetworks.jl comes with a variety of 
datasets, notably the < web-of-life.es > database. We will get 
the data from Hadfield et al. (2014) from this source:
all_hp_data = filter(x -> 
occursin("Hadfield", x.Reference), 
web_of_life());
ids = getfield.(all_hp_data, :ID);
networks = convert.(BinaryNetwork, web_
of_life.(ids));

Null-hypothesis significance testing

One common analysis in the network literature is to com-
pare the observed value of a network measure to the expected 
distribution under some definition of ‘random chance’ (e.g. 
as in Fig. 2). As of now EcologicalNetworks.jl 
focuses on generating binary (presence/absence of inter-
actions) matrices, but expanding the functions for quan-
titative null models is feasible. This is usually done by  
1) generating a matrix of probabilities of interactions based 
on connectance (Fortuna and Bascompte 2006), degree 
distribution (Bascompte  et  al. 2003, Weitz  et  al. 2013), 
2) performing random draws of this matrix under various 
constraints on its degeneracy (Fortuna  et  al. 2010) and  
3) comparing the empirical value to its random distribution, 
usually through a one-sided t-test. We will illustrate this 
approach by comparing the observed value of nestedness 
(measured using the η measure of Bastolla et al. (2009)) to 
the random expectations under four null models. We will 
get the first network from the Hadfield et al. (2014) dataset 
to illustrate this approach:
N = networks[1]
18×10 bipartite  ecological network (Bool,  
String) (L: 61)

EcologicalNetworks comes with functions to gener-
ate probabilistic matrices under the four most common null 
models: null1 for constraints on connectance, null2 for 
constraints on degree distribution, null3 with arguments 
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for degree distributions on either side and null4 which con-
siders the degree distributions on both sides as independent. 
Although the names are not necessarily the most descrip-
tive, they have been used this way in the ecological networks 
literature, and the way they work is documented (see also 
Delmas et al. 2018 for an overview of their assumptions).

One can for example generate the probabilistic null model 
of Type II for a specific empirical network with:
P1 = null2(N)
18×10 bipartite probabilistic ecologi-
cal network (Float64, String) (L: 60.9
9999999999999)

All probabilistic networks can be used to generate random 
samples, by calling the rand function, possibly with a num-
ber of samples:
R1 = rand(P1, 9)
9-element Array{EcologicalNetworks. 
BipartiteNetwork{Bool,String},1}:
 �18×10 bipartite  ecological network 
(Bool, String) (L: 64)

 �18×10 bipartite  ecological network 
(Bool, String) (L: 56)

 �18×10 bipartite  ecological network 
(Bool, String) (L: 59)

 �18×10 bipartite  ecological network 
(Bool, String) (L: 64)

 �18×10 bipartite  ecological network 
(Bool, String) (L: 75)

 �18×10 bipartite  ecological network 
(Bool, String) (L: 64)

 �18×10 bipartite  ecological network 
(Bool, String) (L: 58)

 �18×10 bipartite  ecological network 
(Bool, String) (L: 64)

 �18×10 bipartite  ecological network 
(Bool, String) (L: 56)

This allows to rapidly create random draws from a probabi-
listic null model, as illustrated in Fig. 3.

To simplify the code, we may want to wrap this into a 
function (note that the functions for null models accept net-
works of any partiteness, but they have to be binary). This 
function will take a network, a type of null model, and a 
number of replicates and return the random draws. We will 
use four null models (as per Delmas  et  al. 2018), null1 
(all interactions have equal probability), null2 (interac-
tions probability depends on the degree of both species) and 
null3 (interactions probability depends on the in-degree or 
out-degree of the species). These networks are likely to have 
some degenerate matrices (as per Fortuna et al. 2010), that 
is to say, some species end up disconnected from the rest of 
the network. One way to remove them is to apply a filter, 
using the isdegenerate function.

function nullmodel(n::T, f::Function, 
i::Integer) where {T<:BinaryNetwork}
  sample_networks = rand(f(n), i)
  filter!(!isdegenerate, sample_networks)
  length(sample_networks) == 0 &&
   � throw(ErrorException("No valid  

randomized networks; increase  
i ($(i))"))

  return sample_networks
end
nullmodel (generic function with  
1 method)
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Figure 2. Distribution of nestedness values for the empirical network (solid black line) and for random draws based on four null models. 
This analysis is frequently used to determine whether the nestedness of an observed network is significant.
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We can now call this function with different null models. 
Note how the null3 function takes keywords arguments, 
and so rather that passing it directly, one can pass an anony-
mous function:
sample_size = 5_000
 
S1 = nullmodel(N, null1, sample_size);
S2 = nullmodel(N, null2, sample_size);
S3i = nullmodel(N, n -> null3(n; dims=2), 
sample_size);
S3o = nullmodel(N, n -> null3(n; dims=1), 
sample_size);

This function will return the randomized networks that 
have the same richness as the empirical one. We can now 
measure the nestedness of the networks in each sample (as 
always in Julia, unicode characters can be type by using their 
escape sequence, which are given in the documentation; the 
. between a function name and its arguments is a shortcut to 
vectorize the code):
nS1 = η.(S1);
nS2 = η.(S2);
nS3i = η.(S3i);
nS3o = η.(S3o);

Network beta-diversity

In this section, we will use the approach of Poisot et al. (2012) 
to measure the dissimilarity between bipartite host and parasite 
networks. We use the networks from Hadfield et al. (2014), 
which span the entirety of Eurasia. Because these networks 

are originally quantitative, we will remove the information on 
interaction strength using convert. Note that we convert to 
an union type (BinaryNetwork) – the convert function 
will select the appropriate network type to return based on the 
partiteness. The core operations on sets (union, diff and 
intersect) are implemented for the BinaryNetwork 
type. As such, generating the ‘metaweb’ (i.e. the list of all spe-
cies and all interactions in the complete dataset) is:
metaweb = reduce(union, networks)
206×121 bipartite  ecological network 
(Bool, String) (L: 2131)

From this metaweb, we can measure βos′ (Poisot et al. 2012), 
i.e. the dissimilarity of every network to the expectation in 
the metaweb. Measuring the distance between two networks 
is done in two steps. We follow the approach of Koleff et al. 
(2003), in which dissimilarity is first partitioned into three 
components (common elements, and elements unique to 
both samples), then the value is measured based on the car-
dinality of these components. As in Poisot et al. (2012), the 
function to generate the partitions are βos (dissimilarity 
of interactions between shared species), βs (dissimilarity of 
species composition) and βwn (whole network dissimilar-
ity). The output of these functions is passed to one of the 
functions to measure the actual β-diversity. We have imple-
mented the 24 functions from Koleff et al. (2003), and they 
are named KGLdd, where dd is the two-digits code of the 
function in Table 1 of Koleff et al. (2003).
βcomponents = [βos(metaweb, n) for n in 
networks];
βosprime = KGL02.(βcomponents);

Original Probabilistic Random draw 1

Random draw 2 Random draw 3 Random draw 4

Random draw 5 Random draw 6 Random draw 7

Figure 3. Illustration of the network (upper-left corner), probabilistic network generated by the null model, and of eight random draws.  
The color of each node represents its degree, and the position of species is conserved across panels.
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The average dissimilarity between the local interactions 
and interactions in the metaweb is 0.27. We have also pre-
sented the distribution in Fig. 4. Finally, we measure the 
pairwise distance between all networks (because we use a 
symmetric measure, we only need n × (n − 1) distances):
S, OS, WN = Float64[], Float64[], 
Float64[]
for i in 1:(length(networks)-1)
  for j in (i+1):length(networks)
    �push!(S, KGL02(βs(networks[i], 

networks[j])))
    �push!(OS, KGL02(βos(networks[i], 

networks[j])))
    �push!(WN, KGL02(βwn(networks[i], 

networks[j])))
  end
end

Modularity

In this example, we will show how the modular structure of 
an ecological network can be optimized. Finding the opti-
mal modular structure can be a time-consuming process, as 
it relies on heuristic which are not guaranteed to converge to 
the global maximum. There is no elegant alternative to trying 
multiple approaches, repeating the process multiple times, 
and having some luck.

We will use again the first network from the Hadfield et al. 
(2014) dataset in this example, which has a small number of 
species. For the first approach, we will generate random par-
titions of the species across 3–12 modules, and evaluate 20 
replicate attempts for each of these combinations. The output 
we are interested in is the number of modules, and the overall 
modularity (Barber 2007).

n = repeat(3:12, outer=20)
m = Array{Dict}(undef, length(n))

for i in eachindex(n)
 � # Each run returns the network and its 
modules

  �# We discard the network, and assign 
the modules to our object

 � _,  m[i] = n_random_modules(n[i])(N)  
|> x -> brim(x...)

end

Now that we have the modular partition for every attempt, 
we can count the modules in it, and measure its modularity:

q = map(x -> Q(N,x), m);
c = (m .|> values |> collect) .|> unique 
.|> length;

The relationship between the two is represented in Fig. 5. 
Out of the 200 attempts, we want to get the most modu-
lar one, i.e. the one with highest modularity. In some simple 
problems, there may be several partitions with the highest 
value, so we can either take the first, or one at random:
optimal = rand(findall(q.== maximum(q)));
best_m = m[optimal];

This partitions has five modules. EcologicalNetworks 
has other routines for modularity, such as LP (Liu and Murata 
2009), and a modified version of LP relying on simulated 
annealing. We can finally look at the functional roles of the 
species.
roles = functional_cartography(N, best_m)
Dict{String,Tuple{Float64,Float64}} 
with 28 entries:
  �"Ctenophthalmus inornatus" => 
(-0.0764719, 0.56)

  �"Chionomys nivalis"              => 
(1.30002, 0.0)

  �"Hystrichopsylla satunini" => 
(-0.83666, 0.444444)
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Figure 4. Left panel: values of βos′ for the 51 networks in Hadfield et al. (2014). Right panel: species dissimilarity is not a good predictor 
of interaction dissimilarity between shared species.
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  �"Ceratophyllus sciurorum"  => 
(-0.447214, 0.0)

  �"Apodemus sylvaticus"         => 
(1.78885, 0.726563)

  �"Ctenophthalmus shovi"      =>  
(0.0, 0.56)

  ��"Amalaraeus penicilliger"  => 
(-0.57735, 0.0)

  �"Megabothris turbidus"      => 
(-0.0764719, 0.75)

  �"Myoxopsylla jordani"         =>  
(1.1547, 0.625)

  �"Amphipsylla georgica"      => 
(-1.45297, 0.5)

  �"Sorex araneus"                 =>  
(0.0, 0.0)

  �"Rhadinopsylla integella"  => 
(-1.45297, 0.5)

  �"Apodemus mystacinus"         => 
(1.67332, 0.617284)

  �"Microtus majori"             =>  
(0.83666, 0.59375)

  �"Ctenophthalmus proximus"  =>  
(0.0, 0.56)

  �"Myoxus glis"                 => 
(-0.57735, 0.0)

  �"Nosopsyllus fasciatus"     => 
(-0.447214, 0.5)

  �"Leptopsylla segnis"          =>  
(0.0, 0.375)

  �"Palaeopsylla caucasica"   => 
(-0.447214, 0.0)

  ⋮                               => ⋮
This function returns a tuple (an unmodifiable set of values) 
of coordinates for every species, indicating its within-module 
contribution, and its participation coefficient. These results can 
be plotted to separate species in module hubs, network hubs, 

peripherals and connectors (Fig. 6). Note that in the context of 
ecological networks, this classification (following Olesen et al. 
2007) is commonly used. It derives from previous work by 
Guimerà and Nunes Amaral (2005) on metabolic networks, 
which subdivides the place in seven (rather than four) regions. 
For the sake of completeness, we have added the seven regions 
of the Guimerà and Nunes Amaral (2005) to the plot as well.

Extinctions

In this illustration, we will simulate extinctions of hosts, to 
show how the package can be extended by using the core 
functions described in the ‘Interface’ section. Simply put, the 
goal of this example is to write a function to randomly remove 
one host species, remove all parasite species that end up not 
connected to a host, and measuring the effect of these extinc-
tions on the remaining network. Rather than measuring the 
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Figure 5. Left, relationship between the number of modules in the optimized partition and its modularity. Right, representation of the 
network where every node is colored according to the module it belongs to in the optimal partition.
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‘peripherals’ – this is a strong indication that the modular structure 
is not meaningful.
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network structure in the function, we will return an array of 
networks to be manipulated later:

function extinctions(N::T) where {T <: 
AbstractBipartiteNetwork}
 
  �# We start by making a copy of the 
network to extinguish

  Y = [copy(N)]
 
 � # While there is at least one species 
remaining...

  while richness(last(Y)) > 1
    # We remove one species randomly
    remain = sample(species(last(Y); 
dims=2), richness(last(Y); dims=2)-1, 
replace=false)
 
    # Remaining species
    R = last(Y)[:,remain]
    simplify!(R)
 
    # Then add the simplified network 
(without the extinct species) to our 
collection
    push!(Y, copy(R))
  end
  return Y
end
extinctions (generic function with  
1 method)

One classical analysis is to remove host species, and count 
the richness of parasite species, to measure their robustness 
to host extinctions (Memmott  et  al. 2004) – this is usu-
ally done with multiple scenarios for order of extinction, 
but we will focus on the random order here. Even though 
EcologicalNetworks has a built-in function for rich-
ness, we can write a small wrapper around it:

function parasite_richness(N::T) where 
{T<:BinaryNetwork}
  return richness(N; dims=1)
end
parasite_richness (generic function 
with 1 method)

Writing multiple functions that take a single argument allows 
to chain them in a very expressive way: for example, measuring 
the richness on all timesteps in a simulation is N |> extinc-
tions .|> parasite_richness, or alternatively,  
parasite_richness.(extinctions(N)). In Fig. 7, 
we illustrate the output of this analysis on 100 simulations 
(average and standard deviation) for one of the networks.

Additionally, the sum of these three components is always 
equal to the logarithm of the product of the species richness 
of the two trophic levels:

Information theoretic indices

Notions from information theory can also be used to study 
the distribution of species interaction networks. The total 
potential entropy of an interaction network can be decom-
posed into three distinct components:

•• D: the difference in entropy compared to a uniform 
distribution;

•• I: the mutual information between the interaction levels;
•• V: the variation of information.

The value of these components gives us insight into the 
structure of a network. A large deviation from the uniform 
distribution indicates that one or more interactions domi-
nate the network, restricting the freedom of choice in the 
network. The mutual information quantifies the level of 
organization of the network, i.e. the limitations on possible 
interactions and can be seen as a measure for the efficiency 
of the network (Ulanowicz 2001). Finally, the variation of 
information quantifies the uncertainty that remains when 
the whole structure of the interaction network is known.  
A large value corresponds to a large variety of possible inter-
action partners. This index can be seen as a measure of the 
network’s stability. Strong restriction of the interactions and 
thus freedom of choice of the species, decreases the stability 
of the network.

Separate functions are available to compute the dif-
ferent indices, however the function information_
decomposition performs the entire decomposition at 
once. These calculations can be done for the joint distribu-
tion, as well as for the marginal distributions of the two 
interaction levels, by changing an optional argument of 
the function.

We can apply this to the first network of the Hadfield et al. 
(2014) networks. This function will return a dictionary con-
taining the D-, I- and V-component.
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Figure 7. Output of 100 random extinction simulations, where the 
change in parasite richness was measured every timestep. This exam-
ple shows how the basic functions of the package can be leveraged 
to build custom analyses rapidly.
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inf_decomp_joint = information_
decomposition(N)
Dict{Symbol,Float64} with 3 entries:
  :I => 2.38221
  :D => 0.872887
  :V => 6.62907

The different components of the decomposition can be visu-
alised in a barplot or a De Finetti diagram. Firstly, we note 
that the D-component is relatively low, both for the hosts, 
parasites and the network in general, indicating that the dis-
tributions do not deviate strongly from the uniform distribu-
tion. The small I-component indicates that there are not a lot 
of restrictions on the specificity of the interactions. Therefore, 
the network has a low level of efficiency. The V-component 
however is large. The species have a large freedom of choice, 
resulting in a stable network.

The sum of these three components is always equal to the 
logarithm of the product of the species richness of the two 
interaction levels:

log2(richness(N, dims=1) * richness(N, 
dims=2))
9.884170519108435

This product quantifies the maximum number of possible inter-
actions in a network, where each species of the top level inter-
acts with every species of the bottom level, without restrictions.

Interaction imputation

In the final example, we will apply the linear filtering method 
of Stock et al. (2017) to suggest which negative interactions 
may have been missed in a network. Starting from a binary 
network, this approach generates a quantitative network, in 
which the weight of each interaction is the likelihood that 
it exists – for interactions absent from the original network, 
this suggests that they may have been missed during sam-
pling. This makes this approach interesting to guide empiri-
cal efforts during the notoriously difficult task of sampling 
ecological networks (Jordano 2016a, b).

In the approach of Stock et al. (2017), the filtered interac-
tion matrix (i.e. the network of weights) is given by

F Y
Y

n
Y
m

Y
n mij ij

kj

k

il

l

= + + +
´å åa a a a1 2 3 4
S

, 	 (1)

where α is a vector of weights summing to 1, and (n, m) is 
the size of the network. Note that the sums along rows and 
columns are actually the in and out degree of species. This is 
implemented in EcologicalNetworks as the lin-
earfilter function. As in Stock et al. (2017), we set all val-
ues in α to 1/4. We can now use this function to get the top 
interaction that, although absent from the sampled network, is 
a strong candidate to exist based on the linear filtering output:
N = networks[50]
F = linearfilter(N)

35×27 bipartite probabilistic  
ecological network (Float64, String) 
(L: 225. 99999999999997)
We would like to separate the weights in three: observed 
interactions, interactions that are not observed in this net-
work but are observed in the metaweb, and interactions 
that are never observed. EcologicalNetworks has the 
has_interaction function to test this, but because 
BinaryNetwork are using Boolean values, we can look at 
the network directly:
scores_present = sort(
  �filter(int -> N[int.from, int.to], 
interactions(F)),

  by = int -> int.probability,
  rev = true);
 
scores_metaweb = sort(
  filter(int -> (!N[int.from,int.
to])&(metaweb[int.from, int.to]), 
interactions(F)),
  by = int -> int.probability,
  rev = true);
 
scores_absent = sort(
  filter(int -> !metaweb[int.from,int.
to], interactions(F)),
  by = int -> int.probability,
  rev = true);

The results of this analysis are presented in Fig. 8: the weights 
Fij of interactions that are present locally (Yij = true) are always 
larger that the weight of interactions that are absent; further-
more, the weight of interactions that are absent locally are 
equal to the weight of interactions that are also absent glob-
ally, strongly suggesting that this network has been correctly 
sampled.
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Figure 8. Relative weights (higher weights indicates a larger chance 
that the interaction has been missed when sampling) in one of the 
host–parasite networks according to the linear filter model of 
Stock et al. (2017).
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Conclusion

We have illustrated the core approach of 
EcologicalNetworks, a Julia package to analyse 
ecological networks of species interactions. It is built to be 
extensible, and to facilitate the development of flexible net-
work analysis pipelines. EcologicalNetworks has 
been designed to be robust, easy to write code with, main-
tainable (so that bugs can be fixed rapidly, and new features 
as well as performance improvement added easily), and fast 
(in that order). We think that by providing a rich system of 
types, coupled with specialized methods, it will allow ecolo-
gists to rapidly implement network analyses. Bug reports and 
features requests can be submitted at < https://github.com/
PoisotLab/EcologicalNetworks.jl/issues >.

The development of this package is done openly on 
GitHub. We are accepting new functions, bug fixes and alter-
native implementations as pull requests, which will undergo 
code review. Note that in order to ensure the reliability of the 
package, we rely on two approaches. First, we strictly control 
the methods that are implemented: only measures with clear 
ecological relevance, and no known glaring issues, will be 
part of the package. Because EcologicalNetworks.
jl works as a library, it is easy to expand it to write custom 
methods. Second, the code undergoes continuous integration 
and is covered by a robust suite of unit tests; in addition, we 
perform integration testing for all new releases, by running 
typical network analyses.

To cite EcologicalNetworks or acknowledge its use, cite 
this software note.
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