
www.ecography.org

ECOGRAPHY

Ecography

This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited. 1

––
© 2019 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society Oikos

Subject Editor: Michael Borregaard
Editor-in-Chief: Miguel Araújo
Accepted 8 August 2019

42: 1–12, 2019
doi: 10.1111/ecog.04310

doi: 10.1111/ecog.04310 42 1–12

Networks are a convenient way to represent many interactions among ecological enti-
ties. The analysis of ecological networks is challenging for two reasons. First, there
is a plethora of measures that can be applied (and some of them measure the same
property). Second, the implementation of these measures is sometimes difficult. We
present ’EcologicalNetworks.jl’, a package for the ‘Julia’ programming language. Using
a layered system of types to represent several types of ecological networks, this packages
offers a solid library of basic functions which can be chained together to perform the
most common analyses of ecological networks.

Keywords: ecological networks, graph theory, Julia

The analysis of ecological networks is an increasingly common task in community
ecology and related fields (Delmas et al. 2018). Ecological networks provide a compact
and tractable representation of interactions between multiple species, populations or indi-
viduals. The methodology to analyse them, grounded in graph theory, scales from small
number of species to potentially gigantic graphs of thousands of partners. The structural
properties derived from the analysis of these graphs can be mapped onto the ecological
properties of the community they depict. Because there is a large number of questions one
may seek to address using the formalism of networks (Poisot et al. 2016b), there has been
an explosion in the diversity of measures offered. As such, it can be difficult to decide on
which measure to use, let alone which software implementation to rely on.

At the same time, the recent years have seen an increase in the type of applications
of network theory in ecology. This includes probabilistic graphs (Poisot et al. 2016a),
investigation of species functional roles in the network (Baker et al. 2014), comparison
of networks across space and time (Poisot et al. 2012) and on gradients (Pellissier et al.
2017), to name a few. As the breadth and complexity of analyses applied to ecological
networks increases, there is a necessity to homogenize their implementation. To the
ecologist wanting to analyse ecological networks, there are a variety of choices; these
include enaR (Borrett and Lau 2014) for food webs, bipartite (Dormann et al.
2008) and BiMat (Flores et al. 2016) for bipartite networks, and more general

EcologicalNetworks.jl: analysing ecological networks of
species interactions

Timothée Poisot, Zachary Bélisle, Laura Hoebeke, Michiel Stock and Piotr Szefer

T. Poisot (https://orcid.org/0000-0002-0735-5184) ✉ (timothee.poisot@umontreal.ca) and Z. Bélisle, Dépt de Sciences Biologiques, Univ. de Montréal,
Montréal, Canada. TP also at: Québec Centre for Biodiversity Sciences, McGill Univ., Montréal, Canada. – L. Hoebeke and M. Stock, KERMIT, Dept of
Data Analysis and Mathematical Modelling, Ghent Univ., Belgium. – P. Szefer, Faculty of Science, Univ. of South Bohemia, České Budějovice, Czech
Republic.

Software notes

2

graph–theory libraries such as networkx (Hagberg et al.
2008) and igraph (Csardi and Nepusz 2006), which are
comprehensive but may lack ecology-specific approaches and
measures. Additional packages are even more specific, such as
bmotif for bipartite motifs enumeration (Simmons et al.
2018), or pymfinder (Mora et al. 2018). Most of these
packages are focused on either food webs or bipartite net-
works, and therefore do not provide a unified ecosystem for
users to develop their analyses in; more general libraries come
the closer, but they require a lot of groundwork before they
can be effectively used to conduct ecological analyses.

In this manuscript, we describe EcologicalNetworks,
a package for the ‘Julia’ programming language (Bezanson et al.
2017) released under the MIT license and openly devel-
oped at <https://github.com/PoisotLab/
EcologicalNetworks.jl>. Julia is rapidly emerging
as a new standard for technical computing, as it offers the
ease of writing of traditional interpreted languages (like R or
python) with up to C-like performance. More importantly,
code performance can be achieved by writing only pure-Julia
code, i.e. without having to write the most time-consuming
parts in other languages like C or C++. This results in more
cohesive, and more maintainable code, to which users can
more easily contribute. In addition, Julia can be called from
other languages: the JuliaCall package for R, or pyju-
lia for python, allow users of these languages to seamlessly
integrate Julia code in their analyses. This incurs a signifi-
cant performance cost which in our opinion justifies learning
enough of Julia to proficiently perform the analyses, but is
nevertheless a useful transition tool.

The goal of this package is to provide a general environ-
ment to perform analyses of ecological networks, following
the best practices in the field as outlined by Delmas et al.
(2018). It offers a hierarchy of types to represent ecological
networks, and includes common measures to analyse them.
This package has been designed to be easily extended (with
examples given in the online documentation), and offers
small, single-use function, that can be chained together
to build complex analyses. The advantage of this design is
that, rather than having to learn the interfaces (and options)
of many different packages, the analyses can be seamlessly
integrated in a single environment – this solves the problem
identified by Delmas et al. (2018), namely that software for
ecological network research is extremely fragmented. In addi-
tion, many measures and analyses of network structure are
likely to re-use the same basic components.

Consolidating the methodology within a single pack-
age makes it easier to build a densely connected codebase.
Whenever possible, we have also overloaded methods for
the code Julia language, so that the code feels idiomatic. If
an operation on a network (e.g. what is the total interaction
strength) can be meaningfully represented by an existing Julia
function (e.g. sum), it will be made this way; for example, the
function to re-organize interactions across a network is called
shuffle (after the Random.shuffle function), and the
function to randomly draw from a probabilistic network is

rand. We showcase the usage of EcologicalNetworks
through a number of simple applications: null-hypothesis
significance testing, network comparison, modularity opti-
misation, random extinctions and the prediction of missing
interactions.

Methods and features

Installation instructions for Julia itself are found at < https://
julialang.org/downloads/ > – this manuscript specifically
describes ver. 0.2 of EcologicalNetworks.jl,
which works on Julia releases 0.7 and 1.0. The code is released
under the MIT license. EcologicalNetworks.jl can
be installed by first entering the package mode of the Julia
REPL (by typing]), and typing:
add EcologicalNetworks. The package can then

be used with using EcologicalNetworks
Functions in the package are documented through the

standard Julia mechanism (?connectance, for example),
and a documentation describing the functionalities in the
package is available online at < http://poisotlab.github.io/
EcologicalNetworks.jl/stable/ >.

We have also developed a companion package,
‘EcologicalNetworksPlots.jl’, which is
intended to provide basic network visualisation functions
(graphs and heatmaps) through the ‘Plots.jl package’.
EcologicalNetworksPlots.jl can be installed in
the same way as any other Julia package. After updates to
either packages, they can be kept up to date following the
usual process from a Julia project: enter the package mode by
typing] at the REPL, then type up. Both packages follow
semantic versioning.

In this section, we will list the core functions offered by
the package, discuss the type system, and highlight the most
important aspects of the user interface. This manuscript has
been written so that all examples can be reproduced from
scratch: the code.jl distributed as part of the supplemen-
tary material can be used to generate all figures in the manu-
script, and the Project.toml and Manifest.toml
have the exact version of every package in the dependency
chain used (Supplementary material Appendix 1).

Overview of package capacities

The EcologicalNetworks package offers functions
to perform the majority of common ecological networks
analyses – we follow the recommendations laid out in
Delmas et al. (2018). The key functions include (but are
not limited to) species richness (richness); connectance
(connectance) and linkage density (linkage_den-
sity); degree (degree) and specificity (specific-
ity); null models (null1, null2, null3, null4);
constrained network permutations (shuffle); random
networks (rand); nestedness (η and nodf); shortest path
(number_of_paths, shortest_path); information

3

theoretic analysis (entropy, conditional_entropy,
mutual_information, information_decom-
position); centrality measures (centrality_katz,
centrality_closeness, centrality_degree);
resilience (symmetry, heterogeneity, resil-
ience); motif counting (find_motif); modularity (Q),
realized modularity (Qr) and functions to optimize them (lp
and salp for label propagation without or with simulated
annealing, brim); β-diversity measures (βs, βos, βwn);
trophic level analysis (fractional_trophic_level,
trophic_level); complementarity analysis (AJS;
EAJS; overlap); structural random models (cascade-
model, mpnmodel, nichemodel, nestedhierar-
chymodel). These functions use the rich type system to
apply the correct method depending on the type of network,
and rely on a simple user-interface to let users chain them
together (as explained in the next section). This package is
not a series of wrappers around functions, that would provide
ready-made analyses. Instead, it provides functions which can
be chained, to let users develop their own analyses. As such,
we believe it is important to think of this package as a library
for the analysis of ecological networks: the basic components
can be chained to build entire analyses in a very flexible and
expressive way.

Type system

Data on ecological networks can vary if the network is uni-
partite or bipartite, and as a function of the nature of the
information represented by interactions (presence/absence,
strength or probability). This yields six combinations of par-
titeness × nature of interaction. Because some measures are
expressed differently depending on the specific type of net-
work, we have designed a complete type system, summarized
in the Table 1.

Though this may seem excessive, this allows the package
to take advantages of Julia’s dispatch, i.e. picking the correct
method of a function based on the type of its arguments. As
an example, the function for the number of links (links)
uses specialized measures depending on the type of the net-
work (i.e. quantitative, binary or probabilistic). As such,
using types also protects the user: if a measure should not be
applied to a particular type of network, it will not have an
associated method, and will fail explicitly rather than return-
ing a spurious result.

Unions and abstract types

In addition to the core types, there are a number of
type unions (Fig. 1). For example, some algorithms will
work in the same way on all non-probabilistic networks
(DeterministicNetwork), or on all ecological net-
works (AbstractEcologicalNetwork). The purpose
of these types is to help users write functions that target the
correct combination of networks, by writing increasingly spe-
cific methods for types requiring them.

Internal representation of information

All types share a Matrix field A containing the adjacency
matrix, and either one Vector field S (unipartite case) or two
Vector fields T and B (bipartite case) containing the species
(in the bipartite case, the species are divided between the top
layer T and bottom layer B). Users who wish to inspect the actual
matrix can use N.A (where N is a network). We recommend
that users do not access these objects directly; the interactions
can be accessed in a richer format using interactions, and
species can be accessed with species. Fortunately, end-users
will almost never need to understand how data are represented
within a type – the package is built around a number of high-
level interfaces (see the next section) to manipulate and access
information about species and interactions. The type system is
worth understanding in depth when writing additional func-
tions for which performance is important; but in the context
of other analyses, the functions described in the next section
should be used and will be sufficient.

Note that by default, species can only be represented by
either a String or Symbol. This can very easily be changed
by adding methods to the non-exported is_valid_spe-
cies function. The default declaration is:

is_valid_species(::Type{T}) where
{T <: Any} = false
is_valid_species(::Type{T}) where
{T <: Union{Symbol,String}} = true

Should a user want to allow different types, like for exam-
ple MyCustomSpecies, a simple declaration of a new
method is sufficient:

import EcologicalNetworks:
is_valid_species

Table 1. Network type system.

Partiteness Int. strength Type Interactions

Unipartite Binary UnipartiteNetwork AbstractBool
Quantitative UnipartiteQuantitativeNetwork Number
Probabilistic UnipartiteProbabilisticNetwork AbstractFloat

Bipartite Binary BipartiteNetwork AbstractBool
Quantitative BipartiteQuantitativeNetwork Number
Probabilistic BipartiteProbabilisticNetwork AbstractFloat

4

is_valid_species(::Type{T}) where
{T <: MyCustomSpecies} = true

Finally, the eltype function can be used to determine the
types of the species and interactions. For example, we can
define a simple network (in which case the species names
will be generated automatically), and look at the type of its
information:

N = UnipartiteNetwork(rand(Bool, (3, 3)))
eltype(N)
(Bool, String)

Interface

There are a several high-level functions to interact with
networks. An array of the species can be returned with
species(N) where N is the networks, and this can fur-
ther be split between rows and columns with, respectively,
species(N; dims=1) and species(N; dims=2)
– note that this interface borrows the dims keyword argu-
ment found in almost all Julia functions working across multi-
dimensional arrays, thereby making the package consistent
with its language. Another high-level function is interac-
tions, which returns a list of tuples, one for each interac-
tion in the network.

In the following section, we will use an example host–
parasite network to illustrate the core elements of the package
interface:

N = web_of_life("A_HP_001")
first(interactions(N))
(from = "Ctenophthalmus proximus",
to = "Microtus arvalis", strength = 2)

We also implement an iteration protocol (for inter-
action in network ...), which returns the same
objects as the interactions function.

The network itself can be accessed as an array, either using
the position of the species (which is not advised to do as a
user, since species are identified by names/symbol), or their
names. This can be used to get the value of an interaction:
N["Ctenophthalmus proximus", "Microtus
majori"]
27

There is a shortcut to test the existence of the interaction:
has_interaction(N,  "Ctenophthalmus
proximus", "Microtus majori")
true

Indexing can also be used to look at a subset of the network,
in which case a new network is returned. To illustrate this
function, we will first select all parasites (dims=1) whose
name starts with Ctenophtalmus:
Ctenophthalmus = filter(
      x -> startswith(x, "Ctenophthalmus"),
    species(N; dims=1)
)

Figure 1. Union types defined by EcologicalNetworks – all networks belong to the AbstractEcologicalNetwork super-
type. The ability to target specific combinations of types allows to write the correct methods for multiple classes of networks at once, while
being able to specialize them on specific types.

5

5-element Array{String,1}:
 "Ctenophthalmus proximus"
 "Ctenophthalmus hypanis" 
 "Ctenophthalmus inornatus"
 "Ctenophthalmus shovi"   
 "Ctenophthalmus euxinicus"

We can do the same for hosts whose name starts with
Apodemus:

Apodemus = filter(

    x -> startswith(x, "Apodemus"),
    species(N; dims=2)
)
2-element Array{String,1}:
 "Apodemus sylvaticus"
 "Apodemus mystacinus"

Finally, the network of interactions between Ctenophtalmus
sp. and Apodemus sp. is given by:
N[Ctenophthalmus, Apodemus]
5×2 bipartite quantitative ecological
network (Int64, String) (L: 8)

When using slices, the package is not necessarily preserv-
ing the order of species. The package also uses ranges (the
simplify function removes species without interactions),
where : means ‘all nodes in this dimension’ (note that the fol-
lowing is essentially how one would access an array in Julia):
simplify(N[Ctenophthalmus,:])
5×8 bipartite quantitative ecological
network (Int64, String) (L: 23)

The simplify function will return another network,
but there is a simplify! variant which will edit the
network in place. Note that the copy method is also
defined for networks, so that simplify(N) is equiva-
lent to simplify!(copy(N)) (and is indeed defined
this way).

Finally, we can get the set of predecessors (species that
establish interactions with) or successors (species to which
interactions are established) to a species – for example, the
parasites of ‘Apodemus sylvaticus’ are:
N[:,Apodemus[1]]
Set(["Ctenophthalmus inornatus",
"Hystrichopsylla satunini",
"Ceratophyllus sciurorum", "Ctenophthalmus
shovi", "Megabothris turbidus",
"Myoxopsylla jordani", "Amphipsylla
georgica", "Rhadinopsylla integella",
"Ctenophthalmus proximus", "Nosopsyllus
fasciatus", "Leptopsylla segnis",
"Palaeopsylla caucasica", "Leptopsylla
taschenbergi", "Amphipsylla rossica",
"Ctenophthalmu s hypanis",
"Hystrichopsylla talpae"])

Whenever possible, we have overloaded base methods from
the language, so that the right syntax is immediately intuitive

to Julia users. For example, removing interactions whose
intensity is below a certain threshold is done through the
isless operation, e.g. we can select the sub-network made
of interactions stronger than 20:
S = simplify(N ≥ 20)
9×6 bipartite  ecological network (Bool,
String) (L: 15)

Use-cases

In this section, we will use data on ectoparasites of rodents
from Eurasia, reported by Hadfield et al. (2014), to illustrate
a variety of network analyses – null hypothesis significance
testing for nestedness, pairwise network β-diversity, modular-
ity analysis, simulation of extinctions, and finally the applica-
tion of a machine learning technique to infer possible missing
interactions.
EcologicalNetworks.jl comes with a variety of
datasets, notably the < web-of-life.es > database. We will get
the data from Hadfield et al. (2014) from this source:
all_hp_data = filter(x ->
occursin("Hadfield", x.Reference),
web_of_life());
ids = getfield.(all_hp_data, :ID);
networks = convert.(BinaryNetwork, web_
of_life.(ids));

Null-hypothesis significance testing

One common analysis in the network literature is to com-
pare the observed value of a network measure to the expected
distribution under some definition of ‘random chance’ (e.g.
as in Fig. 2). As of now EcologicalNetworks.jl
focuses on generating binary (presence/absence of inter-
actions) matrices, but expanding the functions for quan-
titative null models is feasible. This is usually done by
1) generating a matrix of probabilities of interactions based
on connectance (Fortuna and Bascompte 2006), degree
distribution (Bascompte et al. 2003, Weitz et al. 2013),
2) performing random draws of this matrix under various
constraints on its degeneracy (Fortuna et al. 2010) and
3) comparing the empirical value to its random distribution,
usually through a one-sided t-test. We will illustrate this
approach by comparing the observed value of nestedness
(measured using the η measure of Bastolla et al. (2009)) to
the random expectations under four null models. We will
get the first network from the Hadfield et al. (2014) dataset
to illustrate this approach:
N = networks[1]
18×10 bipartite  ecological network (Bool,
String) (L: 61)

EcologicalNetworks comes with functions to gener-
ate probabilistic matrices under the four most common null
models: null1 for constraints on connectance, null2 for
constraints on degree distribution, null3 with arguments

6

for degree distributions on either side and null4 which con-
siders the degree distributions on both sides as independent.
Although the names are not necessarily the most descrip-
tive, they have been used this way in the ecological networks
literature, and the way they work is documented (see also
Delmas et al. 2018 for an overview of their assumptions).

One can for example generate the probabilistic null model
of Type II for a specific empirical network with:
P1 = null2(N)
18×10 bipartite probabilistic ecologi-
cal network (Float64, String) (L: 60.9
9999999999999)

All probabilistic networks can be used to generate random
samples, by calling the rand function, possibly with a num-
ber of samples:
R1 = rand(P1, 9)
9-element Array{EcologicalNetworks.
BipartiteNetwork{Bool,String},1}:
 �18×10 bipartite  ecological network
(Bool, String) (L: 64)

 �18×10 bipartite  ecological network
(Bool, String) (L: 56)

 �18×10 bipartite  ecological network
(Bool, String) (L: 59)

 �18×10 bipartite  ecological network
(Bool, String) (L: 64)

 �18×10 bipartite  ecological network
(Bool, String) (L: 75)

 �18×10 bipartite  ecological network
(Bool, String) (L: 64)

 �18×10 bipartite  ecological network
(Bool, String) (L: 58)

 �18×10 bipartite  ecological network
(Bool, String) (L: 64)

 �18×10 bipartite  ecological network
(Bool, String) (L: 56)

This allows to rapidly create random draws from a probabi-
listic null model, as illustrated in Fig. 3.

To simplify the code, we may want to wrap this into a
function (note that the functions for null models accept net-
works of any partiteness, but they have to be binary). This
function will take a network, a type of null model, and a
number of replicates and return the random draws. We will
use four null models (as per Delmas et al. 2018), null1
(all interactions have equal probability), null2 (interac-
tions probability depends on the degree of both species) and
null3 (interactions probability depends on the in-degree or
out-degree of the species). These networks are likely to have
some degenerate matrices (as per Fortuna et al. 2010), that
is to say, some species end up disconnected from the rest of
the network. One way to remove them is to apply a filter,
using the isdegenerate function.

function nullmodel(n::T, f::Function,
i::Integer) where {T<:BinaryNetwork}
  sample_networks = rand(f(n), i)
  filter!(!isdegenerate, sample_networks)
  length(sample_networks) == 0 &&
   � throw(ErrorException("No valid

randomized networks; increase
i ($(i))"))

  return sample_networks
end
nullmodel (generic function with
1 method)

0.2 0.4 0.6 0.8

100
200
300
400
500
600

Connectance (I)

0.2 0.4 0.6 0.8

100

200

300

400

Degree distribution (II)

0.2 0.4 0.6 0.8

100

200

300

Host degree (III in)

0.2 0.4 0.6 0.8

10
20
30
40
50
60

Parasite degree (III out)

Figure 2. Distribution of nestedness values for the empirical network (solid black line) and for random draws based on four null models.
This analysis is frequently used to determine whether the nestedness of an observed network is significant.

7

We can now call this function with different null models.
Note how the null3 function takes keywords arguments,
and so rather that passing it directly, one can pass an anony-
mous function:
sample_size = 5_000
 
S1 = nullmodel(N, null1, sample_size);
S2 = nullmodel(N, null2, sample_size);
S3i = nullmodel(N, n -> null3(n; dims=2),
sample_size);
S3o = nullmodel(N, n -> null3(n; dims=1),
sample_size);

This function will return the randomized networks that
have the same richness as the empirical one. We can now
measure the nestedness of the networks in each sample (as
always in Julia, unicode characters can be type by using their
escape sequence, which are given in the documentation; the
. between a function name and its arguments is a shortcut to
vectorize the code):
nS1 = η.(S1);
nS2 = η.(S2);
nS3i = η.(S3i);
nS3o = η.(S3o);

Network beta-diversity

In this section, we will use the approach of Poisot et al. (2012)
to measure the dissimilarity between bipartite host and parasite
networks. We use the networks from Hadfield et al. (2014),
which span the entirety of Eurasia. Because these networks

are originally quantitative, we will remove the information on
interaction strength using convert. Note that we convert to
an union type (BinaryNetwork) – the convert function
will select the appropriate network type to return based on the
partiteness. The core operations on sets (union, diff and
intersect) are implemented for the BinaryNetwork
type. As such, generating the ‘metaweb’ (i.e. the list of all spe-
cies and all interactions in the complete dataset) is:
metaweb = reduce(union, networks)
206×121 bipartite  ecological network
(Bool, String) (L: 2131)

From this metaweb, we can measure βos′ (Poisot et al. 2012),
i.e. the dissimilarity of every network to the expectation in
the metaweb. Measuring the distance between two networks
is done in two steps. We follow the approach of Koleff et al.
(2003), in which dissimilarity is first partitioned into three
components (common elements, and elements unique to
both samples), then the value is measured based on the car-
dinality of these components. As in Poisot et al. (2012), the
function to generate the partitions are βos (dissimilarity
of interactions between shared species), βs (dissimilarity of
species composition) and βwn (whole network dissimilar-
ity). The output of these functions is passed to one of the
functions to measure the actual β-diversity. We have imple-
mented the 24 functions from Koleff et al. (2003), and they
are named KGLdd, where dd is the two-digits code of the
function in Table 1 of Koleff et al. (2003).
βcomponents = [βos(metaweb, n) for n in
networks];
βosprime = KGL02.(βcomponents);

Original Probabilistic Random draw 1

Random draw 2 Random draw 3 Random draw 4

Random draw 5 Random draw 6 Random draw 7

Figure 3. Illustration of the network (upper-left corner), probabilistic network generated by the null model, and of eight random draws.
The color of each node represents its degree, and the position of species is conserved across panels.

8

The average dissimilarity between the local interactions
and interactions in the metaweb is 0.27. We have also pre-
sented the distribution in Fig. 4. Finally, we measure the
pairwise distance between all networks (because we use a
symmetric measure, we only need n × (n − 1) distances):
S, OS, WN = Float64[], Float64[],
Float64[]
for i in 1:(length(networks)-1)
  for j in (i+1):length(networks)
    �push!(S, KGL02(βs(networks[i],

networks[j])))
    �push!(OS, KGL02(βos(networks[i],

networks[j])))
    �push!(WN, KGL02(βwn(networks[i],

networks[j])))
  end
end

Modularity

In this example, we will show how the modular structure of
an ecological network can be optimized. Finding the opti-
mal modular structure can be a time-consuming process, as
it relies on heuristic which are not guaranteed to converge to
the global maximum. There is no elegant alternative to trying
multiple approaches, repeating the process multiple times,
and having some luck.

We will use again the first network from the Hadfield et al.
(2014) dataset in this example, which has a small number of
species. For the first approach, we will generate random par-
titions of the species across 3–12 modules, and evaluate 20
replicate attempts for each of these combinations. The output
we are interested in is the number of modules, and the overall
modularity (Barber 2007).

n = repeat(3:12, outer=20)
m = Array{Dict}(undef, length(n))

for i in eachindex(n)
 � # Each run returns the network and its
modules

  �# We discard the network, and assign
the modules to our object

 � _,  m[i] = n_random_modules(n[i])(N)
|> x -> brim(x...)

end

Now that we have the modular partition for every attempt,
we can count the modules in it, and measure its modularity:

q = map(x -> Q(N,x), m);
c = (m .|> values |> collect) .|> unique
.|> length;

The relationship between the two is represented in Fig. 5.
Out of the 200 attempts, we want to get the most modu-
lar one, i.e. the one with highest modularity. In some simple
problems, there may be several partitions with the highest
value, so we can either take the first, or one at random:
optimal = rand(findall(q.== maximum(q)));
best_m = m[optimal];

This partitions has five modules. EcologicalNetworks
has other routines for modularity, such as LP (Liu and Murata
2009), and a modified version of LP relying on simulated
annealing. We can finally look at the functional roles of the
species.
roles = functional_cartography(N, best_m)
Dict{String,Tuple{Float64,Float64}}
with 28 entries:
  �"Ctenophthalmus inornatus" =>
(-0.0764719, 0.56)

  �"Chionomys nivalis"             =>
(1.30002, 0.0)

  �"Hystrichopsylla satunini" =>
(-0.83666, 0.444444)

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Difference to metaweb

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Species dissimilarity

N
et

w
or

k
di

ss
im

ila
rit

y

shared sp.
all sp.

Figure 4. Left panel: values of βos′ for the 51 networks in Hadfield et al. (2014). Right panel: species dissimilarity is not a good predictor
of interaction dissimilarity between shared species.

9

  �"Ceratophyllus sciurorum"  =>
(-0.447214, 0.0)

  �"Apodemus sylvaticus"       =>
(1.78885, 0.726563)

  �"Ctenophthalmus shovi"    =>
(0.0, 0.56)

  ��"Amalaraeus penicilliger"  =>
(-0.57735, 0.0)

  �"Megabothris turbidus"    =>
(-0.0764719, 0.75)

  �"Myoxopsylla jordani"       =>
(1.1547, 0.625)

  �"Amphipsylla georgica"    =>
(-1.45297, 0.5)

  �"Sorex araneus"            =>
(0.0, 0.0)

  �"Rhadinopsylla integella"  =>
(-1.45297, 0.5)

  �"Apodemus mystacinus"       =>
(1.67332, 0.617284)

  �"Microtus majori"         =>
(0.83666, 0.59375)

  �"Ctenophthalmus proximus"  =>
(0.0, 0.56)

  �"Myoxus glis"           =>
(-0.57735, 0.0)

  �"Nosopsyllus fasciatus"    =>
(-0.447214, 0.5)

  �"Leptopsylla segnis"       =>
(0.0, 0.375)

  �"Palaeopsylla caucasica"  =>
(-0.447214, 0.0)

  ⋮                 => ⋮
This function returns a tuple (an unmodifiable set of values)
of coordinates for every species, indicating its within-module
contribution, and its participation coefficient. These results can
be plotted to separate species in module hubs, network hubs,

peripherals and connectors (Fig. 6). Note that in the context of
ecological networks, this classification (following Olesen et al.
2007) is commonly used. It derives from previous work by
Guimerà and Nunes Amaral (2005) on metabolic networks,
which subdivides the place in seven (rather than four) regions.
For the sake of completeness, we have added the seven regions
of the Guimerà and Nunes Amaral (2005) to the plot as well.

Extinctions

In this illustration, we will simulate extinctions of hosts, to
show how the package can be extended by using the core
functions described in the ‘Interface’ section. Simply put, the
goal of this example is to write a function to randomly remove
one host species, remove all parasite species that end up not
connected to a host, and measuring the effect of these extinc-
tions on the remaining network. Rather than measuring the

2 4 6

0.1

0.2

0.3

0.4

0.5

Number of modules

M
od

ul
ar

ity

Figure 5. Left, relationship between the number of modules in the optimized partition and its modularity. Right, representation of the
network where every node is colored according to the module it belongs to in the optimal partition.

—2 —1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Within-module degree

A
m

on
g-

m
od

ul
e

co
nn

ec
tiv

ity

Figure 6. Functional roles of the species in the most modular parti-
tion found. All species score very low along both axes, making them
‘peripherals’ – this is a strong indication that the modular structure
is not meaningful.

10

network structure in the function, we will return an array of
networks to be manipulated later:

function extinctions(N::T) where {T <:
AbstractBipartiteNetwork}
 
  �# We start by making a copy of the
network to extinguish

  Y = [copy(N)]
 
 � # While there is at least one species
remaining...

  while richness(last(Y)) > 1
   # We remove one species randomly
   remain = sample(species(last(Y);
dims=2), richness(last(Y); dims=2)-1,
replace=false)
 
   # Remaining species
   R = last(Y)[:,remain]
   simplify!(R)
 
   # Then add the simplified network
(without the extinct species) to our
collection
   push!(Y, copy(R))
  end
  return Y
end
extinctions (generic function with
1 method)

One classical analysis is to remove host species, and count
the richness of parasite species, to measure their robustness
to host extinctions (Memmott et al. 2004) – this is usu-
ally done with multiple scenarios for order of extinction,
but we will focus on the random order here. Even though
EcologicalNetworks has a built-in function for rich-
ness, we can write a small wrapper around it:

function parasite_richness(N::T) where
{T<:BinaryNetwork}
  return richness(N; dims=1)
end
parasite_richness (generic function
with 1 method)

Writing multiple functions that take a single argument allows
to chain them in a very expressive way: for example, measuring
the richness on all timesteps in a simulation is N |> extinc-
tions .|> parasite_richness, or alternatively,
parasite_richness.(extinctions(N)). In Fig. 7,
we illustrate the output of this analysis on 100 simulations
(average and standard deviation) for one of the networks.

Additionally, the sum of these three components is always
equal to the logarithm of the product of the species richness
of the two trophic levels:

Information theoretic indices

Notions from information theory can also be used to study
the distribution of species interaction networks. The total
potential entropy of an interaction network can be decom-
posed into three distinct components:

•• D: the difference in entropy compared to a uniform
distribution;

•• I: the mutual information between the interaction levels;
•• V: the variation of information.

The value of these components gives us insight into the
structure of a network. A large deviation from the uniform
distribution indicates that one or more interactions domi-
nate the network, restricting the freedom of choice in the
network. The mutual information quantifies the level of
organization of the network, i.e. the limitations on possible
interactions and can be seen as a measure for the efficiency
of the network (Ulanowicz 2001). Finally, the variation of
information quantifies the uncertainty that remains when
the whole structure of the interaction network is known.
A large value corresponds to a large variety of possible inter-
action partners. This index can be seen as a measure of the
network’s stability. Strong restriction of the interactions and
thus freedom of choice of the species, decreases the stability
of the network.

Separate functions are available to compute the dif-
ferent indices, however the function information_
decomposition performs the entire decomposition at
once. These calculations can be done for the joint distribu-
tion, as well as for the marginal distributions of the two
interaction levels, by changing an optional argument of
the function.

We can apply this to the first network of the Hadfield et al.
(2014) networks. This function will return a dictionary con-
taining the D-, I- and V-component.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Proportion of hosts removed

P
ro

po
rt

io
n

of
 re

m
ai

ni
ng

 p
ar

as
ite

s

Figure 7. Output of 100 random extinction simulations, where the
change in parasite richness was measured every timestep. This exam-
ple shows how the basic functions of the package can be leveraged
to build custom analyses rapidly.

11

inf_decomp_joint = information_
decomposition(N)
Dict{Symbol,Float64} with 3 entries:
  :I => 2.38221
  :D => 0.872887
  :V => 6.62907

The different components of the decomposition can be visu-
alised in a barplot or a De Finetti diagram. Firstly, we note
that the D-component is relatively low, both for the hosts,
parasites and the network in general, indicating that the dis-
tributions do not deviate strongly from the uniform distribu-
tion. The small I-component indicates that there are not a lot
of restrictions on the specificity of the interactions. Therefore,
the network has a low level of efficiency. The V-component
however is large. The species have a large freedom of choice,
resulting in a stable network.

The sum of these three components is always equal to the
logarithm of the product of the species richness of the two
interaction levels:

log2(richness(N, dims=1) * richness(N,
dims=2))
9.884170519108435

This product quantifies the maximum number of possible inter-
actions in a network, where each species of the top level inter-
acts with every species of the bottom level, without restrictions.

Interaction imputation

In the final example, we will apply the linear filtering method
of Stock et al. (2017) to suggest which negative interactions
may have been missed in a network. Starting from a binary
network, this approach generates a quantitative network, in
which the weight of each interaction is the likelihood that
it exists – for interactions absent from the original network,
this suggests that they may have been missed during sam-
pling. This makes this approach interesting to guide empiri-
cal efforts during the notoriously difficult task of sampling
ecological networks (Jordano 2016a, b).

In the approach of Stock et al. (2017), the filtered interac-
tion matrix (i.e. the network of weights) is given by

F Y
Y

n
Y
m

Y
n mij ij

kj

k

il

l

= + + +
´å åa a a a1 2 3 4
S

, 	 (1)

where α is a vector of weights summing to 1, and (n, m) is
the size of the network. Note that the sums along rows and
columns are actually the in and out degree of species. This is
implemented in EcologicalNetworks as the lin-
earfilter function. As in Stock et al. (2017), we set all val-
ues in α to 1/4. We can now use this function to get the top
interaction that, although absent from the sampled network, is
a strong candidate to exist based on the linear filtering output:
N = networks[50]
F = linearfilter(N)

35×27 bipartite probabilistic
ecological network (Float64, String)
(L: 225. 99999999999997)
We would like to separate the weights in three: observed
interactions, interactions that are not observed in this net-
work but are observed in the metaweb, and interactions
that are never observed. EcologicalNetworks has the
has_interaction function to test this, but because
BinaryNetwork are using Boolean values, we can look at
the network directly:
scores_present = sort(
  �filter(int -> N[int.from, int.to],
interactions(F)),

  by = int -> int.probability,
  rev = true);
 
scores_metaweb = sort(
  filter(int -> (!N[int.from,int.
to])&(metaweb[int.from, int.to]),
interactions(F)),
  by = int -> int.probability,
  rev = true);
 
scores_absent = sort(
  filter(int -> !metaweb[int.from,int.
to], interactions(F)),
  by = int -> int.probability,
  rev = true);

The results of this analysis are presented in Fig. 8: the weights
Fij of interactions that are present locally (Yij = true) are always
larger that the weight of interactions that are absent; further-
more, the weight of interactions that are absent locally are
equal to the weight of interactions that are also absent glob-
ally, strongly suggesting that this network has been correctly
sampled.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Relative rank

In
te

ra
ct

io
n

w
ei

gh
t

Present locally
Present globally
Absent

Figure 8. Relative weights (higher weights indicates a larger chance
that the interaction has been missed when sampling) in one of the
host–parasite networks according to the linear filter model of
Stock et al. (2017).

12

Conclusion

We have illustrated the core approach of
EcologicalNetworks, a Julia package to analyse
ecological networks of species interactions. It is built to be
extensible, and to facilitate the development of flexible net-
work analysis pipelines. EcologicalNetworks has
been designed to be robust, easy to write code with, main-
tainable (so that bugs can be fixed rapidly, and new features
as well as performance improvement added easily), and fast
(in that order). We think that by providing a rich system of
types, coupled with specialized methods, it will allow ecolo-
gists to rapidly implement network analyses. Bug reports and
features requests can be submitted at < https://github.com/
PoisotLab/EcologicalNetworks.jl/issues >.

The development of this package is done openly on
GitHub. We are accepting new functions, bug fixes and alter-
native implementations as pull requests, which will undergo
code review. Note that in order to ensure the reliability of the
package, we rely on two approaches. First, we strictly control
the methods that are implemented: only measures with clear
ecological relevance, and no known glaring issues, will be
part of the package. Because EcologicalNetworks.
jl works as a library, it is easy to expand it to write custom
methods. Second, the code undergoes continuous integration
and is covered by a robust suite of unit tests; in addition, we
perform integration testing for all new releases, by running
typical network analyses.

To cite EcologicalNetworks or acknowledge its use, cite
this software note.

Acknowledgements – We thank Stephen J Beckett, Ignasi Bartomeus,
David Garcia-Calleja and Michael Krabbe Borregaard for comments
on an earlier version of this manuscript.
Funding – MS is supported by the Research Foundation – Flanders
(FWO17/PDO/067).
Author contributions – TP and ZB designed the case studies and
wrote the code. PS developed the random network functions. MS
and LH developed the information theory and resilience functions.
All authors contributed to the manuscript. ZB performed usability
test of the package.

References

Baker, N. J. et al. 2014. Species’ roles in food webs show fidelity
across a highly variable oak forest. – Ecography 38: 130–139.

Barber, M. J. 2007. Modularity and community detection in bipar-
tite networks. – Phys. Rev. E 76: 066102.

Bascompte, J. et al. 2003. The nested assembly of plant–animal mutu-
alistic networks. – Proc. Natl Acad. Sci. USA 100: 9383–9387.

Bastolla, U. et al. 2009. The architecture of mutualistic networks
minimizes competition and increases biodiversity. – Nature
458: 1018–1020.

Bezanson, J. et al. 2017. Julia: a fresh approach to numerical com-
puting. – SIAM Rev. 59: 65–98.

Borrett, S. R. and Lau, M. K. 2014. enaR: an R package for eco-
system network analysis. – Methods Ecol. Evol. 5: 1206–1213.

Csardi, G. and Nepusz, T. 2006. The igraph software package for
complex network research. – InterJournal Complex Syst. 1695.

Delmas, E. et al. 2018. Analysing ecological networks of species
interactions. – Biol. Rev. 112540.

Dormann, C. F. et al. 2008. Introducing the bipartite package:
analysing ecological networks. – R News 8: 8–11.

Flores, C. O. et al. 2016. BiMAT: a MATLAB package to facilitate
the analysis and visualization of bipartite networks. – Methods
Ecol. Evol. 7: 127–132.

Fortuna, M. A. and Bascompte, J. 2006. Habitat loss and the structure
of plant-animal mutualistic networks. – Ecol Lett. 9: 281–286.

Fortuna, M. A. et al. 2010. Nestedness versus modularity in ecological
networks: two sides of the same coin? – J. Anim. Ecol. 78: 811–817.

Guimerà, R. and Nunes Amaral, L. A. 2005. Functional cartogra-
phy of complex metabolic networks. – Nature 433: 895–900.

Hadfield, J. D. et al. 2014. A tale of two phylogenies: comparative
analyses of ecological interactions. – Am. Nat. 183: 174–187.

Hagberg, A. A. et al. 2008. Exploring network structure, dynamics
and function using NetworkX. – In: Varoquaux, G. et al. (eds),
Proceedings of the 7th python in science conference. Pasadena,
CA USA, pp. 11–15.

Jordano, P. 2016a. Chasing ecological interactions. – PLoS Biol.
14: e1002559.

Jordano, P. 2016b. Sampling networks of ecological interactions.
– Funct. Ecol. 30: 1883–1893.

Koleff, P. et al. 2003. Measuring beta diversity for presence–absence
data. – J. Anim. Ecol. 72: 367–382.

Liu, X. and Murata, T. 2009. Community detection in large-scale
bipartite networks. 2009 IEEE/WIC/ACM International Joint
Conference on web intelligence and intelligent agent technol-
ogy. – Inst. of Electrical and Electronics Engineers (IEEE).

Memmott, J. et al. 2004. Tolerance of pollination networks to spe-
cies extinctions. – Proc. R. Soc. B 271: 2605–2611.

Mora, B. B. et al. 2018. pymfinder: a tool for the motif analysis of
binary and quantitative complex networks. – bioRxiv 364703.

Olesen, J. M. et al. 2007. The modularity of pollination networks.
– Proc. Natl Acad. Sci. USA 104: 19891–19896.

Pellissier, L. et al. 2017. Comparing species interaction networks
along environmental gradients. – Biol. Rev. 93: 785–800.

Poisot, T. et al. 2012. The dissimilarity of species interaction net-
works. – Ecol. Lett. 15: 1353–1361.

Poisot, T. et al. 2016a. The structure of probabilistic networks.
– Methods Ecol. Evol. 7: 303–312.

Poisot, T. et al. 2016b. Describe, understand and predict: why do
we need networks in ecology? – Funct. Ecol. 30: 1878–1882.

Simmons, B. I. et al. 2018. bmotif: a package for counting motifs
in bipartite networks.

Stock, M. et al. 2017. Linear filtering reveals false negatives in spe-
cies interaction data. – Sci. Rep. 7: 45908.

Ulanowicz, R. E. 2001. Information theory in ecology. – Comput.
Chem. 25: 393–399.

Weitz, J. S. et al. 2013. Phage–bacteria infection networks. – Trends
Microbiol. 21: 82–91.

Supplementary material (available online as Appendix ecog-
04310 at < www.ecography.org/appendix/ecog-04310 >).
Appendix 1.

