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1 Introduction

The goals of this dissertation are to investigate the different statistical
challenges in modeling longitudinal dyadic data, to construct a model that
deals with these issues, and to enable applied researchers to analyze this
type of data by providing software tools. In this chapter, the definition of
longitudinal dyadic data is explained and an overview of existing models
to fit such data are introduced. The details of the subsequent chapters
and their contribution towards the topic of longitudinal dyadic data are
specified at the end of the chapter.

1.1 Dyadic data

Human life is defined by interactions. The way humans behave, work,
communicate, experience life: it all occurs in the social context of life. Re-
searchers investigating human behavior or emotions are often confronted
with the fact that they have to take the social environment into account
if they really want to understand what is going on. For example, devel-
opmental researchers often have to include the teachers, the parents and
the peers from a child’s social context when they study developmental
problems in schoolchildren. As daily interactions with acquaintances or
strangers often occur in pairs, the idea of examining pairs or dyads as
a whole instead of independent individuals has become more and more
conventional in social and behavioral science (DePaulo & Kashy, 1998).
Relationship researchers will study married couples, family researchers
will investigate parent-child dyads or sibling relationships, organizational
psychologists study employer-employee negotiations, social psychologists
engage in interracial interactions, etc.

Even though the dyad, consisting of only two individuals, is a simple
social system, it is the most fundamental unit of interpersonal interactions
and close relationships (Reis, Collins, & Bersheid, 2000). Love, conflict,
person perception and aggression are only a few of the many theoretical

1



2 Chapter 1

concepts that are intrinsically dyadic in nature. The richness of research
questions based on these dyadic interactions is stunning. Many of the
standard methods in social science research are not able to address these
questions correctly. This is mainly due to the fact that they are developed
for the study of individuals. The discipline of psychology, which focuses
on the individual, has dominated research in social and behavioral sci-
ence for many generations (Bond & Kenny, 2002). More importantly, the
traditional statistical methods exhibit an individualistic orientation by
assuming independent sampling of the individuals. This independence as-
sumption is violated in the case of dyadic data. For instance in the context
of marital satisfaction, the possibility that the husband’s responses are un-
related to the wife’s responses is very slim as they inherently report on
the same relationship (see Figure 1.1).

Wife1 Husband1 Wife2 Husband2

Couple1 Couple2

Su
bj
ec
ts

D
ya
ds

Figure 1.1 Two heterosexual couples from dyadic data. The red dotted
lines illustrate the non-independence between the members of a dyad.

The idea that the two members of a dyad share something in com-
mon is one of the key features in dyadic data, and is referred to as
non-independence, interdependence or linked scores. It means that the
measurements of both members of a dyad are more (dis)similar than the
measurements of two random people (Gonzalez & Griffin, 1999). There
are different sources that can cause this heightened (dis)similarity. Com-
positional effects occur in married couples, as they are known to share
similarities in education level, age, religion, etc. due to assortative mat-
ing (Epstein & Guttman, 1984). Mutual influence effects are illustrated
by people who date: the less commitment is shown by a person’s dating
partner, the less committed that person will be in the relationship. Two
roommates will show similar amounts of trust in their janitor because
of common fate effects, namely, they share the same building (Kenny,
1996). From a statistical point of view, non-independence means that the
two members of a dyad are correlated with one another, that is, there is a
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non-zero correlation between their scores. If one would ignore this corre-
lation (i.e., assume it zero nonetheless), inference will be biased: the test
statistics will have incorrect standard errors and the degrees of freedom
will be inaccurate, affecting the Type I and Type II error rate (Kenny,
Kashy, & Bolger, 1998). Formerly, researchers have dealt with this issue of
non-independence by dropping one member’s data or by aggregating the
results on the dyad level (e.g., by taking the average of the two members
scores). In the former, different conclusions are obtained as data from dif-
ferent members are discarded. In the latter, two very distinct scores are
equated, leading to erroneous inference (Cook & Kenny, 2005). Alterna-
tively, researchers have fitted two separate models, one for each role of
dyad members, for example, one model for the mothers and one model for
the children when investigating the bond between a child and her mother.
This approach avoids the non-independence problem at a greater cost: it
is no longer possible to answer questions with respect to dyadic effects
(Planalp, Du, Braungart-Rieker, & Wang, 2017). Moreover, it presumes
differences between both members of a dyad. In the case of mother-child
bond, this sounds logical as they differ in age, life-experience, etc., but in
the case of same-sex couples, this difference might not be as justifiable as
in the previous case.

Conceptually, this non-independence also implies that the behavior
of one member of a dyad is best understood if the researcher takes the
behavior of the other member into account, aside from his or her own be-
havior. In other words, a second key feature of dyadic data incorporates
the fact that members of the same dyad influence each other. For example,
psychological control by the parent (i.e., manipulative and pressuring tac-
tics that intrudes upon the child’s psychological world) is highly related
to internalizing problems and depressive feelings of the child (Barber &
Harmon, 2002). This effect has typically been interpreted as a parenting
effect, yet, one has to realize that the child’s internalizing problems also
affect the parental behavior. It may be possible that the adolescent mal-
adjustment elicits psychological control of the parent over time (Soenens,
Luyckx, Vansteenkiste, Duriez, & Goossens, 2008). In literature, the attri-
bution error is often referred to as pseudo-unilaterality and the example
illustrates the bidirectional influence fundamental to dyadic data. It is
considered a deadly sin in dyadic data analysis to ignore one’s own or
one’s partner’s influence, that is, it is something a researcher should avoid
doing when considering dyadic data (Kenny, Kashy, & Cook, 2006).
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Treating the members of a dyad as (in)different from one another
is a third key feature of dyadic data. A dyad is called distinguishable or
nonexchangeable if there exists at least one variable that differentiates one
member from the other. For example, in heterosexual couples, each dyad
consist of a man and a woman (gender) and in industrial-organizational
pairs, each dyad consist of a supervisor and an employee (status). It allows
the researcher to introduce a systematic or meaningful order in the two
scores of a dyad. However, there are situations in which no such natural
distinction is available, for instance, in case of same-sex couples or cowork-
ers. Those dyads are called indistinguishable or exchangeable dyads. Most
data analytic techniques are more easily applied for distinguishable dyads.
For this reason, researchers previously introduced an arbitrary variable
into the data as a distinguishing variable. However, as this variable is not
meaningful, either theoretically or empirically, it jeopardizes the validity
of the results since it introduces unnecessarily complex models. In that
case, the researcher may face convergence issues, power issues, and in-
correct standard errors. Contrarily, if you treat dyads as indistinguishable
while they were supposed to differ, then you are actually fitting the wrong
model. Moreover, it is no longer possible to answer research questions that
focus on distinguishability (e.g., questions about gender differences in so-
cial science) (Kenny et al., 2006).

1.1.1 Dyadic models

Over the last decade, researchers have developed several models that ac-
knowledge these crucial aspects of dyadic data, mostly discriminated by
the source that generates the non-independence within the dyads. The
mutual influence model, also called the mutual-feedback model, allows for
the two members of a dyad to directly affect each other’s outcome scores
(see Figure 1.2). These direct effects are called reciprocal effects and intro-
duce a feedback loop in the model (Woody & Sadler, 2005). For instance,
a person’s commitment to the relationship (Y ) is directly influenced by
the amount of commitment shown by his or her partner. In this case, the
independent variable is considered an instrumental variable: it predicts
one of the outcome scores and is only related to the outcome score of
the partner via the feedback loop. In the context of relationship commit-
ment, such an instrumental variable could be the person’s anxiety level
of close relationships (X). The variability that cannot be explained by
the predictor or the feedback loop is incorporated in the model by the
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residuals (ε). Note that these residuals are allowed to correlate due to the
non-independence (see double headed arrow between the residuals).

XF

XM

YF

YM

εF

εM

Figure 1.2 The mutual influence model for the effect of anxiety (X)
on relationship commitment (Y) of heterosexual couples (M: male and F:
female).

Common fate models, also called latent group models or dyadic-per-
sonality models, depicted by the path diagram in Figure 1.3, are used when
there is a theoretical construct that affects both members (Ledermann &
Kenny, 2015). Suppose you are interested in the effect of the trust that two
siblings show in their mother (X) on the strength of the relation between
both siblings (Y ). The ratings for X (respectively Y ) of the two siblings
actually represent two facets of one and the same construct, namely trust
in their mother (respectively relationship strength). These constructs are
called latent variables as they represent variables that cannot be directly
observed (the big circles in the path diagram). In this case, the residuals
of the two members are allowed to correlate.
Combinations and modifications of dyadic models are possible too. For
example, one could alter the mutual influence model so that the corre-
lation between the residuals is replaced by direct effects from XF to YM
and from XM to YF with ‘F ’ the index for females and ‘M ’ the index for
males (Woody & Sadler, 2005). In Cheung (2009), a dyadic latent con-
gruence model was introduced, which adapts the common fate model so
that the latent variables represent the average and the difference of the
dyad members’ measurements, respectively.
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XS1 XS2 YS1 YS2

εXS1 εXS2 εS1 εS2

Trust Closeness

Figure 1.3 The common fate model for the effect of trust in their
mother (X) on the relationship strength (Y) of two siblings (S1: oldest
sibling and S2: youngest sibling).

The most dominant model in dyadic data analysis is the actor-partner
interdependence model or APIM (Kenny et al., 2006). The APIM, illus-
trated by Figure 1.4, incorporates the fact that one has to acknowledge
one’s own (actor) and one’s partner’s (partner) characteristics, while keep-
ing the correlation between both outcome scores caused by compositional
effects into account (interdependence). To demonstrate the model, con-
sider the study of Hinnekens, Stas, Gistelinck, and Verhofstadt (2019)
investigating the association between actual, assumed and perceived un-
derstanding and the partner’s levels of dyadic adjustment. The authors
were interested, among other things, in whether the partner’s levels of
perceived understanding would be related to relationship satisfaction (in
contrast to actual understanding). More specifically, does the way some-
one feels understood by his other partner have a high impact on dyadic
adjustment? In this study, 152 cohabiting and married heterosexual cou-
ples were asked to rate the extent to which the respondents felt under-
stood by their partner during a conflict discussion. Dyadic adjustment
was measured using the Dutch questionnaire of the Dyadic Adjustment
Scale (DAS). It reflects the degree to which the couple perceives that they
agree on relationship aspects (dyadic consensus), that they are satisfied
with their relationship (dyadic satisfaction), that they engage in common
activities (dyadic cohesion), and that they express affections towards each
other (affectional expression) (Buysse & Heene, 1997).
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XF

XM

YF

YM

εF

εM

aF

p
FM

aM

pMF

1

1

σFMσXFM

Figure 1.4 The actor-partner interdependence model for the effect of
perceived understanding (X) on dyadic adjustment (Y) of heterosexual
couples (M: male and F: female).

In the study of Hinnekens et al. (2019), dyads can theoretically be as-
sumed distinguishable. As the authors interviewed heterosexual couples,
gender is a meaningful variable that distinguishes both members from
each other (‘F’ for females and ‘M’ for males). To explain the individ-
ual differences in dyadic adjustment, we explored the association between
perceived understanding (PUN) and dyadic adjustment (DAS) using the
APIM. In this case, the model can be expressed as the following multi-
variate regression,

⎧⎪⎪
⎨
⎪⎪⎩

DASFj = µY F + aFPUNFj + pMFPUNMj + εFj

DASMj = µYM + aMPUNMj + pFMPUNFj + εMj

, (1.1)

with j referring to the dyad number (j = 1, . . . ,152). The parameter es-
timates of the fitted APIM are shown in Table 1.1. The intercepts µF
and µM represent the mean value of dyadic adjustment for females and
males, respectively. The average dyadic adjustment for both dyad mem-
bers is 118.65 for females, and 118.06 for males. Husbands and wives show
a similarly high average level of satisfaction in their relationship. The ac-
tor effects, aF and aM , quantify the intrapersonal effect for the female
member and the male member, respectively. Both actor effects are pos-
itively estimated (aF = 0.84 and aM = 1.36), which means that females
and males report a higher relationship satisfaction when they perceive
that their partner understands them. Moreover, the actor effect for males
is higher than the one for females. If the husband believes that his wife
fails to understand his feelings, then the impact on relationship satisfac-
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tion is more harmful than in case the wife feels misunderstood by her
husband. The partner effects, pMF and pFM , quantify the interpersonal
effects between both members of a dyad, ergo the double index. Following
the convention for regression coefficients, the first index refers to the effect,
while the second refers to the cause. So, as pFM = 0.26 is not significant,
it means the husband’s relationship satisfaction is not significantly influ-
enced by the fact that his wife feels (mis)understood by him. Conversely,
pMF = 0.60 indicates that there is a significant influence of the husband
feeling (mis)understood by his wife on the dyadic adjustment score of the
female partner. It is important for the wife’s relationship satisfaction that
the husband feels understood by her. Note that this importance is of a
lesser extent than the wife herself feeling understood by her husband. The
residuals or error terms, εF and εM , account for variation in relationship
satisfaction that cannot be explained by perceived understanding. These
residual variations are rather large (σ2

M = 115.89 for males and σ2
F = 141.46

for females). The disturbances are typically allowed to correlate in order to
connote the compositional effects in the outcome variable. The correlation
between the females and males adjustment score is 58.89√

115.89∗141.46 = 0.46.
It is obvious that if one would ignore this high, significant correlation, the
above described results will change.

Table 1.1 Parameter estimates of the APIM for the effect of perceived
understanding on dyadic adjustment.

Estimate (SE) z-value p-value CI(95)
Effect on male outcome
µM 118.65 0.90 132.58 <0.001 [116.89, 120.40]
aM 1.36 0.21 6.43 <0.001 [0.95, 1.78]
pFM 0.26 0.20 1.35 0.176 [-0.12, 0.65]
Effect on female outcome
µF 118.06 0.99 119.91 <0.001 [116.13, 119.99]
aF 0.84 0.21 3.93 <0.001 [0.42, 1.26]
pMF 0.60 0.23 2.56 0.010 [0.14, 1.06]
Covariance parameters
σ2
M 115.89 13.22 8.76 <0.001 [89.97, 141.80]
σ2
F 141.46 16.07 8.80 <0.001 [109.97, 172.95]
σFM 58.89 11.33 5.20 <0.001 [36.68, 81.09]
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The APIM quantifies the interpersonal (partner effects) and intra-
personal effects (actor effects) for both members of a dyad, and it al-
lows the researcher to compare them and test their significance. It is
also possible to test other hypotheses, for instance, one might want to
test whether this relationship context is either actor-oriented (pMF = 0 =

pFM ), partner-oriented (aF = 0 = aM ), couple-oriented (pMF = aF and
pFM = aM ) or social comparable (pMF + aF = 0 = pFM + aM ) (Kenny &
Cook, 1999). Symmetrical relations can be tested as well, referred to as in-
distinguishability tests or ITs. These tests empirically answer the question
whether the distinguishing variable actually matters in the statistical anal-
ysis. For instance, as Table 1.1 suggests, the average score of the dyadic
adjustment score is quite similar for males and females. In such a case, one
might wonder whether gender induces distinguished average adjustment
scores between both dyad members (µF = µM ). One can evaluate such
hypothesis by constraining the parameters in the model (i.e., restrict the
values of these parameters) and by checking whether the model with or
without the constraints fits the data better. In this case there is no empiri-
cal evidence of any gender difference between the mean dyadic adjustment
value (χ2

1 = 0.36, p-value = 0.55).
The study of Hinnekens et al. (2019) uses a cross-sectional design: the

two variables “perceived understanding” and “relationship satisfaction”
are measured at one single time point. The APIM is also applicable when
considering pre-post designs, when several variables are measured at two
different time points, such as before and after an intervention. For exam-
ple, one could measure the attachment style of therapist-client pairs and
examine its effect on the working alliance reported after three weeks of
therapy (Marmarosh et al., 2014). It is also possible that the same variable
is measured for both dyad members at the two different time points. In
Hunter, Fox, and Jones (2016), the authors investigated the influence of a
best friends’ aggressive humor style to each others’ later use of the humor
style. Here, the X in Figure 1.4 corresponds to aggressive humor at time
point 1 and Y to aggressive humor at time point 2. The APIM applied on
this type of pre-post design is often used to assess questions regarding sta-
bility (i.e., the actor effects) and reciprocity (i.e., the partner effects). It is
equivalent to a bivariate autoregressive cross-lagged model for individuals
with two time points. The latter fits two different outcome variables of
the same person simultaneously and allows them to be correlated.
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The APIM and the other above-mentioned dyadic models are used to
explain individual differences in the outcome scores of a process caused
by an antecedent. Yet, one might be interested in the process itself or in
the way those associations between the predictor and the outcome un-
fold over time. For instance, instead of focusing on the characteristics of
relationship satisfaction and the way it is affected by perceived under-
standing, focus may be on the way this effect changes over time. In this
process approach or process research, questions are related to the underly-
ing mechanisms. In order to reveal the multivariate nature of a process as
well as its time dependency, dyads need to be measured repeatedly over
time. If the interest lies in changes over time or in over-time differences
between dyads, one needs to collect longitudinal dyadic data.

1.2 Longitudinal dyadic data
Consider the study of De Smet et al. (n.d.) which investigates different
coping techniques to attenuate the effect of perceived intrusive partner
behavior on individual well-being in the long run. More specifically, the
authors interviewed 189 heterosexual couples at five different times points
and measured, among other things, their perceived intrusive behavior and
their stress level. The former was based on a questionnaire that rated how
often they perceived their partner engaging in 11 types of privacy-invading
behaviors (e.g., reading your text messages without consent, checking your
pockets, or entering your room without knocking) (Vinkers, Finkenauer,
& Hawk, 2011). The latter was based on the Perceived Stress Scale, mea-
suring the degree to which situations in one’s life are appraised as stressful
(Cohen, Kamarck, & Mermelstein, 1984). In Figure 1.5, the standard de-
sign of the longitudinal dyadic data or LDD is presented. The key features
of dyadic data are still extant in LDD: the upper part of the figure is the
same as Figure 1.1. Two members of the same dyad are still connected
due to their non-independence as the stress level of two married per-
sons may be more (dis)similar than the one of two random persons. One
still cannot ignore the impact of one’s own and one’s partner’s charac-
teristics. Thinking that your partner intrudes your privacy (partner) as
well as being afraid to get busted after an act of intrusive behavior to-
wards your partner (actor) will contribute to your level of stress. Lastly,
(in)distinguishability is still a concept of interest.
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Due to the longitudinal nature of the data, there are now two levels of
variation: Level-2 or interindividual variation and Level-1 or intraindivid-
ual variation (see Figure 1.5). On one hand, the stress level might differ
between members across different dyads as one can have a more stress
resistant personality than the other (interindividual variation). On the
other hand, a dyad member’s stress level can show temporal fluctuations
(intraindividual variation): a person may report more stress on a particu-
larly hard day. From a statistical point of view, one can explicitly separate
higher level sources of variation by fitting multilevel models, which uses
random effect to do so (Hox, 2010). Unfortunately, the levels of variation
are more complicated for LDD compared to a longitudinal individual case
as they both inhibit non-independence. In fact, there are two kinds of non-
independence to take into account: the non-independence that connects
the two members of the same dyad and the non-independence between the
repeated measures, also referred to as autocorrelation or temporal corre-
lation. The scores of a variable measured at two different time points are
associated to each other. For instance, the amount of stress a member
experiences today is related to the amount of stress he or she experiences
tomorrow, the day after tomorrow, the day thereafter, etc. Even though
this association fades away as the time lag between the measurements
increases, the autocorrelation cannot be ignored as this will lead to erro-
neous inference (Singer & Willett, 2003). This idea holds for each member
of a dyad, but also across both members of the same dyad. As the time
points are identical for each member of a dyad, these measurements of the
LDD are correlated as well, as shown by the dotted arrows in Figure 1.5.

Formerly, researchers have dealt with LDD as if it originated from a
three-level nested design. Indeed, there are three conceptual levels: time,
individuals and dyads, but these levels do not correspond to the levels
of analysis. Dyads are entirely defined by the two members it consists
of. As a result, the individual level is saturated within the dyadic level
and cannot generate any random variability (Diggle, Heagerty, Liang, &
Zeger, 2002). Moreover, a three-level design constrains the correlation
between both members of a dyad to be positive, which is not always the
case in practice (e.g., one of two friends may compensate the unfriendly
behavior of the companion by acting extra nice). Lastly, a three-level
design assumes time and person to be nested: the correlation between two
members of a dyad at each time point is expected to be zero. As mentioned
above, this does not make any sense for LDD as it ignores time-specific
sources of (dis)similarities within dyads (Kenny & Kashy, 2011).
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Figure 1.5 The two-level design of longitudinal dyadic data.

Thus, when analyzing LDD, one requires models that correctly ac-
knowledges its two-level design by: (a) taking the interindividual varia-
tion into account due to the non-independence between the dyad mem-
bers, (b) taking the intraindividual variation into account due to the non-
independence between the time points, and (c) allowing the same time
points across both members of a dyad to be correlated due to the non-
independence between the dyad members.

1.2.1 Longitudinal dyadic models
The most logical way to solve a complex problem is to break it down. First
consider a simple problem, solve it, and then extend the solution to the
complex situation. Hence, several classes of models for longitudinal dyadic
data already exist and originate from the longitudinal individual context.
Indeed, it is possible to extend dynamic models from the individual to
the dyadic context. Dynamic models use a set of equations to express the
time dependency of a system. More specifically, it enables researchers to
describe the present state of a system as a function of its previous state
while presenting a rate and a direction of change. So, for the dyadic case,
one has to implement a dynamic model that is able to simultaneously
describe two processes, one for each dyad member, whilst allowing them
to correlate at both Level-2 and Level-1.
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Reconsider the study of De Smet et al. (n.d.) which focuses on the effect
of the antecedent “intrusive behavior” on the outcome variable “stress”
over time. If one is interested in questions such as “How does the husband’s
stress evolve over time?” or “What is the potential relation between the
husband’s trajectory and the wife’s trajectory of stress?”, latent growth
curve (LGC) models for dyadic data could be used (Ferrer & McArdle,
2003). As Figure 1.6 shows, the dyadic LGC actually corresponds to two
LGC models, one for females and one for males, which are allowed to
correlate. The latent intercepts (IF and IM ) represent the initial state
of the process for each member, and the latent slopes (SF and SM ) are
used to represent the rate of change in stress, that is, its loadings λ define
the shape of the trajectory. For example, if a constant increase in equally
spaced time points is assumed, then the loadings are respectively fixed to
0,1,2, etc. The correlations between the latent intercepts and slopes in-
corporate the non-independence at Level-2, while the correlated residuals
incorporates the non-independence at Level-1.

YF1 YF2 ⋯ YFT YM1 YM2 ⋯ YMT

εF1 εF2 ⋯ εFT εM1 εM2 ⋯ εMT

IF SF IM SM

1 1 1

0
λF2

λFT

1 1 1

0
λM2

λMT

Figure 1.6 The dyadic latent growth curve model.

A class of models related to the LGCs is the latent change score model
or latent difference score model. The latter provides information about
the growth of each process and the way these processes are related, just
like the LGC, but it also captures the order in which these processes
influence each other by modeling the differences in change and by adding
time-lagged effects between them (Estrada, Sbarra, & Ferrer, 2018).
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The concept of directly implementing time-sequential dynamic associa-
tions is also reflected in the autoregressive cross-lagged models. Due to
the bivariate nature of these models, the non-independence at Level-1 is
already incorporated, see Figure 1.7. The models are usually referred to as
the repeated measurement APIM or RM-APIM because they are equiva-
lent to the pre-post design of the APIM, extended to more than two time
points. These models are most often used to answer questions like “How
is one’s own level of stress affected by one’s partner’s amount of stress
experienced yesterday?” or “Is stress in both members of a dyad equally
affected by yesterday’s amount of stress?”. Recently, Hamaker, Kuiper,
and Grasman (2015) illustrated how this model can be extended with
random intercepts to incorporate the non-independence at Level-2.

YF1 YF2 ⋯ YFT

YM1 YM2 ⋯ YMT

εF2 ⋯ εFT

εM2 ⋯ εMT

Figure 1.7 The repeated measurement actor-partner interdependence
model.

The above-mentioned models for LDD succeed in capturing the tem-
poral correlation in the outcome variable while acknowledging the non-
independence due to the dyadic nature of the data. These models focus
on questions related to the course and the shape of change. It allows re-
searchers to examine when most of the change takes place, to compare
the shape of change to an underlying theory, to examine how well an
overall trajectory represents the individual trajectories, or to discover the
differences in the trajectories between the two roles of the dyad members
(Laurenceau, Hayes, & Feldman, 2007). However, these models do not al-
low to answer questions such as “How does the wife’s intrusive behavior
affect the amount of stress experienced by the husband?” or “Does an in-
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crease in intrusive behavior of a person on a particular day (as compared
to his or her average behavior) intensifies that person’s stress level?”. For
these questions, the influence of a predictor on the trajectory is of higher
importance than the trajectory itself. It requires the researcher to discover
which variables clarify the shape of change.

1.2.2 A new class of longitudinal dyadic models?
To answer LDD questions about the influence of a predictor, one could
argue that the above-mentioned models can be extended by allowing con-
trol variables. Bollen and Curran (2006) already discussed how to add
explanatory variables to LGCs in the longitudinal individual setting. The
same reasoning could be repeated when adding explanatory variables in
the dyadic LGCs. However, transferring these extensions to the dyadic set-
ting might not be as easy as it seems. In Nestler, Grimm, and Schönbrodt
(2015), the authors demonstrate how to incorporate the effect of a single
time-invariant dyadic variable into the dyadic LGC model, in other words,
a variable measured on the dyad level (i.e., the score for both dyad mem-
bers) that does not depend on time. But how do we handle time-varying
dyadic predictors? And how do we deal with predictors measured at the
member-level (i.e., the score is different between both dyad members)?

Above, models from the longitudinal individual setting are extended
towards the dyadic setting. It involves facing the statistical challenges
of extending cross-sectional individual models to dyadic models, together
with new obstacles associated with the fact that these challenges are now
situated in the longitudinal context. In this dissertation, we opted for a
different approach. Here, dyadic models will be adapted towards the lon-
gitudinal setting. This way, the dyadic features are more easily preserved.
The adaptation to the longitudinal setting can be based on approaches
from the individual setting to handle the temporal characteristics. As
mentioned before, the APIM is considered as one of the most popular
models when considering dyadic data. Therefore, in this dissertation, the
APIM was chosen to be extended towards the longitudinal setting.

1.3 Objectives
The goal of this project was to extend the APIM from the cross-sectional
to the longitudinal setting, while dealing with the major issues associated
with this improvement. The scope of this dissertation was limited to the
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extension of the APIM (and not the common fate model or the mutual
influence model) because the APIM can be considered as one of the most
prominent models within the dyadic research. As its latest bibliography
update shows, more than 1,100 articles fitted the cross-sectional APIM
on dyadic data as of April 2017, and its popularity is still exponentially
increasing (Stas, Gistelinck, Ackerman, Garcia, & Kenny, 2017).

As one will notice in the next chapters, the extensions of the APIM for
LDD are introduced in the context of distinguishable dyads. Of course,
researchers first have to investigate whether or not these extensions should
be altered for indistinguishable dyads. As mentioned before, this means
that one has to perform indistinguishability tests before fitting any of
these models. Indistinguishability might be considered as a theoretically
driven decision (e.g., based on the design, previous research, or in case the
research question involves assuming the dyads to be (in)distinguishable),
but it can also be considered as an empirical question that allows re-
searchers to increase power or to obtain simpler models, easier to interpret.
Although indistinguishability tests are not novel for dyadic researchers,
there are still some questions related to the subject that have not been
covered yet. For example, indistinguishability tests are often performed
within the structural equation modeling (SEM) framework. This frame-
work is a multi-equation technique in which variables are allowed to be
latent or unmeasured, and it easily implements constraints on the model
parameters. Within SEM, model parameters are fitted using the max-
imum likelihood (ML) estimator in most software packages by default.
Consequently, indistinguishability tests for (co)variance components of
the model can become liberal due to the bias towards zero in the ML
estimation of variance parameters. The restricted maximum likelihood
(REML) estimator produces unbiased (co)variance estimates and might
be preferred instead. Hence, the question arises how one could incorporate
REML estimation in indistinguishability testing.

Once the researcher knows whether the dyads should be treated as
(in)distinguishable, he or she can fit an appropriate model on the dyadic
data. In case dyads are measured repeatedly over time, one needs lon-
gitudinal dyadic models to fit the data. As this dissertation focuses on
research questions about the effect of an antecedent on the current be-
havior of each dyad member, we attempt to extend the cross-sectional
APIM towards the longitudinal setting. Here, a major concern regards
the covariance structure, which now has to incorporate two types of non-
independence: one due to the dyadic nature of the data and one due to the
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repeated measures design of the data. Time-invariant sources of variabil-
ity (i.e., Level-2 variation) are easily captured by a random effect/latent
variable for each dyad member, which are allowed to be correlated. This is
easily obtained in either the MLM or SEM framework. However, standard
software packages will assume the residuals to be independent from one
another. Hence, the challenge lies in modeling the time-specific covariance
structure in combination with these random effects/latent variables.

In order to deal with temporal correlation, two major approaches can
be distinguished in the individual setting. So, we adopted these progres-
sions in order to expand the APIM towards LDD. The first progression
involves the specification of a complex residual covariance structure that
allows the residuals in the model to be correlated within dyad members
as well as across dyad members. This progression yields marginal param-
eter estimates for the effect of an antecedent on an outcome variable, but
requires a technical evolution in existing software packages in order to
deal with this complex covariance structure. For instance, in social and
behavioral science, researchers often assume a first-order autoregressive
or AR(1) covariance structure within an individual. It defines the correla-
tion between two outcome scores of a person to fade away as the time gap
grows between both measurement occasions. This decrease in correlation
is represented by the increasing exponent of a correlation parameter ρ
(−1 < ρ < 1). However, the covariance structure of the residuals for dyads
is a lot more complex than the one for individuals. Most MLM software
packages, often preferred when fitting longitudinal data, are not prepared
to deal with such level of complexity. As a result, the SEM framework
could be used instead, which is much more flexible than the MLM frame-
work. Using standard SEM software packages, one can define any type
of covariance structure. As shown later, this approach is computationally
intensive, especially when the amount of time points becomes quite large.
Hence, an alternative approach within the SEM framework was consid-
ered.

The second progression to incorporate temporal correlation works con-
ditionally on the previous time point. In this case, the residuals can still
be assumed independent from each other, hence, no (major) adaptations
of the statistical software packages are expected. Yet, parameter estimates
for the effect of an antecedent on an outcome variable are now interpreted
conditionally on the previous outcome score. Within the dyadic context,
this would imply extending the APIM with a lagged dependent variable
in the mean structure of the model (i.e., adding the outcome score of the
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previous time point as a predictor for the current outcome score). Al-
though this seems straightforward, it is not in combination with random
effects in the model. Most MLM software packages follow the exogeneity
assumption, that is, they expect all exogenous variables (including the
lagged dependent outcome variables) to be independent from the random
effects. This is a false assumption in the case of lagged dependent outcome
variables as they still contribute to the random intercept of the model.
Violating this assumption leads to biased inference, especially when the
amount of time points is rather small. To resolve this bias, an alternative
approach was investigated within the SEM framework.

Aside from the non-independence due to the dyadic design and the
non-independence due to the repeated measures, there are other statisti-
cal challenges to consider. For instance, the effect of an overtime predictor
can potentially have a different direction and/or magnitude when compar-
ing its time-averaged (i.e., averaged over time) to its time-specific effect. In
the study of De Smet et al. (n.d.), an increase in the average intrusive be-
havior of the partner (i.e., time-averaged effect) might only slightly affect
one’s average level of stress as he or she keeps experiencing this behav-
ior as “normal” for the partner and acquiesces in the increase. However,
if one’s partner shows an increase in intrusive behavior on a particular
day compared to the partner’s average (i.e., time-specific effect), he or
she might sense something is going on, leading to a significantly higher
level of stress. Although this issue can easily be resolved, it harbors some
additional technical adaptations when considering the APIM’s extensions
within the SEM framework.

As one notices, things become quite technical in this introduction.
These statistical and technical complexities often form a barrier and dis-
courage researchers to apply these more sophisticated models on their
data. To counteract this, the longitudinal extensions of the APIM need to
be more available and applicable for the user. Therefore, we made it our
goal to develop a user-friendly free web application, called the
LDDinSEM -application. It allows anyone to easily define the extensions
of the APIM based on both progressions using the point-and-click in-
terface. Afterwards, the application automatically fits the model on the
uploaded data. Extra information is provided at each step of the applica-
tion. Moreover, after fitting the model, a summary including the results
can be downloaded. Furthermore, tutorials are provided containing a de-
tailed example with interpreted results.
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1.4 Outline
Chapter 2: ITs for the APIM

Before fitting dyadic models, the researcher has to decide whether or not
the dyads should be assumed indistinguishable. This decision can be based
on theory in case prior research showed evidence for differences between
the two roles of the dyad members, or in case the design of the data
provides a meaningful variable that distinguishes both members of the
dyad. Alternatively, this decision can be answered empirically using in-
distinguishability tests. Treating indistinguishable dyads as distinguish-
able without checking whether this assumption holds, is considered one
of the seven deadly sins according to Kenny et al. (2006). Although this
sin is considered in the context of cross-sectional data, the same question
arises when dyads are measured repeatedly over time. Hence, it is obvious
that a dissertation considering models for longitudinal dyadic data can
not avoid the topic of indistinguishability tests. This chapter discusses
the different types of indistinguishability tests for the APIM in both the
cross-sectional and a simple longitudinal setting. It addresses the differ-
ences in Type I error when REML is used instead of ML, and it shows the
effect on the Type I error when splitting up an indistinguishability test in
different sub-tests. Lastly, the chapter illustrates how to implement the
indistinguishability tests in the SEM and MLM framework.

Chapter 3: L-APIM in SEM

As mentioned in the previous section, the goal of this dissertation is to
define an APIM-based model to fit LDD. In this chapter, we extend the
APIM according to the first progression: the longitudinal actor-partner
interdependence model or L-APIM. The L-APIM (a) allows for non-
independence between the outcomes of two members of a dyad, (b) takes
the non-independence between the different time points within and be-
tween the two members of a dyad into account, (c) includes the effect of
both the actor and partner characteristics on the behavior of a person,
and (d) allows to separate the overtime predictors into a time-specific and
time-averaged effect. Although the model can readily be fitted within the
MLM framework using the software package SAS (SAS Institute, 2008), its
implementation within the SEM framework is less straightforward. More-
over, the implementation based on crude coding takes a lot of time to fit
when the amount of time points is large. So, an alternative approach is
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needed as well. In order to facilitate the use of the L-APIM by any applied
researcher, we developed a Shiny-application, an application based on the
R-package Shiny (Chang, Cheng, Allaire, Xie, & McPherson, 2017), us-
ing this alternative implementation. As the chapter shows, the app allows
the user to define and to fit the L-APIM in a more reasonable amount of
time via an online point-and-click interface. Thanks to this user-friendly
application, there is no need to download any statistical software or to
buy any software licenses.

Chapter 4: Multilevel-AR(1) when T is small

Before extending the APIM towards the longitudinal setting based on the
second progression, a more thorough investigation of the statistical chal-
lenges involving this progression is necessary. As a result, the individual
setting is first considered, in the absence of any predictors. This way, the
three major issues with respect to lagged dependent variables in the mean
structure are identified: (a) the initial conditions problem, (b) the center-
ing problem, and (c) the endogeneity problem. The first issue relates to
the idea that “if one conditions on the previous outcome score, on what
does one condition at the initial time point?”. The second issue relates to
the fact that if one conditions on the previous outcome score, the interpre-
tation of the intercept changes. A correct centering approach is required
to regain the interpretation of the intercept as the overall mean value.
The last issue corresponds to the bias introduced in the model as soon
as the exogeneity assumption is violated. In this chapter, different models
are investigated, each dealing with these issues in their own way and it
is shown how these models are implemented in either the MLM or SEM
framework. Alternatives within the Bayesian (BAY) modeling framework
are considered as well, broadening the investigation beyond the frequen-
tist approach. The BAY framework is often preferred over the frequentist
approach when the sample size is small (Bolstad & Curran, 2016).

Chapter 5: LD-APIM in SEM

After examining the different issues involving the second progression, the
newly gained knowledge is expanded to the longitudinal dyadic setting.
We adopt the conclusions about best practices from the previous chapter
in order to extend the APIM with lagged dependent variables. The exten-
sion is called the lagged dependent actor-partner interdependence model
or LD-APIM. Again, the model incorporates all four statistical challenges
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of LDD, similar to the L-APIM (see chapter 3), but now the second pro-
gression is used to deal with the temporal correlation. To improve the
accessibility of this advanced model, the Shiny-application LDDinSEM
from the previous chapter is updated. Now, users can use the application
to fit both the L-APIM and the LD-APIM. As most technicalities are al-
ready explained by either chapter 3 or chapter 4, this chapter focuses on
the applicability of the LD-APIM. To be more specific, the LDDinSEM -
application is promoted in this chapter: we illustrate how the LD-APIM
can be defined using the app in only three steps, and show how the results
obtained by the app are interpreted. This way, researchers are encouraged
to fit the APIM extensions via the app, without having to be restricted
by the computational and technical concepts.

Chapter 6: General discussion

The longitudinal dyadic models introduced in this dissertation are not
perfect: they make assumptions that may be relaxed, their applicability
may be limited to certain context, etc. Consequently, in this chapter, we
dwell upon the contributions, limitations and the practical implications
of the research executed in the previous chapters. There are also some
unresolved issues related to the subject of this dissertation that need fur-
ther exploration. Therefore, this chapter ends with recommendations for
future research.

Note, as the chapters 2-5 are written as research papers and are sup-
posed to stand on their own, some overlap between the content of the
different chapters may appear. Consequently, notation is chapter-specific
and should not be compared between the different chapters. Data storage
fact sheets can be found in the last chapter of this dissertation.
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2 Indistinguishability tests in
the actor–partner

interdependence model

Abstract. When considering dyadic data, one of the questions is
whether the roles of the two dyad members can be considered equal.
This question may be answered empirically using indistinguishabil-
ity tests in the actor–partner interdependence model. In this paper
several issues related to such indistinguishability tests are discussed:
the difference between maximum likelihood and restricted maxi-
mum likelihood based tests for equality in variance parameters; the
choice between the structural equation modelling and multilevel
modelling framework; and the use of sequential testing rather than
one global test for a set of indistinguishability tests. Based on simu-
lation studies, we provide guidelines for best practice. All different
types of tests are illustrated with cross-sectional and longitudinal
data, and corroborated with corresponding R code.

This chapter has been published in British Journal of Mathematical and
Statistical Psychology. Gistelinck, F., Loeys, T., Decuyper, M. & Dewitte,
M. (2018). Indistinguishability tests in the actor-partner interdependence
model. British Journal of Mathematical and Statistical Psychology, 71(3),
472-498.
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2.1 Introduction

Historically, psychological data were mostly gathered on individuals, yet
many of the phenomena studied by social and behavioural scientists are
interpersonal by definition. Indeed, the daily lives of individuals are rarely
spent in isolation from others, and arguably the most important context
of daily life is that defined by close dyadic relationships (Reis, Collins,
& Bersheid, 2000). The richness of dyadic data is enabling researchers to
broaden their horizons and contemplate addressing research questions of
increasing complexity. Hence, these are unprecedented times for the social
sciences in terms of the availability of high-quality dyadic data.

When two people interact in a relationship, the outcome of each per-
son can be affected by both his or her own inputs and his or her partner’s
inputs. The actor–partner interdependence model (APIM) offers an ap-
pealing approach to modelling such dyadic data (Kenny, Kashy, & Cook,
2006) when the same measurements are taken from both dyad members.
An actor effect occurs when a person’s score on a predictor variable affects
that same person’s score on an outcome; a partner effect occurs when a
person’s score on a predictor variable affects his or her partner’s score.
Consider for example a recent study by Decuyper, Gistelinck, Vergauwe,
Pancorbo, and De Fruyt (2016) who explored the association between per-
sonality pathology and relationship satisfaction in 52 heterosexual couples.
Relying on the APIM, these authors explored, inter alia, the effect of an-
tagonism (i.e., showing hate, extreme unfriendliness, or active opposition
to the partner) on one’s own and one’s partner’s relationship satisfaction
in males and females. The corresponding path model of this APIM is
shown in Figure 2.1, with X representing the predictor variable (antago-
nism in our example) and Y the outcome (relationship satisfaction in our
example).

An important question in dyadic research and data analysis is whether
or not the two dyad members can be distinguished by some variable.
Clearly, in our example with heterosexual couples, dyad members are the-
oretically distinguishable because of their gender. However, distinguisha-
bility is an empirical issue too, and the defining question is whether there
are differences in the data for the two ‘types’ of partners (Gonzalez &
Griffin, 1999). In other words, does gender really matter in our illustra-
tion? Olsen and Kenny (2006) describe in detail different types of distin-
guishability in the APIM: are the actor (and partner) effects the same
between males and females, are the (residual) variances in the outcome
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Figure 2.1 The Actor Partner Interdependence Model (APIM) used to
analyse cross-sectional dyadic data. The index ‘M’ refers to the first dyad
member (e.g., male), while ‘F’ refers to the second member (e.g., female).

the same across gender, are the mean and the variance of the predictors
the same between males and females, etc. Assuming dyad members to be
distinguishable without testing this assumption is called one of the ‘seven
deadly sins’ in dyadic data analysis by Kenny et al. (2006). It is true
that assuming distinguishability when it is not present in the data might
jeopardize the validity of the results as it introduces unnecessary complex
models. Consequently, the model might not converge, results will suffer
from power issues, standard errors will deviate (especially if the covari-
ance structure is misspecified) and the interpretation of the results will
become more complicated.

Although accessible applications exist that allow relationship re-
searchers to perform certain types of indistinguishability tests (Kenny,
2017), several issues deserve further attention. First, the choice of the
estimation method may play a role. Estimation based on maximum like-
lihood (ML) is very prominent in many modelling frameworks. However,
it is well known that ML estimates of variance components are biased to-
wards zero, and that restricted or residual maximum likelihood (REML)
estimation may be preferred instead (McNeish, 2017). Second, it should
be noted that two different modelling frameworks are often used for mod-
elling dyadic data (Ledermann & Kenny, 2017): the multilevel modelling
(MLM) and the structural equation modelling (SEM) framework. Third,
the test of indistinguishability may consist of several sub-tests. That is,
one may be interested in testing equality in means and equality in vari-
ances for the outcome and/or the predictors of interest. The question then
arises whether one should prefer a single global test, or one should rather
go for multiple sub-tests (with or without multiplicity correction).
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In this paper we take a closer look at how such indistinguishability
tests can best be performed. The paper is organized as follows. We first de-
scribe the APIM in more detail in the cross-sectional setting, and explain
the several types of indistinguishability that can empirically be tested in
this model. We next discuss the three aforementioned issues (REML vs.
ML, SEM vs.MLM, and global vs. sequential testing). We show that tests
based on ML and REML may yield different results when one wants to
test the equality of variances between males and females, for example. The
pros and cons of both SEM and MLM approaches are discussed in light of
indistinguishability tests, and clear practical guidance with best practice
is provided in terms of global and sequential tests. Since an increasing
number of publications consider longitudinal dyadic data, we investigate
how our findings from the cross-sectional setting translate to the more
complex longitudinal setting. To facilitate the implementation of the in-
distinguishability tests discussed in this paper, we provide two examples
with R code available as Appendix 2.A. More specifically, we illustrate
the different indistinguishability tests for a cross-sectional study and a
longitudinal diary study in couples. We conclude with a discussion.

2.2 The cross-sectional APIM and tests for in-
distinguishability

Consider the APIM, depicted in a path diagram in Figure 2.1. For the
sake of simplicity, throughout this paper we will use the subscripts M
and F for males and females to denote two types of partners in a dyad,
but other types of distinguishable dyads (e.g., brother and sister, oldest
and youngest child) can obviously be considered as well. The parame-
ters XF and YF are the predictor and outcome variable for the females,
and XM and YM are the predictor and outcome variable for their male
partner, respectively. The outcome disturbances are modelled as unob-
served variables for both the females (εF ) and the males (εM ). These
disturbances have zero means by assumption, and are allowed to corre-
late. The effect of the female’s predictor on her own outcome (aF ) and
the effect of the male’s predictor on his own outcome (aM ) are referred
to as actor effects. The effect of the male’s predictor on his female part-
ner’s outcome (pMF ) and the effect of the female’s predictor on her male
partner’s outcome (pFM ) are referred to as partner effects. Other param-
eters in the model include the male and female predictor means (µXM
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and µXF ), their variances (σ2
XM and σ2

XF ), the covariance between these
predictors (σXF,XM ), the male and female outcome intercepts (µY F and
µYM ), the residual variances (σ2

YM and σ2
Y F ) and the residual covariance

of their outcomes (σY F,YM ). The model in Figure 2.1 can be expressed as
a multivariate regression,

⎧⎪⎪
⎨
⎪⎪⎩

YFj = µY F + aFXFj + pMFXMj + εFj

YMj = µYM + aMXMj + pFMXFj + εMj

, (2.1)

with j referring to the dyad number (j = 0, . . . ,N), and the residuals are
assumed to follow a bivariate normal distribution:

(
εFj
εMj

) ∼ N ((
0
0 ) ,(

σ2
Y F σY F,YM

σY F,YM σ2
YM

)) .

In principle, several predictor variables may be considered in
model (2.1), but for simplicity we will limit further discussions to one pre-
dictor variable X. Model (2.1) may be fitted within the MLM and SEM
frameworks. Both frameworks yield identical ML estimators for the actor
and partner effects and the residual (co)variances (Curran, 2003). Alter-
natively, instead of fitting a multivariate regression model, one may use
a random intercept model to capture the correlation of outcomes within
the dyad, for example relying on the model:

Yij = βM0 + βM1Xact,ij + βM2Xpar,ij

+ βD0Gij + βD1Xact,ijGij + βD2Xpar,ijGij + ηj + εij , (2.2)

with i = M,F , j the dyad number (j = 0, . . . ,N), Gij = 0 for males
and Gij = 1 for females, Xact,ij one’s own predictor score and Xpar,ij

one’s partner’s predictor score, and εij ∼ N(0, σ2
Y ) and ηj ∼ N(0, τ2). In

model (2.2), βM1 and βM2 represent the actor and partner effects in males,
while βD1 and βD2 represent the difference between females and males in
actor and partner effects, respectively. This approach is sometimes referred
to as the ‘interaction’ approach (Kenny et al., 2006). Alternatively, one
could use a two-intercept approach within the MLM framework (Kenny
et al., 2006):

Yij = βM0Mij + βM1Xact,ijMij + βM2Xpar,ijMij

+ βF0Fij + βF1Xact,ijFij + βF2Xpar,ijFij + ηj + εij , (2.3)
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with i = M,F , j the dyad number (j = 0, . . . ,N), Mij = 1 for males and
0 for females, and Fij = 1 for females and 0 for males. In model (2.3),
βM1 and βM2 now represent the actor and partner effects in males, while
βF1 and βF2 represent the actor and partner effects in females, respec-
tively. Hence, the effects in model (2.3) are directly linked with those in
model (2.1), while model (2.2) allows for an immediate comparison of the
actor and partner effects between both dyad members. As shown in Loeys
and Molenberghs (2013)), model (2.2) and (2.3) make stronger assump-
tions than model (2.1) as they imply equal variability in males and females
(σ2
YM = σ2

Y F = σ2
Y ) and assume a positive correlation within dyads (i.e.,

the covariance is given by the variance of a random intercept ηj). Since
we want to start from the most general model, we will further focus on
model specification (2.1) instead of (2.2) or (2.3) in this paper.

In their paper on fitting APIMs with interchangeable dyads, Olsen and
Kenny (2006) discussed different types of indistinguishability. Considering
model (2.1), we distinguish the following indistinguishability tests (ITs):

(IT1) equal residual variances for the outcomes: σ2
YM = σ2

Y F

(IT2) equal actor effects, aM = aF ;

(IT3) equal partner effects, pMF = pFM ;

(IT4) equal intercepts for the outcomes, µYM = µY F ;

(IT5) equal predictor variances, σ2
XM = σ2

XF ;

(IT6) equal predictor means, µXM = µXF .

We label IT1 as the (residual) Y-variance Indistinguishability Test (ab-
breviated as Y-var IT), IT2 and IT3 as Effect-IT and IT4 as Intercept-IT.
We further refer to IT2-IT4 as the Y-mean IT, because the conditional
(on X) means of Y are equal between roles when those three equalities
hold. Combined with IT1, we label the first four equality constraints as
Y-IT. This is because, under the normality assumption, the distribution
of Y is completely characterized by its mean and variance. Similarly, as-
suming that the distribution of X is completely characterized by its mean
and variance, we label IT5 as X-var IT, IT6 as X-mean IT, and IT5-IT6
as the X-IT. Finally, we refer to IT1-IT6 as complete indistinguishability
(C-IT). A schematic overview of the different types of ITs is shown in
Figure 2.2. Additionally, we will also label IT1 and IT5 as XY-var IT,
and IT2-IT4 together with IT6 as XY-mean IT.
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Figure 2.2 Schematic overview of the different types of indistinguishability in the APIM for cross-sectional dyadic
data.
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2.2.1 ML-estimation versus REML-estimation

Because exploring the (co)variance structure of residuals in the APIM (2.1)
should be based on the most complete mean model, that is, different in-
tercept, actor and partner effect assumed for men and women (Fitzmau-
rice, Laird, & Ware, 2011), we first focus on IT1. Indeed, a misspecified
mean structure (e.g., erroneously assuming Y-mean indistinguishability)
may lead to incorrect conclusions about the (co)variance structure of the
model. Estimation of the parameters in model (2.1) is usually based on
ML estimation. More specifically, it is based on maximizing

logLikML = −N log(2π) − 1
2

log(∣V ∣) − 1
2
RtV −1R, (2.4)

where N is the number of dyads, V the (2N × 2N) marginal covariance
matrix of the outcome, and R the (2N × 1) residual vector. We refer to
the Appendix for more specific expressions of V and R in this particular
setting. It can easily be shown (see the section on Y-var distinguishability
in the Appendix) that under model (2.1) the ML estimators of the residual
(co)variances are

σ̂2
ML,Y M =

1
N

N

∑
j=1

e2
Mj , σ̂ML,Y MF =

1
N

N

∑
j=1

eMjeFj ,

σ̂2
ML,Y F =

1
N

N

∑
j=1

e2
Fj ,

with eMj and eFj the estimated residuals in males and females, respec-
tively, of the jth dyad. However, ML estimation of the variance com-
ponents is biased because it treats the fixed-effects estimates as known
(Harville, 1977), and therefore REML is often recommended instead. The
basic idea behind the REML estimation is to remove the fixed-effects pa-
rameters when estimating the variance components. A contrast matrix is
chosen in such a way that the fixed effects parameters are not estimated.
Using the log-likelihood function, one can obtain these unbiased variance
components directly by maximizing

logLikREML = −(N − p) log(2π) − 1
2

log(∣V ∣) − 1
2
RtV −1R

−
1
2

log(∣XtV −1X ∣), (2.5)
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where p is the number of mean model components including the intercept
(i.e., p = 3 in model (2.1)), and X the (2N × 2p) design matrix of the
model. The REML estimators of the (co)variances are

σ̂2
REML,Y M =

1
N − p

N

∑
j=1

e2
Mj , σ̂REML,Y MF =

1
N − p

N

∑
j=1

eMjeFj ,

σ̂2
REML,Y F =

1
N − p

N

∑
j=1

e2
Fj ,

(see the section on Y-var distinguishability in the Appendix). Hence, we
have the following relationship between the ML and REML estimators of
the (co)variances in model (2.1):

σ̂2
REML,Y M =

N

N − p
σ̂2

ML,Y M ,

σ̂2
REML,Y F =

N

N − p
σ̂2

ML,Y F ,

σ̂REML,Y MF =
N

N − p
σ̂ML,Y MF .

(2.6)

What implications does the choice between ML and REML estimation
of the variance parameters have on the IT1? Typically, tests of hypotheses
such as IT1 are performed based on a Likelihood Ratio Test (LRT), con-
trasting the full model with the reduced model (i.e., the model with the
equality constraint σ2

YM = σ2
Y F ). The difference between the ‘deviances’

of these two specified models,

χ2
= −2 logLikred + 2 logLikfull,

is Chi-square distributed with degrees of freedom (df) equal to the differ-
ence in number of estimated model parameters (i.e., df = 1 for IT1).

To the best of our knowledge, the relationship between the χ2 statis-
tic based on ML versus REML for testing indistinguishability in dyadic
data has never been investigated in detail. In the Appendix we show that
for model (2.1) the following simple relationship exists between the test
statistics when testing IT1 using an LRT:

χ2
REML =

N − p

N
χ2

ML. (2.7)
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Hence, the LRT statistic for IT1 based on REML will systematically be
smaller than the LRT statistic for IT1 based on ML. In small samples
this clearly will have an impact. A literature review of studies using the
APIM (Loeys & Molenberghs, 2013) revealed that sample sizes typically
ranged from 30 to 300 dyads (first quartile=60, median=100, and third
quartile=150). Thus testing IT1 may become an issue in a substantial
amount of studies. As we will show in a simulation study later, the LRT
based on ML for IT1 can be viewed as too liberal when the number of
dyads is smaller than 60.

Secondly, we focus on the Y-mean IT (i.e., IT2-IT4). In this case,
REML can not be applied. The REML-based deviances no longer contain
any information about the mean components of the model. As a result,
one should only use REML estimation to compare two models in case
they have identical mean structures. This implies that one has to rely on
ML-based LRT when testing IT2-IT4.

Thirdly, we consider IT5 and IT6 (i.e., X-IT). Because IT5 only con-
tains variance parameters, one can similarly argue that one should con-
sider the use of REML-based deviances in the LRT. It will reduce the bias
on the (co)variance parameters estimates, especially when the sample size
is rather small, as well as confine the liberal nature of the ML-based LRT.
The IT6 considers equal predictor means and thus can also only be tested
using ML-based LRTs.

2.2.2 SEM-framework versus MLM-framework

Popular SEM software such as Mplus (Muthén & Muthén, 2012), LIS-
REL (Jöreskog & Sörbom, 1996), EQS (Bentler, 2004), and the R package
lavaan (Rosseel, 2012) provides several estimation methods, such as max-
imum likelihood, generalized least squares, and weighted least squares.
In SEM, ML estimation is the most popular estimation method. To our
knowledge, OpenMx (Boker et al., 2011) is the only SEM package that
allows REML estimation for the variance parameters, and it requires the
contrast matrix to be manually implemented (Cheung, 2013). MLM soft-
ware such as HLM (Raudenbush, 2004), MLwiN (Goldstein, 2011), PROC
MIXED in SAS (SAS Institute, 2008) and the R package nlme (Pinheiro
& Bates, 2000), on the other hand, often set REML estimation as the
default.

Curran (2003) investigated the similarity between the SEM and MLM
frameworks and showed that parameter estimates obtained using ML will
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typically be (nearly) identical between both frameworks. This implies that
the corresponding ITs using ML-based LRT will yield the same results
in the MLM and SEM framework. Using the MLM framework can be
advantageous when performing the IT1, because the researcher can more
easily use REML estimation.

When it comes to testing X-IT in model (2.1), it is important to ac-
knowledge that the variable X is considered as fixed in the MLM frame-
work, while it may be treated as random in the SEM framework. The
latter framework hence more naturally allows for testing IT5 and IT6.
Alternatively, one may propose in the MLM framework an additional set
of modelling equations with X as outcome, that is

⎧⎪⎪
⎨
⎪⎪⎩

XFj = µXF + εXFj

XMj = µXM + εXMj

(2.8)

with
(
εXFj
εXMj

) ∼ N ((
0
0 ) ,(

σ2
XF σXF,XM

σXF,XM σ2
XM

)) .

and perform an LRT contrasting the full model with the reduced model
for testing IT5 and IT6.

2.2.3 Global testing versus sequential testing
A researcher may not be interested in one specific indistinguishability test,
but rather in a simultaneous set of ITs such as Y indistinguishability or
complete indistinguishability (see Figure 2.2).

Consider first the Y-IT (i.e., testing IT1-IT4). This type of indistin-
guishability includes a variance component as well as mean components
of model (2.1). If we wished to perform this test in one go, we could use
an LRT on 4 df comparing the full model to the model with the four
equality constraints. We will refer to this test as the global Y-IT. Note
that due to the presence of mean components in the null hypothesis of the
test, we must use an ML-based LRT. Alternatively, one might consider a
sequential test: first test IT1 with an LRT relying on REML, second test
IT2-IT4 with an LRT relying on ML, that is, one could use the following
procedure:

1. Y-var IT (IT1) using REML-based LRT
→ p−value p1,
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2. Y-mean IT (IT2-IT4) using ML-based LRT

with covariance structure under { HA,Y-var if p1 < α

H0,Y-var otherwise
→ p−value p2,

and reject Y-IT if p1 <
α
2 or p2 <

α
2 . Note that a Bonferroni correction is

suggested in the above two-step approach to preserve the overall Type I
error. As we will show later in the simulation study, ignoring such correc-
tion leads to seriously inflated Type I errors.

Next, we focus on the C-IT (i.e., testing IT1-IT6). Within the SEM
framework this can be done simultaneously using an ML-based LRT with 6
df comparing the full model to the model with the six equality constraints.
Again, one may alternatively separate the variance and mean components,
and perform a sequential test:

1. XY-var IT (IT1 and IT5) using REML-based LRT
→ p−value p1,

2. XY-mean IT (IT2-IT4, and IT6) using ML-based LRT

with covariance structure under { HA,XY-var if p1 < α

H0,XY-var otherwise
→ p−value p2,

in which complete indistinguishability is rejected if p1 < α
2 or p2 < α

2 .
The first step could easily be performed in the SEM framework if REML
estimation were available. Within the MLM framework, this step can be
achieved by considering models (2.1) and (2.8). Upon noting that the
(residual) likelihood of the joint distribution of X and Y is equal to the
product of the (residual) likelihood of the conditional distribution of Y
given X and the distribution of X:

logLikXY = logLikX + logLikY ∣X ,

one can simply add up the χ2(1) statistics for the X-var and Y-var IT (i.e.,
IT1 and IT5, respectively) and rely on the χ2(2) distribution to perform
the XY-var IT. Similarly, for the second step, the ML-based LRT for the
XY-mean IT has a χ2(4) distribution, obtained as the sum of a χ2(1) and
χ2(3) test statistic in the MLM framework. Note that this second step
would yield identical results in the SEM framework, but the latter does
not require comparing the two models for X and Y separately.
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2.2.4 Simulation study in cross-sectional setting
Using simulations, we now explore the impact of the three aforementioned
choices (REML vs. ML, SEM vs. MLM and global vs. sequential testing).
In the simulation study, we consider the following data-generating process
(DGP):

⎧⎪⎪
⎨
⎪⎪⎩

YFj = 1.17 + 1.70 XFj + 0.50 XMj + εFj

YMj = 1.17 + 1.70 XMj + 0.50 XFj + εMj

with
(
εMj

εFj
) ∼ N ((

0
0 ) ,(

1.9 0.8
0.8 1.9 ))

and
(
XMj

XFj
) ∼ N ((

2.7
2.7 ) ,(

2.52 0.3
0.3 2.52 )) .

Under this DGP, complete indistinguishability holds. We vary the number
of dyads from 20 to 120 in steps of 20, and consider 2,000 repetitions for
each setting. All ITs have been performed in R using the lavaan package
for SEM, and the nlme package for MLM.

We first focus on the Y-var IT (i.e., IT1) and contrast the type I error
of the LRT based on ML with that based on REML. The upper panel
of Figure 2.3 shows the empirical Type I error, that is, the percentage
of times (out of 2,000 repetitions) that the null hypothesis is rejected,
for both tests (performed at the 5% significance level) in each setting.
With 2,000 repetitions the empirical Type I error should approximately
lie between 4% and 6%. When the number of dyads is small, for example
20 or 40, the LRT based on ML is clearly too liberal. Note that the ratio
of the LRT statistic based on REML versus ML exactly corresponds to
equation (2.7).

Second, we focus on the Y-indistinguishability test (i.e., IT1-IT4) and
contrast the Type I error of the global test based on ML using SEM, with
the earlier proposed sequential test (i.e., first Y-var IT based on REML
and then Y-mean IT based on ML, using MLM), with and without Bon-
ferroni correction. The middle panel of Figure 2.3 clearly shows an inflated
Type I error for the two-step sequential test in the absence of a Bonfer-
roni correction (denoted seq(2) w/o) for all sample sizes. In small sam-
ples, the sequential test with Bonferroni correction (denoted seq(2) w/ ) is
somewhat less liberal than the global Y-IT (denoted global(1)). Both test
procedures approach the true nominal rate for increasing sample sizes.
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(a) (b) (c)

Figure 2.3 The (averaged) empirical Type I error over 2,000 simulations, comparing the (sequential) REML-based
LRTs with the (global) ML-based LRTs for (a) the Y-var IT, (b) the Y-IT, and (c) the C-IT. Numbers in parentheses
represent the number of steps used to perform the IT.



ITs for the APIM 41

Finally, we compare the global test versus the earlier proposed two-step
sequential test for the C-IT (i.e., IT1-IT6) with Bonferroni correction. The
lower panel of Figure 2.3 reveals a seriously inflated Type I error for the
global test (denoted global(1)) in small samples, while again the sequential
test (denoted seq(2) w/ ) is somewhat less liberal.

2.3 The over-time APIM and tests for indistin-
guishability

In the last decade the number of studies with longitudinal dyadic data
has increased exponentially. This poses interesting statistical modelling
challenges because now not only the correlation of measurements within
dyads needs to be accounted for, but also the correlation of measurements
within individuals over time. Kenny et al. (2006) describe three frequently
used classes for modelling of longitudinal couple data: cross-lagged regres-
sions, growth curves analyses, and over-time APIMs. Cross-lagged regres-
sions allow stability to be examined by assessing the effect that the past
behaviour of actor and partner have on the current behaviour (Cook &
Kenny, 2005). Growth curve models, on the other hand, typically assume
a linear relationship between the dyad members’ behaviour and time.
They allow exploration of, for example, whether dyad members have the
same rate of growth in their behaviours (Newsom, 2002; Planalp, Du,
Braungart-Rieker, & Wang, 2017). The over-time APIM extends the ad-
vantages of the APIM to the longitudinal setting (Bolger & Laurenceau,
2013; Laurenceau & Bolger, 2011). In this paper we will focus on over-time
APIMs.

Figure 2.4 shows a graphical representation of the over-time APIM for
three time points. Similar to the cross-sectional APIM, the outcome of a
dyad member may depend on one’s own and one’s partner’s predictor at
a particular time point. We can allow those effects to be subject-specific,
that is,

⎧⎪⎪
⎨
⎪⎪⎩

YFij = µY Fj + aFjXFij + pMFjXMij + εFij

YMij = µYMj + aMjXMij + pFMjXFij + εMij

, (2.9)

with i referring to the time point (i = 1, . . . , T ) and j to the dyad number
(j = 1, . . . ,N).
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Figure 2.4 The over-time actor partner interdependence model mea-
sured over three time points. The index ‘M’ refers to the first dyad member
(e.g., male), while ‘F’ refers to the second member (e.g., female).
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In model (2.9), we have 6 parameters that both have a fixed and
random part:

µY Fj = µY F + ηFj

µYMj = µYM + ηMj

aFj = aF + ηaFj

aMj = aM + ηaMj

pMFj = pMF + ηpFj

pFMj = pFM + ηpMj .

Sometimes the effect of time is included as a predictor in model (2.9) as
well, but in practical applications this is often not relevant when outcomes
randomly fluctuate over time. To keep things simple in Figure 2.4, the
slopes were assumed to be the same between subjects. This is often done in
practice when the amount of time points is relatively small. Indeed, in such
setting one may often encounter convergence issues if many random effects
are assumed. Interestingly, Baird and Maxwell (2016) recently showed
that treating effects as fixed rather than random will not introduce bias
in the fixed-effects estimator. For the remainder of this article, random
effects will therefore be limited to random intercepts, that is, we assume
aFj = aF , aMj = aM , pMFj = pMF and pFMj = pFM .

It is important to discuss the covariance structure of the random effects
and residual error terms in Figure 2.4. The random intercepts ηFj and ηMj

are allowed to be correlated and are typically assumed to follow a bivariate
normal distribution:

(
ηFj
ηMj

) ∼ N ((
0
0 ) ,(

τ2
F τFM

τFM τ2
M

)) . (2.10)

Not only the variances along the main diagonal (e.g., how much dyads
differ from one another in terms of female intercepts), but also the covari-
ances (e.g., whether male intercepts covary with female intercepts) are of
interest. For a more detailed discussion, including the random slopes, see
Bolger and Laurenceau (2013). The lower level residuals εFij and εMij

are time-specific individual female and male error components with sep-
arate variances for each gender (i.e., σ2

Y F and σ2
YM in Figure 2.4). These

residuals are allowed to correlate at each time point to capture, for exam-
ple, the daily residual covariation (i.e., σFM in Figure 2.4) in female and
male outcomes. Furthermore, one may allow correlated errors across time



44 Chapter 2

points within individuals (e.g., σF1,F2 and σM1,M2, etc. in Figure 2.4). It
should be noted, however, that additionally modelling autocorrelated er-
rors for such multilevel model is impractical at this point in time for most
software packages (Laurenceau & Bolger, 2011), except for SAS. The lat-
ter allows (specific) Kronecker products of different covariance structures
to respectively represent the residual covariance between the dyad mem-
bers at each time point, and the time correlation within a dyad member,
for example, a ‘UN@AR(1)’ structure (Bolger & Laurenceau, 2013). In R
packages such as nlme, the covariance structure is also limited and cannot
properly allow for either daily residual covariance or over-time covariance.
Since we will use nlme in simulation studies, we will therefore assume that
the covariance matrix of the residuals can be restricted as follows:

Cov

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

εF1j
εF2j
⋮

εFTj
εM1j
εM2j
⋮

εMTj

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ2
Y F 0 ⋯ 0 0 0 ⋯ 0
0 σ2

Y F ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ σ2
Y F 0 0 ⋯ 0

0 0 ⋯ 0 σ2
YM 0 ⋯ 0

0 0 ⋯ 0 0 σ2
YM ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 0 ⋯ σ2
YM

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.11)

Note, in (2.11) and in Figure 2.4, that the variability in the outcomes does
not change over time. Similarly, the actor and partner effects are constant
over time, but the assumptions on time-constant means and variances can
in principle both be relaxed.

When dealing with longitudinal dyadic data, it is important to revise
the earlier definitions of the indistinguishability tests for cross-sectional
dyadic data. Assuming multilevel model (2.9) with random effect covari-
ance (2.10) and residual error covariance (2.11), we first note that the
variability in the outcome is separated in between-subject variability and
within-subject variability. When restricted to random effect models with
random intercepts only, this implies that the IT1 can be divided into the
following two sub-tests, referred to as I-var IT and Y-var IT, respectively:

(IT1A) equal random intercept variances: τ2
M = τ2

F ;

(IT1B) equal residual variances for the outcomes: σ2
YM = σ2

Y F .
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For more complex random-effect models, additional equality constraints
(i.e., equal random slope variances and equal covariances) would be re-
quired as well. Given that we assumed time-constant effects in model (2.9),
the Y-mean (sub-)IT(s) remain(s) unchanged. When discussing X-IT, it
is important to note that one may have within-subject predictors (varying
over time) and between-subject predictors (constant over time). For the
latter the X-IT is the same as before, but for the former, one may consider,
for example, the within-subject variance and between-subject variance of
the predictor and check whether these are equal for males and females.

2.3.1 Issues in testing indistinguishability in longitudinal
dyadic data

Considering the three aforementioned issues related to indistinguishabil-
ity tests in the cross-sectional setting (REML vs. ML, SEM vs. MLM,
and global vs. sequential testing), we will focus on the first issue. More
specifically, we will solely discuss the impact of the choice of REML versus
ML for the IT1A and IT1B. Other issues are essentially the same in the
longitudinal setting as in the cross-sectional setting.

Unfortunately, no analytic relationships between the ML and REML
estimators of the variance components (i.e., both the random effect vari-
ance and the residual error variance) exist in more complex models such
as model (2.9). Consider the model

⎧⎪⎪
⎨
⎪⎪⎩

YFij = (µY F + ηY Fj) + aFXFij + pMFXMij + βF3Qj + εFij

YMij = (µYM + ηYMj) + aMXMij + pFMXFij + βM3Qj + εMij

,

(2.12)

where i refers to the time point (i = 1, . . . , T ), j refers to the dyad number
(j = 1, . . . ,N), and we have the within-dyad predictor
X ∼ N(µX,2T×1,ΣX,2T×2T ), and the between-dyad predictor
Q ∼ N(µQ,1×1, σ

2
Q,1×1). Upon considering the number of parameters at the

lower and upper level, one may intuitively expect the following relation-
ships:

σ2
REML,Y F =

NT

NT − p
σ2

ML,Y F (2.13)

σ2
REML,Y M =

NT

NT − p
σ2

ML,Y M (2.14)
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and

τ2
REML,F =

N

N − (1 + q)
τ2

ML,F (2.15)

τ2
REML,M =

N

N − (1 + q)
τ2

ML,M , (2.16)

where N is the number of dyads, T the number of time points, p the
number of parameters in the model (including the intercept), and q the
number of between-dyad predictors. Simulation studies (see next section)
provide empirical evidence that these expressions do not hold exactly, but
yield good approximations on average. As a consequence, one may expect
a similar impact on the Type I error of using REML-based versus ML-
based LRT for testing equality in variance between males and females.

It should be noted though that for the residual variance component,
the ratio of the REML-based and ML-based variance estimator will quickly
converge to one as both T and N become larger. For the random inter-
cept variance, on the other hand, the ratio only depends on N . For smaller
samples, we thus hypothesize an inflated Type I error for the ML-based
LRT for equality in random intercept variances, regardless of the number
of time points. This hypothesis is verified by simulation study in the next
subsection.

2.3.2 Simulation study in longitudinal setting
As a DGP in the simulations we consider modelling equations (2.12). The
residual covariance matrix equals (2.11) with σ2

Y F = σ2
YM , while the ran-

dom intercept covariance satisfies structure (2.10) with τ2
M = τ2

F . Hence,
the data is generated under the assumption of the null hypothesis of both
the IT1A and IT1B (i.e., IT1 holds). The values of the covariance matri-
ces were randomly generated via the package clusterGeneration in R,
while the mean values and the fixed effects were randomly generated from
a standard uniform distribution. In the simulation study, we varied the
number of dyads from 20 to 120 in steps of 20, and the number of time
points from 4 to 20 in steps of 2. Considering less than four time points
may lead to convergence issues when fitting such complex models (Hesser,
2015). We considered three different estimation models:

(M1) Model (2.12) with random effect covariance matrix (2.10) and
residual covariance matrix (2.11), that is, IT1A and IT1B are
assumed;
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(M2) Model (2.12) with random effect covariance matrix (2.10) con-
strained to τ2

Y F = τ2
YM and residual covariance matrix (2.11),

that is, the IT1A is assumed;

(M3) Model (2.12) with random effect covariance matrix (2.10) and
residual covariance matrix (2.11) constrained to σ2

Y F = σ2
YM ,

that is, the IT1B is assumed.

All three models were fitted in the R package nlme relying on ML and
REML. Likelihood ratio tests comparing M2 with M1, and M3 with M1
were performed to test equality in random intercept variances and in resid-
ual variances between males and females, respectively.

From Figure 2.5a, one can see that expression (2.16) yields a slight
underestimation of the ratio of the REML-based and ML-based random
intercept variance. This confirms our expectation that the ML-based esti-
mator is smaller than the REML-based estimator of the random intercept
variance, especially in smaller samples (regardless of the number of time
points). Consequently, the LRT for I-var IT will be larger when based on
ML instead of REML. From Figure 2.6a, we see that the ML-based IT
for random intercept variance is more liberal than the REML-based IT in
samples with a small number of dyads, independent from the number of
time points in the sample.

Next, the ratio of the REML-based and ML-based residual variance
tends to be slightly overestimated by expression (2.14) (see Figure 2.5b).
However, given that the ratio depends on both the number of dyads and
the number of time points, the ratio quickly converges to one. A similar
conclusion can be made for the LRT statistics based on REML and ML.
From Figure 2.6b, one can see that there is hardly any inflation of the
Type I error for the IT for the residual variances based on ML compared
to REML, even for a small number of dyads and a small number of time
points.
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(a) The empirical ratio (Emp.) of the REML-based and ML-based variance estimator of the random
intercept variance based on 2,000 simulations, compared to the theoretical ratio (Theo.) according to
equation (2.16).
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(b) The empirical ratio (Emp.) of the REML-based and ML-based variance estimator of the residual
variance based on 2,000 simulations, compared to the theoretical ratio (Theo.) according to

equation (2.14).

Figure 2.5 The empirical ratio (Emp.) of the REML-based and ML-based variance estimator compared to the theo-
retical ratio (Theo.).
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(a) The (averaged) empirical Type I error over 2,000 simulations, comparing the (sequential) REML-
based ITs with the (global) ML-based ITs for the I-var IT.
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(b) The (averaged) empirical Type I error over 2,000 simulations, comparing the (sequential) REML-
based ITs with the (global) ML-based ITs for the Y-var IT.

Figure 2.6 The (averaged) empirical Type I error over 2,000 simulations, comparing the (sequential) REML-based
ITs with the (global) ML-based ITs. The grey band represents the confidence interval for the nominal significance level
of 5%.
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2.4 Illustrative examples
We now illustrate the practical implementation of the different ITs (i.e.,
IT1-IT6 and their combinations) on real cross-sectional and longitudinal
dyadic data. Both the SEM and MLM approach are used, and global as
well as sequential tests are performed. In the Appendix 2.A, we provide
R code for those ITs. This should enable the reader to perform all tests
described in this paper. Note that for the MLM framework we rely on
the lme function from the R package nlme, while for the SEM- ramework
analyses are performed with the sem function from the R package lavaan.

2.4.1 Cross-sectional example
Decuyper et al. (2016) recently explored the association between person-
ality pathology and relationship satisfaction in 52 heterosexual couples.
More specifically, they investigated the effect of five different ratings of
personality pathology on three types of relationship satisfaction scales.
Here we focus on the effect in males and females of one’s own and one’s
partner’s antagonism on relationship satisfaction, as measured by the re-
vised dyadic adjustment scale. The authors raised the question whether
there was any distinguishability present in the data. In other words, can
the roles of males and females be considered exchangeable in this setting?

To address this question, we started from the most complete model (2.1)
with an unstructured residual covariance. Table 2.1 shows the p-values of
the different ITs (and combinations thereof) under both frameworks. Any
difference between both frameworks for IT1 and IT6 can be attributed to
the use of REML instead of ML for testing variance components. If ML es-
timation were used in both frameworks, results would be identical. When
considering C-IT, the global ML-based test in the SEM framework points
towards distinguishability. This is in contrast to the sequential test (based
on REML for the variance components) which does not yield evidence for
distinguishability. This difference may be explained by the liberal nature
of the C-IT in the SEM framework.
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Table 2.1 The p-values of the different ITs (i.e.,
IT1-IT6, and their combinations) for the data of
Decuyper et al. (2016).

IT SEM MLM
IT1 .049 .056
IT2a .525 .525
IT3 .909 .909
IT4 .142 .142
IT5a .454 .459
IT6 .013 .013
Y-mean IT .399b .399b
Y-ITa .150b .056/.413c
C-ITa .035b .122/.059d

Notes. ap-values of the REML-based LRT for test-
ing the equality of variances in the MLM framework.
All other p-values are from ML-based LRTs.
bp-values from the global test.
cp-values from the sequential test for variance and
mean of Y, respectively.
dp-values from the sequential test for variance and
mean of X and Y, respectively.

Table 2.2 The p-values of the different ITs (i.e.,
IT1-IT6, and their combinations) for the data of
Dewitte et al. (2015).

IT SEM MLM
IT1 .063 .065
IT2a .765 .765
IT3 .393 .393
IT4 .017 .017
IT5a .785 .788
IT6 .670 .670
Y-mean IT .089b .089b
Y-ITa .034b .065/.087c
C-ITa .126b .203/.167d

Notes. ap-values of the REML-based LRT for test-
ing the equality of variances in the MLM framework.
All other p-values are from ML-based LRTs.
bp-values from the global test.
cp-values from the sequential test for variance and
mean of Y, respectively.
dp-values from the sequential test for variance and
mean of X and Y, respectively.
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2.4.2 Longitudinal diary study in heterosexual couples

Dewitte et al. (2015) performed a daily diary study on sexual behaviour
in 66 heterosexual couples in Flanders. Every morning during 3 weeks,
participants were asked about their sexual and intimate behaviour since
the last time they had filled out their morning diary (i.e., sexual behaviour
over the past 24 hr). Every evening, the participants were asked to report
on their individual, relational, and partner-related feelings and behaviour,
as experienced during that day. Here, we focus on the extent to which
they report intimate acts with their partner (described as the amount of
kissing, cuddling and caressing on a 7-point scale from ‘not at all’ to ‘very
frequent’) and on the daily evening reports of positive relational feelings.
The latter were obtained by averaging the scores (on a 7-point scale) on
nine items (the extent to which they felt happy, satisfied, understood,
supported, accepted, loved, in love, connected, and close). The research
question discussed here considers the contribution of one’s own and one’s
partner’s reported amount of intimacy to next-day positive relationship
feelings, and whether men and women are indistinguishable from that
perspective.

Following Bolger and Laurenceau (2013), Dewitte et al. (2015) used
an over-time APIM like model (2.12), but separated within effects from
between effects of intimacy:

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

YFij = (β0Y F + ηY Fj) + β1WF (XFij − X̄F.j) + β1BF X̄F.j

+ β2WF (XMij − X̄M.j) + β2BF X̄M.j + εFij

YMij = (β0YM + ηYMj) + β1WM(XMij − X̄M.j) + β1BM X̄M.j

+ β2WM(XFij − X̄F.j) + β2BM X̄F.j + εMij

(2.17)
with random effect variance (2.10) and residual variance (2.11).
In model (2.17), X̄F.j and X̄M.j are the average score of intimacy over 3
weeks for the female and male partner, respectively. The parameters β1WF

and β1WM represent the within-subject actor effects in males and females,
β2WF and β2WM the within-subject partner effects, while β1BF , β1BM ,
β2BF and β2BM represent the between-subject actor and partner effects.
If one does not separate within and between effects as in model (2.17), the
estimated parameters in model (2.9) are a mixture of those effects (Enders
& Tofighi, 2007). Based on model (2.17), we performed all ITs (including
the usual combinations) both in the MLM and SEM framework. More
specifically, we considered the following tests:
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(IT1) equal residual variances and random intercept variances for the
outcomes, σ2

YM = σ2
Y F and τ2

M = τ2
F ;

(IT2) equal actor effects (both within and between): β1WM = β1WF

and β1BM = β1BF ;

(IT3) equal partner effects (both within and between): β2WM = β2WF

and β2BM = β2BF ;

(IT4) equal intercepts for the outcomes: µYM = µY F ;

(IT5) equal predictor variances: σ2
XM = σ2

XF ;

(IT6) equal predictor means: µYM = µY F ;

The R code to perform these tests in the SEM and MLM framework
with lavaan and nlme, respectively, can be found in Appendix 2.A. The
corresponding p-values for each of these tests can be found in Table 2.2.
Any difference between SEM and MLM in the individual ITs can be at-
tributed to the use of REML instead of ML. There is some indication of
different partner effects between males and females, but this finding dis-
appears after applying a Bonferonni correction. The conclusions on the
Y-IT differ between SEM and MLM, with again the former being more
liberal, because of the use of ML.

2.5 Discussion
In this paper we discussed indistinguishability tests in the cross-sectional
and longitudinal setting. We illustrated how both the SEM and MLM
framework can be used to perform ITs and yield the same results when
ML estimation is used. In order to preserve the Type I error in small sam-
ples, REML estimation should be preferred over ML estimation to test
Y-var and X-var indistinguishability. In contrast to its wide availability
in MLM packages, REML is not implemented in most SEM software. It
should be noted that global indistinguishability tests are incorporated in
some recent APIM tools that were developed for dyadic researchers (e.g.,
Kenny (2017)): APIM_MM, APIM_SEM, Dingy, etc. None of these, how-
ever, discuss the possibility of incorporating REML estimation, nor the
possibility of performing complete indistinguishability in case of MLM
framework, nor do they allow for sequential tests. Finally, we also stressed
the risk of inflated Type I errors when examining each aspect of indistin-
guishability separately without any multiplicity correction. When testing
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complete indistinguishability is the primary research question of interest,
this may be a serious concern. In this case, we would recommend the re-
searcher to use the sequential ITs, especially when the amount of dyads is
rather small, and starting with the Y(I)-var IT, next the Y-mean IT and
finally the C-IT. But one may also take a more pragmatic approach and
view the testing of indistinguishability as an intermediate step towards
more parsimonious models rather than a true empirical question. In that
view, an inflated Type I error may be more acceptable and a global indis-
tinguishability test, as implemented in more recent APIM tools mentioned
above, might be used.

Not only the Type I error deserves attention here. It is important to
acknowledge that the lack of evidence for distinguishable dyad members
does not necessarily imply indistinguishability. That is, failure to reject the
null hypothesis does not prove the null hypothesis. Indeed, the power to
detect distinguishability may be small in dyadic studies. As an example,
we reconsidered our illustrative cross-sectional study and supposed all
parameters (i.e., intercepts, actor and partner effects and variances) 10%
larger in men than in women. A similar study of 52 couples has only about
18% power to reject complete indistinguishability (based on a global test
in the SEM-framework) at the 5% significance level.

We focused in this paper on APIMs with outcomes measured at the
interval level, but APIMs with categorical outcomes could be considered
as well (Loeys & Molenberghs, 2013). For the latter type of outcomes, esti-
mation within the generalized estimating equations (GEE) framework has
been suggested (Loeys, Cook, De Smet, Wietzker, & Buysse, 2014). When
using GEE and logistic regression for Bernoulli outcomes or Poisson re-
gression for count outcomes, it is important to realize that the distribution
is completely characterized by the mean, given the mean-variance relation-
ship for Bernoulli and Poisson outcomes. It thus suffices to test equality
in intercepts, actor and partner effects for complete indistinguishability in
those models. However, given that GEE is not a likelihood-based method,
one can not rely on the LRT to compare models. Instead, one may use
a single multivariate Wald test for simultaneous testing of those equali-
ties or several univariate Wald tests with Bonferroni correction for each
equality separately.

It should also be noted that although SEM and MLM framework yield
identical results in complete case settings (Kashy & Donnellan, 2008),
this might no longer be true in the presence of missing values. MLM
packages such as nlme apply listwise deletion, while SEM packages such
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as lavaan will use all available data if either X- and/or Y-values are
missing (Ledermann & Kenny, 2017).

Finally, we would like to stress the need for better software tools
for complex longitudinal dyadic modelling. In our simulation study, the
covariance structure was very restricted. For example, the ‘UN@AR(1)’
residual covariance structure is, as far as we know, only available in the
PROC MIXED statement of SAS. Although it is possible in theory to
define such complex structure manually in SEM packages such as lavaan,
the code easily becomes very cumbersome and computation time increases
dramatically.
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Appendix

2.A Corresponding R code of the illustrative ex-
amples

We will only display the R code for the C-IT for cross-sectional and longi-
tudinal dyadic data. Moreover, for the latter case, truncated code will be
presented for simplicity. The complete code and the R code for all other
IT’s can be found in the original supplementary materials at wileyonlineli-
brary.com.

2.A.1 R code C-IT for the cross-sectional dyadic data

library(nlme) # for fitting GLS
library(lavaan) # for fitting SEM

# data_wide: your data set in the wide/dyad format
# (one line for each dyad)
# i.e., colnames(data_wide) should correspond to
# c(dyad , Y.male , Y.female , X.male , X.female)

# data_long: your data set in the long/individual
# format (one column for each variable)
# i.e., colnames(data_long) should correspond to
# c(dyad , gender , Y, X_actor , X_partner)

Based on ML using lavaan

model_dis <- ’
# mean structure
Y.male ~ mean.M*1 + a.M*X.male + p.FM*X.female
Y.female ~ mean.F*1 + a.F*X.female + p.MF*X.male

# residual structure
Y.male ~~ varM*Y.male + varMF*Y.female
Y.female ~~ varF*Y.female
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# predictor mean structure
X.male ~ meanX.M*1
X.female ~ meanX.F*1

# predictor covariance structure
X.male ~~ varX.M*X.male + varX.MF*X.female
X.female ~~ varX.F*X.female ’

fit_dis <- sem(model_dis , data = data_wide ,
fixed.x = FALSE)

model_indis <- ’
# mean structure
Y.male ~ mean*1 + a*X.male + p*X.female
Y.female ~ mean*1 + a*X.female + p*X.male

# residual structure
Y.male ~~ var*Y.male + varMF*Y.female
Y.female ~~ var*Y.female

# predictor mean structure
X.male ~ meanX *1
X.female ~ meanX *1

# predictor covariance structure
X.male ~~ varX*X.male + varX.MF*X.female
X.female ~~ varX*X.female ’

fit_indis <- sem(model_indis , data = data_wide ,
fixed.x = FALSE)

anova(fit_dis ,fit_indis)

Based on REML using nlme

# step 1: XYvar -IT
fit_dis <- gls(X_actor ~ gender -1,
data = data_long ,
correlation = corSymm(form =~ 1 | dyad),
weights = varIdent(form =~ 1 | gender ))

fit_indis <- gls(X_actor ~ gender -1,
data = data_long ,
correlation = corSymm(form =~ 1 | dyad))

stat1 <- anova(fit_dis ,fit_indis)$"L.Ratio "[2]
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fit_dis <- gls(Y ~ gender + gender:X_actor
+ gender:X_partner -1,

data = data_long ,
correlation = corSymm(form =~ 1 | dyad),
weights = varIdent(form =~ 1 | gender ))

fit_indis <- gls(Y ~ gender + gender:X_actor
+ gender:X_partner -1,

data = data_long ,
correlation = corSymm(form =~ 1 | dyad))

stat2 <- anova(fit_dis , fit_indis)$"L.Ratio "[2]

p1 <- 1-pchisq(stat1+stat2 ,df=2)

# step 2: XYmean -IT
if(p1 < 0.05){

# Xmean
fit_dis <- gls(X_actor ~ gender -1,
data = data_long ,
method = "ML",
correlation = corSymm(form =~ 1 | dyad),
weights = varIdent(form =~ 1 | gender ))

fit_indis <- gls(X_actor ~ 1,
data = data_long ,
method = "ML",
correlation = corSymm(form =~ 1 | dyad),
weights = varIdent(form =~ 1 | gender ))

stat1 <- anova(fit_dis , fit_indis)$"L.Ratio "[2]

# Ymean
fit_dis <- gls(Y ~ gender + gender:X_actor

+ gender:X_partner -1,
data = data_long ,
method = "ML",
correlation = corSymm(form =~ 1 | dyad),
weights = varIdent(form =~ 1 | gender ))

fit_indis <- gls(Y ~ X_actor + X_partner ,
data = data_long ,
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method = "ML",
correlation = corSymm(form =~ 1 | dyad),
weights = varIdent(form =~ 1 | gender ))

stat2 <- anova(fit_dis , fit_indis)$"L.Ratio "[2]

p2 <- 1-pchisq(stat1+stat2 ,df=4)

}else{

# Xmean
fit_dis <- gls(X_actor ~ gender -1,
data = data_long ,
method = "ML",
correlation = corSymm(form =~ 1 | dyad))

fit_indis <- gls(X_actor ~ 1,
data = data_long ,
method = "ML",
correlation = corSymm(form =~ 1 | dyad))

stat1 <- anova(fit_dis , fit_indis)$"L.Ratio "[2]

# Ymean
fit_dis <- gls(Y ~ gender + gender:X_actor

+ gender:X_partner -1,
data = data_long ,
method = "ML",
correlation = corSymm(form =~ 1 | dyad))

fit_indis <- gls(Y ~ X_actor + X_partner ,
data = data_long ,
method = "ML",
correlation = corSymm(form =~ 1 | dyad))

stat2 <- anova(fit_dis , fit_indis)$"L.Ratio "[2]

p2 <- 1-pchisq(stat1+stat2 ,df=4)
}

# Conclusion:
# reject Y-indistinguishability as soon
# as p1 < 0.05/2 or p2 < 0.05/2
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2.A.2 R code C-IT for the longitudinal dyadic data

library(nlme) # for fitting GLS
library(lavaan) # for fitting SEM

# data_wide: your data set in the wide/dyad format
# (one line for each dyad)
# i.e., colnames(data_wide) should correspond to
# c(dyad , YM.1-21, YF.1-21, XM.1-21, XF.1-21,
# QM.1, QF.1)

# data_long: your data set in the long/individual
# format (one column for each variable)
# i.e., colnames(data_long) should correspond to
# c(dyad , gender , seq , Y, X_actor , X_partner ,
# Q_actor , Q_partner)

Based on ML using lavaan

model_dis <- ’
# random intercepts
i.M =~ 1*YM.1 + [...] + 1*YM.21
i.F =~ 1*YF.1 + [...] + 1*YF.21

# random covariance structure
i.M ~~ ivarA*i.M + iA*i.F
i.F ~~ ivarB*i.F

# mean structure
YM.1 ~ mean.M*1 + a.M*XM.1 + p.FM*XF.1

+ b.MM*QM.1 + b.FM*QF.1
[...]
YM.21 ~ mean.M*1 + a.M*XM.21 + p.FM*XF.21

+ b.MM*QM.1 + b.FM*QF.1
YF.1 ~ mean.F*1 + a.F*XF.1 + p.MF*XM.1

+ b.FF*QF.1 + b.MF*QM.1
[...]
YF.21 ~ mean.F*1 + a.F*XF.21 + p.MF*XM.21

+ b.FF*QF.1 + b.MF*QM.1



66 Chapter 2

# residual structure
YM.1 ~~ varM*YM.1
[...]
YM.21 ~~ varM*YM.21
YF.1 ~~ varF*YF.1
[...]
YF.21 ~~ varF*YF.21

# predictor mean structure
XM.1 ~ meanX.M*1
[...]
XM.21 ~ meanX.M*1
XF.1 ~ meanX.F*1
[...]
XF.21 ~ meanX.F*1

# predictor covariance structure
XM.1 ~~ varX.M*XM.1
[...]
XM.21 ~~ varX.M*XM.21
XF.1 ~~ varX.F*XF.1
[...]
XF.21 ~~ varX.F*XF.21

# predictor mean structure
QM.1 ~ meanQ.M*1
QF.1 ~ meanQ.F*1

# predictor covariance structure
QM.1 ~~ varQ.M*QM.1
QF.1 ~~ varQ.F*QF.1’

fit_dis <- sem(model_dis ,
data = data_wide ,
missing = "fiml",
fixed.x = FALSE)

model_indis <- ’
# random intercepts
i.M =~ 1*YM.1 + [...] + 1*YM.21
i.F =~ 1*YF.1 + [...] + 1*YF.21

# random covariance structure
i.M ~~ ivar*i.M + iA*i.F
i.F ~~ ivar*i.F
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# mean structure
YM.1 ~ mean*1 + a*XM.1 + p*XF.1

+ b1*QM.1 + b2*QF.1
[...]
YM.21 ~ mean*1 + a*XM.21 + p*XF.21

+ b1*QM.1 + b2*QF.1
YF.1 ~ mean*1 + a*XF.1 + p*XM.1

+ b1*QF.1 + b2*QM.1
[...]
YF.21 ~ mean*1 + a*XF.21 + p*XM.21

+ b1*QF.1 + b2*QM.1
# residual structure
YM.1 ~~ var*YM.1
[...]
YM.21 ~~ var*YM.21
YF.1 ~~ var*YF.1
[...]
YF.21 ~~ var*YF.21

# predictor mean structure
XM.1 ~ meanX*1
[...]
XM.21 ~ meanX*1
XF.1 ~ meanX*1
[...]
XF.21 ~ meanX*1

# predictor covariance structure
XM.1 ~~ varX*XM.1
[...]
XM.21 ~~ varX*XM.21
XF.1 ~~ varX*XF.1
[...]
XF.21 ~~ varX*XF.21

# predictor mean structure
QM.1 ~ meanQ*1
QF.1 ~ meanQ*1

# predictor covariance structure
QM.1 ~~ varQ*QM.1
QF.1 ~~ varQ*QF.1’
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fit_indis <- sem(model_indis ,
data = data_wide ,
missing = "fiml",
fixed.x = FALSE)

anova(fit_dis , fit_indis)

Based on REML using nlme

# step 1: XYIvar -IT
fit_dis <- gls(X_actor ~ gender -1,
data = data_long ,
weights = varIdent(form =~ 1 | gender),
na.action = na.omit)

fit_indis <- gls(X_actor ~ gender -1,
data = data_long ,
na.action = na.omit)

stat1 <- anova(fit_dis ,fit_indis)$"L.Ratio "[2]

fit_dis <- gls(Q_actor ~ gender -1,
data = data_long[which(data_long$seq == 1),],
weights = varIdent(form =~ 1 | gender ))

fit_indis <- gls(Q_actor ~ gender -1,
data = data_long[which(data_long$seq == 1),])

stat2 <- anova(fit_dis ,fit_indis)$"L.Ratio "[2]

fit_dis <- lme(Y ~ gender -1
+ gender:X_actor + gender:X_partner
+ gender:Q_actor + gender:Q_partner ,

data = data_long ,
random = list(dyad = pdSymm (~ gender -1)),
weights = varIdent(form =~ 1| gender),
na.action = na.omit)

fit_indis <- lme(Y ~ gender -1
+ gender:X_actor + gender:X_partner
+ gender:Q_actor + gender:Q_partner ,

data = data_long ,
random = list(dyad = pdCompSymm (~ gender -1)),
na.action = na.omit)
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stat3 <- anova(fit_dis , fit_indis)$"L.Ratio "[2]
p1 <- 1-pchisq(stat1+stat2+stat3 ,df=4)

# step 2: XYmean -IT
if(p1 < 0.05){

# Xmean
fit_dis <- gls(X_actor ~ gender -1,
data = data_long ,
method = "ML",
weights = varIdent(form =~ 1 | gender),
na.action = na.omit)

fit_indis <- gls(X_actor ~ 1,
data = data_long ,
method = "ML",
weights = varIdent(form =~ 1 | gender),
na.action = na.omit)

stat1 <- anova(fit_dis ,fit_indis)$"L.Ratio "[2]

fit_dis <- gls(Q_actor ~ gender -1,
data = data_long[which(data_long$seq == 1),],
method = "ML",
weights = varIdent(form =~ 1 | gender ))

fit_indis <- gls(Q_actor ~ 1,
data = data_long[which(data_long$seq == 1),],
method = "ML",
weights = varIdent(form =~ 1 | gender ))

stat2 <- anova(fit_dis ,fit_indis)$"L.Ratio "[2]

# Ymean
fit_dis1 <- lme(Y ~ gender -1

+ gender:X_actor + gender:X_partner
+ gender:Q_actor + gender:Q_partner ,

data = data_long ,
method = "ML",
random = list(dyad = pdSymm (~ gender -1)),
weights = varIdent(form =~ 1| gender),
na.action = na.omit)
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fit_indis1 <- lme(Y ~ X_actor + X_partner
+ Q_actor + Q_partner ,

data = data_long ,
method = "ML",
random = list(dyad = pdSymm (~ gender -1)),
weights = varIdent(form =~ 1| gender),
na.action = na.omit)

stat3 <- anova(fit_dis1 ,fit_indis1)$"L.Ratio "[2]

p2 <- 1-pchisq(stat1+stat2+stat3 ,df=7)

}else{

fit_dis <- gls(X_actor ~ gender -1,
data = data_long ,
method = "ML",
na.action = na.omit)

fit_indis <- gls(X_actor ~ 1,
data = data_long ,
method = "ML",
na.action = na.omit)

stat1 <- anova(fit_dis ,fit_indis)$"L.Ratio "[2]

fit_dis <- gls(Q_actor ~ gender -1,
data = data_long[which(data_long$seq == 1),],
method = "ML")

fit_indis <- gls(Q_actor ~ 1,
data = data_long[which(data_long$seq == 1),],
method = "ML")

stat2 <- anova(fit_dis ,fit_indis)$"L.Ratio "[2]

fit_dis1 <- lme(Y ~ gender -1
+ gender:X_actor + gender:X_partner
+ gender:Q_actor + gender:Q_partner ,

data = data_long ,
method = "ML",
random = list(dyad = pdCompSymm (~ gender -1)),
na.action = na.omit)
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fit_indis1 <- lme(Y ~ X_actor + X_partner
+ Q_actor + Q_partner ,

data = data_long ,
method = "ML",
random = list(dyad = pdCompSymm (~ gender -1)),
na.action = na.omit)

stat3 <- anova(fit_dis1 ,fit_indis1)$"L.Ratio "[2]

p2 <- 1-pchisq(stat1+stat2+stat3 ,df=7)
}

# Conclusion
# reject Y-indistinguishability as soon
# as p1 < 0.05/2 or p2 < 0.05/2
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2.B The analytic derivation of the relationship
between ML and REML

In this appendix we demonstrate the analytic connection between the
REML and ML (co)variance estimates (see equation (2.6)), as well as
the connection between the REML- and ML-based LRT statistics in the
Y-var indistinguishability test for cross-sectional dyadic data (i.e., equa-
tion (2.7)) when using the APIM.

2.B.1 Y-var distinguishability

As mentioned in the body of the text, the ML and REML estimation
correspond to the maximization of equation (2.4) and (2.5), respectively.
First, suppose the dyads are Y-var distinguishable. For model (2.1), this
would imply the different matrices R, V and X in equations (2.4) and
(2.5) to be as follows:

V =

⎛
⎜
⎜
⎝

V1 0
⋱

0 VN

⎞
⎟
⎟
⎠

, with Vj = (
σ2
YM σYMF

σYMF σ2
Y F

) ,

R =

⎛
⎜
⎜
⎝

R1
⋮

RN

⎞
⎟
⎟
⎠

, with Rj = (
eMj

eFj
) ,

X =

⎛
⎜
⎜
⎝

X1
⋮

XN

⎞
⎟
⎟
⎠

, with Xj = (
1 AMj PMj 0 0 0
0 0 0 1 AFj PFj

) ,

in which A refers to the matrix of actor effects and P to the matrix
of partner effects. We can now rewrite each of the elements of the log-
likelihood function from equation (2.7):
first,

∣V ∣ = ∣V1∣ .⋯. ∣VN ∣

= ∣Vj ∣
N

= {σ2
YMσ

2
Y F − σ

2
YMF }

N ;
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second,

RtV −1R =
1
∣Vj ∣

N

∑
j=1

RtjV
−1
j Rj

=
1
∣Vj ∣

⎧⎪⎪
⎨
⎪⎪⎩

σ2
Y F

N

∑
j=1

e2
Mj − 2σY FM

N

∑
j=1

eMjeFj + σ
2
YM

N

∑
j=1

e2
Fj

⎫⎪⎪
⎬
⎪⎪⎭

;

and third,

XtV −1X =
1
∣Vj ∣

N

∑
j=1

Xt
jV

−1
j Xj

=
1
∣Vj ∣
(

σ2
Y FA −σY FMB

−σY FMB
t σ2

YMC
) ,

with

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

N ∑
N
j=1AMj ∑

N
j=1 PMj

∑
N
j=1AMj ∑

N
j=1A

2
Mj ∑

N
j=1AMjPMj

∑
N
j=1 PMj ∑

N
j=1AMjPMj ∑

N
j=1 P

2
Mj

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

N ∑
N
j=1AFj ∑

N
j=1 PFj

∑
N
j=1AMj ∑

N
j=1AMjAFj ∑

N
j=1AMjPFj

∑
N
j=1 PMj ∑

N
j=1AFjPMj ∑

N
j=1 PMjPFj

⎞
⎟
⎟
⎟
⎟
⎟
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,

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

N ∑
N
j=1AFj ∑

N
j=1 PFj

∑
N
j=1AFj ∑

N
j=1A

2
Fj ∑

N
j=1AFjPFj

∑
N
j=1 PFj ∑

N
j=1AFjPFj ∑

N
j=1 P

2
Fj

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.
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So, the extra term in the REML-based log-likelihood function can be
reformulated as

log ∣XtV −1X ∣ = log
⎛

⎝
(

1
∣Vj ∣
)

2p

∣
σ2
Y FA −σY FMB

−σY FMB
t σ2

YMC
∣
⎞

⎠

= −2p log ∣Vj ∣ + log ∣σ2
YMσ

2
Y FAC − σ2

Y FMB
tB∣

= −2p log ∣Vj ∣ + log ∣(σ2
YMσ

2
Y F − σ

2
Y FM)AC ∣

= −p log ∣Vj ∣ + log ∣AC ∣ .

Note that the simplifications are possible due to the APIM character-
istics: AMj = PFj and AFj = PMj . Now, putting all the pieces together,
one can find the following expression for the log-likelihood function:

−2 logLikML = 2N log(2π) +N log (σ2
YMσ

2
Y F − σ

2
Y FM)

+
1

σ2
YMσ

2
Y F − σ

2
Y FM

⎧⎪⎪
⎨
⎪⎪⎩

σ2
Y F

N

∑
j=1

e2
Mj

−2σY FM
N

∑
j=1

eMjeFj + σ
2
YM

N

∑
j=1

e2
Fj

⎫⎪⎪
⎬
⎪⎪⎭

,

−2 logLikREML = 2(N − p) log(2π) + (N − p) log (σ2
YMσ

2
Y F − σ

2
Y FM)

+ log ∣AC ∣ + 1
σ2
YMσ

2
Y F − σ

2
Y FM

⎧⎪⎪
⎨
⎪⎪⎩

σ2
Y F

N

∑
j=1

e2
Mj

−2σY FM
N

∑
j=1

eMjeFj + σ
2
YM

N

∑
j=1

e2
Fj

⎫⎪⎪
⎬
⎪⎪⎭

.

(2.18)

We will take the derivative of (2.18) to obtain the formulas for the
ML and REML estimators for the (co)variance parameters. The resulting
formulas are as follows:

σ̂2
ML,Y M = 1

N ∑
N
j=1 e

2
Mj , σ̂2

REML,Y M = 1
N−p ∑

N
j=1 e

2
Mj ,

σ̂2
ML,Y F = 1

N ∑
N
j=1 e

2
Fj , σ̂2

REML,Y F = 1
N−p ∑

N
j=1 e

2
Fj ,

σ̂ML,Y MF = 1
N ∑

N
j=1 eMjeFj , σ̂REML,Y MF = 1

N−p ∑
N
j=1 eMjeFj .

(2.19)
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Hence, (minus twice) the log-likelihood function equals:

−2 logLikML = 2N log(2π) − 2N log(N) + 2N

+N log
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

N

∑
j=1

e2
Mj

N

∑
j=1

e2
Fj −

⎛

⎝

N

∑
j=1

eMjeFj
⎞

⎠

2⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

−2 logLikREML = 2(N − p) log(2π) − 2(N − p) log(N − p) + 2(N − p)

+ log ∣AC ∣ + (N − p) log
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

N

∑
j=1

e2
Mj

N

∑
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e2
Fj −

⎛

⎝

N

∑
j=1

eMjeFj
⎞

⎠

2⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

(2.20)

2.B.2 Y-var indistinguishability
Now consider the dyads to be Y-var indistinguishable. The residual (co)-
variance matrix should be adapted to:

V =

⎛
⎜
⎜
⎝

V1 0
⋱

0 VN

⎞
⎟
⎟
⎠

with Vj = (
σ2
Y σ2

Y ρ

σ2
Y ρ σ2

Y

) .

Hence, we rewrite

log {∣V ∣} = N log {σ4
Y (1 − ρ2)} ,

RtV −1R =
1
∣Vj ∣

σ2
Y

⎧⎪⎪
⎨
⎪⎪⎩

N

∑
j=1
(e2
Mj + e

2
Fj) − 2ρ

N

∑
j=1

eMjeFj

⎫⎪⎪
⎬
⎪⎪⎭

.

As a result, the formulas for (minus twice) the log-likelihood function with
respect to the (co)variance functions become

−2 logLikML = 2N log(2π) +N log {σ4
Y (1 − ρ2

)}

+
1

σ2
Y (1 − ρ2)

⎧⎪⎪
⎨
⎪⎪⎩

N

∑
j=1
(e2
Mj + e

2
Fj) − 2ρ

N

∑
j=1

eMjeFj

⎫⎪⎪
⎬
⎪⎪⎭

,

−2 logLikREML = 2(N − p) log(2π) + (N − p) log {σ4
Y (1 − ρ2}

+ log ∣AC ∣ + 1
σ2
Y (1 − ρ2)

⎧⎪⎪
⎨
⎪⎪⎩

N

∑
j=1
(e2
Mj + e

2
Fj) − 2ρ

N

∑
j=1

eMjeFj

⎫⎪⎪
⎬
⎪⎪⎭

.

(2.21)
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The derivative is taken from the expressions in (2.21) to obtain the
ML and REML, formulas for the (co)variance parameters:

σ̂2
ML,Y = 1

2N ∑
N
j=1 (e

2
Mj + e

2
Fj), σ̂2

REML,Y = 1
2(N−p) ∑

N
j=1 (e

2
Mj + e

2
Fj),

ρ̂ML = 2 ∑N
j=1 eMjeF j

∑N
j=1 (e2

Mj
+e2

F j
) , ρ̂REML = ρ̂ML.

(2.22)
Again, just as in the distinguishable case, the following equations hold:

σ̂2
REML,Y = N

N−p σ̂
2
ML,Y , σ̂REML,Y MF = N

N−p σ̂ML,Y MF . (2.23)

Substituting these expressions into equations (2.4) and (2.5), one ob-
tains the log-likelihood as a function of the residuals only:

−2 logLikML = 2N log(2π) − 2N log(N) + 2N

+N log
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(2.24)
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Taking the difference between the corresponding equations (2.24) and
(2.20), one obtains the connection between the likelihood ratio test statis-
tic using ML and REML for the Y-var indistinguishability test:

χ2
ML = N log

⎧⎪⎪
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⎪⎪⎩
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(2.25)
Hence, the connection can be written as:

χ2
REML =

N − p

N
χ2

ML (2.26)
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The actor-partner

interdependence model for
longitudinal dyadic data:
an implementation in the

SEM framework

Abstract. In dyadic research, the actor-partner interdependence
model (APIM) is widely used to model the effect of a predictor
measured across dyad members on one’s own and one’s partner out-
come. When such dyadic data are measured repeatedly over time,
both the non-independence within couples and the non-indepen-
dence over time need to be accounted for. In this paper, we present
a longitudinal extension of the APIM, the L-APIM, that allows for
both stable and time-varying sources of non-independence. Its im-
plementation is readily available in multilevel software, such as proc
mixed in SAS, but is lacking in the structural equation modeling
(SEM) framework. We tackle the computational challenges associ-
ated with its SEM-implementation and propose a user-friendly free
application for the L-APIM, which can be found at
“http://fgisteli.shinyapps.io/Shiny_LDD2/”. As an illustration,
we explore the actor and partner effects of positive relationship feel-
ings on next day’s intimacy using 3-week diary data of 66 hetero-
sexual couples.

This chapter has been published in Structural Equation Modeling: A
Multidisciplinary Journal. Gistelinck, F. & Loeys, T. (2019). The Ac-
tor–Partner Interdependence Model for Longitudinal Dyadic Data: An
Implementation in the SEM Framework. Structural Equation Modeling:
A Multidisciplinary Journal, 26(3), 329-347.
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3.1 Introduction

Over the last decade, the popularity of dyadic data has been increasing
exponentially. Most studied phenomena in behavioral and social science
are interpersonal by definition. Indeed, daily lives are rarely spent in iso-
lation from each other and contexts for human beings involve close dyadic
relationships (Reis, Collins, & Bersheid, 2000). These dyadic interactions
inhibit complex research questions. The richness of these questions be-
comes even more profound when the dyads are studied over time.

Consider for example the study of Dewitte, Van Lankveld, Vanden-
berghe, and Loeys (2015), in which 66 heterosexual couples in Flanders
performed a daily diary study on sexual behavior over a period of three
weeks using a standard dyadic design (Kashy & Kenny, 2000). Each person
corresponded to one and only one dyad, and both men and women were
asked about their sexual and intimate behavior, as well as their individ-
ual, relational and partner-related feelings and behavior of the past day.
Suppose interest lies in exploring the association between the positive feel-
ings about the relationship and next-day’s perception of intimacy in those
couples. Addressing such research question with longitudinal dyadic data
(LDD) entails different statistical challenges. First, one needs to acknowl-
edge the presence of non-independence between the two members of a dyad
(Gonzalez & Griffin, 1999). For instance, the amount of perceived intimacy
on a specific day between two couple members will show more similarities
compared to two random people. Ignoring this non-independence will lead
to incorrect inference as it violates the regression postulate of indepen-
dent observations (Cook & Kenny, 2005). Second, one must also contend
with non-independence of the observations within a dyad member due to
the repeated-measurement design. This type of non-independence is some-
times referred to as autocorrelation and depicts the association between a
variable measured at one point in time and the same variable measured at
another point in time. Today’s perception of intimacy is likely to be posi-
tively correlated with tomorrow’s perception of intimacy (Cranford et al.,
2006). Ignoring this temporal correlation will also result in incorrect infer-
ence (Fitzmaurice, Laird, & Ware, 2011; Hox, 2010). Third, one needs to
account for the effect of one person’s behavior or emotions on his/her own
score (i.e., actor effect), as well as for the effect of one partner’s behavior
or emotions on that person’s score (i.e., partner effect). For example, a
person might perceive more intimacy if he or she feels more positively af-
fected by the relationship, but also if his or her partner experiences more



L-APIM in SEM 81

positive relationship feelings. Fourth, one should acknowledge within- and
between-dyad (member) variation (Bolger & Laurenceau, 2013). The ef-
fect of overtime-predictors can be disentangled into an average effect over
time (i.e., time-averaged effect) and a deviant effect towards this average
at a particular moment in time (i.e., time-specific effect). For example,
the average level of positive relationship feelings over time may have a
different effect between persons on the perception of intimacy than a sud-
den drop or increase in positive relationship feelings within a person on a
certain day. If one does not separate those effects, the estimated effect will
be a mixture of both the time-specific and time-averaged effect (Enders
& Tofighi, 2007).

Older approaches for dealing with LDD often fail to incorporate all
four issues simultaneously. Formerly, researchers have been dealing with
dyadic data by fitting two separate models for each dyad member (with
or without reciprocal effects). This approach makes it impossible to an-
swer research questions about non-independence between the members of
a dyad (Planalp, Du, Braungart-Rieker, & Wang, 2017). Alternatively, re-
searchers took the average of the two member’s scores. The modified data
lose information as one is no longer able to answer research questions
about between-member effects of a variable. This often leads to mislead-
ing conclusions as two potentially very distinct scores are equated (Cook
& Kenny, 2004).

More recently, researchers have been developing several classes of mod-
els for LDD, each model answering different types of research questions.
The first class assumes the outcomes from dyad members to follow a par-
ticular trajectory over time (Kenny & Kashy, 2011). For example, these
models focus on research questions such as “How does the intimate behav-
ior evolve over time for each dyad member, and how do these trajectories
covary?”. A (different) time trend for each dyad member is then fitted si-
multaneously (Lyons & Sayer, 2005; Raudenbush, R.T., & Barnett, 1995),
for example assuming (latent) growth curve models (Atkins, 2005; Kenny
& Kashy, 2011; Newsom, 2002; Peugh, DiLillo, & Panuzio, 2013). A sec-
ond class models a dyad member’s score as a function of his/her own
and his/her partner’s past scores. Such models focus on questions like
“How does one’s own and one’s partner yesterday’s intimacy affect today’s
amount of intimacy?”. Cross-lagged autoregressive regression models for
LDD describe such reciprocal relationships or directional influences over
time in a single variable for both dyad members simultaneously (Acker-
man, Donnellan, Kashy, & Conger, 2012; Cook & Kenny, 2005; Nestler,
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Grimm, & Schönbrodt, 2015). A third class explores the effect of an an-
tecedent on current behavior of each dyad member (Bolger & Laurenceau,
2013; Laurenceau & Bolger, 2005). This longitudinal actor-partner inter-
dependence model enables researcher to answer questions such as “How
does the positive relationship feelings of a partner affect the next-day
perception of intimacy of the actor?” (Kenny, Kashy, & Cook, 2006).

In this article, we will focus on the latter model, further abbreviated as
the L-APIM. While Kenny et al. (2006) only briefly mentioned this model
in the multilevel modeling (MLM) framework, we will elaborate on this
model as it is the most natural extension of the popular cross-sectional
actor-partner interdependence model (APIM) to the longitudinal setting.
Since hardly any documentation is available on its implementation (e.g.,
Kenny et al. (2006) only implemented the model using SAS software), a
more flexible implementation of this model is presented here. More specif-
ically, we will show how this model can also be fitted within the structural
equation modeling (SEM) framework.

The outline of the paper is as follows. First, we briefly review the
cross-sectional APIM. Next, we introduce its extension to the longitudinal
setting: the L-APIM. We show how the L-APIM can incorporate the four
aforementioned issues: (1) the correlation between dyad members, (2) the
autocorrelation, (3) the effect of actor and partner characteristics and (4)
the partitioning into time-specific and time-averaged effects. Thereafter,
we discuss its implementation within the MLM and SEM framework. The
challenges within the SEM framework are especially highlighted. Finally,
we present an application written within the statistical software R us-
ing the package shiny (Chang, Cheng, Allaire, Xie, & McPherson, 2017;
RStudio Inc., 2017), that enables researchers to fit the L-APIM within the
SEM framework, hereby relying on lavaan. We illustrate this application
with empirical data, and end with a discussion.

3.2 The Cross-sectional APIM and its imple-
mentation

One of the most widely used models to analyze cross-sectional dyadic data
is the actor-partner interdependence model (Kashy & Kenny, 2000). The
APIM is generally formulated as follows:
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⎧⎪⎪
⎨
⎪⎪⎩

YMj = µM + aM(X)XMj + pFM(X)XFj + εMj

YFj = µF + aF (X)XFj + pMF (X)XMj + εFj
, (3.1)

with j the dyad number and the residuals ε, disturbance terms which are
correlated within a dyad. A path diagram of the model can be found in
Figure 3.2.1. Here, the two members of the dyad are represented by the
index “M” and “F” for males and females respectively, but other types of
distinguishable dyads can be used as well (e.g., brother and sister, old-
est and youngest child, etc.). Reconsidering the study of Dewitte et al.
(2015) from the introduction, the predictors XF and XM may represent,
for example, the positive relationship feelings of the females and males,
respectively, while YF and YM correspond to the perceived intimacy of the
females and males, respectively. The model can also be used for indistin-
guishable dyads (e.g., twin brothers, same-sex couples, etc.) in which the
roles of the dyad members do not differ and the dyad member indexes are
treated as arbitrary (Olsen & Kenny, 2005). If dyads are indistinguish-
able, constraints can be added to the model in order to ensure equality
in intercepts, actor and partner effects, and variances (Gistelinck, Loeys,
Decuyper, & Dewitte, 2018). In the remainder of the paper, we focus on
distinguishable dyads for the ease of exposition, although the application
presented later allows for indistinguishable dyads as well.

The cross-sectional APIM in Figure 3.2.1 is very popular among dyadic
researcher. First, it allows the residuals of the outcome variable to covary.
This way, the non-independence between the two members of a dyad is
taken into account (cfr. issue 1 from the introduction). Furthermore, the
model naturally incorporates the effect of one’s own characteristics on
his/her outcome values (i.e., the actor effects aM(X) and aF (X)), as well
as the effect of one’s partner characteristics on his/her own outcome values
(i.e., the partner effects pFM(X) and pMF (X)). Due to the presence of these
reciprocal effects, each dyad member influences the other member, and
vice versa (cfr. issue 3 from the introduction). Note that in model (3.1),
the predictor X is a covariate measured at the level of the dyad member
(i.e. member variables). In the study of Dewitte et al. (2015), the positive
relationship feelings are member variables as they may be different for
each person within the dyad. One can easily extend the model, however,
with predictors measured at the dyad level (i.e., dyad variables), such as
the duration of a relationship. Dyad variables do not have a separate actor
and partner partner effect though.
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The cross-sectional APIM can be fitted within different modeling frame-
works. The two most prominent ones are the multilevel modeling (MLM)
and structural equation modeling (SEM) framework (Ledermann & Kenny,
2017). The MLM approach, also called hierarchical modeling or mixed ef-
fect modeling, extends regression models to dependent data structures
using random effects to capture the variation on a particular hierarchi-
cal level (Hox, 2010). Here, the non-independence is usually captured by
a random intercept for each dyad. This implies that the covariance be-
tween dyad members is modeled as a variance and thus assumed to be
positive. This poses some restriction because outcomes within dyads may
also be negatively correlated. Alternatively, one may explicitly model the
residual covariance structure in a marginal approach (Kenny & Kashy,
2011). Both ways of modeling the covariance structure are also possible
in the SEM framework. In the latter framework, random intercepts are
viewed as latent variables. Although these two frameworks have totally
different origins, the SEM and MLM approach have been compared in
several papers in the individual setting (Curran, 2003), as well as in the
dyadic setting (Wendorf, 2002), providing empirical evidence that both
frameworks yield (nearly) identical results.

XM

XF

YM

YF

εM

εF

aM(X)

p
MF(X)

aF(X)

pFM(X
)

1

1

σMFσMF(X)

µM(X);σ2
M(X)

µF(X);σ2
F(X)

µM

µF

σ2
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Figure 3.2.1 A schematic overview of the actor partner interdepen-
dence model (APIM), a model used to analyze cross-sectional dyadic data.
The index ‘M’ refers to the first dyad member (e.g., male), while ‘F’ refers
to the second member (e.g., female).
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3.3 The L-APIM for longitudinal dyadic data
If predictors and outcomes in dyads are measured repeatedly over time,
one obtains longitudinal dyad data. In order to fit LDD, one could use the
longitudinal APIM or L-APIM. The L-APIM can generally be formulated
as follows

⎧⎪⎪
⎨
⎪⎪⎩

YFij = (µF + ηFj) + aF (X)XFij + pMF (X)XMij + εFij

YMij = (µM + ηMj) + aM(X)XMij + pFM(X)XFij + εMij

, (3.2)

with i referring to the time point (i = 1, . . . , T ) and j to the dyad number
(j = 1, . . . ,N). A graphical representation of the model can be found in
Figure 3.3.1. For ease of explanation, we will again refer to the first dyad
member as males (‘M’) and second dyad member as females (‘F’) for the
remainder of our exposition. However, similar to the cross-sectional case,
other types of distinguishable dyads can be considered. In model (3.2), the
predictor X is again considered to be a member variable. Yet, similar as
before, one can easily extend this model with predictors measured at the
dyad level. The L-APIM naturally extends the cross-sectional APIM as it
simply looks like fitting the model at each time point. However, things are
a bit more complicated. We will first discuss the mean structure and the
covariance structure of the proposed L-APIM thereafter, since the latter
is more complex than the former.

3.3.1 The mean structure of the L-APIM
First, it is important to incorporate the effect of one’s own and one’s
partner characteristics (cfr. issue 3 from the introduction). Similar to the
cross-sectional setting, this is possible by introducing actor and partner
effects (i.e., aM(X) and aF (X), respectively pFM(X) and pMF (X)) for the
member variables. However, in the longitudinal case, a dyad or member
variable X can be further categorized into an overtime or time-constant
variable, depending on its variation over time. For instance, positive re-
lational feelings is an overtime-member variable, while personality traits
can be considered a time-constant-member variable in the course of the
study.

As mentioned in the introduction, it is important to realize that over-
time predictors may have a time-specific and time-averaged effect (cfr.
issue 4 from the introduction). The time-averaged effect captures varia-
tion in the means between persons, while the time-specific effect captures
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Figure 3.3.1 A schematic overview of the longitudinal actor-partner
interdependence model (L-APIM), a model used to analyze longitudinal
dyadic data, measured over T time points. The index ‘M’ refers to the
first dyad member (e.g., male), while ‘F’ refers to the second member
(e.g., female).



L-APIM in SEM 87

the variation within each person in the deviations of each score from the
member-specific average (Bolger & Laurenceau, 2013). Suppose, for exam-
ple, XFij corresponds to an overtime-member predictor in females. The
time-averaged effect is defined as the effect of the average of the overtime
predictor over all time points for each women separately, denoted as XF.j .
Note that the mean XF.j now becomes a time-constant variable as it does
no longer vary over time. The time-specific effect at time i is then com-
puted as the effect of the difference between XFij and its time-averaged
component XF.j . Hence, rather than model (3.2), we will consider the
following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

YFij = (µF + ηFj) + aF (XA)XF.j + aF (XS)(XFij −XF.j)

+ pMF (XA)XM.j + pMF (XS)(XMij −XM.j) + εFij

YMij = (µM + ηMj) + aM(XA)XM.j + aM(XS)(XMij −XM.j)

+ pFM(XA)XF.j + pFM(XS)(XFij −XF.j) + εMij

, (3.3)

with the indeces XA and XS in the parameters referring to the time-
averaged and time-specific effect of the predictor X, respectively. In con-
trast to model (3.2), model (3.3) will allow us to estimate the time-
averaged and time-specific effects. If one does not perform this split-up,
the estimated effect of X in model (3.2) will be a mixture of both time-
averaged and time-specific effect (Enders & Tofighi, 2007). A similar pro-
cedure can be performed for the overtime-dyad variables.

Note that this split-up in time-specific and time-averaged components
of an overtime variable should not be confused with a grand-mean cen-
tering procedure. When grand-mean centering a variable, whether time-
invariant or not, one takes the average over all scores, thus over all time
points, dyad members and dyads (i.e., X... =∶ X̄). This overall average X̄
is then subtracted from all the scores in order to obtain the grand-mean
centered values of the variable.

It is important for the reader to note that model (3.3) implies some
important assumptions. First, all actor and partner effects are assumed
to be time-independent, and time is not included into the model. This
may be reasonable in diary studies such as in the study of Dewitte et al.
(2015), where the daily measurements are not collected around a specific
event. These assumptions can be relaxed, but for ease of exposition, we
assume them to hold here. Second, only the intercept is considered to be
member-specific. This imposes the assumption that no unmeasured slope
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heterogeneity is present in the data. One could, of course, allow predic-
tor effects to be member-specific (Bolger & Laurenceau, 2013). Yet, this
might unnecessary complicate the model and often induces convergence
problems. Treating predictor effects as fixed rather than random does not
introduce bias in the fixed effects estimator, but may distort the standard
errors (Baird & Maxwell, 2016).

3.3.2 The covariance structure of the L-APIM
Next, we discuss the covariance structure. In model (3.3), the member-
specific intercepts ηMj and ηFj describe random variation around the
mean outcome (µF and µM ) and are assumed to follow a bivariate normal
distribution:

(
ηFj
ηMj

) ∼ N ((
0
0 ) ,(

τ2
F τFM

τFM τ2
M

)) . (3.4)

In MLM terminology, the covariance structure of the random effects cor-
responds to the G-side of the covariance structure. The covariance of the
outcome disturbances (εMij and εFij) defines the so-called R-side in MLM
terminology. Similar to the cross-sectional APIM, the outcomes within
a dyad are typically correlated at each time point (cfr. solid arrows in
Figure 3.3.1) in order to capture the non-independence within dyads (cfr.
issue 1 from the introduction). Additionally, time specific correlations (see
dashed arrows in Figure 3.3.1) need to be taken into account as well (cfr.
issue 2 from the introduction). If one would assume a completely general
pattern (i.e., unstructured covariance matrix), the 2T × 2T symmetric
covariance matrix would imply the estimation of 2T (2T+1)

2 covariance pa-
rameters (i.e., 903 residual covariance in the 21 day diary study of Dewitte
et al. (2015)). This can be greatly simplified by making two reasonable
assumptions:

1. The dyad members (co)variances are assumed to be stable over time.

2. The adjacent time points are correlated by a first-order autoregres-
sive process.

Note that such an autoregressive process only makes sense if timing of
measurements is equally spaced. These two assumptions reduce the num-
ber of residual covariance parameters to exactly four, independent on the
amount of time points in the data set: a residual variance for the males,
a residual variance for the females, a residual covariance between males
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and females and the autoregressive correlation parameter. The proposed
covariance structure can be represented by a Kronecker Product of stan-
dard covariance structures (Bock, 1997; Bolger & Laurenceau, 2013). More
specifically, the residual covariance structure corresponds to

Cov
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⎜
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⎟
⎟
⎟
⎟
⎟
⎠

. (3.5)

In expression (3.5), σ2
M and σ2

F represent the residual variance for males
and females, respectively. The covariance between males and females at
each time point is captured by σFM . Correlation between different time
points within a dyad member or between the two dyad members are both
assumed to be identical and can be characterized by the first-order corre-
lation parameter ρ. In other words, the non-independence between time
points decreases as they are further away from each other in time. We will
show that, although the residual covariance structure looks very simple,
its implementation is not that easy, especially in the SEM framework.

3.4 The implementation of the L-APIM
Similar to the cross-sectional APIM (Ledermann & Kenny, 2017), it is
possible to fit the L-APIM in both the MLM and SEM framework. We
will discuss each of these frameworks separately.

3.4.1 The MLM framework

The MLM framework allows to analyze longitudinal individual data, as
well as grouped data. Due to its hierarchical nature, researchers can in-
troduce random effects to capture the variation at the higher levels. Re-
searchers favoring the MLM framework often mistakenly considered lon-
gitudinal dyadic data as a three-level nested design: time nested within
person and person nested within dyad, because it contains three factors
that define the data structure (dyad, person and time). However, using
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this nested design (a) assumes random variability present at the second
level, while the model is saturated at this level once the role of the dyad
member is included (Diggle, Heagerty, Liang, & Zeger, 2002), (b) con-
strains the correlation between the two partners to be positive as it is
estimated as the variance of a random effect, and (c) assumes the corre-
lation between the two members of a dyad at each time point to be zero,
precluding the examination of time-specific sources on (dis)similarities
(Kenny & Kashy, 2011). Therefore, researchers should consider this type
of data design as two-level where time and person are not nested, but
crossed: the time point is the same for the two persons at each point
of measurement (Laurenceau & Bolger, 2011). Then, the inclusion of a
random intercept for each dyad member allows for stable sources of non-
independence. As pointed out by Bolger and Shrout (2007), time-varying
sources of non-independence are accounted for by allowing the residuals
to correlate by the covariance matrix in expression (3.5).

The implementation of model (3.3) with covariances (3.4) and (3.5)
has been discussed by Bolger and Laurenceau (2013) in the MLM frame-
work, albeit in the absence of partner effects. Most MLM software such
as HLM (Raudenbush, 2004), SAS proc mixed (SAS Institute, 2008) or
R-packages like nlme (Pinheiro & Bates, 2000) and lme4 (Bates, Mächler,
Bolker, & Walker, 2015), easily allow for random effects with covariance
structure (3.4). The main issue, however, is the residual covariance struc-
ture (3.5). As already mentioned by Kenny et al. (2006), most MLM soft-
ware does not support this particular structure, except for SAS (SAS Insti-
tute, 2008). In SAS, one can define a repeated measurement statement in
the proc mixed procedure that allows a Kronecker Product of some stan-
dard covariance structures, including structure (3.5), which is referred to
as the “UN@AR(1)” structure within SAS. The letters before the “@”
correspond to the first matrix of the Kronecker Product, in this case, an
unstructured covariance matrix (“UN”, i.e., different residual variances
for males and females and a non-zero residual covariance between males
and females). The letters after the “@” correspond to the second matrix
of the Kronecker Product. In this case it represents the first-order au-
toregressive covariance structure that defines the correlation between the
different time points (“AR(1)”). Unfortunately, SAS only provides a lim-
ited amount of covariance structures based on the Kronecker Products.
In R-packages such as nlme and lme4 (Bates et al., 2015; Pinheiro &
Bates, 2000), the possible covariance structures are limited to standard
structures, excluding any structures based on Kronecker Products. These
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packages do not offer proper alternatives for covariance structure like (3.5)
as they either ignore the correlation between the two dyad members at
any time point, or stack the scores of the two dyad members and treat
them as consecutive measures of the same entity.

3.4.2 The SEM framework
The implementation of the L-APIM within the SEM framework has hardly
been discussed. Although Bolger and Shrout (2007) provide some hints
and present a reasonable approximation for the construction of the resid-
ual covariance structure (3.5), they limited their exposition to estimating
dyadic covariances, excluding directed actor and partner effects extant in
the L-APIM. We will show that such approximation can be avoided and
that the residual covariance structure can now be implemented by the re-
searcher in any SEM software, may it be Mplus (Muthén &Muthén, 2012),
LISREL (Jöreskog & Sörbom, 1996), EQS (Bentler, 2004), or R-packages
like lavaan (Rosseel, 2012) or OpenMx (Boker et al., 2011). Being able
to fit the L-APIM within the SEM framework will offer much more flexi-
bility. As opposed to the MLM-implementation, the SEM-implementation
can easily be adapted to allow for indistinguishability (by putting equality
constraints), latent variables, etc.

Below, we will discuss the implementation using the R-package lavaan,
but other packages would have been possible too. The two main challenges
to implement the proposed L-APIM in the SEM software are:

1. the combination of the covariance structure of the random effects
and the residual covariance structure,

2. the specification of the constraints for the complex “UN@AR(1)”
structure in this setting.

For the first, it is important whether the data are stored in a long or a wide
format. For multilevel SEM (MSEM), data are typically in a long format
(Bovaird, 2012). Current implementations of MSEM typically assume the
residuals to be independent from each other and do not allow any hetero-
geneity (Mehta & Neale, 2005; Muthén & Asparouhov, 2011). Hence, we
will limit our discussion to the standard SEM framework, which assumes
data in the wide format. This implies that data are arranged as separate
records for each couple, preserving multiple columns for each variable.
The random intercepts can then be specified as latent factors with factor
loadings equal to one for all its manifest variables. Furthermore, using
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the wide format, one can easily specify which residual errors should be
correlated at which time point and place constraints if required.

This brings us to the second challenge, the specification of the covari-
ance structure defined by (3.5). A first naive approach would simply code
all constraints. In essence, the Kronecker Product from equation (3.5) can
be viewed as one big matrix, depicted in Figure 3.4.1 (for three repeti-
tions). Corresponding constraints are then defined with respect to each
matrix element. More specifically, the covariance structure (3.5) could be
defined as follows:

Cov
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(3.6)
In expression (3.6), the autocorrelation parameter ρ corresponds to A

σ2
F
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M
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σF M
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(3.7)
The amount of constraints becomes, however, quite excessive with in-
creasing number of time points. As a consequence, model fits may not
converge. Furthermore, even in case of convergence, the computational
time increases exponentially with increasing number of time points. Us-
ing equality constraints like (3.7), the CPU time to fit the L-APIM with
five to ten time points easily takes from two minutes to an hour.
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Figure 3.4.1 The standard representation of the residual UN@AR(1)
covariance structure for LDD with three repeated measurements.
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However, an alternative approach was suggested by Bolger and Shrout
(2007), which is less demanding, and is inspired by the Trait-State-Error
model (Kenny & Zautra, 2001). The latter model decomposes the rela-
tionship between the measured outcome scores of a person into a stable
trait (ST), an autoregressive trait (ART), and a state (S). In our set-
ting, the stable trait would correspond to the random intercept of a dyad
member and the autoregressive trait would correspond to the first-order
autoregressive process between the residuals. In case of a first-order au-
toregressive process, this makes perfectly sense since the process can be
expressed by a moving average process (Beck, 1992; Hamilton, 1994). In
Figure 3.4.2, one can find the path diagram of this alternative implemen-
tation (for three repetitions). First, a “latent” variable Zkij is specified
for every outcome measurement Ykij for each time point i, dyad j, and
dyad member k (k = M or F). Next, the original covariance structure
is “neutralized”, meaning that the original errors εkij have a mean and
a variance of zero. The first-order autoregressive process is then recon-
structed with the aid of these latent variables. More specifically, a simple
linear regression model is assumed between the latent variables for each
of the dyad members:

Zkij = ρZk(i−1)j + υkij

=
∞
∑
r=0

ρr υk(i−s)j ,
(3.8)

with i referring to the time point (i = 2, . . . , T ), j to the dyad number (j =
1, . . . ,N), and k to the dyad member (k =M or F). The parameters υkij are
independent white noise, that is, υkij ∼ N(0, ν2

ki). In equation (3.8), the
latent variable at the first time point for each dyad member is considered
an exogenous variable. As a result, V ar(Zk1j) = V ar(υk1j) = ν

2
k1 =∶ σ2

k,
while the variances of all other latent variables are defined by:

V ar(Zkij) = ρ
2 V ar(Zk(i−1)j) + V ar(υkij),

with i = 2, . . . , T , j = 1, . . . ,N and k = M or F. So, for i = 2, we have that
V ar(Zk2j) = (1−ρ2)σ2

k. In order to have a constant residual variance over
time, the following constraint is added:

ν2
kij = ν

2
k1 (1 − ρ2)

= σ2
k (1 − ρ2) .

(3.9)
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Figure 3.4.2 The alternative representation of the residual UN@AR(1)
covariance structure for LDD with three repeated measurements. Note,
the residuals ε are inherent to the model implementation and cannot be
removed. Hence, we eliminated them by fixing their means and variances
to zero.
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This way, we end up with a first-order autoregressive correlation structure
within each dyad member:

Cov(Zkij , Zki⋆j) = Cov(
∞
∑
r=0

ρr υk(i−r)j ,
∞
∑
s=0

ρs υk(i⋆−s)j)

=
∞
∑
r=0

∞
∑
s=0

ρr ρs Cov(υk(i−r)j , υk(i⋆−s)j)

=
∞
∑
r=0

∞
∑
s=0

ρr ρs ν2
kij for s = r + ∣i − i⋆∣

= ρ∣i−i
⋆∣ ν2

kij

∞
∑
r=0

ρ2r

= ρ∣i−i
⋆∣
(
ν2
kij

1 − ρ2 )

= ρ∣i−i
⋆∣ σ2

k,

(3.10)

for i and i⋆ = 2, . . . , T . So far, we have only recreated a first-order au-
toregressive process within each dyad member. Hence, we still need to
establish a correlation structure between the dyad members. To this end,
we allow the disturbance terms υkij to correlate at each time point for
each dyad: Cov(υkij , υk⋆ij) = νi, for all j = 1, . . . ,N . Due to the fact that
the latent variables at the first time point for each dyad member are ex-
ogenous, we have that Cov(Zk1j , Zk⋆1j) = Cov(υk1j , υk⋆1j) = ν1 =∶ σMF ,
and similar as before:

Cov(Zkij , Zk⋆i⋆j) = ρ
∣i−i⋆∣

(
νij

1 − ρ2 )

= ρ∣i−i
⋆∣ σMF ,

where the latter equality holds if one constrains νij = σMF (1 − ρ2). Note
that these new latent variables are not allowed to correlate with the latent
intercepts ηF and ηM . The residual covariance of the newly defined latent
variables now is:
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with ν2
F1 =∶ σ2

F , ν2
M1 =∶ σ2

M and νFM1 =∶ σFM , and the additional con-
straints

ν2
F2 = σ

2
F (1 − ρ2) , . . . , ν2

FT = σ2
F (1 − ρ2) ,

νFM2 = σFM (1 − ρ2) , . . . , νFMT = σFM (1 − ρ2) ,

ν2
M2 = σ

2
M (1 − ρ2) , . . . , ν2

MT = σ2
M (1 − ρ2) .

(3.11)

It is clear that this alternative approach requires less constraints and is less
computationally demanding than the crude coding of the original covari-
ance structure. Note that the constraints (3.11) can readily be specified
in lavaan, unlike EQS where these constraints are fixed at approximated
values obtained by iterative estimation of the autocorrelation and the
latent variances (Bolger & Shrout, 2007).

Using the wide format from the SEM framework has also some conse-
quences for the specification of the mean structure. In the wide format, the
mean structure has to be defined for each time point separately, unlike the
single-equation approach in the long format. Furthermore, the wide data
format also impacts the design matrix X. Indeed, the suggested split-up
of overtime predictors into a time-specific and time-averaged component
introduces some superfluity. More specifically, if one separates an over-
time predictor into these two component, the sum of the deviations that
defines the time-specific component is zero:

T

∑
i=1
(Xij −X.j) = 0,

and hence, time-specific dyad and member predictors are not independent,
making the design matrix non-invertible. This caveat needs to be taken
into account in the parametrization as well. This is obtained by replacing
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the effect of the time-specific component at the last time point by the
sum of (opposite) effects of the remaining time points. For instance, the
effect aM(XS) of (XMTj −XM.j) on YMTj at the latter time point T is
implemented as

−
T−1
∑
i=1

aM(XS)(XMij −XM.j).

3.5 Empirical example using an online applica-
tion

In this section, we will fit the L-APIM on the empirical example data orig-
inating from the study of Dewitte et al. (2015). This study investigated
66 heterosexual couples in Flanders on a daily basis over a period of three
weeks. Using diary data, men and women reported each morning their
sexual and intimate behavior over the past 24 hours. In the evening, they
were asked about their individual, relational and partner-related feelings
and behavior of the past day. For this paper we will solely focus on the ef-
fect of one’s own and one’s partner reported positive relationship feelings
to the next day’s perceived intimacy. The intimate acts with their part-
ner were described as the amount of kissing, cuddling and caressing on a
7-point scale from ‘not at all’ to ‘very frequent’. The positive relational
feelings were measured as an average of nine items on a 7-point scale:
the extent to which they felt happy, satisfied, understood, supported, ac-
cepted, loved, in love, connected, and close. We consider the following
L-APIM:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IntimFij = (µF + ηFj) + aF (PosRelA)PosRelAFj

+ aF (PosRelS)PosRelSFij + pMF (PosRelA)PosRelAMj

+ pMF (PosRelS)PosRelSMij + εFij

IntimMij = (µM + ηMj) + aM(PosRelA)PosRelAMj

+ aM(PosRelS)PosRelSMij + pFM(PosRelA)PosRelAFj

+ pFM(PosRelS)PosRelSFij + εMij

, (3.12)

with i referring to the time point (i = 1, . . . , T ), j to the dyad number
(j = 1, . . . ,N). The subscripts A and S in the parameters refer to the
time-averaged and time-specific effect of the predictor, respectively. As
mentioned before, these effects are obtained by constructing corresponding
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time-specific and time-averaged components of the original variables. We
further assume the random effect covariance structure (3.4) and residual
covariance structure (3.5).

The research questions that we want to address are:

Q1 how do the average positive relational feelings of a person affect
the perceived intimacy of that same person (i.e., aM(PosRelA)
and aF (PosRelA) from model (3.12)),

Q2 how do the average positive relational feelings of one’s partner
affect one’s own perception of intimacy (i.e., pFM(PosRelA) and
pMF (PosRelA) from model (3.12)),

Q3 how does an increase in positive relational feelings of a person
on a particular day (as compared to his/her average positive
relational feelings) affect the perceived intimacy of that person
(i.e., aM(PosRelS) and aF (PosRelS) from model (3.12)),

Q4 how does an increase in positive relational feelings of one’s part-
ner on a particular day (as compared to his/her partner’s aver-
age positive relational feelings) affect one’s own perceived inti-
macy (i.e., pFM(PosRelS) and pMF (PosRelS) from model (3.12)),

Q5 to what extent does the time-averaged perceived intimacy co-
vary between partners within a dyad (i.e., τMF from expres-
sion (3.4)),

Q6 to what extent is the perceived intimacy of one dyad member
related to the perceived intimacy of the partner on a particular
day (i.e., σMF from expression (3.5)),

Q7 how strong is the association between the perceived intimacy
on one day with the amount of perceived intimacy on the next
day within a given person (i.e., ρ from expression (3.5)).

Several user-friendly tools are already developed for dyadic researcher
to fit the cross-sectional APIM (Kenny, 2017; Stas, Kenny, Mayer, &
Loeys, 2018). Considering that only SAS can straightforwardly fit the L-
APIM within the MLM framework and that the implementation within
the SEM framework is possible, but requires tedious coding, we opted
to construct an online application using the R-package shiny (Chang
et al., 2017; RStudio Inc., 2017), that automatically implements the L-
APIM within lavaan. The application is a user-friendly and free tool



100 Chapter 3

that can be found at “http://fgisteli.shinyapps.io/Shiny_LDD2/”.
In this section, we will illustrate the app by fitting an L-APIM on the
data of the empirical example, hereby answering the questions Q1-Q7.
At the “info” page of the application, one can find a tutorial with extra
information and screen shots of each step of the model specification that
is required to reproduce the results described below.

Once the application is started, one can upload the data file in the
application. Although, the app uses a wide data format for analysis, both
long and wide data format are allowed as input. In case of a long data
format, the app will transform the data set before fitting the L-APIM.
The time range needs to be specified, as well as the indices in the vari-
able names that correspond to the role of the dyad member. In case of
indistinguishable dyads, these indices are arbitrary and only necessary for
computational reasons. Note that the application assumes equally spaced
time points as this restriction is assumed by the autoregressive process.
The researcher is allowed to reduce the time range into a range of inter-
est, yet a minimum of three time points is required for the model to be
identified.

Next, the mean structure of the model needs to be specified. The ap-
plication accepts four types of predictors: time-constant-dyad, overtime-
dyad, time-constant-member and overtime-member predictors. Overtime
predictors are not supposed to be made time-specific or time-averaged
in advance. The user of the app is also offered the possibility to relabel
the variable names, as well as to grand-mean center the predictors. In
our example, the only predictor is positive relational feelings “PosRel”
and corresponds to an overtime-member variable. We opt for grand-mean
centering this variable as well as for the split-up into a time-specific and
time-averaged component. The corresponding components are automat-
ically labeled as the variable name with an “S”, respectively an “A”, at
the end of the name (i.e., PosRelS and PosRelA, respectively). To com-
plete the specification of the mean structure of the model, one needs to
report which parameters depend on the role of the dyad member. In case
of complete indistinguishable dyads, all model parameters are assumed
to be the same for both dyad members. However, in our illustration, we
assume all mean structure parameters to be different for men and women.
The labels of the model parameters are therefore extended with the dyad
member index at the end (e.g., PosRelSM refers to the time-specific ef-
fect of PosRel of the males on the perceived intimacy). The resulting
model can be described as in equation (3.12).

http://fgisteli.shinyapps.io/Shiny_LDD2/
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Lastly, the covariance structures need to be specified in the app. First,
the random effects covariance structure must be defined. As suggested by
expression (3.12), the application assumes the intercept to be a mixed ef-
fect consisting of a random and fixed part. The user is asked to define the
covariance structure of the random intercepts. Since we expect the vari-
ation of the overall mean score of perceived intimacy to be different for
males and females, and to be correlated, we will assume an unstructured
covariance structure. The application also allows a compound symmetry
(i.e., same variances for males and females), a heterogeneous variance com-
ponent (i.e., different variances for males and females, but no correlation)
or a variance component (i.e., same variances for males and females and
no correlation) structure. Second, the residual covariance structure needs
to be defined. As mentioned before, the structure consists of a within-dyad
and time-specific within-member part given by the Kronecker product of
two matrices in equation (3.5). We will assume an unstructured 2-by-2
covariance structure for the within-dyad part. For the within-dyad part
of the covariance structure, the user can again opt for an unstructured, a
compound symmetry, a heterogeneous variance component and a variance
component covariance structure. In case of indistinguishable dyads, the
compound symmetry and variance component covariance structure are
plausible candidates. For the time-varying part of the covariance struc-
ture, we will assume a first-order autoregressive process. The application
also allows a more simple structure in which the residual temporal corre-
lation is assumed to be zero (i.e., an identity matrix).

The (truncated) R-syntax that is generated by the online application
can be found in Appendix 3.A. For the interested reader, the correspond-
ing SAS-syntax has been provided in Appendix 3.B. The results of the
model fit using the application can be found in Table 3.5.1 and 3.5.2. The
results obtained by SAS can be found in Appendix 3.B. Given that the
predictor was grand-mean centered and separated in a time-specific and
time-averaged component, the intercepts 3.98 and 4.22 reflect the aver-
age perceived intimacy over all days for males and females, respectively,
at average positive relational feelings. Men and women who report more
positive feelings on average (i.e., the effect of PosRelAM on the male
outcome and the effect of PosRelAF on the female outcome), also re-
port more perceived intimacy (cfr. Q1). Furthermore, men whose wives
report more positive relationship feelings (i.e., the effect of PosRelAF
on the male outcome), report more intimacy (cfr. Q2). Both within men
and women, an increase in the positive relationship feelings on a specific
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day (i.e., the effect of PosRelSM on the male outcome and the effect of
PosRelSF on the female outcome) is associated with higher perceived
intimacy on the next day (cfr. Q3). Moreover, an increase in the posi-
tive relationship feelings of the men on a specific day (i.e., the effect of
PosRelSM on the female outcome) is associated with higher perceived
intimacy of the women the next day (cfr. Q4). A similar time-specific
partner effect of the women on their male partner was not found to be
significant.

Table 3.5.2 reports the parameter estimates of the covariance structure
of the L-APIM. The variation for the average perceived intimacy is 0.46
and 0.35 for males and females, respectively. This implies that 95% of
the average perceived intimacy (at average levels of the positive relational
feelings) lies between 2.62 and 5.33 for males and between 3.04 and 5.40
for females. The correlation of the average perceived intimacy between
males and females is 0.22√

0.46∗0.35 = 0.54 (cfr. Q5). The residual variance
within a person of the perceived intimacy on a particular day is similar
for males and females: 2.62 for males as opposed to 2.47 for females. The
association of the daily fluctuations between males and females is stronger
than the time-stable correlation, with a magnitude of 1.72√

2.62∗2.47 = 0.68.
Hence, when the man perceives a lot of intimacy on a specific day, the
woman also tends to perceive a lot of intimacy that day, and vice versa
(cfr. Q6). It is also interesting to note that same-day correlation between
males and females is highly attributable to daily influences. About 89% of
the same-day correlation with a magnitude of 1.72+0.22√

(0.46+2.62)(0.35+2.47)
= 0.66

is due to shared variance at day-level, in contrast to the remaining 11%
due to shared variance at dyad-level. Lastly, the autocorrelation parameter
shows that the amount of intimacy on one day is positively correlated with
the amount of intimacy on the next day (cfr. Q7). The magnitude of this
correlation is 0.07, which is rather small, but still significant.

Note that in this illustration, we only considered member-predictors.
In the online documentation of the app, we also provide a tutorial example
that additionally includes a dyad predictor.
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Table 3.5.1 Parameter estimates of the fixed effects for the L-APIM for the effect of positive relationship feelings on
intimacy.

Estimate (SE) z-value p-value CI(95)-lower CI(95)-upper
Effect on male outcome
Intercept 3.975 0.100 39.786 <.001 3.779 4.171
PosRelAM 0.547 0.160 3.410 .001 0.233 0.861
PosRelAF 0.339 0.137 2.468 .014 0.070 0.607
PosRelSM 0.295 0.073 4.033 <.001 0.152 0.438
PosRelSF 0.091 0.073 1.249 .212 -0.052 0.233
Effect on female outcome
Intercept 4.215 0.089 47.511 <.001 4.041 4.388
PosRelAF 0.619 0.122 5.066 <.001 0.379 0.858
PosRelAM 0.118 0.143 0.823 .411 -0.163 0.399
PosRelSF 0.178 0.069 2.582 .010 0.043 0.312
PosRelSM 0.266 0.071 3.747 <.001 0.127 0.405
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Table 3.5.2 Estimates of the covariance parameters for the L-APIM for the effect of positive relationship feelings on
intimacy.

Estimate (SE) z-value p-value CI(95)-lower CI(95)-upper
Between-dyad
τ2

M 0.457 0.111 4.120 <.001 0.240 0.674
τ2

F 0.346 0.090 3.831 <.001 0.169 0.522
τMF 0.215 0.081 2.638 .008 0.055 0.374
Within-dyad
σ2

M 2.620 0.117 22.364 <.001 2.390 2.849
σ2

F 2.467 0.107 23.076 <.001 2.257 2.676
σMF 1.723 0.096 17.965 <.001 1.535 1.911
ρ 0.068 0.025 2.677 .007 0.018 0.117
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3.6 Discussion

In this paper, we presented an extension of the cross-sectional APIM:
the L-APIM. This model incorporates the four main issues for over-time
dyadic data: (a) it includes the effect of partner characteristics on the out-
come of a person, (b) it allows for non-independence between the outcomes
of two members of a dyad, (c) it takes the non-independence between the
different time points within and between the two members of a dyad into
account, and (d) it allows to separate the time-varying predictors into a
time-specific and time-averaged effect. Its implementation in MLM soft-
ware such as SAS was already available. Here, we have shown how the
model can be fitted within the SEM framework as well.

Fitting the L-APIM within the SEM framework offers several advan-
tages compared to the MLM framework. First, one can incorporate mea-
surement error by considering latent outcome variables in the L-APIM
rather than the manifest ones. This is already possible within the cross-
sectional setting (Gareau, Fitzpatrick, Gaudreau, & Lafontaine, 2016;
Orth, 2013), and an extension toward the longitudinal setting could now
be similarly implemented. Second, SEM also allows a latent decomposition
of the overtime predictors rather than the manifest approach introduced
in this paper. Instead of using the observed means as a proxy for the
true underlying mean, one could use a latent mean to represent the time-
averaged component of the predictor (Preacher, Zyphur, & Zhang, 2010).
In this case, a latent variable should be created for the overtime predictor
with all factor loadings equal to one. The effect of the latent variable on
the outcome variable would then correspond to the time-averaged effect of
the overtime-predictor, while the effect of the residual overtime-predictor
would correspond to the time-specific effect of the overtime-predictor.
Preacher and Kelley (2011) showed the latter approach is preferable in
case of measurement error at the member level, especially in terms of
bias for the between-effects. Third, differences in the data structure may
imply different treatment of missing data. Within the MLM framework,
one typically applies list-wise deletion. This results for example in the
exclusion of all records of a person at a particular time as soon as a
missing predictor value for either the actor or partner is reported. In the
wide data structure, such list-wise deletion would imply the elimination
of a complete dyad. However, relying on the full information maximum
likelihood (FIML), the SEM framework is able to use all available data
(Ledermann & Kenny, 2017). Fourth, tests of indistinguishability are more
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easily performed within SEM than within MLM. Using these tests, one
can investigate to what degree the two dyad members differ by role or
not (Gistelinck et al., 2018). Lastly, due to the flexibility of SEM, one
can easily relax some of the assumptions imposed by the L-APIM pre-
sented in this paper. For instance, variances within dyads can be allowed
to vary over time, as well as the autocorrelation parameter and the mean
structure parameters.

The application introduced in this paper does not yet incorporate la-
tent outcomes, latent decomposition (Asparouhov & Muthén, 2018) or
indistinguishability tests. These extensions are part of future upgrades of
the app. Moreover, even though the application only assumes main effects
for all predictors, interaction parameters can in principle be included into
the L-APIM by including the product of two variables as a new variable.
Furthermore, random slopes are not yet allowed into the application.

Lastly, the application does not allow for any mediation analysis yet.
One way to incorporate mediation hypotheses is to replace the current
APIM’s at each time point by its extended APIMeM versions (Ledermann,
Macho, & Kenny, 2011). Note, in order to maintain the separation between
intra- and inter-individual variation, one needs to split these mediators
into time-specific and time-averaged components as well.

Further note that in this paper, we opted for an autoregressive relation-
ship between the residuals in order to incorporate the nonindependence
in the data. Yet, one may argue to include an autoregressive relationship
between the dependent variables instead. Indeed, a model with first-order
autoregressive disturbances and a model with lagged dependent variables
are similar, but only under severe restrictions. Hamaker (2005) showed
both models to be equivalent in the absence of any explanatory variables
and in case the autoregressive parameters are invariant over time. Using
lagged dependent variables (of the actor and the partner) to eliminate
any residual correlation in the presence of predictors might be a danger-
ous strategy as it may induce coefficient estimates of the predictor effects
to be biased (Achen, 2001; Keele & Kelly, 2005). Moreover, the inter-
pretation of the mean structure parameters changes drastically as well
(Jongerling & Hamaker, 2011). Hamaker, Kuiper, and Grasman (2015)
also showed that random effects within these models are necessarily cor-
related with the first lagged outcome variable in order to obtain unbiased
parameter estimates. This correlation is easy to specify within the SEM
framework, but not in the MLM framework which assumes all predictors
to be independent of the random effects.
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Throughout the paper, we only considered continuous outcome vari-
ables, yet longitudinal adaptations of the APIM with categorical outcomes
could be considered as well (Loeys & Molenberghs, 2013; Spain, Jackson,
& Edmonds, 2012). Loeys, Cook, De Smet, Wietzker, and Buysse (2014)
suggested using the Generalized Estimation Equations (GEE) framework
to fit categorical outcomes, but it could be interesting to compare its per-
formance with a SEM approach when fitting longitudinal dyadic data. It
has been shown that SEM relying on diagonally weighted leased squares
outperforms likelihood based approximations used for Generalized Linear
Mixed Models (GLMM) in terms of bias in dyadic data (Josephy, Loeys,
& Rosseel, 2016), but no extensions to the longitudinal setting have been
investigated yet.

In sum, the L-APIM in the SEM framework provides a rich class of
models for analyzing longitudinal dyadic data that allows to explore a
wide variety of research questions. We hope that the online application
will help applied researchers to fit the model in practice.
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Appendix

3.A R code of the illustrative examples
Below, the (truncated) R-syntax of the L-APIM for the empirical example
is displayed. This model is automatically generated by the online appli-
cation.

model <- ’
# mean model for Y

IntimF1 ~ alphaF *1 + phi.aF.PosRelA*PosRelAF
+ phi.pMF.PosRelA*PosRelAM
+ tta.aF.PosRelS*PosRelSF1
+ tta.pMF.PosRelS*PosRelSM1

[...]
IntimF20 ~ alphaF *1 + phi.aF.PosRelA*PosRelAF
+ phi.pMF.PosRelA*PosRelAM
+ tta.aF.PosRelS*PosRelSF20
+ tta.pMF.PosRelS*PosRelSM20

IntimF21 ~ alphaF *1 + phi.aF.PosRelA*PosRelAF
+ phi.pMF.PosRelA*PosRelAM
+ tta.aF.PosRelS21*PosRelSF1
+ [...]
+ tta.aF.PosRelS21*PosRelSF20
+ tta.pMF.PosRelS21*PosRelSM1
+ [...]
+ tta.pMF.PosRelS21*PosRelSM20

IntimM1 ~ alphaM *1 + phi.aM.PosRelA*PosRelAM
+ phi.pFM.PosRelA*PosRelAF
+ tta.aM.PosRelS*PosRelSM1
+ tta.pFM.PosRelS*PosRelSF1

[...]
IntimM20 ~ alphaM *1 + phi.aM.PosRelA*PosRelAM
+ phi.pFM.PosRelA*PosRelAF
+ tta.aM.PosRelS*PosRelSM20
+ tta.pFM.PosRelS*PosRelSF20
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IntimM21 ~ alphaM *1
+ phi.aM.PosRelA*PosRelAM
+ phi.pFM.PosRelA*PosRelAF
+ tta.aM.PosRelS21*PosRelSM1
+ [...]
+ tta.aM.PosRelS21*PosRelSM20
+ tta.pFM.PosRelS21*PosRelSF1
+ [...]
+ tta.pFM.PosRelS21*PosRelSF20

# within -predictor constraints
tta.aF.PosRelS21 == -tta.aF.PosRelS
tta.aM.PosRelS21 == -tta.aM.PosRelS
tta.pFM.PosRelS21 == -tta.pFM.PosRelS
tta.pMF.PosRelS21 == -tta.pMF.PosRelS

# covariance model for Y
IntimF1 ~~ 0* IntimF1
[...]
IntimF21 ~~ 0* IntimF21
IntimM1 ~~ 0* IntimM1
[...]
IntimM21 ~~ 0* IntimM21

# random intercepts
iF =~ 1* IntimF1 + [...] + 1* IntimF21
iM =~ 1* IntimM1 + [...] + 1* IntimM21

# random covariance structure
iF ~~ ivarA*iF + iA*iM + 0*zF1 + [...] + 0*zF21
+ 0*zM1 + [...] + 0*zM21

iM ~~ ivarB*iM + 0*zF1 + [...] + 0*zF21
+ 0*zM1 + [...] + 0*zM21

# latent variables structure
zF1 =~ 1* IntimF1
[...]
zF21 =~ 1* IntimF21
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zM1 =~ 1* IntimM1
[...]
zM21 =~ 1* IntimM21

# latent regression structure
zF1 ~ 0*1
zF2 ~ 0*1 + zrho*zF1
[...]
zF21 ~ 0*1 + zrho*zF20
zM1 ~ 0*1
zM2 ~ 0*1 + zrho*zM1
[...]
zM21 ~ 0*1 + zrho*zM20

# latent covariance structure
zF1 ~~ IntimvarA1*zF1 + IntimA1*zM1
[...]
zF21 ~~ IntimvarA21*zF21 + IntimA21*zM21
zM1 ~~ IntimvarB1*zM1
[...]
zM21 ~~ IntimvarB21*zM21

# latent model constraints
IntimvarA2 == IntimvarA1 *(1 - zrho ^2)
[...]
IntimvarA21 == IntimvarA1 *(1 - zrho ^2)
IntimvarB2 == IntimvarB1 *(1 - zrho ^2)
[...]
IntimvarB21 == IntimvarB1 *(1 - zrho ^2)
IntimA2 == IntimA1 *(1 - zrho ^2)
[...]
IntimA21 == IntimA1 *(1 - zrho^2)’
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3.B SAS code of the illustrative examples
Below, the SAS-syntax of the L-APIM for the empirical example is shown.
Note, the data file “dat” corresponds to a long data structure in which the
variable PosRel has been rearranged into an actor and partner component,
and in which the split-up of both components has already been performed.

PROC MIXED DATA=dat METHOD=ML COVTEST CL;
CLASS dyad gender time;
MODEL intim = gender gender*posrelActorA
gender*posrelActorS
gender*posrelPartnerA
gender*posrelPartnerS / NOINT S CL;

RANDOM gender / SUBJECT=dyad TYPE=UN G V;
REPEATED gender time / SUBJECT=dyad
TYPE=UN@AR (1) R;

RUN;

The parameter estimates using this syntax can be found in Table 3.B.1
and 3.B.2. As mentioned in the discussion, missingness has been treated
differently in the MLM framework used in SAS compared to the SEM
framework used in lavaan. Consequently, some deviations between both
model fits are to be expected. Yet, similar conclusions are found when
fitting the L-APIM on the empirical example data.
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Table 3.B.1 Parameter estimates of the fixed effects for the L-APIM for the effect of positive relationship feelings on
intimacy obtained by SAS.

Estimate (SE) z-value p-value CI(95)-lower CI(95)-upper
Effect on male outcome
Intercept 4.084 0.105 39.04 <.001 3.877 4.291
PosRelAM 0.603 0.167 3.62 <.001 0.278 0.929
PosRelAF 0.329 0.142 2.31 .021 0.050 0.608
PosRelSM 0.335 0.078 4.31 <.001 0.183 0.488
PosRelSF 0.075 0.073 1.03 .303 -0.068 0.219
Effect on female outcome
Intercept 4.313 0.091 47.15 <.001 4.132 4.494
PosRelAF 0.593 0.124 4.78 <.001 0.350 0.837
PosRelAM 0.187 0.145 1.29 .198 -0.098 0.473
PosRelSF 0.174 0.072 2.42 .016 0.033 0.315
PosRelSM 0.278 0.076 3.63 <.001 0.128 0.428
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Table 3.B.2 Estimates of the covariance parameters for the L-APIM for the effect of positive relationship feelings on
intimacy obtained by SAS.

Estimate (SE) z-value p-value CI(95)-lower CI(95)-upper
Between-dyad
τ2

M 0.505 0.122 4.15 <.001 0.331 0.863
τ2

F 0.351 0.095 3.68 <.001 0.220 0.649
τMF 0.231 0.088 2.62 .009 0.058 0.404
Within-dyad
σ2

M 2.391 0.112 21.30 <.001 2.185 2.627
σ2

F 2.311 0.107 21.52 <.001 2.114 2.537
σMF 1.546 0.093 16.63 <.001 1.364 1.728
ρ 0.064 0.027 2.33 .020 0.010 0.118



4 Multilevel autoregressive
models when the number

of time points is small

Abstract. The multilevel autoregressive model can describe dy-
namic processes within individuals and allows to differentiate be-
tween-person variation from within-person variation. In its basic
form, the model essentially includes a random intercept to capture
the interindividual variation, and a lagged dependent outcome to
account for intraindividual variation. We discuss the performance
of the no centering approach, the manifest centering approach and
the latent centering approach to fit the multilevel autoregressive
model in the setting where the number of time points is small.
More specifically, we investigate how standard implementations of
these approaches in different software packages deal with the ini-
tial conditions problem and endogeneity assumption. We find bias
for the parameters of interest, especially when violating the endo-
geneity assumption. We address this bias within different centering
approaches, and end up with two superior approaches.

This chapter is submitted to Structural Equation Modeling: A Multidisci-
plinary Journal. Gistelinck, F., Loeys, T. & Flamant, N. (n.d.). Multilevel
autoregressive models when the number of time points is small. Structural
Equation Modeling: A Multidisciplinary Journal.
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4.1 Introduction

In psychological research, interest not only lies in understanding interindi-
vidual variation, but also in understanding the change within the individ-
ual (i.e., intraindividual variation). For this reason, data are ideally col-
lected in a longitudinal fashion, with individuals repeatedly measured over
time. From a statistical perspective, a multilevel modeling approach can
be used to acknowledge this nested structure. While this modeling frame-
work allows the researcher to separate the interindividual and intraindi-
vidual variation, its standard implementation only corrects for time stable
sources of non-independence. However, as observations within an individ-
ual subject are related to each other over time in a non-stable manner,
one should also take into account the temporal correlation, often referred
to as autocorrelation. Ignoring this type of non-independence may lead to
incorrect inference (Fitzmaurice, Laird, & Ware, 2011; Hox, 2010).

Over the last few decades, different extensions within the multilevel
framework have been developed in order to control for autocorrelation.
On the whole, one could distinguish two major progressions. The first
progression incorporates the specification of a residual covariance struc-
ture, allowing the residuals of repeated outcomes to covary with one an-
other over time. Assuming equally spaced observations, if one expects
the non-independency between the residuals to fade away as the time
lag becomes larger, a first-order autoregressive structure for the residual
covariance structure may be adopted. That is, the temporal correlation
of two adjacent time points is depicted by an autocorrelation parameter
ρ (−1 < ρ < 1). This progression involved the advancement of existing
multilevel software packages (Grimm & Widaman, 2010; Kwok, West, &
Green, 2007; Little, 2013) from independent errors to more complex er-
ror covariance structures, but it also caused a breakthrough in structural
equation modeling (SEM) software (Cole, Cielsa, & Steiger, 2007; Hil-
dreth, 2013). Recently, RDSEM (Residual Dynamic Structural Equation
Modeling) in Mplus was presented as a flexible tool to fit such models in
SEM (Asparouhov & Muthén, 2018a).

While in the first progression the autocorrelation is typically consid-
ered a nuisance, a second progression focuses on the autoregressive rela-
tionship between consecutive measurements and allows the prior value to
have a direct linear effect on the current value of the outcome. In other
words, a lagged dependent variable is included as a predictor in the model.
The associated autocorrelation parameter then portrays the time it takes
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for the individual to recover from a perturbation and restore equilibrium.
This second progression is commonly used within the area of econometrics
as it allows to model dynamic data-generating processes (Arellano, 2003;
Woolridge, 2009), and recently gained popularity in the behavioral sci-
ences as well (Hamaker & Grasman, 2015), leading to the development of
DSEM (Dynamic Structural Equation Modeling) in Mplus (Asparouhov,
Hamaker, & Muthén, 2018).

One of the most popular models within this second progression is
the multilevel autoregressive model or ML-AR(1) model. However, imple-
menting this model with direct autoregressive effect of a lagged outcome
on the current outcome harbors some complications. First of all, condi-
tioning on a lagged outcome changes the interpretation of the estimated
intercept compared to a model that allows the residuals to be correlated
(Jongerling & Hamaker, 2011). As we will show later, an adjusted inter-
cept value is estimated rather than a true underlying common equilibrium.
As a result, different centering methods, including manifest mean center-
ing and latent mean centering, have been proposed for directly estimating
the equilibrium. Regardless of this centering question, there are two other
eminent issues regarding the implementation of the ML-AR(1) model: the
initial conditions problem and the endogeneity problem. As the ML-AR(1)
model focuses on modeling processes that are ongoing, the initial time
point of measurement is affected by an unavailable presample response
(i.e., the initial conditions problem). In most approaches, the latter is
treated as missing, thereby causing the first time point to be eliminated
from the analysis (Zhang, Hamaker, & Nesselroade, 2008). Moreover, the
outcome measured at the first time point is thereby considered as an ex-
ogenous variable rather than an endogenous one (Bianconcini & Bollen,
2004). Consequently, most software packages will ignore the first out-
come score’s contribution to the underlying subject-specific equilibrium
(i.e., the endogeneity problem). Ignoring this non-independence between
the subject-specific equilibrium and the first outcome score (i.e., assum-
ing exogeneity) may cause erroneous inference(Fotouhi, 2005; Skrondal &
Rabe-Hesketh, 2014).

Several authors have already compared estimation procedures for the
ML-AR(1) models. Jongerling, Laurenceau, and Hamaker (2015) con-
trasted the no centering approach (based on maximum likelihood estima-
tion), the manifest mean approach (based on maximum likelihood estima-
tion) and the latent mean approach (based on Bayesian estimation) for
varying number of time points (T = 10,20 or 50) and subjects (N = 20,50
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or 100). While no centering produced very good results in their simulation
study, Hamaker and Grasman (2015) noted that manifest person-centering
of the lagged predictor revealed considerable bias for the autocorrelation
parameter (Hamaker & Grasman, 2015), which is known as Nickell’s bias
in econometrics literature (Nickell, 1981). This bias is caused by using
an observed individual’s mean instead of the true underlying one. The
observed mean is treated as if its predetermined without taking into ac-
count its uncertainty. Allison, Williams, and Moral-Benito (2017), how-
ever, showed that the no centering approach yields a biased estimator for
the autocorrelation parameter in case the random intercept is assumed
to be uncorrelated with the lagged dependent variable, and showed how
this bias is removed once allowing for this correlation in the SEM frame-
work. In their seminal paper on DSEM, Asparouhov et al. (2018) claim
that also the DSEM framework, which relies on latent centering, can be
used to eliminate this dynamic panel bias. Their simulation study con-
siders T = 10 to T = 100 time points, and N = 30 to N = 100 subjects.
Schultzberg and Muthén (2018) further investigated the question on how
many number of subjects and time points are needed for multilevel time
series analysis in the DSEM framework, and varied both T and N from
10 to 200. They concluded that DSEM performs better for samples with
many subjects and few time points than samples with few subjects and
many time points. More recently, McNeish (2019) studied the latter sce-
nario, also referred to as intensive longitudinal data or time series data. In
this article, we focus on the first scenario, also referred to as panel data,
and compare the performance of different approaches towards fitting a
ML-AR(1) when the number of time points is small.

The outline of this paper is as follows. First, we introduce the multi-
level first-order autoregressive model and discuss the different modeling
approaches. We illustrate how the no centering approach, the manifest
mean centering and the latent mean centering approach lead to different
conclusions about the autoregressive parameter of our motivating exam-
ple data. We conduct a simulation study to illuminate the performance
of the different approaches. We find the no centering approach assuming
endogeneity to perform well, but the latent centering approach in DSEM
to perform differently than expected. To gain further insight into the per-
formance of the DSEM-implementation in Mplus within the setting of a
small number of time points, we perform a second simulation study ex-
ploring the latent centering approach in more detail. We conclude that
not treating the first measurement as an endogenous variable but still
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having it contributing to the latent mean yields the best performance.
While we focus on a relatively simple model in this paper, we elaborate
on the broader implications of our findings on the analysis of panel data
in the discussion.

4.2 The multilevel autoregressive model
As a motivating example throughout this paper, consider the study of
Flamant and Soenens (n.d.). These authors investigate pupil’s perception
of controlling behavior of the teacher and how it affects their motivation,
class engagement, psychological need-frustration and general well-being.
About 400 pupils from different schools and grades were asked to fill in
a weekly questionnaire for four consecutive weeks. Here, we focus on the
estimation of the dynamics of the autonomous motivation of the pupil with
only those four repeated measures available, and wonder to what extent
the motivation of last week affects the current motivation. One of the most
promising models in psychological research to model dynamics of such
stationary process is the multilevel autoregressive model (Kuppens, Allen,
& Sheeber, 2010; Rovine & Walls, 2006). Due to its multilevel nature, it
allows researchers to differentiate in interindividual and intraindividual
differences of motivation, and due to its autoregressive structure, it also
controls for autocorrelation.

Below, the two-level specification of the multilevel first-order autore-
gressive model or ML-AR(1) model, is presented. A graphical represen-
tation of the model can be found in Figure 4.2.1. The level 1 equation
describes the outcome scores as a mean score, usually considered as a
subject-specific equilibrium, and a temporal deviation from this mean:

yti = µi + zti (4.1)

with i referring to the subject number (i = 1, . . . ,N) and t to the time
point (t = 1, . . . , T ). The level 2 equation then corresponds to the modeling
assumptions of the individual’s equilibrium and describes the latter as a
grand mean with white noise:

µi = µ + ηi (4.2)

with ηi ∼ N(0, τ2
η ).
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The individual’s deviations at level 1 are modeled as a first-order autore-
gressive structure with autocorrelation parameter ρ (−1 < ρ < 1):

zti = ρz(t−1),i + εti (4.3)

with εti ∼ N(0, σ2
ε). As the residuals εti account for the part that is not

predicted by the previous zt−1,i, it is also referred to as the innovation.
For instance, in the study of Flamant and Soenens (n.d.), a large resid-
ual variance σ2

ε would correspond to a high level of perturbation in the
autonomous motivation of the participants. While an autocorrelation pa-
rameter ρ close to zero would imply little carryover effect of motivation
from one measurement occasion to the next, an autocorrelation parame-
ter close to one would imply that there is considerable carryover between
consecutive measurement occasions. Hence, the autocorrelation parame-
ter is often referred to as a measure of inertia. Note that the equilibrium
is assumed to be subject-specific here. If the stability of constructs shows
some time-invariant characteristic (e.g., due to the intrinsic motivation of
the student), it is shown that the autocorrelation parameter alone is not
able to account for this trait (Hamaker, Kuiper, & Grasman, 2015). Even
in case the autocorrelation parameter is very close to one, indicating a
very high carryover effect, the parameter can only account for temporal
stability as its effect nullifies when enough time passes.
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Figure 4.2.1 A schematic overview of the multilevel first-order autore-
gressive model for four time points.
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Models (4.2) and (4.3) further assume the autocorrelation parameter
ρ and the level 1 residual variance σ2

ε to be fixed instead of random. As
mentioned by Jongerling et al. (2015), a person-specific residual variance
might be important as it capture differences in sensitivity to innovation.
Assuming the residual variance as fixed may induce small bias in the
autocorrelation parameter, however. This is explained by the fact that the
variance in a ML-AR(1) model both depends on the innovation variance
and the autocorrelation parameter. As the bias in the autocorrelation
parameter is rather small, we will focus on models with a fixed innovation
variance. This choice is also made because we investigate the ML-AR(1)
model in the context of panel data (i.e., a small amount of time points).
Assuming a person-specific variance might unnecessarily complicate the
model and often leads to convergence issues in this setting.

For similar reasons, we also assume a fixed rather than a random au-
tocorrelation parameter. As shown by Schultzberg and Muthén (2018),
a random autocorrelation parameter (or random innovation variance) re-
quires a lot more time points in order to obtain a model fit with good
performance. Furthermore, incorrectly fitting the autocorrelation param-
eter as fixed rather than random hardly affects the mean squared error.
It is also known that no bias is introduced in the mean structure param-
eter estimates when treating the parameter as fixed instead of random
(Baird & Maxwell, 2016). Finally, as we will only consider a stationary
process, the assumption of “−1 < ρ < 1” must hold. This implies that the
variance of a random inertia cannot be large to begin with. Consequently,
if the variance should be small, assuming a random autocorrelation pa-
rameter might become futile, resulting in a large mean squared error due
to over-specification.

4.3 Implementations of the ML-AR(1) model
Although the ML-AR(1) model specified by equations (4.1) - (4.3) seems
straightforward, its implementation is quite challenging. In this section,
different approaches towards fitting the ML-AR(1) model will be intro-
duced.
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4.3.1 The no centering approaches
The first approach is quite simple. It involves the substitution of the ex-
pression (4.2) and (4.3) in expression (4.1). Using the fact that z(t−1),i =

y(t−1),i − µi, one finds:

yti = αi + ρyt−1,i + εti, (4.4)

with αi ∼ N(α, τ2
α) and

α = (1 − ρ)µ,
τ2
α = (1 − ρ)2τ2

η .
(4.5)

Hence, when using model (4.4), one does not estimate the true individual’s
equilibrium µ or variance τ2

η , but rather a transformation of them (namely,
α and τ2

α). We will refer to this model as the NC model, as it uses the
uncentered lagged outcome variable as a predictor in the model.

As expression (4.4) illustrates, one needs a start-up for the autoregres-
sive process (i.e., the initial conditions problem). The simplest solution
to this problem is assuming the first outcome variable as exogenous (i.e.,
predetermined) with its own mean and variance. Given the lack of knowl-
edge about the unobserved previous observations, this seems logical and
it is also the most common practice in the multilevel modeling frame-
work. We will refer to this model as the NC-EXO model since the first
outcome variable is considered exogenous. A graphical representation can
be found in Figure 4.3.1. The NC-EXO model can be fitted in either the
multilevel modeling (MLM) framework, the structural equation modeling
(SEM) framework or the Bayesian framework (BAY). It is well known
that MLM models have equivalent models within the SEM framework
(Curran, 2003). The latter framework uses latent variable to represent
theoretical constructs or unmeasured factors (Kline, 2015; Schumacker &
Lomax, 2004). As MLM uses the restricted maximum likelihood (REML)
estimator by default, asymptotically unbiased estimates are obtained for
the (co)variance parameters, in contrast to SEM which typically uses the
(unrestricted) maximum likelihood (ML) estimator by default. It is fur-
ther known that (RE)ML estimation might not be the best choice due
to small sample bias. Instead of restricting ourselves to a frequentist ap-
proach, one might, therefore, want to appeal to the Bayesian approach
(Bolstad & Curran, 2016; Lynch, 2007).
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Figure 4.3.1 A schematic representation of the NC-EXO parametriza-
tion of the uncentered ML-AR(1) model for four time points.

Regardless of the framework used, assuming the first outcome variable
to be exogenous causes the NC-EXO model to suffer from the endogeneity
problem. The lagged outcome variable at the first time point is assumed
to be uncorrelated with the random intercept. As suggested by Bollen
and Curran (2004), one can solve this endogeneity problem by specifying
a relation between the first outcome variable and the random intercept,
for instance, by allowing the first outcome variable and the random inter-
cept to be correlated (Teachman, Duncan, & Yeung, 2001). A graphical
representation is presented in Figure 4.3.2 and will be referred to as the
NC-ENDO model.
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Figure 4.3.2 A schematic representation of the NC-ENDO
parametrization of the uncentered ML-AR(1) model for four time
points.
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Using standard MLM software packages, such as HLM (Raudenbush,
2004), Mplus’ two-level option (Muthén & Muthén, 2012), SAS’s PROC
MIXED (SAS Institute, 2008), R packages like nlme (Pinheiro & Bates,
2000) or lme4 (Bates, Mächler, Bolker, & Walker, 2015), all predictor vari-
ables, including the lagged dependent variable at the first time point, are
considered independent from the random effects by default. Consequently,
the NC-ENDO model cannot be fitted within standard MLM. Contrary,
in the SEM and the BAY framework, one can mitigate the assumption
of independence between the exogenous variables and the random effects.
If one uses standard SEM packages, such as EQS (Bentler, 2004), LIS-
REL (Jöreskog & Sörbom, 1996), OpenMx (Boker et al., 2011), Mplus
(Muthén & Muthén, 2012), Stata’s gllamm (Rabe-Hesketh, Skrondal, &
Pickles, 2004), SAS’s proc CALIS (SAS Institute, 2013) or R’s lavaan
(Rosseel, 2012), one can easily introduce a correlation between the first
outcome variable and the latent intercept. Within the BAY framework,
adding such correlation is a bit more complex as one needs to assume a
multivariate normal distribution for the first outcome variable and the ran-
dom intercept, but it may be implemented within standard BAY software
packages like WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000),
JAGS (Plummer, 2003) or Stan (Carpenter et al., 2017), using their corre-
sponding R packages R2WinBugs (Sturtz, Ligges, & Gelman, 2005), RJags
(Plummer, 2016) or RStan (Stan Development Team, 2018).

4.3.2 The centering approaches
As mentioned above, the no centering approach does not estimate the true
individual’s equilibrium (variance), but a transformation of it (cf. expres-
sion 4.5). Although this does not sound that harmful, it does complicate
the interpretation of the model parameter estimates. Looking for a solu-
tion, the most popular solution to this rescaling issue is centering (Enders
& Tofighi, 2007). If one centers the lagged outcome variable around its
subject-specific equilibrium, one only conditions on the within-level of the
previous time point and, hence, no longer on the time-invariant effects of
the previous time point. One can thus rewrite equation (4.4) as follows:

yti = µi + ρ(yt−1,i − µi) + εti (4.6)

with µi ∼ N(µ, τ2
µ) and εti ∼ N(0, σ2

ε). This way, the underlying equi-
librium µi may be estimated by the model in a straightforward fashion
at first sight. However, there is one big catch-22: in order to obtain an
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estimate of the subject-specific equilibrium, we need the subject-specific
equilibrium to center the lagged outcome variable.

Jongerling et al. (2015) suggested to use the observed individual’s sam-
ple mean ȳi to center the lagged outcome variable:

yti = µi + ρ(yt−1,i − ȳi) + εti (4.7)

This centering approach is also known as the cluster-mean centering, man-
ifest centering or observed centering. Hence, we will refer to model (4.7)
as the CMC model. A graphical representation of the model can be found
in Figure 4.3.3. An alternative is based on a two-step procedure, in which
an estimate for the random intercept is first obtained by fitting an empty
model. Here, we will no further discuss this alternative as Jongerling and
Hamaker (2011) showed that the differences in performance between both
approaches are negligible. Moreover, the first approach is more common
practice.
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Figure 4.3.3 A schematic representation of the CMC parametrization
of the cluster-mean centered ML-AR(1) model for four time points.
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In this CMC approach, on still has to deal with the initial conditions
problem and endogeneity problem. Again, the first outcome variable is
assumed as exogenous in order to deal with the initial conditions problem.
The CMC models are further known to suffer from Nickell’s bias (Nickell,
1981): using the observed individual’s mean instead of the true underlying
one introduces bias in the autocorrelation parameter ρ. An approximation
of this bias is given by the following formula:

−
1 + ρ
T − 1

(4.8)

The bias will be especially prominent when the number of time points T is
small. Furthermore, it is obvious that Nickell’s bias is persistent in case the
number of subjects increases. Moreover, due to the negative sign in (4.8),
it is even possible to obtain a negative estimate for a true underlying
positive autocorrelation.

Interestingly, the simulation studies of Hamaker and Grasman (2015)
also showed that, even in case the true underlying mean is used to center,
bias is still observed due to the unsolved endogeneity problem. Therefore,
a solution should not only avoid Nickell’s bias, but should also account for
the endogeneity problem. As claimed by Asparouhov and Muthén (2018b),
latent centering is able to deal with Nickell’s bias. Instead of using the ob-
served equilibrium, one can specify the unobserved subject-specific equi-
librium as a latent variable (Lüdtke et al., 2008; Preacher, Zyphur, &
Zhang, 2010). The idea is to split the outcome variable into two parts: a
within and a between part, which are both considered latent, that is:

yti = ỹi + ỹti

ỹi = µ + ηi

ỹti = ρỹ(t−1),i + εti

(4.9)

with ηi ∼ N(0, τ2
η ) and εti ∼ N(0, σ2

ε). We will refer to these models
as the LC models. This latent centering can be performed using DSEM
from Mplus in the BAY framework (Muthén & Muthén, 2012). Due to
the iterative nature of the Markov Chain Monte Carlo technique, one
can use the random intercept’s prior in order to perform latent centering
of the lagged outcome variable in the posterior distribution, while all
model parameter estimates (including the random intercept itself) are
updated simultaneously. Asparouhov et al. (2018) further explain that
DSEM deals with the initial condition problem by introducing auxiliary
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variables for the unobserved presample responses which are used in the
prediction of the first outcome variable. This variable is unknown and has
its own prior distribution based on the sample mean and variance of the
outcome variables (Zhang & Nesselroade, 2008).

4.3.3 Empirical Example
As an illustration of the four above described approaches to the ML-AR(1)
model, we applied them to our motivating example data on autonomous
motivation of primary school pupils. For ease of comparison, we eliminated
the incomplete cases, so that 310 pupils with complete data remained in
the data set. We used the following statistical frameworks and software
to implement the four approaches:

● the NC-EXO model within the MLM framework
using the nlme package in R,

● the NC-ENDO model within the SEM framework
using the lavaan package in R,

● the CMC model within the MLM framework
using the nlme package in R,

● the LC model within the BAY framework
using DSEM in Mplus.

The model within Mplus was fitted using the R package MplusAutomation
(Hallquist & Wiley, 2018). In the Bayesian approach, prior distributions,
number of burn-in iterations, etc. need to be specified. All specifications
were kept at default. The code for the models can be found in the supple-
mentary materials.

The results in Table 4.3.1 reveal remarkable differences between the
four approaches. The NC-EXO and DSEM approach both find a very
strong autocorrelation, larger than 0.70, while the autocorrelation is close
to 0.30 for the NC-ENDO model. The negative autocorrelation by the
CMC model is not realistic and may be indicative for the earlier men-
tioned Nickell’s bias. Also the residual variances are comparable between
the NC-EXO and DSEM, smaller for the NC-ENDO, and even more so for
the CMC model. The intercepts and random intercept variances are only
directly comparable within the no centering and centering approaches, re-
spectively. However, after transforming, all approaches estimate the equi-
librium for autonomous motivation around 3.35. The NC-EXO model finds
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no evidence for a positive random intercept variance (i.e., estimate at the
boundary of the parameter space), while also in the DSEM approach,
it is very small. This may explain the large difference between both the
NC-EXO and NC-ENDO model. As the latter has a very small random
intercept variance, most variation is incorporated by the autocorrelation
parameters, leading to a small random intercept. The estimate for the ran-
dom intercept variance under the NC-ENDO model equals 0.34

(1−0.29)2 = 0.67,
implying that 95% of the participants specific equilibrium lie between 2.09
and 4.66.

Table 4.3.1 Estimates (and standard errors) of the parameters from the
ML-AR(1) model on the empirical example with four time points using
the different parametrizations.

No centering approach Centering approach
Est. NC-EXO NC-ENDO Est. CMC DSEM
α 0.800(0.080) 2.376(0.243) µ 3.360(0.052) 3.381(0.053)
ρ 0.760(0.023) 0.292(0.071) ρ -0.166(0.041) 0.747(0.026)
τ2
α <0.001(<0.001) 0.335(0.092) τ2

η 0.732(0.067) 0.120(0.074)
σ2
ε 0.466(0.022) 0.343(0.027) σ2

ε 0.289(0.016) 0.459(0.023)

Notes. α = (1 − ρ)µ and τ2
α = (1 − ρ)2τ2

η .

4.3.4 Simulation study 1
Given the discrepancies between the four approaches in our empirical ex-
ample, we further explore their performance in a simulation study where
the underlying truth is known. The data-generating process of the simu-
lation study is as follows:

yti = µi + zti

µi = 2 + ηi
zti = 0.4z(t−1),i + εti

(4.10)

with i referring to the subject number (i = 1, . . . ,50) and t to the time
point (t = 1, . . . , T ) in which we varied T from 4 till 20 by steps of 2.
The white noises ηi and εti follow a normal distribution with mean zero
and variance equal to 3 and 3.36, respectively, such that the variance
structure of the original residuals zti has a variance equal to 4. We compare
the 4 approaches using 200 replications. Note, the NC models estimate a
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rescaled random intercept with mean equal to 2 ∗ (1 − 0.4) = 1.2 and
variance 3 ∗ (1 − 0.4)2 = 1.08.

As mentioned before, one needs to specify the priors in the BAY frame-
work and we again choose to use the default priors of DSEM in Mplus:

µ ∼ N(0,∞)
ρ ∼ N(0,∞)
τ2
η ∼ IG(−1,0)
σ2
ε ∼ IG(−1,0)

(4.11)

with IG referring to the inverse gamma distribution. Mplus thus allows
for improper distribution as they are advantageous in small samples with
respect to bias and mean squared error (Asparouhov & Muthén, 2010).
The IG(−1,0) is approximately equivalent to the uniform distribution
with minimum 0 and maximum ∞.

When considering four time points, Mplus’ DSEM reported conver-
gence issues for 29 of the 200 repetitions. In these cases, unusual high pa-
rameter estimates were found, if a value was reported at all. As a result,
we opted to limit the sensitivity of these outliers by using robust summary
statistics. The median parameter estimates can be found in Figure 4.4.1,
and a similar plot for the median absolute errors (MedAE) can be found
in the supplementary materials. As one can see, all approaches, except for
the CMC model, tend to yield unbiased estimates for the model param-
eters when at least 10 time points are available. This is consistent with
the findings of the simulation study of Hamaker and Grasman (2015).
The CMC model shows negative bias for the autocorrelation parameter,
as predicted by Nickell’s bias, even when the amount of time points is
20 (the prediction based on formula (4.8) is indicated by the blue trian-
gle). Consequently, the model also yields biased estimates for the random
intercept variance.

Considering the no centering approaches, it is clear that we must deal
with the endogeneity problem. As the NC-ENDO model shows, the bias
from the exogeneity assumption in the NC-EXO model can be eliminated
by adding a correlation between the first lagged outcome and the random
intercept. We also see that as soon as the number of time points is smaller
than 6, the NC-EXO model estimates the random intercept as almost
zero, causing maximal bias in all other variables (cf. the hitch at the
start of the curves). The NC-ENDO model also illustrates that assuming
the first outcome variable as a predetermined variable does not harm
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the parameter estimation since no bias is observed within this approach.
Using Mplus’ DSEM to fit the LC model, we notice that DSEM does not
perform as expected when the number of time points is smaller than 10.
This is interesting because no bias was found in a similar simulation study
in Asparouhov et al. (2018), investigating latent centering. However, the
latter was performed in case of intensive longitudinal data. The question
arises what causes the bias. Is it possible that latent centering is not
suitable when the number of time points is rather small? Does adding
the auxiliary variable in order to resolve the initial condition problem
make the estimation unreliable? Could it be that the bias is attributed to
specific choices made in the default settings of DSEM, for instance, what
is the impact of the choice of the priors? Or, perhaps, the performance of
the Bayesian approach for the model in this particular setting is overall
deficient?

4.4 Alternative models with latent centering
In order to elucidate the estimation behavior of the LC model, we imple-
mented the LC model using an open source Bayesian software package,
more specifically, the R package Rjags. The code for the Bayesian models
that we discuss below, can be found in the supplementary materials.

As mentioned above, different causes can be identified that imperil the
parameter estimation. Firstly, the bias might be due to the endogeneity
problem, which is not resolved by latent centering. In a first implemen-
tation, the outcome variable is split up into a latent between and within
part at all time points. Figure 4.4.2a represents the LC-EXO model. In
this implementation, the between part of the first outcome variable does
not contribute to the estimation of the random intercept. However, it has
its own prior distribution based on the observed mean and variance (cf.
auxiliary variable).
We also introduce a similar Bayesian model that deals with the endogene-
ity problem, retaining the auxiliary variable for the unobserved presam-
ple responses, see Figure 4.4.2b. In this case, an association is invoked
between the random intercept and the between part of the first outcome
variable. The auxiliary variable is introduced at the within-level of the
model as a direct start-up of the the autoregressive process. We will refer
to this model as the LC-ENDO-0 model. The number ‘0’ at the end of
this acronym represents the time point used as the start-up of the autore-
gressive process.
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Figure 4.4.1 The parameter estimates of the ML-AR(1) model over 200 repetitions for t = 4,6, . . . ,18,20 time points
based on the different model parametrizations. The blue dotted line represents the true (transformed) model parameter.
The gray band represents the absence of relative bias at a 10% cut-off. The blue triangles in subfigure (b) represents
Nickell’s bias.
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Secondly, the introduction of this auxiliary variable may make the model
unreliable in case of panel data. For this reason, a third model imple-
mentation is introduced, which removes the auxiliary variable from the
LC-ENDO-0 model, while preserving the correlation between the first out-
come variable and the random intercept. A graphical representation of this
model, which we will refer to as the LC-ENDO-1 model, can be found in
Figure 4.4.2c. In this case, the residual variance of the within-part of the
first outcome variable is considered free. As a result, the endogeneity prob-
lem has been dealt with and the first time point represents the start-up
of the autoregressive process, hence the ‘1’ at the end of the acronym.
The issues above are all related to the specification and assumptions of
the model. However, it is possible that the genesis of the bias lies within
the statistical framework used. On the one hand, the BAY framework is
often preferred in case of panel data as it is supposed to be more robust to
small sample bias. However, the selected prior distributions may have an
impact on the estimation of the model parameters (Gelman et al., 2013).
Therefore, non-informative prior distributions are often suggested. The
most frequently used non-informative prior distributions for mean struc-
ture parameters, like µ and ρ in our case, is the normal distribution with
mean zero and a high variance. For the variance structure parameters,
such as τ2

η and σ2
ε , several non-informative prior distributions have been

proposed, such as an inverse gamma distribution with a small scale param-
eter, a uniform distribution with a large scale parameter, a half-Cauchy
distribution or a log-normal distribution. Alternatively, one may specify a
prior distribution for the standard deviations instead, for example, using
a uniform distribution (Zitzmann, Lüdke, & Robitzsch, 2015). As a result,
different priors should be used in order to check the prior sensitivity of
the model.

While the BAY approach is somehow robust to small sample bias, it
can provide less accurate estimates in case of challenging data constella-
tions, such as small groups, a situation inherent to panel data (Zitzmann,
Lüdtke, Robitzsch, & Marsh, 2016). Recently, McNeish (2019) showed
that the likelihood which updates the prior distribution carries less weight
within the posterior distribution in case of small samples. As a result, the
non-informative prior distributions may become unintentionally informa-
tive (McNeish & Stapleton, 2016). The reasoning can be similar for small
cluster sizes. Therefore, we also considered a frequentist approach which
does not use prior distributions, but relies on maximizing the likelihood.
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(a) The LC-EXO model.
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(b) The LC-ENDO-0 model.
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(c) The LC-ENDO-1 model.
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(d) The LC-ENDO-1 model within the SEM framework.

Figure 4.4.2 A schematic representation of the different LC models
of the ML-AR(1) model for four time points. Note that the phantom
residuals et for t = 1, . . . ,4 in Figure 4.4.2d are generated automatically
when defining ỹ and ỹt and hence, cannot be eliminated from the model.
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Within the SEM framework, one can still perform latent centering. This
is achieved by defining a latent variable ỹi over all time points and a
residual latent variable ỹti for each time point (Beaujean, 2014). As this
split-up explains the observed outcome values completely, the total vari-
ance is subdivided into between-level variation and within-level variation.
Consequently, one needs to eliminate the original residuals of the out-
come variables by (manually) setting their variance to zero. In the SEM
framework, it is then possible to deal with the endogeneity problem as
well, by adding a correlation between the latent intercept and the latent
within-part of the first outcome variable. Moreover, the variance of its
within-part can be considered free, allowing the first time point to repre-
sent the start-up of the autoregressive process (cf. the initial conditions
problem). Hence, we end up with a fourth model, namely an equivalent
LC-ENDO-1 model within the SEM framework. A graphical representa-
tion of this implementation can be found in Figure 4.4.2d.

4.4.1 Simulation study 2

Consider the data-generating process of simulation study 1 as described
by expression (4.10). Again, we assume 50 subjects and 4 till 20 time
points, varied by steps of 2. In this second simulation study, the four
models depicted in Figure 4.4.2 were fitted with Rjags and lavaan, and
were compared to Mplus’ DSEM. As Rjags neither allows for infinite
bounds for prior distributions nor improper priors, we decided to fix the
prior distributions for the mean structure parameters to a normal distribu-
tions with variance 100,000 in both Rjags and Mplus. We also considered
three different prior distributions for the variance structure parameters:
the uniform distribution with scale parameter 1,000, the inverse gamma
distribution with scale parameter 0.001 and the half-Cauchy distribution
with scale parameter 10 (not possible in Mplus). Based on the model
diagnostics, such as traceplots, the Brooks-Gelman-Rubin plots and the
autocorrelation function (Albert, 2009), we decided to keep the thinning
fixed at one, to increase the number of chains from two to three and to
compute 50,000 MCMC iterations. Note that Rjags allows the user to
define the burn-in phase separately from the update phase. In the latter
phase, Rjags also makes a difference between adapting the samplers used
in the Markov chain and the initial burn-in period (Plummer, 2015). This
is in contrast to Mplus, which uses by default only half of the number
of iterations as a burn-in phase and the other half to compute the pos-
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terior distribution. Depending on the distance of the Proportional Scale
Reduction (PSR) from one (i.e. the convergence criterion), the posterior
distribution might be based on a smaller amount of iterations. In order
to maintain as much equivalence between Rjags and Mplus, the same
amount of iterations for the update phase in both software packages were
imposed, namely 25,000 (half of 50,000), using “FBITER” within Mplus
(Muthén, 2010).

From the simulation results (not shown here), it was clear that the
uniform and half-Cauchy distribution provided similar results for all Rjags
models. The diagnostics of the models based on the inverse gamma prior
were bad, which might explain the difference in performance compared to
the other priors for both the Rjags models as Mplus’ DSEM. Hence, we
will further only focus on the result assuming a uniform prior distribution.
The simulation results for the median of the parameter estimates are
depicted in Figure 4.5.1. A similar plot for the MedAE can be found in
the supplementary materials. As Mplus reported convergence issues for 84
of the 200 repetitions at four time points, the impact of these runs on the
results are limited with these robust measurements. This non-convergence
issue may again explain the jump of the different implementations when
going from four to six time points.

Figure 4.5.1 reveals that the LC-EXO model, which ignores the endo-
geneity problem, performs rather similar to DSEM. To keep the readability
of the figure, the 95%-confidence intervals based on the median absolute
differences (MADs) were plotted for only these two models. There are
some differences in the autocorrelation parameter and when T = 4 in the
other model parameters, although the trend is very akin to one another.
Figure 4.5.1 further reveals that the LC-ENDO-0 model attenuates the
bias for the estimate of the autocorrelation parameter compared to the
DSEM and the LC-EXO model. The estimator of the intercept from the
LC-ENDO-0 model, however, shows more bias when the amount of time
points is rather small. When the LC-ENDO-1 model is used, it performs
very well, even in case only a small amount of time points are available.
This confirms the fact that latent centering can be used in order to resolve
the centering problem. Moreover, it can be seen that the corresponding
SEM implementation of the LC-ENDO-1 model provides unbiased esti-
mates as well and might be preferred over its BAY implementation given
that is has less convergence issues when the number of time points is very
small.
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To summarize, we have found two approaches for fitting the ML-AR(1)
that are elusive to bias when applied to panel data. On one hand, if the re-
searcher is not bothered by estimating a rescaled intercept, an uncentered
model in which a correlation between the first lagged outcome variable
and the random intercept is included, can be used (i.e., the NC-ENDO
model). On the other hand, if the researcher is interested in directly esti-
mating the equilibrium, latent centering could be used. In this case, the
LC-ENDO-1 model based on maximum likelihood in the SEM framework
performs best. Lastly, the researcher should be aware of the default set-
tings of either type of software packages as those might not always be
adequate for valid inference (Muthén & Asparouhov, 2012).

4.5 Discussion
In this paper, we discussed different ways to fit the ML-AR(1) model in
light of the endogeneity problem and the initial conditions problem. We
found that ignoring the endogeneity problem can lead to severe bias in
the autocorrelation parameter. While manifest cluster-mean centering is
known to introduce Nickell’s bias, we also showed how some implemen-
tations of the latent mean centering approach in the Bayesian framework
may show bias, especially when the number of the time points is small.
This is mostly due to problematic management of the unobserved pre-
sample outcome. The no centering approach that properly deals with the
endogeneity problem (i.e., the NC-ENDO model) and the latent centering
approach that does not utilize an auxiliary variable for the unobserved
presample outcome (i.e., the LC-ENDO-1 model) performed best.

There are several limitations to this conclusion. First, we only consid-
ered a simple version of the ML-AR(1) model, with a fixed autocorrelation
parameter and a constant residual variance. Although it is likely that our
findings still hold in the ML-AR(1) model which relaxes those restrictions,
the implementation of the NC-ENDO or LC-ENDO-1 model for this com-
plex setting in the traditional SEM framework requires some further in-
vestigation. Regardless, fitting such models may be too demanding for the
limited amount of information available when the number of time points
is small. Second, we assumed that all subjects were measured simultane-
ously at equidistant time points. However, this may not always be true
in practice: some time points may be scheduled further apart from each
other or time points may differ between subjects. This may complicate
the model a lot if the autocorrelation parameter is treated time-specific.
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Figure 4.5.1 The parameter estimates of the ML-AR(1) model over 200 repetitions for t = 4,6, . . . ,18,20 time points
based on the different model implementations for the LC model. The blue dotted line represents the true model para-
meter. The gray band represents the absence of relative bias at a 10% cut-off. The 95%-confidence intervals for the
DSEM and LC-EXO model has been provided as well.
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Third, the ML-AR(1) model discussed in this paper did not include any
other predictors in the model, either time-independent or time-varying.
Clearly, our findings have implications on more complex models such as
the random intercept cross-lagged panel model (RI-CLPM) proposed by
Hamaker et al. (2015), or dynamic network models (Bringmann et al.,
2013). In case the number of time points is small, the bias in the autore-
gressive parameter may be substantial when the unobserved presample
response and the endogeneity are not appropriately dealt with. Further
research is required to explore the impact on the parameter estimates of
other predictors. For example, it is possible that the cross-lagged effects
of X on Y also show bias when using the wrong approach (Allison et al.,
2017).

Finally, it is worth noting that the ML-AR(1) resembles latent state-
trait (LST) models (Steyer, Ferring, & Schmitt, 1992). The LST frame-
work can be used to study longitudinal dynamics of psychological at-
tributes too and can, for example, determine the degree to which such
attributes reflect stable effects, effects of person-situation interactions,
or random measurement error. The single trait-multistate model (STMS
model) is the simplest type of LST model which allows the latent trait
component to be separated from the state residual components. Similar
to the traditional random intercept model, only covariances between the
latent states are allowed so they can be captured by the common trait
of the STMS model. This assumption might be unreasonable in some
situations, hence, the latent state-trait autoregressive model or LST-AR
model (Steyer & Schmitt, 1994) relaxes it by including autoregressive ef-
fects between the latent state variables at each time point (cf. DSEM).
Cole, Martin, and Steiger (2005) proposed the trait-state occasion model
(TSO model) as an alternative for the LST-AR model, adding the autore-
gressive effect between the state residual variables instead (cf. RDSEM).
More knowledge may be gained on how reliable and stable estimation
of the ML-AR(1) model is best achieved by comparing both frameworks
(Lüdtke, Robitzsch, & Wagner, 2018).
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Appendix

4.A R code of the different ML-AR(1) imple-
mentations

4.A.1 The NC-EXO model within the MLM framework

fit <- lme(yy ~ 1 + yprev ,
random =~ 1|id ,
data = dat_long ,
na.action = na.omit)

summary(fit)

4.A.2 The NC-ENDO model within the SEM framework

model <- ’
# random effects

ri =~ 1*yy.2 + 1*yy.3 + 1*yy.4
ri ~~ vari*ri + delta*yy.1

# mean structure
yy.1 ~ alpha0 *1
yy.2 ~ alpha*1 + rho*yy.1
yy.3 ~ alpha*1 + rho*yy.2
yy.4 ~ alpha*1 + rho*yy.3

# residual covariance model
yy.1 ~~ resvar0*yy.1
yy.2 ~~ resvar*yy.2
yy.3 ~~ resvar*yy.3
yy.4 ~~ resvar*yy.4

# model constriants
vari > 0
resvar > 0
resvar0 > 0’

fit <- sem(model , data = dat_wide)
summary(fit)
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4.A.3 The CMC model within the MLM framework

fit <- lme(yy ~ 1 + yprev_c ,
random =~ 1|id ,
data = dat_long ,
na.action = na.omit)

summary(fit)

4.A.4 The LC-EXO model within the BAY framework us-
ing Mplus

model <- mplusObject(TITLE = "LC_model",
VARIABLE = "cluster = id; \n lagged = yy(1);",
ANALYSIS = "TYPE IS TWOLEVEL;
\n estimator = Bayes;",

MODEL = " %WITHIN% \n yy (a); \n yy on yy&1 (b);
\n \n%BETWEEN% \n [yy] (c); \n yy (d);",

OUTPUT = "TECH8;",
PLOT = "TYPE = PLOT3;",
usevariables = colnames(dat_long),
rdata = dat_long)

fit <- mplusModeler(model ,
modelout = "model.inp",
run = 1)

coef(fit)

4.A.5 The LC-EXO model within the BAY framework us-
ing Rjags

varY <- var(dat_long$yy)
muY <- mean(dat_long$yy)

## Model specifications
modelstring <- ’model{
# N... total number of subject
# J... number of timepoints
# Y... outcome
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# Likelihood
for(i in 1:N){
for(t in ((i-1)*J+2):(i*J)){
Y[t] ~ dnorm(expr[t], invSigmaSqrd.Y)
expr[t] <- delta[i] + beta.w*z[t-1]
z[t] <- Y[t] - delta[i]

}
}

for(i in 1:N){
Y[(i-1)*J+1] ~ dnorm(expr0[i], invSigmaSqrd.Y)
expr0[i] ~ dnorm(muY ,1/ varY)
z[(i-1)*J+1] <- Y[(i-1)*J+1] - delta[i]

}

for(j in 1:N){
delta[j] ~ dnorm(alpha , invTauSqrd.Y)

}

# Prior distributions
alpha ~ dnorm(0, 0.00001)
beta.w ~ dnorm(0, 0.00001)

sigmaSqrd.Y ~ dunif (0 ,1000)
invSigmaSqrd.Y <- 1 / sigmaSqrd.Y

tauSqrd.Y ~ dunif (0 ,1000)
invTauSqrd.Y <- 1 / tauSqrd.Y
}’

## Initiate the model
model <- jags.model(textConnection(modelstring),
data=list(’Y’= dat_long$yy ,
’N’= N,
’J’= tps ,
’muY ’= muY ,
’varY ’ = varY),

n.chains = 3,
n.adapt = 5000)
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## Update initial model
update(model , 20000)

## Run MCMC chain
fit <- coda.samples(model ,
variable.names=c(’alpha ’,’beta.w’,
’sigmaSqrd.Y’,’tauSqrd.Y’),

n.iter =25000)
summary(fit)

4.A.6 The LC-ENDO-0 model within the BAY framework
using Rjags

varY <- var(dat_long$yy , na.rm = TRUE)
muY <- mean(dat_long$yy , na.rm = TRUE)

## Model specifications
modelstring <- ’model{
# N... total number of subject
# J... number of timepoints
# Y... outcome

# Likelihood
for(i in 1:N){
for(t in ((i-1)*J+2):(i*J)){
Y[t] ~ dnorm(expr[t], invSigmaSqrd.Y)
expr[t] <- delta[i] + beta.w*z[t-1]
z[t] <- Y[t] - delta[i]

}
}

for(i in 1:N){
Y[(i-1)*J+1] ~ dnorm(expr0 [(i-1)*J+1],
invSigmaSqrd.Y)

expr0 [(i-1)*J+1] <- delta[i] + beta.w*z0[i]
z[(i-1)*J+1] <- Y[(i-1)*J+1] - delta[i]

}
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for(j in 1:N){
delta[j] ~ dnorm(alpha , invTauSqrd.Y)
z0[j] ~ dnorm(muY ,1/ varY)

}

# Prior distributions
alpha ~ dnorm(0, 0.00001)
beta.w ~ dnorm(0, 0.00001)

sigmaSqrd.Y ~ dunif (0 ,1000)
invSigmaSqrd.Y <- 1 / sigmaSqrd.Y

tauSqrd.Y ~ dunif (0 ,1000)
invTauSqrd.Y <- 1 / tauSqrd.Y
}’

## Initiate the model
model <- jags.model(textConnection(modelstring),
data=list(’Y’= dat_long$yy ,
’N’= N,
’J’= tps ,
’muY ’= muY ,
’varY ’ = varY),

n.chains = 3,
n.adapt = 5000)

## Update initial model
update(model , 20000)

## Run MCMC chain
fit <- coda.samples(model ,
variable.names=c(’alpha ’,’beta.w’,
’sigmaSqrd.Y’,’tauSqrd.Y’),

n.iter =25000)
summary(fit)
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4.A.7 The LC-ENDO-1 model within the BAY framework
using Rjags

## Model specifications
modelstring <- ’model{
# N... total number of subject
# J... number of timepoints
# Y... outcome

# Likelihood
for(i in 1:N){
for(t in ((i-1)*J+2):(i*J)){
Y[t] ~ dnorm(expr[t], invSigmaSqrd.Y)
expr[t] <- delta[i] + beta.w*z[t-1]
z[t] <- Y[t] - delta[i]

}
}

for(i in 1:N){
Y[(i-1)*J+1] ~ dnorm(delta[i], invSigmaSqrd.Y0)
z[(i-1)*J+1] <- Y[(i-1)*J+1] - delta[i]

}

for(j in 1:N){
delta[j] ~ dnorm(alpha , invTauSqrd.Y)

}

# Prior distributions
alpha ~ dnorm(0, 0.00001)
beta.w ~ dnorm(0, 0.00001)

sigmaSqrd.Y ~ dunif (0 ,1000)
invSigmaSqrd.Y <- 1 / sigmaSqrd.Y

sigmaSqrd.Y0 ~ dunif (0 ,1000)
invSigmaSqrd.Y0 <- 1 / sigmaSqrd.Y0

tauSqrd.Y ~ dunif (0 ,1000)
invTauSqrd.Y <- 1 / tauSqrd.Y }’
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## Initiate the model
model <- jags.model(textConnection(modelstring),
data=list(’Y’= dat_long$yy ,
’N’= N,
’J’= tps),

n.chains = 3,
n.adapt = 5000)

## Update initial model
update(model , 20000)

## Run MCMC chain
fit <- coda.samples(model ,
variable.names=c(’alpha ’,’beta.w’,
’sigmaSqrd.Y’,’sigmaSqrd.Y0 ’,’tauSqrd.Y’),

n.iter =25000)
summary(fit)

4.A.8 The LC-ENDO-1 model within the SEM framework

model <- ’
# latent between -parts

ri =~ 1*yy.1 + 1*yy.2 + 1*yy.3 + 1*yy.4
ri ~ alpha*1
ri ~~ vari*ri + 0*z1 + 0*z2 + 0*z3 + 0*z4

# latent within -parts
z1 =~ 1*yy.1
z2 =~ 1*yy.2
z3 =~ 1*yy.3
z4 =~ 1*yy.4

z1 ~ 0*1
z2 ~ 0*1 + rho*z1
z3 ~ 0*1 + rho*z2
z4 ~ 0*1 + rho*z3
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z1 ~~ resvar0*z1 + 0*z2 + 0*z3 + 0*z4
z2 ~~ resvar*z2 + 0*z3 + 0*z4
z3 ~~ resvar*z3 + 0*z4
z4 ~~ resvar*z4

# mean structure
yy.1 ~ 0*1
yy.2 ~ 0*1
yy.3 ~ 0*1
yy.4 ~ 0*1

# residual covariance model
yy.1 ~~ 0*yy.1
yy.2 ~~ 0*yy.2
yy.3 ~~ 0*yy.3
yy.4 ~~ 0*yy.4

# model constriants
vari > 0
resvar > 0
resvar0 > 0’

fit <- sem(model , data = dat_wide)
summary(fit)

4.B Simulation results: Median Absolute Error
plots
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Figure 4.B.1 The median absolute error of the ML-AR(1) model over 200 repetitions for t = 4,6, . . . ,18,20 time points
based on the different model parametrizations. Similar to the parameter estimates, one could conclude the NC-ENDO
model to perform better than the NC-EXO model, illustrating the necessity to deal with the endogeneity problem. Also,
DSEM shows no great improvement (except for the autocorrelation parameter) compared to the CMC model.
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Figure 4.B.2 The median absolute error of the ML-AR(1) model over 200 repetitions for t = 4,6, . . . ,18,20 time
points based on the different model implementations for the LC model. Similar to the parameter estimates, DSEM and
LC-EXO perform very similar (except for the autorcorrelation parameter). The other implementations perform very
similar, with small discrepancies at 4 time points.



5 Multilevel autoregressive
models for longitudinal

dyadic data

Abstract. In social and behavioral science, dyadic research has be-
come more and more popular. In case of cross-sectional dyadic data,
one can apply the actor-partner interdependence model or APIM
when both an antecedent and an outcome are measured in each
dyad member. In this paper, we introduce an extension of the cross-
sectional APIM to the longitudinal setting, called the LD-APIM or
lagged-dependent APIM. It allows to investigate the effects of an
antecedent on an outcome given the previous outcome, and extends
the multilevel autoregressive model to dyadic data. To facilitate
the use of this complex model, a user-friendly Shiny-application,
called the LDDinSEM -application, was developed. The app auto-
matically fits the LD-APIM on the uploaded data set within the
structural equation modeling (SEM) framework. We illustrate both
the model and the app using an empirical example assessing the ac-
tor and partner effects of positive relationship feelings on next day’s
intimacy in heterosexual couples.

This chapter will be submitted to the special issue ‘Multilevel modeling:
Different research fields and research designs’ of the journal ‘Testing, Psy-
chometrics, Methodology in Applied Psychology’. Gistelinck, F. & Loeys,
T. (n.d.). Multilevel autoregressive models for longitudinal dyadic data.
Testing, Psychometrics, Methodology in Applied Psychology.
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5.1 Introduction

Psychologists are often interested in the processes underlying social and
behavioral phenomena. As these phenomena are often interpersonal by
definition (Reis, Collins, & Bersheid, 2000), the popularity of collecting
dyadic data rather than individual data has increased exponentially over
the last decade. From a statistical point of view, analyzing such data can
be quite a challenge: the subjects are related to one another, violating the
independence assumption of most standard statistical procedures (Gonza-
lez & Griffin, 1999). Indeed, members of the same dyad will behave more
(dis)similar than two random people. One of the most popular and widely
used statistical model to analyze dyads is the actor-partner interdepen-
dence model or APIM (Kashy & Kenny, 2000). This model estimates the
effect of an antecedent on the behavior or emotional status of a person
within the dyadic context. More specifically, the model incorporates the
effect of one’s own characteristics or feelings on his/her outcome score
(i.e., the actor effect), as well as the effect of one’s partner characteristics
or feelings on his/her own outcome score (i.e., the partner effect). Fur-
thermore, it accounts for interdependence by allowing the outcomes of the
dyad members to be correlated with each other.

Research becomes even more challenging and sophisticated when these
dyads are measured repeatedly over time. Consider, for example, the study
of 66 heterosexual couples in Flanders (Dewitte, Van Lankveld, Vanden-
berghe, & Loeys, 2015). These couples were asked to fill in a daily diary
study on sexual behavior over a period of three weeks. Both men and
women were inquired about their sexual and intimate behavior, as well
as their individual, relational and partner-related feelings and behavior
of the past day. For now, focus on the association between the positive
feelings about the relationship and the perception of intimacy within cou-
ples. The richness of questions that can be raised from such longitudinal
dyadic data, is immense: “How do the average positive relational feelings
of one’s partner affect one’s own perception of intimacy, given the inti-
macy perceived on the previous day?”, “To what extent do the average
perceived intimacies correlate between man and woman within a dyad?”,
“How strong does yesterday’s perceived intimacy affects today’s perceived
intimacy within a given person?”, etc.

Such longitudinal dyadic data (LDD) come with an additional amount
of statistical challenges (Gistelinck & Loeys, 2019). Since longitudinal data
are characterized by a nested structure, in which occasions are clustered
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within the unit of analysis, such data are often analyzed using multilevel
models (Snijders & Bosker, 2011). In the absence of any predictors, the
random intercepts in such models can be viewed as the individual’s trait
score or equilibrium. However, if repeated measures are taken close in time,
the current measure does not only depend on the trait, but is likely to
be predictable from the preceding measure as well. If a person perceives
his/her relationship positively today, it will likely be rated positively to-
morrow as well (Cranford et al., 2006). Standard multilevel approaches
assuming independent residuals fail to account for such autocorrelation.
Erroneous inference is obtained in case this temporal correlation is ignored
(Fitzmaurice, Laird, & Ware, 2011; Singer & Willett, 2013).

For the analysis of longitudinal individual data with autocorrelation,
two major progressions within the multilevel framework can be distin-
guished. In the first progression, one controls for autocorrelation by spec-
ifying a more complex covariance structure for the residuals, such as a
first-order autoregressive process. In the second progression autocorrela-
tion is explicitly modeled through the inclusion of a lagged dependent
variable (i.e., the dependent variable at the previous time point) as a co-
variate. Such models have been referred to as multilevel first-order autore-
gressive or ML-AR(1) models (Kuppens, Allen, & Sheeber, 2010; Rovine
& Walls, 2006), and are used to investigate the effect of an antecedent on
the dependent variable while controlling for the previous level of the out-
come variable. It may seem quite straightforward to implement the latter
in standard multilevel software, but Gistelinck and Loeys (n.d.) recently
showed that there are some challenges with the ML-AR(1) model. The
first issue is the initial conditions problem. In the study of Dewitte et
al. (2015), we can not regress, for example, the perceived intimacy on the
first day of measurement on its previous level, as it is simply not available.
Some approaches, such as the DSEM (Asparouhov, Hamaker, & Muthén,
2018), will seemingly ‘impute’ some presample responses, whilst other
will only start regressing from the second observation to avoid the miss-
ing lagged predictor. The second issue is the endogeneity assumption. In a
ML-AR(1) model, it is unreasonable to assume that the random intercept
is independent from the lagged predictor. For instance, in the study of De-
witte et al. (2015), the underlying perceived intimacy within an individual
(i.e., the trait or random intercept) will also affect the perceived intimacy
of the first day. Allison, Williams, and Moral-Benito (2017) showed that
ignoring this correlation can seriously bias the estimator for the effect of
the lagged outcome, as well as the coefficients of the other predictors. For
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the setting of longitudinal individual data, Gistelinck and Loeys (n.d.) in-
vestigated how both issues can best be tackled in the structural equation
modeling (SEM) framework. Especially when the number of time points
is smaller, one should specify a correlation between the latent intercept
and the first lagged outcome to avoid bias due to endogeneity, while the
first outcome should be treated as exogenous (i.e., not regressed on an
‘imputed’ presample response).

When considering longitudinal dyadic data, we could expand the APIM
for cross-sectional data to longitudinal data along the lines of the two
aforementioned progressions in the individual context. The extension of
the APIM in the first progression was proposed by Bolger and Laurenceau
(2013), and was further developed in the SEM framework by (Gistelinck &
Loeys, 2019). Here, we will propose an extension of the APIM in the sec-
ond progression, taking into account the above-mentioned issues. We will
refer to this model as the LD-APIM or lagged dependent actor-partner
interdependence model. Implementing the LD-APIM may become quite
intricate for a dyadic researcher and form a genuine barrier. Therefore, we
will present in this paper a user-friendly application with its implemen-
tation. Even in the case of cross-sectional dyadic data, the need for such
a comprehensive analytic tool is apparent. One of the most cited APIM
papers involves a user-friendly guide for fitting the APIM using SAS or
HLM (Campbell & Kashy, 2002). Similar tutorials with implementations
in other statistical software packages, such as Mplus, also gained quite
some interest over the last years (Fitzpatrick, Gareau, Lafontaine, & Gau-
dreau, 2016). However, these require a license for the software under con-
sideration. The recently developed APIM_SEM -application (Stas, Kenny,
Mayer, & Loeys, 2018), which is part of a bigger project called DyadR
(Kenny, 2017), allows users to fit standard or more complex APIMs for
cross-sectional dyadic data. The application uses a point and click inter-
face, but does not require any software. In this paper, we develop a similar
application, called the LDDinSEM -application, to fit the LD-APIM for
longitudinal dyadic data.

The article is organized as follows. First, a motivating example is pre-
sented. Next, we will introduce the LD-APIM and discuss how the model
tackles the different issues of LDD. After, we illustrate how the LD-APIM
is easily fitted using the LDDinSEM -application on the empirical exam-
ple. We end with a discussion.
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5.2 Data and Hypotheses

As a motivating example throughout this paper we consider a Flemish
daily diary study on sexual behavior in 66 heterosexual couples (Dewitte
et al., 2015). Every morning during three weeks both members of the cou-
ple were asked about their sexual and intimate behavior since the last time
they had filled out their morning diary (i.e., sexual behavior over the past
24 hours). Every evening the participants were asked to report on their in-
dividual, relational, and partner-related feelings and behavior experienced
during that day. Here we will only focus on the association between the
positive feelings about the relationship and the next morning’s perception
of intimacy. Positive relationship feelings were computed as the average of
nine items on a 7-point Likert scale: the extent to which they felt happy,
satisfied, understood, supported, accepted, loved, in love, connected, and
close. The amount of intimacy was measured by the amount of kissing,
cuddling and caressing rating from ‘not at all’ to ‘very frequent’ using a
7-point Likert scale.

Several interesting research questions can be raised from such longitu-
dinal dyadic data:

(Q1) Do people who have generally more positive relationship feel-
ings, also report a higher perception of intimacy, given their
perception the day before?

(Q2) Do people who have partners with generally more positive re-
lationship feelings, also report a higher perception of intimacy,
given their perception the day before?

(Q3) Given yesterday’s perception of intimacy, how does an increase
or decrease in one’s own positive relationship feelings (as com-
pared to his/her average feelings) affect today’s perception of
intimacy?

(Q4) Given yesterday’s perception of intimacy, how does an increase
or decrease in one’s partner positive relationship feelings (as
compared to their average feelings) affect one’s own perception
of intimacy?

(Q5) To what extent does yesterday’s perception of intimacy affect
today’s perception of intimacy?
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From the formulation of the questions, one can clearly see that (Q1)
and (Q2) look at differences between individuals (i.e. a between or time-
averaged effect), while questions (Q3) and (Q4) are concerned with effects
within an individual (i.e. a within or time-specific effect). Longitudinal
data allow to disentangle those effects. Furthermore, (Q1) and (Q3) re-
late to the effect of one’s own feelings on one’s own behavior (i.e. an actor
effect), while (Q2) and (Q4) relate to the effect of one’s partner feelings
on one’s own behavior (i.e. a partner effect). Using dyadic data, we can
study such dynamics. As we look at distinguishable dyads (i.e., individu-
als within the dyad are distinguished by their gender role), we can allow
all those effects to be different for men and women. It is further worth
noting that the questions (Q1)-(Q4) look at the effects of positive feel-
ings on the perception of intimacy from a person while controlling for the
perception of intimacy from that person on the day before. That is, we
are interested in investigating whether positive relationship feelings have
any additional effect given the within-individual dynamics of perception
of intimacy. Throughout the paper, we make the assumption that today’s
perception of intimacy only depends on yesterday’s perception of intimacy,
but not on any further lags, although in principle this assumption could
easily be relaxed.

To answer the above questions, we can model the effect of positive
relationship feelings (PosRel) on intimacy (Intim) in females and males
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IntimFij = (µF + ηFj) + ρF IntimFi−1,j

+ aF (PosRelA)PosRelAFj + pMF (PosRelA)PosRelAMj

+ aF (PosRelS)PosRelSFij + pMF (PosRelS)PosRelSMij + εFij

IntimMij = (µM + ηMj) + ρMIntimMi−1,j

+ aM(PosRelA)PosRelAMj + pFM(PosRelA)PosRelAFj

+ aM(PosRelS)PosRelSMij + pFM(PosRelS)PosRelSFij + εMij

,

(5.1)
with i referring to the time point (i = 2, . . . ,21), j to the dyad number
(j = 1, . . . ,66). The parameters aF and aM are the actor effects for the fe-
males and the males, respectively, while the parameters pMF and pFM are
the partner effects for the females and the males, respectively (F refers to
female and M refers to male). The variables PosRelA and PosRelS refer
to the time-averaged and time-specific component of positive relationship
feelings, respectively. The parameters ρF and ρM capture the autoregres-
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sive process of perceived intimacy for females and males, respectively.
Clearly, the parameters aF (PosRelA) and aM(PosRelA) address (Q1), while
aF (PosRelS) and aM(PosRelS) answer (Q3). Questions (Q2) and (Q4) on
the partner effects can be addressed by the parameters pMF (PosRelA) and
pMF (PosRelA), and pMF (PosRelS) and pFM(PosRelS), respectively. We as-
sume all those effects to be fixed (i.e., no variation between individuals).
The parameters µF and µM capture the intercept, which we allow to vary
between individuals through the random intercepts ηFj and ηMj for fe-
males and males, respectively. The residuals εFij and εMij capture all the
variability that is not explained by the predictors in the model.

In addition to questions (Q1)-(Q5), researchers may also be interested
in further exploring the dynamics within and between dyads. For example,

(Q6) Do women (or men) that generally have a high average percep-
tion of intimacy, typically have a male (or female) partner with
high average perception of intimacy?

(Q7) If a woman (or man) has a high perception of intimacy on a
particular day, will her male partner have a high perception of
intimacy that day as well.

In other words, (Q6) wonders how trait-like couples behave in their per-
ception, while (Q7) addresses how similar couple members are on specific
occasions. To illustrate how those questions are answered, we will first
formalize the model more generally in the next section.

5.3 The lagged dependent actor-partner inter-
dependence model

Suppose one wants to explore the effect of an antecedent X on current
behavior Y given past behavior, and that both X and Y are repeatedly
measured for each dyad member. Then, one can fit the LD-APIM in order
to examine this association:

⎧⎪⎪
⎨
⎪⎪⎩

YFij = (µF + ηFj) + ρFYF,i−1,j + aF (X)XFij + pMF (X)XMij + εFij

YMij = (µM + ηMj) + ρMYM,i−1,j + aM(X)XMij + pFM(X)XFij + εMij

,

(5.2)
with i referring to the time point (i = 2, . . . , T ) and j to the dyad num-
ber (j = 1, . . . ,N). A graphical representation of the model can be found
in Figure 5.3.1. For ease of explanation, we will assume the dyads to be
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distinguishable and refer to the first dyad member as females (‘F’) and
second dyad member as males (‘M’). Of course, other types of distinguish-
able dyads are also possible (e.g., brother and sister, oldest and youngest
child, etc.), and one can add constraints to the model in order to allow for
indistinguishable dyads too (e.g., twin brothers, same-sex couples, etc.)
(Gistelinck, Loeys, Decuyper, & Dewitte, 2018; Olsen & Kenny, 2005).
In our motivating example, X represents the positive relationship feel-
ings, while Y corresponds to the perceived intimacy. From Figure 5.3.1,
it is clear that the LD-APIM is an extension of the cross-sectional APIM
towards the longitudinal setting as the latter is fitted at each point of mea-
surement. Obviously, additional features are integrated into the LD-APIM
to deal with the statistical challenges inherent to LDD.

First, as the LD-APIM focuses on modeling the association between
an antecedent X and an outcome variable Y , one has to acknowledge the
difference between the time-averaged and time-specific effect of overtime
or time-varying predictors. If the researcher opts to ignore this difference,
the estimated actor and partner effects would portray a mixture of both ef-
fects, leading to deceptive conclusions (Enders & Tofighi, 2007). Moreover,
there may be unmeasured common causes of the outcome and the pre-
dictor as well. For instance in our example, some unmeasured personality
traits may affect both the positive relationship feelings and perception of
intimacy. As shown by Talloen, Loeys, and Moerkerke (2019), estimators
of the time-specific effect on the outcome are unbiased if such separation
in effects is made, even in the presence of such unmeasured upper level
confounders or measurement error. As a result, we recommend a split-up
of the overtime predictors into a time-averaged and time-specific compo-
nent. For example, in case of an overtime-member predictor X (i.e., a
time-varying predictor with different scores for each dyad member, like
PosRel), the former is obtained by calculating the cluster-mean, that
is, by calculating the mean value XF.j and XM.j over all time points
for each female and male, respectively. The time-specific component is
then computed by cluster-mean centering the original predictor variables:
XFij −XF.j and XMij −XM.j for each dyad j at each time point i. The
LD-APIM model is able to subsume both components as follows:
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Figure 5.3.1 A graphical representation of the LD-APIM or lagged-
dependent APIM.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

YFij = (µF + ηFj) + ρFYFij + aF (XA)XF.j + pMF (XA)XM.j

+ aF (XS)(XFij −XF.j) + pMF (XS)(XMij −XM.j) + εFij

YMij = (µM + ηMj) + ρMYMij + aM(XA)XM.j + pFM(XA)XF.j

+ aM(XS)(XMij −XM.j) + pFM(XS)(XFij −XF.j) + εMij

,

(5.3)
with the indexes XA and XS in the model parameters referring to the
time-averaged and time-specific effect of the predictor X, respectively.
So, in expression (5.1), the time-averaged components PosRelAFj and
PosRelAMj correspond to PosRelF.j and PosRelM.j , while the time-
specific components PosRelSFj and PosRelSMj correspond to
(PosRelFij − PosRelF.j) and (PosRelMij − PosRelM.j). This split-up
procedure is similarly performed in case of overtime-dyad variables (i.e.,
time-varying predictor with identical scores for both dyad members).
Note, as the values of the time-specific component sum up to zero (i.e.,
∑
T
i=1XMij −XM.j = ∑

T
i=1XFij −XF.j = 0), the design matrix of the model

in the wide format is no longer invertible. In order to avoid this redun-
dancy as implemented in the design matrix, one can replace the effect of
the time-specific component at the last time point by the sum of (oppo-
site) effects of the remaining time points.

Second, as mentioned in the introduction, one needs to account for
two types of non-independence: the non-independence between the mem-
bers of the same dyad and the non-independence within (and across) dyad
members. Things become even more complex for the latter if one wants
to make a distinction between general developmental principles of each
dyad member (i.e., time-invariant sources of variation or stable traits)
and occasion-specific variability (i.e., time-varying sources of variation).
Within the LD-APIM, interindividual sources of variation are accounted
for by including random effects, ηFj and ηMj , for the females and males,
respectively. These effects represent random variation around the inter-
cepts µF and µM , and are allowed to correlate with each other. More
specifically, the random intercepts for females and males are assumed to
follow a bivariate normal distribution:

(
ηFj

ηMj
) ∼ N ((

0
0 ) ,(

τ2
F τFM

τFM τ2
M

)) . (5.4)
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The parameters τ2
F and τ2

M are related to the variability in the average
outcomes (i.e. the trait) in females and males, respectively. The parameter
τFM encompasses the covariation between the traits of females and their
male partners. The latter parameter will thus be informative to answer
questions such as (Q6).

Of course, one has to account for intraindividual sources of variation
as well. As pointed out by Laurenceau and Bolger (2011), this part of the
covariance structure can become quite complex as it must capture sources
of variation from the dyad members at a particular time point, including
the non-independence between the members of the same dyad, as well as
for the autocorrelation within both dyad members. In the LD-APIM, the
former source of variation is similarly captured as in the cross-sectional
APIM: allow both dyad members to correlate with each other at any time
point. In other words, the residuals εFij and εMij from expression (5.2)
for females and males, respectively, are allowed to correlate at each time
point i (i = 1, . . . , T ):

(
εFij
εMij

) ∼ N ((
0
0 ) ,(

σ2
F σFM

σFM σ2
M

)) , (5.5)

with σ2
F and σ2

M the residual variances for females and males, respectively.
The parameter σFM captures the occasion-specific covariation within dyads,
and can be used to address questions like (Q7).

Finally, we discuss the latter source of variation: the autocorrelation.
In case one assumes equally spaced observations for both dyad members
in which the non-independence between outcome scores fades away as
the time lag becomes larger, one can expect adjacent time points to be
correlated by a first-order autoregressive process with autocorrelation pa-
rameter ρ (−1 < ρ < 1). Considering the first progression discussed in the
introduction, this first-order autoregressive process can be integrated into
the residual covariance structure Gistelinck and Loeys (2019). However,
following the second progression, we want to focus on the autoregressive
relationship between concurrent measurements by including lagged depen-
dent variables YF,i−1,j and YM,i−1,j as a predictor in the model (Hamaker &
Grasman, 2015). Conceptually, this corresponds to conditioning all model
parameters on the previous outcome variable, while keeping the residual
covariance structure simple. Then, the autocorrelation parameter ρ, which
may be different between both dyad members, represents the carryover
effect. If ρ is close to zero, then it takes little time for a dyad member
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to recover from a perturbation and equilibrium (i.e., the return to the
average trait) is easily restored. If ρ is close to one, a perturbation will
have a substantial effect on the subsequent outcome score. As explained
by Gistelinck et al. (2018), conditioning on the lagged dependent outcome
also implies that the intercepts µF and µM from (5.2) no longer reflect the
underlying equilibrium, but rather a transformation of it (up to a factor

1
1−ρF

and 1
1−ρM

, respectively).
Adding a lagged dependent outcome variables into the model may

seem straightforward but encompasses further issues: the initial condi-
tions problem and the endogeneity problem. As expression (5.2) suggests,
one needs to define a start-up process for the autoregressive process (Skro-
ndal & Rabe-Hesketh, 2014). If one conditions on the previous outcome
score, how can one condition on an unavailable presample response at the
first measurement? Assuming the first outcome variable as exogenous (i.e.
predetermined) is often considered common practice. Alas, it causes the
first measurement to be eliminated from the analysis (Zhang & Nessel-
roade, 2008). Although this might be of minor concern in case of intensive
longitudinal data, it poses an earnest ado in case of a small number of
timepoints due to the endogeneity problem. As the underlying trait af-
fects all time points, including the initial time point, erroneous inference
is obtained when the first outcome variable is considered to be indepen-
dent from the random intercept (Achen, 2001). As illustrated by Allison
et al. (2017), this bias can be avoided by allowing the first outcome vari-
able to be correlated with the random intercept. In Gistelinck and Loeys
(n.d.), several implementations of the multilevel first-order autoregressive
model, or ML-AR(1) model, have been compared within different statis-
tical software packages. A model that allows the initial outcome variable
to be exogenous while being correlated with the random intercept, yields
unbiased estimators for the effect of the lagged dependent outcome (even
in case the number of time points is rather small). Such an implementa-
tion can easily be achieved within the SEM framework. We adapted these
finding towards the dyadic setting: we allowed the random intercept of
the males and females to correlate with the first outcome variable of both
the males and the females, while the latter are otherwise kept exogenous
with their own mean and variance.

Specifying the above described model with the aforementioned caveats
within SEM software is a tedious task. In order to support researchers in
their quest for answers, we constructed a Shiny-application within RStu-
dio (RStudio Inc., 2017), called the LDDinSEM -application. It is a user-



LD-APIM in SEM 175

friendly and free web application with a point-and-click interface (Chang,
Cheng, Allaire, Xie, & McPherson, 2017). The user does not need any soft-
ware license nor any specialist knowledge on statistical software. Thanks
to the application, researchers can upload their data set and specify the
LD-APIM appropriate to their research questions. The app then automat-
ically fits the model on the data set using lavaan (Rosseel, 2012) behind
the scenes. Afterwards, the app provides the user with summary tables
for the model parameters, model-based figures of the effects, as well as
the original lavaan syntax and the option to download the (transformed)
data set. All findings, including tables and figures, are also wrapped into
one big summary file, which the user can download. To illustrate the ac-
cessibility of the app, we will discuss the different options of the app in
much detail on our motivating example in the next section.

5.4 Fitting the LD-APIM using a Shiny-appli-
cation

5.4.1 General lay-out of the application
We will fit the LD-APIM using the LDDinSEM -application, which can
be found on “https://fgisteli.shinyapps.io/Shiny_LDD2/”. In the
application, one can distinguish four tabs at the top (see Figure 5.4.1):
(a) “Model”, where the user can specify the model for his/her LDD, (b)
“L-APIM”, an information page about the longitudinal APIM without
lagged dependent variables, (c) “LD-APIM”, an information page about
the lagged dependent APIM, and (d) “Contact”, a page with contact infor-
mation of the developer of the application. While the L-APIM is discussed
in Gistelinck and Loeys (2019), we focus here on the implementation of
the LD-APIM and how one specifies the latter model in the “Model” tab.

As we want to fit the LD-APIM here, one should tick the button of the
LD-APIM in the second row in Figure 5.4.1. From the menu on the left, it
is clear that the application only needs three steps to implement and fit the
LD-APIM: (1) the user uploads the data and adds some information about
the data set such that the application gets how the data is structured
and what the variable names are, (2) the user specifies the type for all
predictor variables in the data and how they should be utilized for the
remainder of the analysis, (3) the user specifies the LD-APIM in terms
of the mean structure, the random effects covariance structure and the
residual covariance structure. Once these three steps are completed, one

https://fgisteli.shinyapps.io/Shiny_LDD2/
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can click on the ‘RUN’ button and the app will fit the requested LD-
APIM. We will now give more information about these three steps below.

Figure 5.4.1 The opening page of the LDDinSEM -application and its
four main areas, (1) refers to the four main pages of which the app exists
(page to fit the model, an information page about the L-APIM, an infor-
mation page about the LD-APIM and a contact page of the developer,
(2) allows the researcher to switch between the L-APIM and LD-APIM,
(3) corresponds to the three main steps to fit an L(D)-APIM on LDD,
(4) displays the current selected step of the application in the third area.
The latter area always consists of at least two tabs: the step itself and a
tab with more information about the step in consideration.

5.4.2 Step 1: Data specifics
As mentioned above, the first step to fit the LD-APIM is to upload your
data set. Researchers can upload their own data set by clicking on the
‘Browse’ button (see label 1 in Figure 5.4.2). In case the user uploaded a
wrong data set, it can be removed by clicking on the ‘Reset’ button below
(label 2). The application also provides several example data sets (label 3)
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for the user to experiment or reproduce the finding of the tutorials from
the “LD-APIM” tab. To reproduce the analysis on positive feelings on
perceived intimacy that we will present below, one has to select the ‘Tu-
torial1.sav’ data file. Although the underlying program lavaan assumes
the data set to be structured into the wide format (i.e., one line of informa-
tion for each dyad), the application allows a long format as well (i.e., one
line of information for each dyad member at a particular time point). One
just needs to indicate the correct structure of the data set (label 4). One
can find more information about the different data formats in the ‘More
Info’ tab (label 5). To check whether the data file is correctly uploaded,
take a look at the ‘Print’ tab (label 6). Our example data are structured
in a wide format. The dependent variable perceived intimacy from day
one till day 21 can be found in the columns ‘IntimF1’ to ‘IntimF21’ for
females and in the columns ‘IntimM1’ to ‘IntimM21’ for males.

The application assumes the variable names to have a specific format:
the dyad member and/or time indices are located at the end of the column
name with or without specific separation symbols. In our case, the time
range goes from 1 to 21 because the couples were interviewed daily for
three consecutive weeks (label 1 at Figure 5.4.3). Note that the applica-
tion allows to restrict the analysis to a particular time range. For example,
if the study included a test period which should not be included in the
analysis, these time points can be excluded from the time range. However,
the application assumes time points to be consecutive and equally spaced,
and the data should at least contain 3 time points for the model to be
identified. The dyad member indices represent the label that corresponds
to the different roles of the dyad members (label 2). These indices are
part of the original variable names and should be reported in the two
boxes (random order allowed). In our example, ‘M’ and ‘F’ have to be
filled out, referring to males and females, respectively. If one is working
with indistinguishable dyads, the labels are necessary for computational
matters, but an adapted model can be specified in the third step of the
application (see below). At label (3) in Figure 5.4.3, the user has to spec-
ify the separation symbols between the variable name and both types of
indices. For instance, if column names were constructed as ‘Intim_5.M’,
an underscore ‘_’ and a dot ‘ . ’ should be filled out in that order. However
in our case, no separation symbols are included in column names, so these
boxes are left empty.
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Figure 5.4.2 The ‘Reading in the data’ page of the LDDinSEM -
application with (1) the ‘Browse’ button to upload the data set, (2) the
‘Reset’ button to reset the uploaded data, (3) the example data sets, (4)
the data format of the uploaded/selected data set, (5) the ‘More Info’
tab with extra information about the different data formats, and (6) the
‘Print’ tab to check whether the data was correctly uploaded.
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Figure 5.4.3 The ‘Column name specifics’ page of the LDDinSEM -application with (1) the time range to include
in the analysis, (2) the labels of the dyad member roles, (3) the separation symbols in the column names between the
variable name and time/dyad member indexes, and (4) the reconstructed variable names by the application.
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5.4.3 Step 2: Variable specifics
Once the application read in the data correctly, one has to specify which
variables to include in the LD-APIM and what type these variables are.
When considering LDD data, one can distinguish four different types
of dyadic predictors, depending on whether the variable is measured on
the dyad- or member-level and whether the variable is time-invariant or
time-varying. More specifically, time-constant-dyad variables correspond
to time-invariant variables measured on the dyad-level. The values of
these variables are the same for both dyad members and are constant
over time (e.g., the season in which a short-period study was performed).
Overtime-dyad variables correspond to time-varying variables measured
on the dyad-level. The values of these variables are the same for both
dyad members and change over time (e.g., the amount of hours the cou-
ple spent together at each day). Time-constant-member variables differ
between both dyad members, but are constant over time (e.g., the age
of each dyad member). Overtime-member variables correspond to time-
varying variables measured at the member-level. The values of these vari-
ables differ between both dyad members and change over time (e.g., the
amount of experienced happiness at each day). It is clear that the predic-
tor PosRel, which corresponds to the positive relational feelings, represent
an overtime-predictor on member level. Obviously, Intim coincides with
the dependent variable, and should be added at the corresponding place
at the “Variable Types” tab.

Before one can tell the application how to include these variables into
the model, the application allows for some preprocessing. In the second
column of both tables at the “Variable centering” page depicted in Fig-
ure 5.4.4, the user is allowed to abbreviate the variable names and dyad
member indexes (label 1). As these new labels will be used in the remain-
der of the application, this option avoids references that are too long. In
the third column (label 2), the user can grand-mean center the variables
(except for the outcome variable as the LD-APIM assumes an intercept
in the model). In this empirical example, we choose to grand-mean center
PosRel. In the latter column (label 3), one can opt to split-up the overtime
predictors. As it is possible for the time-specific effect of positive relational
feelings to differ from its time-averaged effect, it is advised to differenti-
ate both components. The application will refer to these components as
PosRelS and PosRelA for the time-specific and the time-averaged com-
ponent, respectively.
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Figure 5.4.4 The ‘Variable centering’ page of the LDDinSEM -application with the possibility to (1) relabel the
variables and dyad member indexes, (2) grand-mean center the predictor variables, and (3) split-up the overtime-
predictors into a time-averaged and time-specific component.
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5.4.4 Step 3: Model specifics
In this final step, the LD-APIM must be specified. First, the application
asks to describe the mean structure at the “(In)distinguishable Effects”
page. With heterosexual couples, we will allow the intercept of the model
to be different for males and females. With indistinguishable dyads, such
as same-sex couples, one might opt these intercepts to be the same. Simi-
lar decisions have to be made about the actor and/or partner effects of the
overtime/time-constant dyad/member predictors. In our empirical exam-
ple, we will assume all actor and partner effects of both the time-averaged
and time-specific component of PosRel to be different for males and fe-
males, so all these boxes should be checked. The LD-APIM also contains
a lagged outcome variable, for which the effect may differ between men
and women as well.

Second, the random effects covariance structure has to be defined at
the “Random effect covariance structure” page. As we are working with
distinguishable dyads, we allow the variation of these random effects to
differ between men and women, and to be correlated. As a result, an
unstructured covariance structure is most appropriate. As one can see,
one could fix this correlation to zero by choosing for the heterogeneous
variance component structure. If dyads are indistinguishable, a compound
symmetry or a homogeneous variance component structure might be more
appropriate. More information about these different covariance structure
can be found in the “More Info” tab of this page.

Third, the user is asked to specify the residual covariance structure at a
particular time point. Similar to the random effects covariance structure,
four options are available depending on whether you want to allow for
different variances for both dyad members, and whether you want to allow
the residuals to correlate with each other. In our example, we will assume
an unstructured covariance structure. This way, we account for the non-
independence between the two dyad member at each time point, while we
allow the residual variance to be different for men and women.
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5.5 Results and Download

With these three steps, the application is able to fit the LD-APIM. De-
pending on the complexity of the model and the size of the data set, the
running-step might take a few minutes. Once the application has fitted
the model, the results will be displayed in two parts (see label 1 in Fig-
ure 5.5.1). The first part depicts the results of the model estimation, while
the second part contains different download options.

Figure 5.5.1 The opening page of the LDDinSEM -application after
hitting the ‘RUN’ button and its (1) extended menu with the results and
download section, (2) the fixed parameter estimates, and (3) the covari-
ance parameter estimates of the LD-APIM.
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5.5.1 Parameter estimates
As Figure 5.5.1 shows, the first page in the results section displays the
parameter estimates of the LD-APIM for both dyad members. The first
table corresponds to the mean structure parameters estimates: the upper
part for the first type of dyad member (in our case the males), and the
bottom part for the second type of dyad member (in our case the females).
In case of indistinguishable dyads, this separation is still made using the
arbitrary labels from the “Data specifics” step, but some model parameter
estimates might have been fixed to be equal for both dyad member roles.
This will be indicated by an identical superscript at the end of the param-
eter. The table contains, next to the point Estimate, the standard error
(SE), the corresponding z-value, p-value and the 95%-confidence interval
(i.e., CI(95)-lower and CI(95)-upper). Note that all p-values mentioned in
this table are two-sided.

Based on the first table, we can address the first five research questions.
Men and women who report more positive feelings on average (i.e., the
effect of PosRelAM on the male outcome and the effect of PosRelAF
on the female outcome), also report more perceived intimacy, given the
perceived intimacy the day before (Q1). Furthermore, men whose wives
report more positive relationship feelings (i.e., the effect of PosRelAF on
the male outcome), report more intimacy, given the perceived intimacy the
day before (Q2). For both men and women, an increase in the positive
relationship feelings on a specific day (i.e., the effect of PosRelSM on
the male outcome and the effect of PosRelSF on the female outcome)
is associated with higher perceived intimacy on the next day, given the
perceived intimacy the day before (Q3). Moreover, an increase in the
positive relationship feelings of the men on a specific day (i.e., the effect
of PosRelSM on the female outcome) is associated with higher perceived
intimacy of the women the next day, given the perceived intimacy the
day before (Q4). A similar time-specific partner effect of the women on
their male partner was not found to be significant. It is also clear that
there is a significant carryover effect for both males and females from
the perceived intimacy on one particular day to the next, although the
magnitude of this carryover effect is rather moderate (Q5). Note, given
that the predictor was grand-mean centered and separated in a time-
specific and time-averaged component, the intercepts 3.70

1−0.07 = 3.97 and
3.67

1−0.13 = 4.19 reflect the average perceived intimacy over all days for males
and females, respectively, at average positive relational feelings.
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The second table at the bottom of the page contains the covariance
parameter estimates. The upper part of the table contains the random
effects covariance parameters, while the lower part of the table contains
the residual covariance parameters. Similar to the first table, the point Es-
timate, the standard deviation (SE), z-value, p-value and 95%-confidence
interval (i.e., CI(95)-lower and CI(95)-upper) are included in the table for
each covariance parameter. Again, the reported p-values are two-sided.
Based on this table, we can answer the last two research questions. The
random intercept variances actually represent temporal stability and in-
dicates that 95% of the average perceived intimacy (at average levels of
the positive relational feelings) lies between 3.70−1.96∗

√
0.40

1−0.07 = 2.64 and
3.70+1.96∗

√
0.40

1−0.07 = 5.30 for males, and between 3.06 and 5.32 for females.
The correlation of the average perceived intimacy between males and fe-
males of a dyad is 0.16√

0.40∗0.25 = 0.51 (Q6). The residual variance within a
person of the perceived intimacy on a particular day is similar for males
and females: 2.61 for males as opposed to 2.44 for females. The correlation
of the daily fluctuations between males and females has a magnitude of

1.72√
2.61∗2.44 = 0.68 (Q7). Hence, when the man perceives a lot of intimacy

on a specific day, the woman also tends to perceive a lot of intimacy that
day, and vice versa. It is worth noting that 1.72

1.72+ 0.16
(1−0.13)(1−0.07)

= 90% of the
non-independence between two members of a dyad at a particular day is
attributed to the day-level covariance, while the remaining 10% is due to
the trait-like or time-stable connection between the two members.

5.5.2 Model-based figures and lavaan results
On the “Model-based Figures” page (see, Figure 5.5.2), the user can select
for which predictor a model-based figure needs to be displayed. A small
descriptive table is also presented for both the outcome and the selected
predictor. At the bottom of the page, the effect itself is plotted in a figure.
It is clear from this plot that both the actor and partner effects of the
time-specific positive relational feeling have a positive effect on perceived
intimacy for both the females and the males. However, the partner effects
have a higher impact on females than on males.
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Figure 5.5.2 The ‘Model-based Figures’ page of the LDDinSEM -
application after hitting the ‘RUN’ button.

For those researchers who are familiar with R and/or lavaan, we also
provided a page with more technical results, see the “Lavaan Results”
page. In the first tab, the model specification of the LD-APIM within
lavaan is included. We encourage the user to copy/paste this syntax
within RStudio and experiment with the model. For instance, if the user
wants to allow the intercept to be time-varying, one can simply change the
label of the intercept to become different for each time point. For the sake
of completeness, we also provided the original lavaan output and table.
The latter was used to compute the summary tables of the “Parameter
estimates” page.
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5.5.3 Transformed data and summary file

Before the user can truly experiment with the model, he/she also needs
the data set used to fit the model. These can be found at the first page
within the “Download” section. This transformed data set differs from the
original uploaded data set with respect to (a) reshaping in case the data
set was not structure in the wide format, (b) relabeling as the user might
have relabeled all variable names, (c) indexing as the column names have
been adapted to correspond to the model syntax of the LD-APIM from
the application, (d) centering as predictors could be grand-mean centered,
and (e) split-up as we allowed the user to split-up overtime variables into
a time-averaged and a time-specific component.

We also provided a summary file with all the results at the “Summary
File” page. More specifically, the file, which can be downloaded as a pdf,
a Word-doc or a webpage, contains (a) the changes to the original data
set as mentioned above, (b) the LD-APIM expressed in equations and
a general graphical representation of the LD-APIM (i.e., not adapted to
the particular model expressed by the equations), (c) the tables with the
parameter estimates, and (d) all model-based figures.

5.6 Discussion
This paper presents an extension of the cross-sectional APIM towards
longitudinal dyadic data (LDD), called the lagged-dependent APIM or
LD-APIM. The model tackles different statistical challenges inherent to
LDD, but also makes several assumptions that in principle can be relaxed.
First, the model assumes that the actor and/or partner effects of the pre-
dictors are constant over time. Although it is reasonable to make this
assumption in our motivating example, it may be relaxed. This can eas-
ily be achieved by adjusting the lavaan-syntax from the app accordingly.
Second, the model only assumes main effects, but interaction effects could
technically be included as well by defining a new variable that corresponds
to the interaction values. Third, the LD-APIM introduced here allows for
a first-order lagged dependent variable. It is possible that this does not
completely resolve the autocorrelation, and that higher order lagged de-
pendent variables need to be included (Wilkins, 2018). Fourth, we did not
allow for random slopes, neither for the actor or partner effects, nor for the
autocorrelation effect. For example, one might want to allow for person-
specific autocorrelation as it represents a person’s regulatory weakness
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(Hamaker, 2012). In addition, one may want to allow for person-specific
residual variances in order to capture differences in sensitivity to pertur-
bations (Jongerling, Laurenceau, & Hamaker, 2015). Unfortunately, these
modifications are not straightforward to implement in the current appli-
cation. Fifth, indistinguishability tests could be added to the application.
This way, empirical evidence can be obtained about the difference in roles
of the member within a dyad (Gistelinck et al., 2018). Next, although the
application uses the SEM framework in order to fit the LD-APIM, the ap-
plication does not yet allow for latent outcome variables or predictors. For
the latter, a latent decomposition rather than a manifest decomposition
may then be preferred in order to take measurement error into account
(Lüdtke et al., 2008). Lastly, we only considered the LD-APIM in the
context of continuous outcome variables. It has already been shown how
the cross-sectional APIM can be adapted for binary and count outcomes
(Loeys, Cook, De Smet, Wietzker, & Buysse, 2014; Spain, Jackson, & Ed-
monds, 2012) within the multilevel modeling framework. As suggested by
Josephy, Loeys, and Rosseel (2016), diagonally weighted leased squares
can be used within the SEM framework in order to allow for categorical
outcomes as well. However, further investigation is needed to confirm its
performance in the context of LDD.

Despite the limitations and assumptions that we make in the defaults
of the application, we hope that the LDDinSEM -application will inspire
dyadic researchers to contemplate the wealth of research questions that
can be addressed with longitudinal dyadic data.
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6 General discussion

Human emotions and behavior are often influenced by the person closest
to that human. As a result, dyadic research has become more and more
popular in social and behavioral science. When analyzing dyads, it is ob-
vious for the researcher to wonder whether the roles of two members of a
dyad are to be considered different or not. It profoundly affects the sta-
tistical analysis. Although the question can be answered using theoretical
arguments, it is also possible to collect empirical evidence for the degree of
indistinguishability. In this dissertation, we took a closer look at these in-
distinguishability tests (ITs) and examined some related issues that have
not been investigated before. We found that (a) REML estimation should
be preferred above ML estimation with respect to covariance structure
parameters, and (b) sequential tests with multiple testing correction were
less liberal than global tests when the amount of dyads are rather small.

Interest often lies in the causes of within-subject changes, while ac-
counting for between-subjects variability related to these changes. In this
case, the applied researcher needs to be able to analyze longitudinal dyadic
data. Instead of extending longitudinal individual models towards the
dyadic setting, we extended a particular cross-sectional dyadic model to-
wards the longitudinal setting. In this dissertation, we opted to extend
the APIM towards the longitudinal setting due to its dominant use and
applicability within social and behavioral science, for example, when con-
sidering diary data that are not centered around a specific event. As a
result, a new class of longitudinal dyadic models was introduced, con-
sisting of the L-APIM and LD-APIM. Unlike other longitudinal dyadic
models such as the dyadic LGCs, the L-APIM or LD-APIM (further ab-
breviated as L(D)-APIM) focuses on the effect of an antecedent on the
outcome scores. In other words, it emphasizes the influence of a predictor
on the outcome variable rather than the trajectory of the outcome variable
itself.

The two different extensions of the APIM were obtained based on two
major approaches to incorporate temporal correlation in the longitudinal
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individual setting. The first approach allows the residuals of the model to
be correlated with one another. However, this residual covariance struc-
ture becomes quite complex in the case of dyadic data. Even in the case
where we make the assumption of stable (co)variances over time for both
dyad members and a first-order autoregressive process between adjacent
time points, most MLM software packages do not support the complex
residual covariance structure. Except when using SAS, it is next to impos-
sible to fit this advanced model, referred to as the L-APIM. Consequently,
an optimal implementation within the SEM framework was considered.
The second approach adds a lagged dependent variable to the model in
order to condition on the previous time point. This way the residual co-
variance structure is kept simple, but other issues now present themselves,
such as the initial conditions problem and the endogeneity problem. As
these issues are quite complex, we first considered solving them in the
absence of any covariates within the individual setting. We found that an
implementation within the SEM or BAY framework yields good results
provided that the initial value was allowed to correlate with the random
intercept, and no auxiliary variable was used for the missing presample
response, especially when the number of time points is rather small. These
findings were used to resolve similar issues within the dyadic setting and
we ended up with the LD-APIM within the SEM framework.

In order to promote these new models, an online user-friendly appli-
cation was developed, called the LDDinSEM -application. It makes the
models more accessible to the dyadic researcher, whether their area of in-
terest is educational science, staff management, organizational psychology
or social psychology. Moreover, the user does not need software licenses
to fit these models and is not required to have any technical knowledge
of the software that performs the analysis. Thanks to the point-and-click
interface, the user is guided through the different steps of fitting the L(D)-
APIM: (a) uploading the data, (b) specifying the different variables in the
data, and (c) describing the model itself. After clicking the ‘RUN’ button,
the model is fitted for the user, who can download a summary file with all
the results. For users who are more familiar with the technical and sta-
tistical details, the application also includes information about the model
specification. For instance, the app allows the user to consult the original
coding. This way, the user can copy and paste the model within RStudio.
He or she can then experiment with the model and customize it.
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6.1 Limitations

Of course, there are always some limitations involved and related issues
to be (re)considered. In chapter 2, we discussed indistinguishability tests
for longitudinal dyadic data. However, that chapter’s longitudinal dyadic
model can be considered as quite simple, even incorrect in a sense, as
it ignores time-specific correlation between the different time points and
the non-independence between the two members of a dyad. It could be
possible that if we reproduce the simulation study for the more complex
models such as the L(D)-APIM, the advantage of sequential testing might
disintegrate and global testing should be preferred instead. Moreover, we
only considered the performance of the tests in terms of the Type I error,
but one should consider the power of the test as well. Even though the
sequential tests showed lower Type-I error, one still has to investigate
whether the power of these tests is acceptable. If so, we may update
the current LDDinSEM -application, allowing researchers to perform these
indistinguishability tests with a simple click on the computer.

Most empirical examples in this dissertation make use of the longitu-
dinal dyadic data provided by Dewitte, Van Lankveld, Vandenberghe, and
Loeys (2015). In the previous chapters, we focused mainly on the variables
“perceived intimacy” and “positive relationship feelings”. As one might
have noticed, in the first chapter, the effect of perceived intimacy of the
previous day on the current positive relationship feelings was considered,
while in chapter 3 and 5, the effect of positive relationship feelings of the
previous day on the current amount of perceived intimacy was estimated.
As often is the case in social and behavioral science, both directions make
sense. If a person feels positive about his or her relationship, that person
will show more intimacy towards the partner. Contrariwise, if a person
experiences a lot of intimacy from his or her partner, that person may
experience more positive feelings towards their relationship. The current
design of the L(D)-APIM only allows the researcher to estimate causal
effects in which the direction is fixed. Consequently, explanatory vari-
ables are assumed to be predetermined. However, one may consider an
adaptation of the model similar to the first-order vector autoregression or
VAR models from the individual setting (Brandt & Williams, 2007). The
adapted L(D)-APIM would not only consider actor and partner effects
of the antecedent on the current outcome, but it would also allow the
current outcome score of both dyad members to influence their own and
their partner’s predictor scores of the following time point. This would
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imply that the predictor and outcome score alternate each other as in-
dependent and dependent variable throughout time, which might present
some statistical complications that need to be investigated.

Social and behavioral researchers are often interested in theoretical
constructs, such as emotions, depression, and trust. These constructs are
latent and cannot be directly observed. Over the years, different question-
naires have been developed with good psychometric properties, enabling
researchers to scale a person with respect to this construct. For instance
in this dissertation, the Dyadic Adjustment Scale was used in order to
provide a measurement of the relationship satisfaction. Usually this mea-
surement is obtained by taking the average of the person’s responses over
different items. For this reason, all variables in the L(D)-APIM are consid-
ered to be observed. Statistically speaking, it might be better to consider
the construct as latent in order to incorporate measurement error: the av-
eraged scores are not perfect measurements of the construct it represents.
This idea already provoked a class of models within the individual setting,
called dynamic factor analysis, which has been extrapolated to the dyadic
case in some studies (Ferrer & Nesselroade, 2003; Ferrer & Widaman,
2008). In Gareau, Fitzpatrick, Gaudreau, and Lafontaine (2016), the au-
thors showed how to include measurement error in the cross-sectional
APIM within the SEM framework. One could adapt the L(D)-APIM in a
similar way in order to allow the model for measurement error.

The L(D)-APIMs are in fact first-order models due to the use of the
first-order autoregressive structure. They assume that the non-independence
between the outcome scores separated by two time points, is explained by
the intermediate time point. For instance in the individual setting, the
correlation between the outcome scores YM1 and YM3 is explained by
YM2, and because we are working with dyadic data, it also means that
the correlation between YM1 and YF3 is explained by YM2 and YF2 (in the
case of heterogeneous couples). In other words, the temporal correlation is
completely explained by considering the previous outcome measurement.
However, in practice this might not always be the case. For instance, in
econometrics, higher order lagged dependent variables are often included
into the model to further explain the autocorrelation between the resid-
uals (Enders, 2010). In case of the LD-APIM, the model can easily be
adapted to include these higher order lagged dependent variables. The
statistical issues are similarly resolved for higher orders as in the first-
order setting, although, the interpretation might change for the overtime
predictors included in the model. In case of the L-APIM, higher order
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non-independence embodies a higher order moving average process. Its
implementation within the SEM framework looks straightforward at first
sight, yet, one should be aware of statistical complications and technical
issues.

Note that the L(D)-APIMs also form a class of models that assume
weak stationarity. This implies that the statistical characteristics of the
process do not change over time: the mean levels of the variables of the
process do not change over time, (co)variances between variables of the
process are constant over time, and patterns of temporal dependency only
change in function of the time lag. In other words, all model parameters
are assumed to be time-invariant and shifting the process over time should
not affect its dynamics. However, this assumption might be unrealistic as
most human aspects are prone to change as they take place in a bigger
environment. For instance, the emotional interaction between two individ-
uals from the start of their marriage till the end of their divorce definitely
shows ups and downs due to this life changing event. Consequently, the
L(D)-APIM cannot be used to fit such data. Fortunately, it is possible to
relax the stationarity assumption by allowing the L(D)-APIM’s parame-
ters to become time-dependent (Bringmann, Ferrer, Hamaker, Borsboom,
& Tuerlinckx, 2018). Along a similar line of thought, one may argue that
the L(D)-APIM does not allow any subject-specific model parameter, ex-
cept for the latent intercept. The current L(D)-APIM does not allow any
random slopes for the explanatory variables, random autocorrelation to
represent a person’s regulatory weakness, or random residual variances to
represent a person’s perturbation sensitivity (Jongerling, Laurenceau, &
Hamaker, 2015). In either case, more information is needed to implement
these random effects within the SEM framework and sample size require-
ments have to be identified in order to avoid convergence issues within
these adaptations.

6.2 Further research
Throughout the dissertation, simulation studies were performed with com-
plete data. However, complete data is hardly available in real life as it
often contains missing values. There are in fact three types of missing-
ness: missingness completely at random (i.e., the missing data generating
mechanism is independent from the (un)observed measurements), miss-
ingness at random (i.e., the missing data generating mechanism solely
depends on the observed measurements), and missingness not at random
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(i.e., the missing data generating mechanism depends on unobserved mea-
surements). The first type of missingness is considered as a minor concern
as the model based on the complete cases will still obtain asymptotically
unbiased estimates, although less efficient, provided that the model is
correctly specified. In the second type of missingness, the missing values
pattern is under control and knowledge of the researcher. Statistical anal-
yses based on the likelihood of the observed outcomes, such as the ML
estimation performed in the SEM framework, still yield valid results if the
variables that explain the missingness are included in the model (Jansen,
Van den Troost, Molenberghs, Vermulst, & Gerris, 2006). However, in
case of the last type of missingness, things are a bit more complex as the
missing values pattern is beyond the control of the researcher. In this case,
one talks about informative drop-out. The reason why the missing values
occur cannot be explained by the observed variables as they depend on
unseen observations. Hence, the missingness embodies extra information
that needs to be taken into account. Since the L(D)-APIM does not con-
tain the possibility to include this extra information, biased results may be
obtained. More research should be performed to extend the L(D)-APIM
to fit the model and the missingness mechanism. For instance, one could
adopt the shared-parameter modeling framework from the individual set-
ting (Creemers et al., 2010). Unlike the selection modeling framework or
pattern mixture modeling framework which uses conditional models for
either the missingness process or the measurement process respectively,
the shared-parameter modeling framework uses latent variables or ran-
dom effects in order to simultaneously drive both the missingness and
measurement process. Sensitivity analysis should be performed to explore
the influence of missingness not at random on the inference of the L(D)-
APIM.

Similarly, the longitudinal dyadic data used in the analysis of this
dissertation are assumed to be balanced. The time points are assumed to
be equally spaced so that the assumption of a first-order autoregressive
structure would make sense. Additionally, all dyads are assumed to be
measured on the same occasions. In case of violation of the first data
assumption, the time grid can be completed with missing values. In this
case, the L(D)-APIM can still be fitted, although estimation will be less
efficient. Violation of the second data assumption may be more difficult
to solve, especially because of the characteristic use of partner effects
within the L(D)-APIM. The interpretation of the partner effects do not
make any sense if the antecedent is measured, for example, two days in
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advance for one dyad, and one day in advance for another dyad. A possible
solution is to allow the mean structure parameters of the L(D)-APIM to
depend on the time lag between the antecedent and the outcome variable.
However, implementing such a model might become quite cumbersome.
Moreover, the adapted model might experience convergence issues due to
its complexity.

The L(D)-APIM introduced in this dissertation focuses on outcomes
that are continuously distributed. Some outcome scores do not follow this
assumption. For example, “the effect of relationship dissatisfaction on the
decision to masturbate or not” considers a dichotomous outcome variable,
or “the effect of coping on the number of fights between the couple” con-
siders counts. As a result, a categorical version of the L(D)-APIM might
be practical for researchers as well. There already exists a categorical ver-
sion of the cross-sectional APIM, albeit in the MLM framework (Loeys,
Cook, De Smet, Wietzker, & Buysse, 2014). Hence, extending this cate-
gorical APIM towards a categorical L(D)-APIM might be inadequate as
the MLM framework lacks to deal with the statistical challenges of LDD.
Within the SEM framework, it is suggested that diagonally weighted least
squares can be used for categorical outcomes (Josephy, Loeys, & Rosseel,
2016). So, perhaps a similar approach could be used to adapt the L(D)-
APIM. Of course, chapter 2 about indistinguishability tests should be
reconsidered within the context of categorical data as well. For instance,
in the case of Poisson distributed outcomes (i.e., counts), no additional
hypotheses about the variance components exist as the latter is completely
characterized by the mean components.

When analyzing longitudinal data, research questions can in fact be
subdivided into three sets: (a) questions related to the course and shape
of the process, (b) questions related to the moderators of change, and
(c) questions related to mediators of change (Laurenceau, Hayes, & Feld-
man, 2007). As the L(D)-APIM focuses on the second type of questions
(while controlling for the first type of questions), further research should
include the possibility to answer questions of the third type using the
L(D)-APIM. Real life data is often prone to mediators: a third variable
through which the predictor influences the outcome variable. For instance,
intrusive behavior might affect the level of stress of a person through its
influence on trust in the partner. Most mediation analysis are performed
within cross-sectional models, ergo the APIM has already been adapted
to the APIMeM in order to allow for mediators (Ledermann, Macho, &
Kenny, 2011). However, the causal relationships between the variables
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often take time to unfold when considering mediation. As a result, medi-
ation analysis in longitudinal data might provide more reliable inference
(Selig & Preacher, 2007). Future research could entail the extension of the
L(D)-APIM to incorporate mediators. For the L-APIM, one could extend
the APIMeM on a similar way as we extended the APIM towards the L-
APIM. For the LD-APIM, the model might be adapted in a similar way
as MacKinnon (2008), who extended autoregressive cross-lagged models
to include mediators in case of longitudinal individual data. To the best of
our knowledge, mediation analysis in the context of longitudinal dyadic
data in which the predictor, the mediator and the outcome have been
measured at all occasions, can be considered as unknown territory and
should be included in future work.

As the L-APIM and LD-APIM were introduced as two prototypes
of a new class of longitudinal dyadic models, it might be interesting to
contrast both models to one another. Notwithstanding their profoundly
different origin (marginal vs conditional), it may still make sense to com-
pare them or combine their characteristics into an overarching model.
Hamaker (2005) already compared the use of lagged dependent variables
to residuals correlated in a first-order autoregressive manner. However,
this comparison was made in the absence of any predictors. It may be in-
teresting to extrapolate their findings to models such as the L(D)-APIM
which include explanatory variables. Similarly, this new class of longitu-
dinal dyadic models could be extended with other extensions of cross-
sectional dyadic models. Possibly, there will be other statistical issues in-
volved when developing a longitudinal version for the common fate model
or mutual influence model. This can be considered in future research.

Note that in this dissertation, time was used as an indicator for the
temporal precedence in the causal process. One can also be interested in
research questions with a much bigger role for time, for instance, questions
related to the within-person acceleration and its association with the state
of the process or questions about the degree to which the behavior of the
two members fluctuates together. These questions can only be answered
in case time is considered as a continuous variable instead of a categorical
one, as in differential equation models (Boker & Laurenceau, 2006) or
cross-spectral models (Cook, 2003). Future research may entail how to
extend these longitudinal dyadic models with explanatory variables.

This dissertation was based on dyadic data, however, the idea that
people are correlated with the person closest to him or her can be extra-
polated to larger groups of related people. Instead of considering groups
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consisting of two people, one could consider groups of three people (tri-
ads), four people (quadruples), or more. In family research, groups of four
people are not uncommon as a family of interest is often restricted to
consist of two parents and two siblings. In case everybody rates everyone
and everybody is rated by everyone, a social relations model can be used.
However, one can also consider a social network analysis if one would like
to model groups of related subjects in general (Bringmann et al., 2013).
Further research may involve a thorough investigation of these longitudi-
nal network models and their applicability within social and behavioral
science.

6.3 Conclusion
In this dissertation, the main content involved the statistical challenges
when analyzing longitudinal dyadic data. As distinguishability is one of
the major features of dyadic data, we first reconsidered different aspects
of indistinguishability tests. We hope that the dyadic researcher becomes
more familiar with those tests and the way they are best performed.
Whether the dyads are distinguishable or indistinguishable, we also pro-
vided two different longitudinal dyadic models based on the APIM: the
L-APIM and LD-APIM. The first model uses an advanced residual co-
variance structure to account for the temporal correlation, while the sec-
ond model works conditionally on the previous time point by including
a lagged dependent variable. Both models have been implemented in a
user-friendly free web-based application so users do not need any soft-
ware license or technical knowledge of the statistical package used to fit
the model. Despite the assumptions made by these models, we believe
the L-APIM and the LD-APIM to be useful models and we hope that
this dissertation will encourage applied dyadic researchers to exploit their
longitudinal dyadic data using these models, perhaps via the LDDinSEM -
application.
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7 Summary

In social and behavioral science, human phenomena are often examined
within close relationships. How you feel, what you believe, the way you
behave: it depends on your own input, but also on the input of the person
closest to you. Therefore, observations in social and behavioral science
often refer to pairs or dyads rather than single persons. As a result, the
popularity of dyadic data is increasing exponentially. Instead of collect-
ing data on one person, the researcher investigates both persons involved
in the interpersonal relationship. Standard statistical methods fail due to
the natural connection between the two members of a dyad, called non-
independence. New statistical models are needed in order to analyze this
type of data. Over the last decades, several types of models have been
suggested, with the actor-partner interdependence model or APIM as one
of the most prominent ones. This model enables the applied researcher
to estimate a person’s own input (actor effect) and the partner’s input
(partner effect) on his/her own outcome score, while controlling for the
non-independence between both subjects (interdependence). In this dis-
sertation, the goal is to extend the APIM towards the longitudinal setting,
that is, in the case dyads are measured repeatedly over time.

Before any statistical analysis is performed on dyadic data, whether
cross-sectional or longitudinal, one has to check whether the dyads should
be considered as distinguishable (like in heterosexual couples) or indis-
tinguishable (like in same-sex couples). This question can be answered
theoretically by identifying a meaningful variable that distinguishes the
roles of the members of a dyad (e.g., gender). However, if one wants to
answer this question empirically, tests of indistinguishability have to be
performed. In this dissertation, we take a closer look at these tests and in-
vestigated possible optimization in case the sample size was rather small.
We concluded that sequential tests, in which REML estimation was used
for the covariance components, might outperform a global test within the
SEM framework.
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When the interest lies in understanding the intraindividual variation
(i.e., understanding the change within a member of a dyad) next to the
interindividual variation, the researcher has to measure the dyads repeat-
edly over time, that is, he or she has to collect longitudinal dyadic data. In
this dissertation, the goal was to identify the statistical issues related to
longitudinal dyadic data and to try to tackle these complications. There
already exist longitudinal dyadic models, albeit with emphasis on the
dynamic process of the outcome variable. However, the most interesting
research questions in longitudinal dyadic data focus on the influence of
a predictor on an outcome variable. For instance, “How does your part-
ner’s intrusive behavior on average affect your relationship satisfaction?”,
“Does the way you rate your relationship today depend on the amount
of intimacy you perceived yesterday?”, or “Does the way you think your
partner understands you influences your happiness more than the way
your partner actually understands you?”, these are only a few examples
to illustrate the richness of this type of questions.

In order to answer such kind of research questions, a new class of mod-
els is needed which focuses on the causal relationship of a predictor and
the outcome variable over time. Therefore, we opted to extend the APIM
towards the longitudinal setting. This adapted model should deal with
the most notorious problems concerning longitudinal dyadic data. First,
it has to handle two types of non-independence: the non-independence due
to the dyadic nature of the data as well as the non-independence char-
acteristic to the repeated measurements design (autocorrelation). Here,
researchers preferably want to make a distinction between time-stable
sources of variation (i.e., allowing for random effects) and time-varying
sources of variation. Second, it has to include both actor and partner
characteristics. Third, it has to be able to disentangle the effect of a time-
varying predictor into a time-averaged and time-specific effect.

As one can imagine, the first issue was the most challenging in the
APIM’s extension and two different approaches were used. In the first
approach, we opted for a marginal extension of the APIM, called the lon-
gitudinal actor-partner interdependence model or L-APIM. It is the most
natural extension of the cross-sectional APIM as it essentially fits the
APIM at each time point. The two types of non-independence mentioned
above, were incorporated into the L-APIM by allowing the residuals to
be correlated with one another. As this covariance structure became quite
complex, an alternative implementation was necessary to fit the model,
which was found within the SEM framework. In the second approach, we
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opted for a conditional extension of the APIM, called the lagged depen-
dent actor-partner interdependence model or LD-APIM. In this approach,
the residual covariance structure is kept simple by conditioning on the pre-
vious outcome score. This method is quite controversial as it introduces
other statistical problems, such as the initial conditions problem, the en-
dogeneity problem and the centering problem. If one conditions on the
previous outcome score, one needs a start-up process at the first occa-
sion (initial conditions problem). This start-up process may collide with
the estimation of the random effects present in the model and may cause
biased inference (endogeneity problem). Moreover, conditioning on the
previous outcome score influences the interpretation of the intercept (cen-
tering problem). The LD-APIM was developed in order to resolve these
issues within the SEM framework.

Both models are implemented in a free web-based Shiny-application
with a point-and-click interface. This way, we hope to encourage applied
dyadic researchers to use these models in order to exploit their longitu-
dinal dyadic data. The application guides the user throughout the model
implementation thanks to the information tab panels at each step. It auto-
matically fits this L(D)-APIM and allows the user to summarize, visualize
and download the results. Tutorials are also provided to demonstrate the
use of the app. Moreover, the application displays the original code so
that more experienced users can relax the defaults of the L(D)-APIM and
adapt the L(D)-APIM.





8 Nederlandstalige
samenvatting

In sociale wetenschappen en gedragswetenschappen worden menselijke
gedragingen vaak bestudeerd binnen het kader van hechte relaties. Hoe
een persoon zich voelt, de dingen waarin hij of zij gelooft, de manier hoe hij
of zij zich gedraagt, enz. hangen niet alleen af van die persoon zelf, maar
ook van de persoon die nauw in relatie staat met hem of haar. Observaties
van menselijke gedragingen worden daarom minder beschouwd als eigen
aan een individu, maar steeds meer in de context van een paar of dyade.
Het is duidelijk dat de populariteit van dyadische data exponentieel toe-
neemt. In plaats dat de onderzoeker gegevens verzamelt over één persoon,
verzamelt deze gegevens over beide personen waaruit de interpersoon-
lijke relatie bestaat. Standaard statistische methodes slagen er niet in
om rekening te houden met de natuurlijk connectie die bestaat tussen de
twee leden van een dyade, welke non-independence wordt genoemd. Er
zijn innovatieve statistische modellen nodig om dergelijke soort gegevens
te analyseren. De voorbije jaren werden al verschillende soorten modellen
uitgewerkt, met het actor-partner interdependence model of APIM als één
van de meest vooraanstaande. Het model is in staat om zowel de eigen
invloed van een lid van een dyade (actor effect) als de invloed van het an-
dere lid van de dyade (partner effect) te schatten, rekening houdend met
de non-independence tussen beide leden (interdependence). Het doel van
dit proefschrift was om dit model uit te breiden naar de longitudinale con-
text, waarbij dyades meermaals worden geobserveerd over een bepaalde
tijdsperiode.

Voordat de analyse van cross-sectionele of longitudinale dyadische data
wordt uitgevoerd, dient men eerst na te gaan of de dyades distinguishable
(zoals bij heteroseksuele koppels) of indistinguishable (zoals bij homosek-
suele koppels) zijn. Theoretisch kan deze vraag worden beantwoord door
een variabele te identificeren die de rollen van beide leden van een dyade
op een betekenisvolle manier onderscheiden (zoals geslacht). Empirisch
kan deze vraag ook worden beantwoord met behulp van indistinguishabil-
ity tests. In dit proefschrift werden dergelijke testen onderzocht en geop-
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timaliseerd in het geval dat het aantal tijdspunten relatief klein is. We
konden besluiten dat de globale test binnen het SEM framework minder
goed presteert dan de stapsgewijze indistinguishability tests op basis van
REML.

Als de nadruk ligt op zowel de intra-individuele variantie (d.w.z. de
verandering binnen een lid van een dyade), alsook op de inter-individuele
variantie, dan moeten dyades herhaaldelijk gemeten worden. Dergelijke
verzamelde gegevens noemt men longitudinale dyadische data. Het doel
van dit proefschrift was om de statistische problemen met dergelijke data
te identificeren en de bijhorende complicaties aan te pakken. De bestaande
longitudinale dyadische modellen focussen zich vooral op het dynamische
proces van de uitkomstvariabele. De meest interessante onderzoeksvra-
gen bij longitudinale dyadische data behandelen echter de invloed van
een predictor op de uitkomstvariabele, bijvoorbeeld, “Hoe beïnvloedt het
opdringerige gedrag van je partner gemiddeld jouw eigen relatietevreden-
heid?”, “Hangt jouw relatietevredenheid van vandaag af van de mate van
intimiteit die je gisteren hebt waargenomen bij je partner?” of “Wordt
jouw geluk bepaald door het feit dat jouw partner je begrijpt of door het
feit dat je denkt dat jouw partner je begrijpt?”. Het zijn slechts enkele
voorbeelden die de omvang van dit soort vragen illustreert.

Om dergelijke onderzoeksvragen te beantwoorden, hebben we nood
aan een nieuwe klasse modellen die zich focussen op de causale relatie
tussen een predictor en een uitkomstvariabele over de tijd heen. We hebben
daarom het APIM uitgebreid naar het longitudinale geval. Dit aangepaste
model zou in staat moeten zijn om de meest belangrijke problemen in ver-
band met de longitudinale dyadische data aan te pakken. Ten eerste moet
het model twee vormen van non-independence in rekening brengen: de
ene omwille van de dyadische eigenheid van de data en de andere omwille
van de herhaalde metingen in de data (ook wel autocorrelatie genoemd).
Daarenboven willen onderzoekers hierbij een onderscheid maken tussen
tijdsonafhankelijke (d.w.z. random effecten toelaten in het model) en ti-
jdsafhankelijke bronnen van variantie. Ten tweede moet het model zowel
actor als partner eigenschappen bevatten. Ten derde moet het model ook
in staat zijn om het effect van een tijdsafhankelijke predictor op te splitsen
in een effect gemiddeld over de tijd en in een tijd-specifiek effect.

Zoals men zich kan voorstellen, is het eerste probleem het meest uitda-
gend bij de uitbreiding van het APIM en twee verschillende aanpakken
werden gebruikt. In het eerste geval werd er een marginale uitbreiding van
het APIM bepaald, ook wel het longitudinal actor-partner interdependence
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model of L-APIM genoemd. Het is de meest logische uitbreiding van het
cross-sectionele APIM aangezien het model in wezen op elk tijdstip het
APIM implementeert. Het L-APIM brengt de twee eerder genoemde vor-
men van non-independence in rekening door de residuen met elkaar te
laten correleren. Aangezien de covariantiestructuur hierbij erg complex
werd, zochten we naar een alternatieve implementatie om dit model te
kunnen fitten binnen het SEM framework. In het tweede geval werd er een
conditionele uitbreiding van het APIM bepaald, ook wel het lagged depen-
dent actor-partner interdependence of LD-APIM genoemd. Hierbij wordt
de covariantiestructuur eenvoudig gehouden door te conditioneren op de
vorige uitkomstscore. Deze methode wordt als vrij controversieel gevon-
den aangezien het andere statistische problemen met zich meebrengt, on-
der andere het initial conditions problem, het endogeneity problem en het
centering problem. Als men op het vorige tijdstip conditioneert, moet men
een opstartprocedure definiëren voor het initiële tijdspunt (initial condi-
tions problem). Deze opstartprocedure kan botsen met de schatting van
de random effecten uit het model, waardoor er foute conclusies kunnen
gevormd worden (endogeneity problem). Meer nog, wanneer er gecondi-
tioneerd wordt op het vorige tijdstip, wijzigt de interpretatie van het in-
tercept (centering problem). Het LD-APIM werd zodanig geconstrueerd
dat deze de bovenstaande problemen aanpakt binnen het SEM framework.

Beide modellen werden gebundeld in een gratis online Shiny-applicatie
met een “point-and-click” interface. Op deze manier hopen we toegepaste
dyadische onderzoekers aan te moedigen om deze modellen te gebruiken
bij het analyseren van hun longitudinale dyadische data. De applicatie
begeleidt de gebruiker doorheen de verschillende stappen om het gepaste
L(D)-APIM te specifiëren met behulp van informatietabbladen die bij
elke stap zijn voorzien. Dit L(D)-APIM wordt automatisch op de data
toegepast en de app laat de gebruiker toe om de resultaten samen te
vatten, te visualiseren en te downloaden. Er zijn ook handleidingen ter
beschikking om het gebruik van de app verder toe te lichten. De applicatie
geeft ook de originele code weer zodat meer ervaren gebruikers de model-
assumpties kunnen versoepelen en het L(D)-APIM kunnen aanpassen.
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Data Storage Fact Sheets Chapter 1

1. Contact details
=============================================================

1a. Main researcher
-------------------------------------------------------------
- name: Fien Gistelinck
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: fien.gistelinck@ugent.be

1b. Responsible Staff Member (ZAP)
-------------------------------------------------------------
- name: Prof. dr. Tom Loeys
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: tom.loeys@ugent.be

If a response is not received when using the above contact
details, please send an email to data.pp@ugent.be or contact
Data Management, Faculty of Psychology and Educational
Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium.

2. Information about the datasets to which this sheet applies
=============================================================

* Reference of the publication in which the datasets are
reported:

Gistelinck, F. (2019). Statistical challenges in modeling
longitudinal dyadic data (Doctoral dissertation). Ghent, BE:
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Ghent University.

* Which datasets in that publication does this data sheet
apply to?

This data storage fact sheet refers to the raw data of the
illustrative examples and corresponding R scripts related to
the first chapter of the reference of the publication.

3. Information about the files that have been stored
=============================================================

3a. Raw data
-------------------------------------------------------------

* Have the raw data been stored by the main researcher?
[X] YES / [ ] NO
If NO, please justify:

* On which platform are the raw data stored?
- [X] researcher PC
- [ ] research group file server
- [X] other (specify):

The raw data was provided by Céline Hinnekens and Olivia De
Smet, who performed the original experiments, respectively.
As such, they also possess the raw data.

* Who has direct access to the raw data
(i.e., without intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [X] other (specify):

The raw data was provided by Céline Hinnekens and Olivia De
Smet, who performed the original experiments, respectively.
As such, they also possess the raw data.
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3b. Other files
-------------------------------------------------------------

* Which other files have been stored?
- [ ] file(s) describing the transition from raw data to
reported results. Specify: ...

- [ ] file(s) containing processed data. Specify: ...
- [X] file(s) containing analyses. Specify:

R scripts to analyze the raw data
- [ ] files(s) containing information about informed
consent

- [ ] a file specifying legal and ethical provisions
- [ ] file(s) that describe the content of the stored files
and how this content should be interpreted. Specify: ...

- [ ] other files. Specify: ...

* On which platform are these other files stored?
- [X] individual PC
- [ ] research group file server
- [ ] other: ...

* Who has direct access to these other files (i.e., without
intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

4. Reproduction
=============================================================
* Have the results been reproduced independently?:
[ ] YES / [X] NO

* If yes, by whom (add if multiple):
- name:
- address:
- affiliation:
- e-mail:
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Data Storage Fact Sheets Chapter 2

1. Contact details
=============================================================

1a. Main researcher
-------------------------------------------------------------
- name: Fien Gistelinck
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: fien.gistelinck@ugent.be

1b. Responsible Staff Member (ZAP)
-------------------------------------------------------------
- name: Prof. dr. Tom Loeys
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: tom.loeys@ugent.be

If a response is not received when using the above contact
details, please send an email to data.pp@ugent.be or contact
Data Management, Faculty of Psychology and Educational
Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium.

2. Information about the datasets to which this sheet applies
=============================================================

* Reference of the publication in which the datasets are
reported:

Gistelinck, F., Loeys, T., Decuyper, M. & Dewitte, M. (2018).
Indistinguishability tests in the actor-partner inter-
dependence model. British Journal of Mathematical and
Statistical Psychology, 71(3), 472-498.

* Which datasets in that publication does this data sheet
apply to?

This data storage fact sheet refers to the raw data of the
illustrative examples, the generated data of the simulation
study and corresponding R scripts related to the reference
of the publication.
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3. Information about the files that have been stored
=============================================================

3a. Raw data
-------------------------------------------------------------
* Have the raw data been stored by the main researcher?
[X] YES / [ ] NO
If NO, please justify:

* On which platform are the raw data stored?
- [X] researcher PC
- [ ] research group file server
- [X] other (specify):

The raw data was provided by Mieke Decuyper and Marieke
Dewitte, who performed the original experiments of the
illustrative examples. As such, they also possess the
raw data.

* Who has direct access to the raw data
(i.e., without intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [X] other (specify):

The raw data was provided by Mieke Decuyper and Marieke
Dewitte, who performed the original experiments of the
illustrative examples. As such, they also possess the
raw data.

3b. Other files
-------------------------------------------------------------

* Which other files have been stored?
- [ ] file(s) describing the transition from raw data to
reported results. Specify: ...
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- [ ] file(s) containing processed data. Specify: ...
- [X] file(s) containing analyses. Specify:

R scripts to generate the data for the simulation study,
R scripts to perform the simulation study, and
R scripts to analyze the raw data.
- [ ] files(s) containing information about informed
consent

- [ ] a file specifying legal and ethical provisions
- [ ] file(s) that describe the content of the stored files
and how this content should be interpreted. Specify: ...

- [ ] other files. Specify: ...

* On which platform are these other files stored?
- [X] individual PC
- [ ] research group file server
- [ ] other: ...

* Who has direct access to these other files
(i.e., without intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

4. Reproduction
=============================================================
* Have the results been reproduced independently?:
[ ] YES / [X] NO

* If yes, by whom (add if multiple):
- name:
- address:
- affiliation:
- e-mail:
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Data Storage Fact Sheets Chapter 3

1. Contact details
=============================================================

1a. Main researcher
-------------------------------------------------------------
- name: Fien Gistelinck
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: fien.gistelinck@ugent.be

1b. Responsible Staff Member (ZAP)
-------------------------------------------------------------
- name: Prof. dr. Tom Loeys
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: tom.loeys@ugent.be

If a response is not received when using the above contact
details, please send an email to data.pp@ugent.be or contact
Data Management, Faculty of Psychology and Educational
Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium.

2. Information about the datasets to which this sheet applies
=============================================================

* Reference of the publication in which the datasets are
reported:

Gistelinck, F. & Loeys, T. (2019). The Actor–Partner Inter-
dependence Model for Longitudinal Dyadic Data: An Implemen-
tation in the SEM Framework. Structural Equation Modeling:
A Multidisciplinary Journal, 26(3), 329-347.

* Which datasets in that publication does this data sheet
apply to?

This data storage fact sheet refers to the raw data of the
empirical example, the generated data of the simulation
study and corresponding R and SAS scripts related to the
reference of the publication.
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3. Information about the files that have been stored
=============================================================

3a. Raw data
-------------------------------------------------------------
* Have the raw data been stored by the main researcher?
[X] YES / [ ] NO
If NO, please justify:

* On which platform are the raw data stored?
- [X] researcher PC
- [ ] research group file server
- [X] other (specify):

The raw data was provided by Marieke Dewitte, who performed
the original experiment of the empirical example. As such,
she also possesses the raw data.

* Who has direct access to the raw data
(i.e., without intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [X] other (specify):

The raw data was provided by Marieke Dewitte, who performed
the original experiment of the empirical example. As such,
she also possesses the raw data.

3b. Other files
-------------------------------------------------------------

* Which other files have been stored?
- [ ] file(s) describing the transition from raw data to
reported results. Specify: ...

- [ ] file(s) containing processed data. Specify: ...
- [X] file(s) containing analyses. Specify:
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R/SAS scripts to generate the data for the simulation study,
R/SAS scripts to perform the simulation study, and
R/SAS scripts to analyze the raw data.
- [ ] files(s) containing information about informed
consent

- [ ] a file specifying legal and ethical provisions
- [ ] file(s) that describe the content of the stored files
and how this content should be interpreted. Specify: ...

- [ ] other files. Specify: ...

* On which platform are these other files stored?
- [X] individual PC
- [ ] research group file server
- [ ] other: ...

* Who has direct access to these other files
(i.e., without intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

4. Reproduction
=============================================================
* Have the results been reproduced independently?:
[ ] YES / [X] NO

* If yes, by whom (add if multiple):
- name:
- address:
- affiliation:
- e-mail:
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Data Storage Fact Sheets Chapter 4

1. Contact details
=============================================================

1a. Main researcher
-------------------------------------------------------------
- name: Fien Gistelinck
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: fien.gistelinck@ugent.be

1b. Responsible Staff Member (ZAP)
-------------------------------------------------------------
- name: Prof. dr. Tom Loeys
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: tom.loeys@ugent.be

If a response is not received when using the above contact
details, please send an email to data.pp@ugent.be or contact
Data Management, Faculty of Psychology and Educational
Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium.

2. Information about the datasets to which this sheet applies
=============================================================

* Reference of the publication in which the datasets are
reported:

Gistelinck, F., Loeys, T. & Flamant, N. (n.d.). Multilevel
autoregressive models when the number of time points is small.
Structural Equation Modeling: A Multidisciplinary Journal.

* Which datasets in that publication does this data sheet
apply to?

This data storage fact sheet refers to the raw data of the
empirical example, the generated data of the simulation
study and corresponding R scripts related to the reference
of the publication.
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3. Information about the files that have been stored
=============================================================

3a. Raw data
-------------------------------------------------------------
* Have the raw data been stored by the main researcher?
[X] YES / [ ] NO
If NO, please justify:

* On which platform are the raw data stored?
- [X] researcher PC
- [ ] research group file server
- [X] other (specify):

The raw data was provided by Nele Flamant, who performed
the original experiment of the empirical example. As such,
she also possesses the raw data.

* Who has direct access to the raw data
(i.e., without intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [X] other (specify):

The raw data was provided by Nele Flamant, who performed
the original experiment of the empirical example. As such,
she also possesses the raw data.

3b. Other files
-------------------------------------------------------------

* Which other files have been stored?
- [ ] file(s) describing the transition from raw data to
reported results. Specify: ...

- [ ] file(s) containing processed data. Specify: ...
- [X] file(s) containing analyses. Specify:

R scripts to generate the data for the simulation study,
R scripts to perform the simulation study, and
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R scripts to analyze the raw data.
- [ ] files(s) containing information about informed
consent

- [ ] a file specifying legal and ethical provisions
- [ ] file(s) that describe the content of the stored files
and how this content should be interpreted. Specify: ...

- [ ] other files. Specify: ...

* On which platform are these other files stored?
- [X] individual PC
- [ ] research group file server
- [ ] other: ...

* Who has direct access to these other files
(i.e., without intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

4. Reproduction
=============================================================
* Have the results been reproduced independently?:
[ ] YES / [X] NO

* If yes, by whom (add if multiple):
- name:
- address:
- affiliation:
- e-mail:
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Data Storage Fact Sheets Chapter 5

1. Contact details
=============================================================

1a. Main researcher
-------------------------------------------------------------
- name: Fien Gistelinck
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: fien.gistelinck@ugent.be

1b. Responsible Staff Member (ZAP)
-------------------------------------------------------------
- name: Prof. dr. Tom Loeys
- address: H. Dunantlaan 2, 9000 Gent
- e-mail: tom.loeys@ugent.be

If a response is not received when using the above contact
details, please send an email to data.pp@ugent.be or contact
Data Management, Faculty of Psychology and Educational
Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium.

2. Information about the datasets to which this sheet applies
=============================================================

* Reference of the publication in which the datasets are
reported:
Gistelinck, F. \& Loeys, T. (n.d.). Multilevel auto-
regressive models for longitudinal dyadic data. Testing,
Psychometrics, Methodology in Applied Psychology.

* Which datasets in that publication does this data sheet
apply to?

This data storage fact sheet refers to the raw data of the
empirical example, the generated data of the simulation
study and corresponding R scripts related to the reference
of the publication.
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3. Information about the files that have been stored
=============================================================

3a. Raw data
-------------------------------------------------------------
* Have the raw data been stored by the main researcher?
[X] YES / [ ] NO
If NO, please justify: ...

* On which platform are the raw data stored?
- [X] researcher PC
- [ ] research group file server
- [X] other (specify):

The raw data was provided by Marieke Dewitte, who performed
the original experiment of the empirical example. As such,
she also possesses the raw data.

* Who has direct access to the raw data
(i.e., without intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [X] other (specify):

The raw data was provided by Marieke Dewitte, who performed
the original experiment of the empirical example. As such,
she also possesses the raw data.

3b. Other files
-------------------------------------------------------------

* Which other files have been stored?
- [ ] file(s) describing the transition from raw data to
reported results. Specify: ...

- [ ] file(s) containing processed data. Specify: ...
- [X] file(s) containing analyses. Specify:
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R scripts to generate the data for the simulation study,
R scripts to perform the simulation study, and
R scripts to analyze the raw data.
- [ ] files(s) containing information about informed
consent

- [ ] a file specifying legal and ethical provisions
- [ ] file(s) that describe the content of the stored files
and how this content should be interpreted. Specify: ...

- [ ] other files. Specify: ...

* On which platform are these other files stored?
- [X] individual PC
- [ ] research group file server
- [ ] other: ...

* Who has direct access to these other files
(i.e., without intervention of another person)?
- [X] main researcher
- [ ] responsible ZAP
- [ ] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

4. Reproduction
=============================================================
* Have the results been reproduced independently?:
[ ] YES / [X] NO

* If yes, by whom (add if multiple):
- name:
- address:
- affiliation:
- e-mail:
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