
FLEDGE: Kubernetes Compatible

Container Orchestration on

Low-resource Edge Devices

Tom Goethals1[0000−0002−1332−2290], Filip De Turck1[0000−0003−4824−1199], and
Bruno Volckaert1[0000−0003−0575−5894]

Ghent University - imec, IDLab, Department of Information Technology,
Technologiepark-Zwijnaarde 15, 9052 Gent, Belgium togoetha.goethals@UGent.be

Abstract. In recent years, containers have quickly gained popularity in
the cloud, mostly thanks to their scalable, ethereal and isolated nature.
Simultaneously, edge devices have become powerful enough to run con-
tainerized microservices, while remaining small and low-powered. These
evolutions have triggered a wave of research into container placement
strategies on clusters including edge devices, leading to concepts such as
fog computing. These container placement strategies can optimize work-
load placement across cloud and edge clusters, but current container
orchestrators are very resource intensive and are not designed to run on
edge devices.

This paper presents FLEDGE as a Kubernetes compatible edge con-
tainer orchestrator. A number of aspects of how to achieve low-resource
container orchestration are examined, for example the choice of con-
tainer runtime and how to implement container networking. Finally, a
number of evaluations are performed, comparing FLEDGE to K3S and
Kubernetes, to show that it is a viable alternative to existing container
orchestrators.

Keywords: Edge networks · edge computing · container orchestration · con-
tainers · VPN

1 INTRODUCTION

In recent years, containers have quickly gained popularity for cloud applications,
thanks to their limited resource requirements and fast spin-up times compared
to virtual machines [1]. The complexity of managing large amounts of contain-
ers has led to container orchestrators such as Kubernetes[2], which handles the
deployment and scaling of containerized services.

Recently, edge devices have become powerful enough to be able to run con-
tainerized microservices, while remaining flexible enough in terms of size and
power consumption to be deployed almost anywhere. This has lead to research



2 T. Goethals et al.

aimed at deploying containers on edge devices, and shifting containerized work-
loads between the cloud and the edge. Most container orchestrators are designed
to run in the cloud, and are very flexible and modular but not very mindful of re-
source consumption. Edge devices on the other hand, are typically low-resource
devices and non-extensible, especially in terms of memory.

Additionally, container deployments in the cloud are often generic, scalable
microservices, whereas those on the edge will be more suited to local computing,
with less focus on scaling. This means that an edge container orchestrator should
be primarily built to use minimal resources, and less for constantly moving and
migrating containers.

Edge devices are often located in networks with potentially less focus on
security and organization. In many cases, the device is hidden behind a router
with a firewall or NAT, and IP addresses and port mappings are unpredictable.

Being designed for the cloud, most container orchestrators expect a well-
organized and homogeneous infrastructure, where all network resources are pre-
dictable and controlled. Additionally, unlike intra-cloud communication, commu-
nication outside the cloud could be intercepted very easily, so all communication
between the cloud and containers deployed on the edge should be secured by de-
fault. Any solution to deploy containers on edge devices should therefore not only
create a heterogeneous and predictable networking environment for containers
to operate in, but also secure communication with the cloud by default.

Continued development of container management tools such as Kubernetes
and Docker [3] has led to the development of a number of standards, for ex-
ample the Container Network Interface (CNI[4]) for container networking, and
container format standards from the Open Container Initiative (OCI[5]).

Any solution for edge container deployment should be compatible with ex-
isting container standards, so it is important that they are implemented to the
extent possible on edge devices. If any standards are ignored or not fully imple-
mented, it should not affect the rest of the cluster.

The requirements for a good container orchestrator for edge devices can there-
fore be summarized as:

– Compatibility with modern container (orchestration) standards, or providing
an adequate alternative.

– Securing communications between the edge and the cloud by default, with
minimal impact on local networks.

– Low resource requirements, primarily in terms of memory but also in terms
of processing power and storage.

This paper presents FLEDGE as a low-resource container orchestrator which
is capable of directly connecting to Kubernetes clusters using modified Virtual
Kubelets [6] and a VPN.

Section 2 presents existing research related to the topics in this introduc-
tion. Section 3 shows how FLEDGE meets the requirements put forward in this
introduction, while section 4 discusses alternative edge container orchestrators.
In section 5, an evaluation setup and methodology are presented to compare



Title Suppressed Due to Excessive Length 3

FLEDGE to alternative orchestrators. The results of the evaluations are pre-
sented and discussed in section 6, with suggestions for future work in section 7.
Finally, section 8 gives a short overview of the goals stated in this introduction,
and how the results and conclusions meet them.

2 RELATED WORK

Shifting workloads between the cloud and edge hardware has been extensively
researched, with studies on edge offloading [7], cloud offloading [8], and osmotic
computing [9]. Many studies exist on different container placement strategies,
from simple but effective resource requests and grants [10], to using deep learning
for allocation and real-time adjustments [11].

Kubernetes is capable of forming federations of Kubernetes clusters [12], but
this paper aims to use a single cluster for both the cloud and the edge. There are
several federation research projects that have resulted in useful frameworks, such
as Fed4Fire [13], Beacon [14], FedUp! [15] and FUSE [16]. Fed4Fire requires the
implementation of an API to integrate devices into a federation and works on
a higher, more abstract level than container orchestration. BEACON is focused
on cloud federation and security as a function of cloud federation. FedUp! is a
cloud federation framework focused on improving the setup time for heteroge-
neous cloud federations. FUSE is designed to federate private networks in crisis
situations, but it is very general and primarily aimed at quickly collectivizing
resources, not for deploying specific workloads across edge clusters.

Studies exist that focus on security between the edge and the cloud, for
example [17] which identifies possible threats, and [18] which proposes a Software
Defined Membrane as a novel security paradigm for all aspects of microservices.

VPNs are an old and widely used technology. Recent state of the art studies
appear to be non-existent, but older ones are still informative [19]. Some studies
deal with the security aspects of a VPN [20], while many others focus on the
throughput performance of VPNs [21, 22].

A study by Pahl et al. [23] gives a general overview of how to create edge cloud
clusters using containers. While FUSE [16] is capable of deploying Kubernetes
worker nodes on edge devices, the resulting framework is too resource-intensive
for most edge hardware. Cloud4IoT [24] is capable of moving containers between
edge networks and the cloud, but it uses edge gateways which indirectly deploy
containers on minimalistic edge nodes. K3S [25], which has not yet been the sub-
ject of academic studies, is based on the source code of Kubernetes. It achieves
lower resource consumption by removing uncommon and legacy features, but it
requires its own master nodes to run and cannot directly connect to Kubernetes
clusters. KubeEdge [26] is a recent development, aiming to extend Kubernetes to
edge clusters. Despite being based on Kubernetes, it is not directly compatible
with Kubernetes master nodes and needs an extra cloud component to function
properly.



4 T. Goethals et al.

3 FLEDGE

This section gives an overview of what a Virtual Kubelet is and how FLEDGE,
written in Golang, builds on it to meet the requirements stated in the introduc-
tion.

A Virtual Kubelet is a small service which acts as a proxy for Kubernetes
to any platform that can run containers, for example Amazon AWS, Microsoft
Azure or edge devices. It registers itself as a node in Kubernetes and passes API
calls from Kubernetes to brokers which translate those calls to the container
platform they implement. These API calls include pod management, pod status,
node status, logging and metrics.

The concepts of FLEDGE are shown in Fig. 1, with the Virtual Kubelet
acting as a proxy to the FLEDGE broker. The FLEDGE broker is responsible
for sending API calls to the edge, where they are decomposed into container
networking, cgroup and namespace management, and container deployments.
This collection of components will be referred to as a FLEDGE agent.

Fig. 1. Conceptual overview of FLEDGE and its use of a Virtual Kubelet.

3.1 Compatibility

One of the stated requirements for FLEDGE is compatibility with existing con-
tainer standards and runtimes.

Both Docker and Containerd are popular container runtimes and both sup-
port OCI standards, and by extension Docker containers. Furthermore, since
version 1.11, Docker uses Containerd as an underlying container runtime. In



Title Suppressed Due to Excessive Length 5

terms of compatibility, both runtimes are good choices, so the decision will be
up to resource requirements, as discussed in section 3.3.

Another aspect of compatibility is container networking. In Kubernetes, the
master node makes high-level decisions on container networking, such as which
IP range to assign to individual nodes. These decisions are relayed to CNI com-
patible plugins (eg. Flannel, Weave) on worker nodes, which translate the high-
level decisions into low-level network configuration.

FLEDGE does this differently by fulfilling the role of both Kubelet and con-
tainer networking plugin. The number of pods deployed on an edge node is likely
to be low due to resource constraints, so the container networking handler (Fig.
1 Container networking) can be simple and naive, assigning pods the first free
IP address in its range. The same handler also makes sure network namespaces
are configured correctly.

By default, Kubernetes will not attempt to deploy Flannel on a FLEDGE
agent. However, because the FLEDGE agent uses the IP range assigned to it by
Kubernetes, the rest of the cluster will still be able to reach pods deployed on
it. This means that this approach is sufficient, despite not implementing CNI.

3.2 Security and stability

Edge devices, especially consumer grade, often operate in networks with little
to no security and organization. Not only may the devices find themselves in
unexpected topologies with random IP address assignments and unknown port
mappings, they may also be stuck behind a router with NAT or a firewall.
Additionally, while traffic between Kubernetes and its Kubelets is secured by
default, this is not always true for services deployed on worker nodes.

In FLEDGE, these issues are solved by connecting edge nodes to the cloud
using OpenVPN and building a container network on top of it, as shown in Fig.
2. Using a VPN ensures that all ports are available and open and IP address
assignments are logical and reachable by the cloud. Furthermore, the physical
network of the device no longer matters, the virtual network can be organized
according to any parameters. Finally, traffic between the edge and the cloud is
encrypted by default, providing a basic layer of security.

However, there are some downsides to this approach. Using OpenVPN, espe-
cially with encryption, is a drain on system and network resources, likely reducing
the scalability of the cluster. Moreover, VPN overhead may have a significant
impact on edge devices, which have limited computational power. Anyone with
physical access to the device can still gain access to the system, and possibly
even cloud resources through the VPN. This problem is exacerbated because like
Kubernetes and K3S, the FLEDGE agent requires root access to run properly, so
hardware security and OS-level security are required to prevent these problems.

Fig. 3 gives an overview of the different networks involved in a setup with
FLEDGE nodes. Green arrows indicate traffic flows allowed by FLEDGE, while
red ones indicate traffic flows forbidden by default. This shows that all devices in
the VPN or the Kubernetes pod network can reach each other, but other devices
can only be reached by being in the same physical network.



6 T. Goethals et al.

Fig. 2. High-level overview of network traffic flow of FLEDGE, using OpenVPN to
connect edge nodes to the cloud.

Container images may contain software or data that needs to be protected
from unauthorized access. Both the FLEDGE agent and container runtimes
could potentially be abused to access container images, but some steps can be
taken to mitigate this.

Containers and pods are assigned different file system namespaces by con-
tainer runtimes. While the root user can still access these namespaces, root login
can be disabled and the file systems can be protected from other users. To mini-
mize chances of container images being copied, and to avoid clutter, they can be
removed when no longer running. However, this will increase the time required
for redeployment of containers, thereby affecting performance. Finally, FLEDGE
cleans up all containers, images and network infrastructure on shutdown.

3.3 Low resource use

An important choice for low resource use is the container runtime. As section 3.1
showed, both Docker and Containerd are good choices in terms of compatibility.
However, as Docker actually relies on Containerd since version 1.11, Containerd
is likely the more resource-friendly option. This choice will be further evaluated
in section 6.

The choice for a custom container networking solution in FLEDGE is optimal
in terms of resource requirements. While normal CNI plugins for Kubernetes
are run as containers, a flexible and durable approach, they also require more
resources than simply embedding container networking into the orchestrator
process.



Title Suppressed Due to Excessive Length 7

Fig. 3. Overview of network traffic flows in a cluster using FLEDGE nodes. Green
arrows indicate possible traffic flows.

Both namespace and cgroup handling have been implemented in FLEDGE.
While FLEDGE relies on the container runtime to set up the namespaces and
cgroups setup for the first container of a pod, it reuses those namespaces for all
other containers in the same pod. This approach is compatible with both Docker
and Containerd, and has the added benefits of being very simple.

4 ALTERNATIVES

This section discusses some alternative container orchestrators, giving a short
history and possible advantages and disadvantages for each, which will then be
compared to FLEDGE in terms of resource requirements.

4.1 Kubernetes

Kubernetes[2] is a widely used container orchestrator originally inspired by
Google Borg[27]. Due to its popularity and extensive development, it has con-
tributed to several container standards. Because it is made to run in the cloud,
it is very flexible. However, as section 6 shows it also uses a lot of resources,
making it hard to use on edge devices.

An important difference between FLEDGE and Kubernetes is that the latter
requires all swapping to be disabled in order to run, which can cause serious
problems on devices with limited memory. FLEDGE has no such requirement,
allowing all memory subsystems to perform as intended.



8 T. Goethals et al.

4.2 K3S

K3S[25] is a novel container orchestrator based on Kubernetes, modified specif-
ically for edge devices. Version 0.1.0 was released in February 2019, while the
version used for the evaluation is v0.3.0 from March 2019. K3S has its own
master nodes, unlike FLEDGE which connects to Kubernetes master nodes.

Unlike FLEDGE, which starts from scratch and builds around Kubernetes
compatibility, K3S starts with the full Kubernetes source code and eliminates
deprecated or little-used functionality. Like FLEDGE, it prefers to hard wire cer-
tain types of functionality. For example, it uses Flannel for container networking
and forces the use of Containerd.

While being built from the full Kubernetes source means K3S has excellent
support for standards, this may also be a disadvantage in terms of resource
requirements. It also has its own join mechanism and is, for the moment, incom-
patible with Kubernetes master nodes, so it cannot directly connect to existing
Kubernetes clusters.

4.3 KubeEdge

KubeEdge [28] is an early stage Edge Computing Framework built on Kubernetes
and Docker. Its first release was in December 2018, with version 0.3.0 being
released as of May 2019. It consists of a cloud part and an edge part [29], with
the cloud part interfacing with the cloud Kubernetes API and taking care of
node management. The edge part is deployed on each individual device and
takes care of pod and low-level facility management.

While its functions include deploying Kubernetes pods on edge networks,
it aims to be an entire ecosystem for edge computing, including storage and
event-based communication based on MQTT [30]. Because it is hard to isolate
the container orchestration part, KubeEdge will not be evaluated in this paper.
However, since it uses Docker, it is unlikely to be resource efficient, a point which
will be proven in section 6.

5 EVALUATION SETUP

With the most important concepts of FLEDGE explained and alternative or-
chestrators discussed, an evaluation environment can be set up and a number of
evaluations can be performed. These are intended to validate the choice of con-
tainer runtime and compare FLEDGE to K3S v0.3.0 and Kubernetes v1.14 in
terms of resource requirements. The source code of FLEDGE is made available
on Github1.

5.1 Methodology

Fig. 4 shows the hardware setup used for the evaluations, which is run on the
imec Virtual Wall[31].

1 The source code will be made available upon acceptance of the article. However, it
can be requested via e-mail: togoetha.goethals@ugent.be



Title Suppressed Due to Excessive Length 9

Fig. 4. Overview of the hardware setup used for the evaluation. Note that the Open-
VPN containers are only used by FLEDGE, other orchestrators connect directly to the
master node via LAN.

The VWall master node fulfills the role of K3S/Kubernetes master node.
Because FLEDGE is aimed at worker nodes, the specifications and performance
of this node are not important.

The VWall server (x64) is used to determine the resource requirements of
each orchestrator on an x64 worker node. This device runs Ubuntu 18.04 and
has an AMD Opteron 2212 processor at 2GHz and 4GiB RAM.

The Raspberry Pi 3 is used to evaluate each orchestrator on an ARM device,
specifically armhf. This device runs Raspbian with kernel version 4.14.98-v7+
on the default hardware configuration, specifically 1GiB RAM and a quad-core
1.2GHz CPU. All devices are in the same geographical location and are connected
by Gigabit LAN (100Mbps max for Raspberry Pi 3). The OpenVPN server and
clients are only used when FLEDGE is deployed on the worker nodes. Kubernetes
and K3S connect to the master node directly via LAN. All evaluations will be
run on both armhf and x64.

For Kubernetes, Docker is used, while Containerd is required by K3S. The
container runtime used by FLEDGE is specified in each evaluation.

Storage requirements are measured using the df command [32], both before
and after orchestrator setup. This approach takes not only the orchestrator into
account, but all dependencies and libraries as well. To ensure proper measure-
ments, the devices are wiped after each run.

Determining memory use is more complex than measuring storage require-
ments. Unlike the myriad files involved in a container orchestrator, the process
running it are more easily identified, allowing for precise and detailed measure-
ments. During orchestrator setup some processes will require memory, used to



10 T. Goethals et al.

launch containers or initialize facilities, which is later released. This means that
memory use must be monitored for a significant amount of time.

Processes can have private and shared memory. Measuring both memory sets
is easy, but a fair method is needed to calculate the exact amount of memory
used by each process.

Taking the above into account, each evaluation measures the memory use
of a set of processes every 30 seconds, over a period of 15 minutes. The pmap
[33] command is used to determine the Proportional Set Size (PSS) [34] of each
process, which is calculated according to:

Mtotal = P +

i∑
Si/Ni

where P is private memory, Si are various sets of shared memory, and Ni is
the number of processes using any piece of shared memory.

5.2 Container runtime

This evaluation aims to show that the choice of container runtime can have a
large impact on the resource requirements of a container orchestrator. To verify
this and determine the best choice, FLEDGE is set up using both Docker and
Containerd.

To avoid interference from other containers, no pods or containers are de-
ployed other than the FLEDGE agent and a VPN container. To determine the
overhead of containerizing FLEDGE, a third case is evaluated in which the
FLEDGE agent runs as a host service instead of being deployed as a container.

The processes monitored for this evaluation are the container runtime, the
FLEDGE agent, the VPN client container and container shims[35].

5.3 Orchestrator comparison

In order to verify that FLEDGE is a low-resource solution for edge container
orchestration, this evaluation compares it against Kubernetes and K3S. In the
Kubernetes comparison, Flannel is used as a CNI plugin and the master node
is allowed to deploy kube-proxy [36] on the edge node. Since FLEDGE has its
own container networking, Flannel will not be deployed on the FLEDGE edge
node. In the K3S comparison, no kube-proxy will be deployed on FLEDGE.

In this evaluation, FLEDGE is run as a host service and uses Containerd
as a container runtime. The monitored processes are the container orchestrator,
container runtime, shims and any deployed containers.

6 RESULTS

This section presents the results of the evaluations described in section 5. While
the results for storage requirements are simple bar charts representing the median
case, the results for memory consumption are more dynamic, including whiskers
for the median absolute deviation.



Title Suppressed Due to Excessive Length 11

Docker ContainerdHost+ctd

0

200

400

600

S
to

ra
g
e

(M
iB

)

x64 ARM

Docker Containerd

0

50

100

150

200

250

M
em

o
ry

(M
iB

)

x64 ARM

Fig. 5. Storage and memory requirements of FLEDGE using different container run-
times. The Host+ctd category shows the results for FLEDGE running as a host service.

6.1 Container runtime

Fig. 5 shows the storage requirements for FLEDGE deployments with Docker
and Containerd.

An important observation is that in all cases, FLEDGE requires significantly
less storage on ARM than it does on x64, though the exact amount varies. The
combination of FLEDGE and Docker, for example, requires 3 times as much
storage on x64 as it does on ARM. While the results suggest that Containerd is
much less efficient on ARM than Docker, these numbers conflict with the fact
that Docker uses Containerd to run containers. The reason for this is rooted in
how Containerd and Docker handle container filesystems and mounts. In order
for a containerized FLEDGE agent to be able to deploy containers on Containerd
itself, many directories and files need to be mounted into the FLEDGE agent
container. It turns out that Containerd mounts have a lot of overhead, resulting
in the large container filesystem shown in Fig. 5. To validate this theory, another
evaluation was done by deploying a FLEDGE agent as a host service, shown as
“Host+ctd”. The Containerd installation for this evaluation was also optimized,
resulting in a 73MiB size reduction on x64, and a 14MiB reduction on ARM.
The result is very resource efficient, at the cost of not having the FLEDGE agent
isolated in a container. Note that this same approach does not affect Docker
much, indicating that while it may use Containerd as a runtime, it has a more
efficient method of handling file system layers.

Fig. 5 also shows the memory consumption of FLEDGE deployments with
Docker and Containerd. The ARM versions are again much more efficient, using
up to 50% less memory than x64 in the case of Docker and 65% in the case
of Containerd. The results show that Containerd is by far the best container
runtime to use with FLEDGE. When running FLEDGE as a host service, the
total resource requirements are only 80MiB storage and 50MiB memory on ARM,
including a VPN client container.



12 T. Goethals et al.

K8S FL+ K3S FL-

0

200

400

600

800

1,000

S
to

ra
g
e

(M
iB

)

x64 ARM

K8S FL+ K3S FL-

0

100

200

300

M
em

o
ry

(M
iB

)

x64 ARM

Fig. 6. Storage and memory requirements of evaluated container orchestrators. FL+
and FL- indicate FLEDGE running with and without kube-proxy, respectively.

6.2 Orchestrator comparison

Fig. 6 shows the storage requirements for all container orchestrators. Note that
FLEDGE is included twice in this chart; with a kube-proxy (“FL+”) and without
a kube-proxy (“FL-”). Considering functionality, it is best to compare Kuber-
netes to FLEDGE with a kube-proxy, and K3S to FLEDGE without a kube-
proxy.

Compared to Kubernetes, FLEDGE (“FL+”) only needs around 25% as
much storage on x64 and 40% on ARM. This large difference can be attributed to
many factors, including the choice of Containerd over Docker and the integration
of several plugins instead of running them as containers.

When comparing FLEDGE (“FL-”) to K3S, the difference is smaller than
with Kubernetes, but still significant. FLEDGE requires about 10% less storage
on x64, and around 30% less on ARM.

The results for memory consumption are shown in Fig. 6, using the same
notation for FLEDGE with and without kube-proxy. These results are less spread
out than those of the storage requirements.

For starters, FLEDGE only requires about half as much memory as Kuber-
netes on both x64 and ARM. Note that simply eliminating Flannel and imple-
menting a custom container networking solution already saves 36MiB of memory
on x64 and 24MiB on ARM, or around 10% of Kubernetes’ memory consump-
tion.

Compared to K3S, FLEDGE has similar memory consumption on x64, but
around 25% less on ARM. Considering that most IoT/edge devices are ARM
based, this is a significant improvement.

Finally, Fig. 7 compares the memory consumption of the container orches-
trator processes alone, without any other processes. In the case of Kubernetes,
Flannel has been included because K3S and FLEDGE provide container net-
working by default. These results show that in its current state, FLEDGE uses



Title Suppressed Due to Excessive Length 13

only about 25% as much memory as Kubernetes, and 50% to 60% as much as
K3S.

These results show that compared to both Kubernetes and K3S, FLEDGE
uses significantly less resources, especially when comparing orchestrator pro-
cesses directly.

7 FUTURE WORK

This paper presents a fully operational container orchestrator for edge devices,
but there are still some aspects of FLEDGE that can be improved.

For starters, placing the Virtual Kubelets in the cloud may not be ideal.
When running in the cloud, they can buffer commands in case a FLEDGE agent
becomes unavailable, but they also require a small amount of storage and mem-
ory. Additionally, since all Virtual Kubelets are run in their own pod, the amount
of master nodes in the cloud will have to scale with the maximum number of
pods per node, instead of using one master node to manage all edge nodes. For
these reasons it may be more efficient to integrate the Virtual Kubelet into the
FLEDGE agent.

Many other container runtimes than the ones used in FLEDGE exist, in-
cluding rkt [37] and CRI-O [38]. Docker and Containerd were chosen because
of their popularity and support for container standards, but it is possible that
other container runtimes use less resources.

Because K3S is based on Kubernetes, it may be possible to modify FLEDGE
so that it can also connect to K3S clusters. Considering the original use of Virtual
Kubelets, it could also pass Kubernetes deployments to K3S.

FLEDGE uses OpenVPN to build a network environment, but many other
VPN solutions exist, which may prove to be faster or more reliable for use with
FLEDGE.

8 CONCLUSION

The introduction puts forward three requirements for an effective container or-
chestrator on edge devices.

FLEDGE is presented as a solution that meets these requirements. A VPN
is used to homogenize edge networks and to provide a basic layer of security for
communication between the edge and the cloud. Compatibility with container
standards is achieved by using OCI API’s to communicate with container run-
times. CNI can be safely ignored using a custom implementation without affect-
ing the rest of the cluster. Low resource requirements are achieved by choosing
the optimal container runtime and through the custom implementation of select
functionality, such as container networking.

To validate the low resource requirements of FLEDGE, a number of evalua-
tions are performed. The resource requirements for FLEDGE using both Docker
and Containerd are examined, showing that Containerd only needs about half



14 T. Goethals et al.

K8S K3S FLEDGE

0

50

100

150

M
em

o
ry

(M
iB

)

x64 ARM

Fig. 7. Memory consumption of the main process of each container orchestrator. For
Kubernetes, Flannel was included in the measurement because other orchestrators
provide a container network by default.

the resources Docker does, and confirming that it is the optimal container run-
time for FLEDGE.

K3S and Kubernetes are discussed as alternatives to FLEDGE, and evalu-
ated to determine their resource requirements. The results shows that FLEDGE
only requires 50-60% less resources than a Kubernetes worker node, and around
25-30% less resources than K3S on ARM devices. On x64, FLEDGE resource
requirements are similar to those of K3S.

In conclusion, FLEDGE can deploy Kubernetes pods on edge devices while
using significantly less resources than either Kubernetes or K3S. Despite this, it
is highly experimental and many topics for future work on improving FLEDGE
are discussed.

9 ACKNOWLEDGMENT

The research in this paper has been funded by Vlaio by means of the FLEXNET
research project.

References

1. Wes Felter, Alexandre Ferreira, Ram Rajamony and Juan Rubio, An updated per-
formance comparison of virtual machines and Linux containers, 2015 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS),
DOI: 10.1109/ISPASS.2015.7095802

2. What is Kubernetes?, https://kubernetes.io/docs/concepts/overview/what-is-
kubernetes/



Title Suppressed Due to Excessive Length 15

3. Why Docker?, https://www.docker.com/why-docker
4. CNM vs CNI, https://www.nuagenetworks.net/blog/container-networking-

standards/
5. About OCI, https://www.opencontainers.org/about
6. Virtual kubelet, https://github.com/virtual-kubelet/virtual-kubelet
7. Pavel Mach and Zdenek Becvar, Mobile Edge Computing: A Survey on Archi-

tecture and Computation Offloading, IEEE Communications Surveys & Tutorials
(Volume: 19 ,Issue: 3 ,third quarter 2017), DOI: 10.1109/COMST.2017.2682318

8. Karthik Kumar and Yung-Hsiang Lu, Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?, Computer April 2010, pp. 51-56, vol. 43,
DOI: 10.1109/MC.2010.98

9. Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana and Rajiv Ranjan,
Osmotic Computing: A New Paradigm for Edge/Cloud Integration, IEEE Cloud
Computing (Volume: 3, Issue: 6, Nov.-Dec. 2016), DOI: 10.1109/MCC.2016.124

10. Daniele Santoro, Daniel Zozin, Daniele Pizzolli, Francesco De Pellegrini and Silvio
Cretti, Foggy: a platform for workload orchestration in a Fog Computing environ-
ment, 2017 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), DOI: 10.1109/CloudCom.2017.62

11. Ahsan Morshed, Prem Prakash Jayaraman, Timos Sellis, Dimitrios Georgakopou-
los, Massimo Villari and Rajiv Ranjan, Deep Osmosis: Holistic Distributed Deep
Learning in Osmotic Computing, IEEE Cloud Computing (Volume: 4, Issue: 6,
November/December 2017), DOI: 10.1109/MCC.2018.1081070

12. Kubernetes federation, https://kubernetes.io/docs/concepts/cluster-
administration/federation/

13. T. Wauters et al. (2014). Federation of Internet experimentation facilities: architec-
ture and implementation, European Conference on Networks and Communications,
Proceedings. p.1-5

14. Rafael Moreno-Vozmediano, Eduardo Huedo, Ignacio M. Llorente, Rubn S. Mon-
tero, Philippe Massonet, Massimo Villari, Giovanni Merlino, Antonio Celesti,
Anna Levin, Liran Schour, Constantino Vzquez, Jaime Melis, Stefan Spahr, Dar-
ren Whigham, BEACON: A Cloud Network Federation Framework, Advances in
Service-Oriented and Cloud Computing: Workshops of ESOCC 2015, Taormina,
Italy, September 15-17, 2015, Revised Selected Papers (pp.325-337)

15. Paolo Bottoni, Emanuele Gabrielli, Gabriele Gualandi, Luigi Vincenzo Mancini,
Franco Stolfi, FedUp! Cloud Federation as a Service, Service-Oriented and Cloud
Computing : 5th IFIP WG 2.14 European Conference, ESOCC 2016, Vienna, Aus-
tria, September 5-7, 2016, Proceedings (pp.168-182)

16. Goethals Tom, Dwight Kerkhove, Laurens Van Hoye, Merlijn Sebrechts, Filip De
Turck, and Bruno Volckaert, FUSE: A microservice approach to cross-domain fed-
eration using docker containers, CLOSER2019, the 9th International Conference
on Cloud Computing and Services Science (pp. 90-99)

17. Deepak Puthal, Surya Nepal, Rajiv Ranjan and Jinjun Chen, Threats to Network-
ing Cloud and Edge Datacenters in the Internet of Things, IEEE Cloud Computing
(Volume: 3, Issue: 3, May-June 2016), DOI: 10.1109/MCC.2016.63

18. Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, Lydia Chen and
Rajiv Ranjan, Software Defined Membrane: Policy-Driven Edge and Internet of
Things Security, IEEE Cloud Computing (Volume: 4, Issue: 4, July/August 2017),
DOI: 10.1109/MCC.2017.3791014

19. N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba, Network virtualization:
state of the art and research challenges, IEEE Communications Magazine (Volume:
47, Issue: 7, July 2009), DOI: 10.1109/MCOM.2009.5183468



16 T. Goethals et al.

20. H. Hamed, E. Al-Shaer and W. Marrero, Modeling and verification of IPSec and
VPN security policies, 13TH IEEE International Conference on Network Protocols
(ICNP’05), DOI: 10.1109/ICNP.2005.25

21. Frederic Pohl and Hans Dieter Schotten, Secure and Scalable Remote Access Tun-
nels for the IIoT: An Assessment of openVPN and IPsec Performance, ESOCC
2017: Service-Oriented and Cloud Computing pp 83-90

22. I. Kotuliak, P. Rybr and P. Trchly, Performance comparison of IPsec and TLS
based VPN technologies, 2011 9th International Conference on Emerging eLearning
Technologies and Applications (ICETA), DOI: 10.1109/ICETA.2011.6112567

23. Claus Pahl and Brian Lee, Containers and Clusters for Edge Cloud Architectures
– A Technology Review, 2015 3rd International Conference on Future Internet of
Things and Cloud, DOI: 10.1109/FiCloud.2015.35

24. Corentin Dupont, Raffaele Giaffreda and Luca Capra, Edge computing in IoT
context: Horizontal and vertical Linux container migration, 2017 Global Internet
of Things Summit (GIoTS), DOI: 10.1109/GIOTS.2017.8016218

25. Rancher Labs - K3S Lightweight Kubernetes, https://k3s.io/
26. Ying Xiong, Yulin Sun, Li Xing and Ying Huang, Extend Cloud to Edge

with KubeEdge, 2018 IEEE/ACM Symposium on Edge Computing (SEC), DOI:
10.1109/SEC.2018.00048

27. Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheime, Eric
Tune and John Wilkes, Large-scale cluster management at Google with Borg, Eu-
roSys ’15 Proceedings of the Tenth European Conference on Computer Systems,
Article No. 18

28. KubeEdge: A Kubernetes Native Edge Computing Framework,
https://kubeedge.io/en/

29. What is KubeEdge: Architecture, https://docs.kubeedge.io/en/latest/modules/
kubeedge.html#architecture

30. Roger A Light, Mosquitto: server and client implementation of the MQTT protocol,
The Journal of Open Source Software, DOI: 10.21105/joss.00265

31. imec Virtual Wall, https://www.ugent.be/ea/idlab/en/research/research-
infrastructure/virtual-wall.htm

32. The DF command, https://www.linuxjournal.com/article/2747
33. pmap - report memory map of a process, https://linux.die.net/man/1/pmap
34. Propertional Set Size (PSS), http://lkml.iu.edu/hypermail/linux/ ker-

nel/0708.1/3930.html
35. Docker components explained: http://alexander.holbreich.org/docker-

components-explained/
36. kube-proxy, https://kubernetes.io/docs/reference/command-line-tools-

reference/kube-proxy/
37. Getting started with rkt, https://coreos.com/rkt/docs/latest/getting-started-

guide.html
38. CRI-O, lightweight container runtime for Kubernetes, https://cri-o.io/


