
Department of Data Analysis and Mathematical Modelling

Faculty of Bioscience Engineering

Ghent University

Automated Image Analysis Using

Gaussian-based Convolutional Kernels and

Deep Convolutional Networks

Gang Wang

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor (Ph.D.) of Bioscience Engineering: Mathematical Modelling

Academic year 2019-2020

Supervisor: Prof. dr. Bernard De Baets

Department of Data Analysis

and Mathematical Modelling,

Ghent University,

Belgium

Examination committee: Prof. dr. ir. Jan Pieters (Chairman)

Prof. dr. ir. Jan Verwaeren

Prof. dr. Bernard De Baets

Prof. dr. Gilbert Van Stappen

Prof. dr. ir. Aleksandra Pizurica

Prof. dr. Pedro Melo-Pinto

Dean: Prof. dr. ir. Marc Van Meirvenne

Rector: Prof. dr. ir. Rik Van de Walle

Gang Wang

Automated Image Analysis Using

Gaussian-based Convolutional Kernels and

Deep Convolutional Networks

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor (Ph.D.) of Bioscience Engineering:

Mathematical Modelling

Academic year 2019-2020

Dutch translation of the title:

Geautomatiseerde beeldverwerking met behulp van Gaussiaanse kernels en

diepe convolutionele netwerken

Please refer to this work as follows:

Gang Wang (2019). Automated Image Analysis Using Gaussian-based Con-

volutional Kernels and Deep Convolutional Networks, Ph.D. Thesis, Faculty

of Bioscience Engineering, Ghent University, Ghent, Belgium.

The author and the supervisor give the authorization to consult and to

copy parts of this work for personal use only. Every other use is subject to

the copyright laws. Permission to reproduce any material contained in this

work should be obtained from the author.

Acknowledgements

Ghent is still so charming in the evening. At such a tranquil moment, I

enjoy the view of this city as if appreciating the painting Starry Night Over

the Rhône. The wind sounds like a Nocturne that recalls numerous memories

of the past four years. These memories remind me again that I am arriving at

the terminus of my doctoral journey.

Having finalized my doctoral thesis, first and foremost, I would like to

express millions of thanks to my supervisor, Prof. dr. Bernard De Baets,

the director of the KERMIT research unit and the head of the Dept. of

Data Analysis and Mathematical Modelling, Ghent University. My academic

experience has been reshaped by Prof. De Baets since the first time we

communicated by email. It is his strong support that helps me obtain the

doctoral scholarship, finish the research proposal, win the academic awards,

output the publications, accomplish the doctoral thesis, etc. Prof. De Baets

is very good at supervising, always knowing how to train me by adequate

expert knowledge with appropriate hyperparameter settings and effective tricks.

I can always find comfort and encouragement from his place when suffering

frustration, or receive his stimulation when hesitating. Prof. De Baets is a

hard-working and self-disciplined professor. I can receive his emails in a very

early morning or in a very deep night, on a weekend or on a holiday, from

a flying plane or from his bedroom. Of course he never presses us to work

too much, but he has performed as an exemplar that will always inspire me

in my life, as what he commented on my first annual progress report: The

success will depend on the initiatives you take and your perseverance. I also

believe that his spirit is what contributes to his globally academic reputation.

Prof. De Baets is a thoughtful supervisor having very high standards and very

kind patience. I can always receive his detailed comments that might cover all

the manuscript drafts. I will cherish many of his original comments, which

represent numerous efforts he has made on my doctoral research. In daily

life, Prof. De Baets is a very good friend full of enthusiasm and humor. He

offers me a good introduction to the local cultural characteristics, and always

encourages me to broaden my vision. With his smart jokes, our meetings

are never boring. His piano show also surprised me. Absolutely, I am proud

of being his doctoral student and looking forward to our cooperation in the

future.

I would also like to thank Prof. Carlos Lopez-Molina from Universidad

Publica de Navarra, Spain, for his insightful comments and continuous en-

v

Acknowledgements

couragement. A considerable portion of my doctoral research is finished

under his enthusiastic help. I am also grateful to Prof. Gilbert Van Stappen,

Christ Mahieu, Ruy Lopes-dos-Santos, Xiaoting Zheng and Biao Han from the

Dept. of Animal Sciences and Aquatic Ecology, and Liselotte De Ligne from

the Dept. of Environment, as well as my former colleague Guillermo Vidal-

Diez de Ulzurrun for their collaborations during my doctoral research. My

gratitude also goes to Prof. Irina Perfilieva (University of Ostrava), Prof. Paul

Rosin (Cardiff University), Prof. Tony Lindeberg (KTH Royal Institute of

Technology), Prof. Weichuan Zhang (Durham University) and Prof. Hui Kong

(Nanjing University of Science and Technology) for their constructive sugges-

tions and kind assistance. I am also very appreciative of the time and efforts

that the jury members have dedicated to reading and evaluating my doctoral

thesis. Their thoughtful comments and constructive suggestions have helped

me improve this thesis significantly.

My thanks also go to my great office mates: Michiel, Peter, Marc, Hilde,

Laura and Maxime. There is a very good atmosphere in our office. Your words

can always comfort me when I have a difficult time. You have also offered me

a lot of helpful tips for living in Ghent. Thank you for sharing so many nice

working days with me.

Also, I want to thank my great colleagues in our department: Mengzi, Jim,

Ruth, Timpe, Yuanyuan, Jose, Raul, Aisling, Wouter, Bac, Wenwen, Tim,

Christina, Shuyun, Zengyuan, Steffie, Hang, Yexing, Alejandra, Bram, David,

Gisele, Thomas, Jan Baetens, Willem, Jan Verwaeren, Daile, Lander, Dimitri,

Jan Roels, Margot, Dimitrios, Ingmar, Min, Dorien, Tinne, Sophie, Juan,

Michael, Yohannis, Daan, Jenna, Alemu, Chen Wang, Karel, Tiago, Sina,

Chaim, Andreia, Niels, Giacomo, Stijn, Youri, Timothy, Gurmeet, Attilio, et

al. I am really lucky to have you all as colleagues. We have shared lots of

great moments together, such as team building days, social beer activities,

dinner parties, watching football matches, indoor football matches, table game

nights, sports days, new year banquets, academic conferences, and so on. I

will also cherish some of our funny but private stories for a lifetime.

During my doctoral research, I have also made many other friends in Ghent:

Guoxiang, Fan Li, Dan Sun, Jiawei, Shiyu, Shusheng, Longhui, Ting Liu,

Lidong, Junfeng, Xia Zhao, Jiahao, Yunting, Lu Wang, Yubing, Changyuan,

Honglin, Shaoguang, Meizhu, Mingsheng, Lingshan, Chunlian, Chen Yang,

Feifan, Sanwang, Xiaojie, Lipeng, Lijuan, Jinquan, Limin, Xinyu, Haidong,

Luoluo, Xiang Wang, Pengliang, Hao Xiang, Huanyu, Tao Fang, Haichao,

Junwei, Xiaolin, Dongdong Wang, Dongdong Zhang, Lin Ouyang, Guoliang,

De Wei, Wenxin, Wenlei, Kun Guo, Alfredo, Orly, Haitao, Radisras, Feixuan,

Olimi, Ildephonse, Bart, et al. You all have painted my life in Ghent more

vi

Acknowledgements

colorful. Your company is helpful in relieving my homesickness. I have also

learned a lot from your suggestions, stories and experiences.

In addition, I would like to thank the China Scholarship Council, Embassy

of the P. R. China in the Kingdom of Belgium, and Ghent University for

the help and support during my doctoral study. Long live China-Belgium

friendship!

Furthermore, I express my gratitude to my parents and relatives. This

doctoral thesis is also for you.

Gang Wang

Ghent, Belgium

November, 2019

vii

Contents

Acknowledgements v

Summary xv

Nederlandstalige samenvatting xvii

List of acronyms xix

List of symbols xxi

I Introduction and preliminaries 1

1 Introduction 3

1.1 A general overview . 3

1.2 Scope of the thesis . 7

2 Preliminaries 11

2.1 Several fundamental concepts in image processing 11

2.1.1 About a digital image 11

2.1.2 Spatial filtering and convolutional kernels 12

2.1.3 Gaussian kernel and scale-space representation 13

2.2 Several typical image analysis tasks 14

2.2.1 Image denoising . 14

2.2.2 Low-level feature extraction 15

2.2.3 Image segmentation and superpixel segmentation 17

2.2.4 Object classification and object detection 17

2.3 Several fundamental concepts in deep learning 19

2.3.1 Supervised learning . 19

2.3.2 Artificial neural networks 19

2.3.3 Deep convolutional neural networks 21

II Exploration of Gaussian-based kernels for image
analysis 25

3 First-order derivative of anisotropic Gaussian kernel with its

applications 27

3.1 Motivation . 28

ix

Contents

3.2 Related work . 32

3.2.1 Normalized scale-space representation and its derivative 32

3.2.2 The non-normalized first-order derivative of an-isotropic

Gaussian kernel . 33

3.2.3 Graph-based superpixel segmentation 34

3.3 Normalized first-order derivative of anisotropic Gaussian kernel 35

3.3.1 Modelling the scaled edges 35

3.3.2 Normalization in scale-space 37

3.3.3 Alleviation of the anisotropy stretch effect 39

3.3.4 Discrete filter bank . 42

3.3.5 Compensated anisotropic edge strength 43

3.4 Application to contour detection 45

3.4.1 Hierarchical superpixel maps 45

3.4.2 Hierarchical superpixel contrast maps 48

3.4.3 Contour strength map 49

3.4.4 Binarization . 49

3.4.5 Experimental validation 50

3.5 Application to superpixel segmentation 56

3.5.1 Superpixel segmentation incorporating anisotropic edge

strength . 56

3.5.2 Experimental validation 57

3.6 Conclusions . 68

4 Second-order anisotropic Gaussian kernel with application to

line detection 71

4.1 Motivation . 71

4.2 Related work . 75

4.3 Normalized and adaptive second-order anisotropic Gaussian

kernel . 76

4.3.1 Modelling a line segment 76

4.3.2 Rebuilding the conventional second-order anisotropic

Gaussian kernel . 76

4.3.3 Scale-invariant normalization 78

4.3.4 Adaptive anisotropy factor 79

4.3.5 Discrete kernels . 82

4.3.6 Postprocessing on lineness map 84

4.4 Experimental validation . 85

4.4.1 Application to fungus detection 85

4.4.2 Other applications . 91

4.5 Conclusions . 92

5 Unilateral second-order Gaussian kernel with application to

x

Contents

image denoising 93

5.1 Motivation . 93

5.2 Related work . 97

5.2.1 Real-world image denoising 97

5.2.2 Blob detection . 99

5.3 The unilateral second-order Gaussian kernel 100

5.3.1 Modelling a blob structure 100

5.3.2 Scale-invariant normalized second-order Gaussian kernel 101

5.3.3 The unilateral second-order Gaussian kernel 104

5.3.4 Topographical measurement of blob characteristics . . . 106

5.4 High-ISO long-exposure image denoising 108

5.4.1 Spatially modelling blob noise 108

5.4.2 Denoising methods incorporating blob reduction 110

5.5 Experimental validation . 111

5.5.1 Experiments on removing synthetic blobs and noise . . 112

5.5.2 Experiments on removing real noise 115

5.6 Conclusions . 125

6 Iterative Laplacian-of-Gaussian filtering with application to

blob detection 127

6.1 Motivation . 127

6.2 Related work . 130

6.3 Method for detecting overlapping blobs 131

6.3.1 Reducing the degree of overlap by iterative Laplacian of

Gaussian filtering . 131

6.3.2 Non-blob structure suppression using unilateral second-

order Gaussian kernels 137

6.4 Experimental validation . 141

6.4.1 Evaluation on an example image 141

6.4.2 Evaluation of robustness to noise 143

6.4.3 Evaluation on fluorescence microscopy cell images . . . 143

6.4.4 Evaluation on nanoparticle images 149

6.5 Conclusions . 151

III Exploration of deep convolutional networks for im-
age analysis 153

7 Automated Artemia detection and counting 155

7.1 Motivation . 155

7.2 Preliminaries on convolutional neural networks 159

7.2.1 Deep convolutional neural networks 159

xi

Contents

7.2.2 U-shaped fully convolutional networks 160

7.3 Automated Artemia detection and counting method 160

7.3.1 The Artemia detection and counting dataset 162

7.3.2 The marker proposal network 162

7.3.3 The target classifier . 166

7.4 Experiments and results . 168

7.4.1 Training procedure . 168

7.4.2 The watershed-based method for comparison 170

7.4.3 Performance evaluation 171

7.5 Conclusions . 174

8 Automated Artemia length measurement 175

8.1 Motivation . 175

8.2 Materials and methods . 178

8.2.1 The Artemia length measurement dataset 178

8.2.2 Automated Artemia length measurement using U-shaped

fully convolutional networks 180

8.2.3 A method using mathematical morphology and polyno-

mial curve fitting . 184

8.3 Experiments and results . 187

8.3.1 Comparison between two models trained by different

types of label maps . 187

8.3.2 Length measurement evaluation 188

8.4 Conclusions . 192

IV Epilogue 193

9 Conclusions and future work 195

9.1 Conclusions . 195

9.2 Potential research directions . 197

9.2.1 Texture suppression using superpixels for contour detection197

9.2.2 Line detection based on image segmentation and line

thinning . 198

9.2.3 Noise-aware and content-aware image denoising 199

9.2.4 Extensions of the automated Artemia analysis methods 200

9.2.5 Transfer use of the developed Artemia image analysis

methods . 201

9.2.6 Open-source software and image material 201

Appendices 203

A Appendix 205

xii

Contents

A.1 Proof of Eq. (3.13) . 205

A.2 Proof of Eq. (3.15) . 207

A.3 Proof of Eq. (4.11) . 208

A.4 Proof of Eq. (5.9) . 210

Bibliography 211

Curriculum Vitae 237

xiii

Summary

With the wide use of imaging systems in scientific studies, automated image

analysis has attracted increasing attention over the past decades. Automated

image analysis can extract meaningful information from raw images and gen-

erate novel insight, having superiority in processing efficiency and assessment

objectivity over manual image analysis. Since many image analysis tasks can

be essentially viewed as problems of feature mapping, feature extraction plays

a pivotal role in automated image analysis. Feature extraction methods can

be generally divided into hand-crafted methods and deep learning methods.

Hand-crafted methods have comparatively better interpretability, and their

processing procedures can be well controlled by explicitly defined parameters.

Representative hand-crafted features include edges, lines, and blobs. Deep

learning methods have a powerful ability to learn and represent features, and

thus, they can accomplish comparatively more complex tasks. Hand-crafted

methods and deep learning methods are not mutually exclusive. Many deep

learning methods have greatly benefited from hand-crafted features. Therefore,

it is still necessary to further explore the potential of hand-crafted features

to have more explicit toolkits, and to provide more explanations for deep

learning techniques. Moreover, it would be worth developing methods that

jointly exploit the advantages of hand-crafted methods and deep learning

methods.

In bioscience engineering, although a large amount of image analysis

methods have been developed, there are still many particular tasks that

remain unsolved. In aquaculture, the brine shrimp Artemia is a widely used

cost-effective diet for fish and crustaceans, and recently, the number of Artemia

studies is increasing. Since Artemia objects are very small in size, they are

usually observed by a stereo-microscope, which can acquire a large amount of

Artemia images containing many Artemia objects. Conventionally, most of

the Artemia image analysis tasks are carried out manually, which is rather

time-consuming and labor-intensive. Hence, it is quite necessary to design

tailor-made methods for analyzing Artemia images.

In this thesis, on the one hand, we investigate several Gaussian-based con-

volutional kernels to extract hand-crafted features. We present the normalized

first-order derivative of anisotropic Gaussian kernel that can detect multiscale

edges with a good noise-robustness. This kernel is applied to contour detection

and superpixel segmentation. Also, we develop a line detection method using

the normalized and adaptive second-order anisotropic Gaussian kernel. This

xv

Summary

method can effectively detect multiscale lines in a noisy environment. For blob

characterization, we propose the unilateral second-order Gaussian kernel that

can quantitatively measure the blob prominence, scale, and position, while

yielding little response for non-blob structures. The favorable properties of

this kernel are confirmed in image denoising. Moreover, we propose a blob

detection method using iterative Laplacian-of-Gaussian filtering and the unilat-

eral second-order Gaussian kernel. This method can handle overlapping blobs

effectively. On the other hand, aiming at automated Artemia image analysis,

we propose an Artemia detection and counting method using U-shaped fully

convolutional networks and deep convolutional networks. Besides, by jointly

using deep learning techniques and hand-crafted features, we develop an au-

tomated method that can measure the Artemia length accurately in images.

All the proposed methods are validated on either widely adopted datasets or

in-house datasets.

xvi

Nederlandstalige samenvatting

Geautomatiseerde beeldverwerking is de laatste decennia een sterk op-

komend studiegebied. Dit komt deels door het wijdverspreid gebruik van

beeldverwerking voor wetenschappelijke studies. Geautomatiseerde beeldverw-

erking kan relevante informatie extraheren van ruw beeldmateriaal, vaak met

een betere efficiëntie en objectiviteit vergeleken met een handmatige beeldver-

werking. Gezien vele beeldverwerkingstaken in essentie gezien kunnen worden

als zogenaamde feature mapping problemen is het extraheren van features een

kernaspect van geautomatiseerde beeldverwerking. Feature extractie kan men

ruwweg onderverdelen in handmatige methoden en deep learning methoden.

De handmatige methoden zijn relatief gezien makkelijker te interpreteren en de

procedure wordt gestuurd door expliciet gedefinieerde parameters. Typische

voorbeelden van handmatige features zijn randen (edges), lijnen en blobs. De

methoden vanuit deep learning daarentegen hebben het vermogen om features

te leren en voor te stellen. Dusdoende kunnen deze gebruikt worden voor

meer complexe taken. Handmatige en deep learning features kunnen elkaar

aanvullen, vele deep learning features zijn gebaseerd op handmatige features.

Daardoor is het nog steeds nodig om het potentieel van handmatige features

verder te onderzoeken, dit leidt ook tot nieuwe inzichten in deep learning

methoden. Verder is het nuttig om methoden te ontwikkelen die de voordelen

van zowel handmatige als deep learning methoden samen exploiteren.

In het domein van de bio-ingenieurswetenschappen, hoewel er reeds een

enorme verscheidenheden aan beeldverwerkingsmethoden beschikbaar is, zijn

er nog altijd vele specifieke taken die onopgelost blijven. In aquacultuur, wordt

het pekelkreeftje Artemia vaak gebruikt als goedkoop voeder voor vissen en

schaaldieren, wat zich uit in een recente stijging in het aantal Artemia studies.

Gezien Artemia objecten zeer klein zijn, worden ze gewoonlijk geobserveerd

met een stereomicroscoop, welke een grote hoeveelheid aan Artemia beelden

kunnen verzamelen. Typisch worden deze beelden handmatig verwerkt, wat

vrij tijds- en arbeidsintensief is. Vandaar de noodzaak om domeinspecifieke

methoden te ontwikkelen om Artemia beelden te analyseren.

In dit doctoraat onderzoeken we twee pistes. Eerst bespreken we verschil-

lende Gaussiaanse convolutionele kernels om handmatige features te extraheren.

We presenteren de genormaliseerde eerste-orde afgeleide van de anisotropische

Gaussiaanse kernel die op meerdere schalen randen kan detecteren met een

goede robuustheid voor ruis. Deze kernel wordt toegepast voor contourdetectie

en superpixel segmentatie. We ontwikkelen ook een lijndetectie methode ge-

xvii

Nederlandstalige samenvatting

bruik makende van de genormaliseerde en adaptieve tweede-orde Gaussiaanse

kernel. Deze methode kan efficiënt lijnen detecteren op meerdere schalen

in ruizige afbeeldingen. Voor blob karakterisatie stellen we de unilaterale

tweede-orde Gaussiaanse kernel voor die kwantitatief de prominentie, schaal

en positie van een blob kan meten terwijl die weinig respons vertoont voor

niet-blob objecten. De goede eigenschappen van deze kernel werden beves-

tigd voor het ontruizen van afbeeldingen. Verder stellen we een blobdetectie

methode voor gebaseerd op iteratieve Laplaciaan-van-Gaussiaan filtering en de

unilaterale tweede-orde Gaussiaanse kernel. Deze methode kan vlot omgaan

met overlappende blobs. In het tweede deel van dit doctoraat, met als doel

geautomatiseerde Artemia analyse, stellen we een Artemia detectiemethode

voor via een volledig geconnecteerd convolutioneel netwerk met een U-vorm

en diepe convolutionele netwerken. Verder, door deep learning features met

handmatige features to combineren ontwikkelden we een automatische methode

om de lengte van Artemia accuraat te meten in afbeeldingen. Alle methoden

zijn gevalideerd op ofwel gekende datasets of datasets verzameld voor dit

project.

xviii

List of acronyms

iLoG iterative Laplacian-of-Gaussian

ArtDeCo Artemia Detection and Counting

AD Anisotropic Diffusion

ANN Artificial Neural Network

ASA Achievable Segmentation Accuracy

BF Bilateral Filtering

BR Blob Reduction

CNN deep Convolutional Neural Network

CBM3D Color version of the Block-Matching and 3-D filtering

FAG First-order derivative of Anisotropic Gaussian

FDG First-order derivative of Gaussian

FCN Fully Convolutional Network

FP False Positive

FPN Fixed Pattern Noise

FN False Negative

GT Ground Truth

ISO International Organization for Standardization

LoG Laplacian-of-Gaussian

MAE Mean Absolute Error

Marker-CNN Marker proposal network and

deep Convolutional Neural Network

MCWS Marker-Controlled WaterShed

MLP Multi-Layer Perceptron

MMPCF Mathematical Morphology and Polynomial Curve Fitting

MWNNM Multi-channel Weighted Nuclear Norm Minimization

NASAG Normalized and Adaptive Second-order Anisotropic Gaussian

NFAG Normalized First-order derivative of Anisotropic Gaussian

NLM Non-local means

NMS Nonmaxima suppression

ODS Optimal Dataset Scale

OIS Optimal Image Scale

xix

List of acronyms

SAG Second-order Anisotropic Gaussian

SNR Signal-to-Noise Ratio

SOG Second-Order Gaussian

TP True Positive

TN True Negative

TWSC Trilateral Weighted Sparse Coding

UE Undersegmentation Error

UNet U-shaped fully convolutional network

USG Unilateral Second-order Gaussian

xx

List of symbols

b Baseline of a blob or a line

c True strength of an edge

e The base of the natural logarithm

f Continuous signal

g Gaussian kernel

h Histogram

i Element index

j Element index

k Iteration number of filtering

l Index of hierarchical levels or neural network layers

m Image coordinate

p Prominence of a blob or a line

q Image channel index

s Bias in an artificial neuron model

t Ground truth category label

u Alternative image coordinate

w Weights

x Continuous planar coordinate

z Predicted category label

m Discrete image coordinates

r Fully connected layer

s Bias vector

t Ground truth category vector

w Weight vector for the input of an artificial neuron model

x Continuous planar coordinates

z Predicted probability vector

D(·) Degradation function

F(·) Spatial filtering

H(·) Heaviside function

N (·) Non-linear activation function

T (·) Distance function between neighboring trees

xxi

List of symbols

B Maximum response value for a blob model

D Distance in terms of color or textures

E Maximum response value for an edge model

F F -measure

H H-dome value

J The total number of elements

K The total number of iterations of filtering

L The maximum response value for a line

N Number

R Radius

X Input of an artificial neuron model

Y Interim result of an artificial neuron model

Z Output of an artificial neuron model

B Blob strength map

C Contour strength map

E Edge strength map

G Local patch generated by a 2D Gaussian function

I Image

J Response of Laplacian-of-Gaussian filtering

K Black and white (binary) image

L Line strength map

M Image moment

P Map of length measuring line structures

R Rotation matrix

S Scale map

T Ground truth map

U Response of unilateral second-order Gaussian kernels

V Covariance matrix

W Weights matrix

X Input of an artificial neuron model

Y Convolutional response of a kernel in convolutional neural networks

Z Output of a marker proposal network

xxii

List of symbols

A Set of arc weights in an undirected graph

B Set of the pixels in a blob model

C Set of the pixels in a convex region

D Set of possible directions of kernels

I Set of images

P Set of pixels in a superpixel

Q Set of pixels in a ground truth superpixel

R Set of real numbers

R+ Set of positive real numbers

S Set of possible scales of kernels

T Spanning tree

V Set of vertices in an undirected graph

U Undirected graph

Z+ Set of positive integers

α Order of differentiation

β Factor controlling the extent of the filtering response

γ Scale normalization factor

ε Noise level

ζ Standard deviation of a binary image

η Parameter allowing the kernel to be applicable to bright or dark lines

θ Kernel direction

ϑ Angle range

ι Parameter to adjust the constraint of the shared superpixel border

κ Convolutional kernel

ξ Additive noise

$ The grid cell size of the initially latticed image in the SLIC method

ρ Conventional anisotropy factor

% Output value of the last fully connected layer for a category

σ Kernel scale

ς Scale decay factor

τ Threshold for binarization

ϕ Anisotropy factor

ω The scale of an edge, a line or a blob

xxiii

List of symbols

Λ Length of a border between two neighboring superpixels

Υ Mean color of a superpixel

Φ Merging cost of two neighboring superpixels

Γ Modelled line

Θ Direction map

Λ Modelled blob

Ξ Modelled edge

Ω Superpixel contrast map

∇2 Laplace operator

∗ Convolution operation

xxiv

List of Figures

1.1 The flowchart of a typical image analysis method based on

hand-crafted features (Dewan et al., 2014) (a), the flowchart of

a typical image analysis method based on deep learning (Wang

et al., 2017a) (b) and their potential collaborations. 5

1.2 Example images to be analyzed in this thesis. (a) An example

fungus image; (b) An example cell image; (c) An example

Artemia image. 8

1.3 The structure of the thesis. 9

2.1 Illustration of the mechanics of a convolutional operation. . . . 13

2.2 Illustration of the scale-space representation for an example

image. (a) Original image; (b) Scale-space representation at the

scale σ = 0.5; (c) Scale-space representation at the scale σ = 2;

(d) Scale-space representation at the scale σ = 4. 14

2.3 A noisy image (a) and a denoising result (b). 15

2.4 An example image (a) and an example contour map (b). 16

2.5 An example image (a) and a line detection result (b). 16

2.6 An example image (a) and a blob detection result (b). 18

2.7 Illustration of the tasks of image segmentation, superpixel seg-

mentation and object detection. (a) Original image; (b) An

image segmentation result; (c) A superpixel segmentation result;

(d) A result of bear detection. 18

2.8 Illustration of an artificial neuron. 20

2.9 Illustration of an example MLP architecture. 21

2.10 Illustration of an architecture using deep convolutional networks. 22

2.11 Illustration of an architecture using fully convolutional networks. 23

3.1 Examples of edges with different widths. Their scales are ω0 ≈ 0

(a), ω0 = 1 (b), ω0 = 3 (c) and ω0 = 5 (d), respectively. 36

3.2 The horizontal intensity profile through the center of the image

shown in Fig. 3.1(a), 3.1(b), 3.1(c) and 3.1(d), respectively. . . 37

3.3 Examples of discrete NFAG kernels. The control scale is set

as σcon = 2. Top row: Kernels with σ = 1 and ϕ = 4. Second

row: Kernels with σ = 1.5 and ϕ = 1.78. Third row: Kernels

with σ = 2 and ϕ = 1. Fourth row: Kernels with σ = 3

and ϕ = 1. Bottom row: Kernels with σ = 4 and ϕ = 1. The

intensity range of each patch has been adjusted for better display. 43

xxv

List of Figures

3.4 Illustration of the monoscale response map and multiscale re-

sponse map. (a) The original image (courtesy of Dave Johnson);

(b) Response map obtained at a single scale; (c) Response map

obtained by multiscale NFAG kernels. 44

3.5 Comparison of the NMS result and the compensated NMS result.

(a) The NMS result of Fig. 3.4(c); (b) The compensated NMS

result. 44

3.6 The flowchart of our framework for obtaining anisotropic edge

strength. 45

3.7 Illustration of hierarchical superpixel maps (left column), the

corresponding superpixel mean color maps (middle column) and

the superpixel contrast maps (right column). In the images in

the left column, the number of superpixels is 3152, 394, 50, 7

and 4, respectively. 47

3.8 Sample images and the ground truth contour maps from the

BSDS500 dataset. Left column: Original images. Second to

sixth columns: Ground truth contour maps labelled by different

annotators for each original image. Right column: Aggregated

ground truth for each original image. 50

3.9 PR curves of different methods obtained on the BSDS500

dataset. 54

3.10 Detection results of different methods on 10 sample images

from the BSDS500 dataset. Green pixels represent true positive

detection pixels, blue ones stand for false positive detection

pixels and red ones denote unmatched ground truth pixels.

Note that the matched ground truth pixels are also colored in

green. Contours are thickened to two pixels wide for better

illustration. Please zoom electronically for a better view. 55

3.11 Sample images as well as their multiple GT segmentation maps

taken from the BSDS500 dataset. Left column: Original images.

Second to sixth columns: GT segmentation maps labelled by

different annotators for each original image. 60

3.12 Evaluation results in terms of the average ASA and average

UE. (a) and (b): Results obtained on the BSDS500 dataset. (c)

and (d): Results obtained on the SBAIS dataset. (e) and (f):

Results obtained on the NSEMS dataset. 61

3.13 Superpixel maps yielded by different methods on sample images

taken from the BSDS500 dataset. The number of superpixels in

each full superpixel map is set to 400. For a better visualization,

zoomed-in versions are displayed. 62

xxvi

List of Figures

3.14 Sample images as well as their multiple GT segmentation maps

taken from the SBAIS dataset. Left column: Original images.

Second to fifth columns: GT segmentation maps labelled by

different annotators for each original image. 63

3.15 Superpixel maps yielded by different methods on sample images

taken from the SBAIS dataset. The number of superpixels in

each full superpixel map is set as 500. For a better visualization,

zoomed-in versions are displayed. 65

3.16 Sample images as well as their GT segmentation maps taken

from the NSEMS dataset. The first and the third columns: Orig-

inal images. The second and fourth columns: Corresponding

GT segmentation maps. 66

3.17 Superpixel maps yielded by different methods on sample images

taken from the NSEMS dataset. The number of superpixels in

each full superpixel map is set as 2000. For a better visualization,

zoomed-in versions are displayed. 67

3.18 Sample results of saliency detection obtained by the SCA+SLIC

and SCA+SH+NFAG methods. 68

4.1 Illustration of the modelled local line segment and two measur-

able characteristics: prominence and base level. 77

4.2 Illustration of the discrete version of NASAG kernels. The

control scale is set as σcon = 4. Top Row: Kernels with σ = 2

and ϕ = 4. Second Row: Kernels with σ = 3 and ϕ = 1.78.

Third Row: Kernels with σ = 4 and ϕ = 1. Bottom Row:

Kernels with σ = 5 and ϕ = 1. The intensity range of each

patch has been adjusted for better display. 83

4.3 Illustration of the line detection process. (a) Original image

circuit ; (b) Lineness map; (c) NMS result; (d)-(f) Hysteresis

segmentation results using different thresholds. 85

4.4 Detection results on Images 010, 020, 030, 040 and 050. Please

note that the original images have been reversed (dark lines

with a bright background) for better display. 88

4.5 Detection results on the noisy version of Images 010, 020, 030,

040 and 050 corrupted by white Gaussian noise with an intensity

of ε0 = 10. Please note that the original images have been

reversed (dark lines with a bright background) for better display. 89

4.6 Illustration of detection results of vessels, roads and rivers using

the proposed method. (a)-(c) are original images while (d)-(f)

are their corresponding line detection results. 91

xxvii

List of Figures

5.1 Image patch containing blob noise (a) and the 3D visualization

of its red channel (b). 96

5.2 Visual representation of a blob structure and its measurable

characteristics. 100

5.3 Illustration of a modelled blob and the obtained responses at the

blob center. (a) A modelled blob (ω0 = 4, p0 = 0.8 and b0 = 0.1);

(b) The responses yielded by the normalized SOG kernels in

scale-space and the analytical values of B obtained by varying σ

in scale-space (γ = 1, β = 4). 104

5.4 Three-dimensional and planar representations of a normalized

SOG kernel. 105

5.5 Three-dimensional illustration of a USG kernel. 106

5.6 A bank of kernels that is used to generate USG kernels at a

specific scale. The top row shows (κc + 2κl), the middle row

shows (κc + 2κr) and the bottom row shows (−κl + κr). The

intensity range of each patch has been adjusted for a better

display. 108

5.7 Illustration of the real high-ISO long-exposure noise (left) and

the modelled noise (right). Please zoom electronically for a

better view. 110

5.8 Illustration of the process of the proposed denoising scheme. (a)

A noisy image; (b) The red channel of (a); (c) Result of a blob

reduction on the red-channel image; (d) The denoising result of

the proposed BR-CBM3D method. 111

5.9 Results of blob reconstruction (b) and blob reduction (c) ob-

tained by the USG method on a synthetic image (a) as well as

the denoising result obtained by the BR-NLM method (d). For

a better visualization, the images are displayed using the heat

maps of intensity. 113

5.10 Responses obtained by the USG method (a), the TH method

(b), the MLoG method (c) and the gLoG method (d). For a

better visualization, the images are displayed using the heat

maps of intensity. 114

5.11 Noisy standard images corrupted by real noise along with the

ground truth, and the denoising results obtained by the oAD,

sAD, and DnCNN methods. Please zoom electronically for a

better view. 119

5.12 Denoising results on the noisy standard images obtained by

the BF, NLM, NLMC methods and the proposed methods

incorporating blob reduction. Please zoom electronically for a

better view. 120

xxviii

List of Figures

5.13 Denoising results on the noisy standard images obtained by the

CBM3D, MWNNM, TWSC methods and the corresponding

methods incorporating blob reduction. Please zoom electroni-

cally for a better view. 121

5.14 Five real-world noisy images (top row) (Courtesy: Peter K.

Burian, Dave Johnson and Ziwei Liu (Liu et al., 2014)) and the

processing results of the sAD, DnCNN and LECARM methods.

Please zoom electronically for a better view. 122

5.15 Denoising results on five real-world noisy images obtained by

the BF, NLM, NLMC methods and the corresponding methods

incorporating blob reduction. Please zoom electronically for a

better view. 123

5.16 Denoising results on five real-world noisy images obtained by

the CBM3D, MWNNM, TWSC methods and the corresponding

methods incorporating blob reduction. Please zoom electroni-

cally for a better view. 124

5.17 Illustration of the removed noise on the real-world noisy Im-

age #5 (red channel) obtained by the (a) BF, (b) BR-BF, (c)

NLM, (d) BR-NLM, (e) NLMC, (f) BR-NLMC, (g) CMB3D, (h)

BR-CBM3D, (i) MWNNM, (j) BR-MWNNM, (k) TWSC and

(l) BR-TWSC methods, respectively. For a better visualization,

the images are displayed using the heat maps of intensity. . . . 125

6.1 Illustration of a conventional Laplacian of Gaussian kernel. (a)

Three-dimensional visualization; (b) Planar visualization. . . . 131

6.2 Comparison of the protrusion region and overlapping region

in terms of average local contrast. (a) The protrusion region

has positive and significant local contrast over the orientation

range ϑ1; (b) The overlapping region has positive and significant

local contrast over the orientation range ϑ2 + ϑ3. 132

6.3 A modelled Gaussian blob (b0 = 0, p0 = 0.8 and ω0 = 15) as

well as its corresponding response yielded by an LoG kernel at

the scale σ = 15. 133

6.4 The horizontal intensity profiles through the center of Figs. 6.3(a)

and 6.3(b). 136

6.5 Illustration of the responses of iLoG filtering. (a)-(d): The orig-

inal image, the response of the first LoG filtering, the response

of the second LoG filtering and the response of the third LoG

filtering. 137

6.6 Illustration of a USG kernel. (a) Three-dimensional visualiza-

tion; (b) Planar visualization. 138

xxix

List of Figures

6.7 Illustration of the responses of USG kernels as well as the blob

detection results. (a) The response of the USG kernels obtained

on the image shown in Fig. 6.5(d); (b) The Otsu thresholding

result of (a); (c) The Rosin thresholding result of (a); (d) The

extracted blob markers (in red) superimposed on the original

image. 140

6.8 Example image containing a collection of blobs on a heteroge-

neous background (a) and the blob detection results obtained

by the MLoG method (b), the MPP method (c) and the iLoG-

USG method (d). The red, green and blue crosses denote the

correctly detected, falsely rejected and falsely detected results,

respectively. 142

6.9 Detection results on images corrupted by Gaussian noise. (a-b)

Image corrupted by zero-mean Gaussian noise with a variance

of 0.72 and the detection result; (c-d) Image corrupted by zero-

mean Gaussian noise with a variance of 0.82 and the detection

result. The red and blue crosses denote the correct and incorrect

detections, respectively. 144

6.10 Detection results on images corrupted by speckle noise. (a-b)

Image corrupted by speckle noise with a variance of 1.02 and the

detection result; (c-d) Image corrupted by speckle noise with

a variance of 1.12 and the detection result. The red and blue

crosses denote the correct and incorrect detections, respectively. 145

6.11 Detection result (b) on an image corrupted by Poisson noise (a).145

6.12 Cell detection results obtained by the proposed method on the

Images PoC 0%-1 (a), PoC 0%-2 (b), PoC 15%-1 (c) and PoC

15%-2 (d). The red, green and blue crosses denote the TP,

FN and FP results, respectively. For a better illustration, the

images in the first row are the blue channel of the original

fluorescence microscopic images. In each column, the image in

the second row shows the zoomed-in patches corresponding to

the green windows in the first row. 147

6.13 Cell detection results obtained by the proposed method on the

Images PoC 30%-1 (a), PoC 30%-2 (b), PoC 45%-1 (c) and

PoC 45%-2 (d). The red, green and blue crosses denote the

TP, FN and FP results, respectively. For a better illustration,

the images in the first row are the blue channel of the original

fluorescence microscopic images. In each column, the image in

the second row shows the zoomed-in patches corresponding to

the green windows in the first row. 149

xxx

List of Figures

6.14 Nanoparticle detection results of the proposed method. The

red, green and blue crosses denote the TP, FN and FP results,

respectively. 150

7.1 Illustration of the Artemia growth stages. 160

7.2 Illustration of the proposed Marker-CNN method for Artemia

detection and counting. 161

7.3 Sample Artemia images and the corresponding labelled marker

maps for training the marker proposal network. 163

7.4 Sample images for training the CNN-based target classifier. Top

row: Samples of cysts; Second row: Samples of nauplii; Bottom

row: Samples of non-targets. 163

7.5 Architecture of the UNet-based marker proposal network. . . . 164

7.6 Architecture of our CNN-based target classifier. 167

7.7 Illustration of the data augmentation results. (a) Original

training image and the corresponding ground truth marker map;

(b)-(e) The augmented training images and the corresponding

ground truth marker maps. 169

7.8 Evolution of the prediction maps yielded by the UNet as the

number of epochs increases. (a) Original images; (b)-(e) The

prediction maps that are obtained when the number of iterations

is 5, 10, 50 and 200, respectively. 170

7.9 Training accuracy and validation accuracy of the target classifier

with respect to the number of training epochs. 171

7.10 Illustration of the marker maps and detection results yielded by

our method, and the detection results obtained by the MCWS

method. (a) Original images; (b) Marker maps yielded by the

marker proposal network; (c) Detection results obtained by the

Marker-CNN method; (d) Detection results obtained by the

MCWS method. The blue and green bounding boxes indicate

the detection results of cysts and nauplii, respectively, while

the red rectangles indicate the incorrect detection results. . . . 172

8.1 Illustration of an adult female Artemia (a) and an adult male

Artemia (b). 178

8.2 Sample label maps of length measuring lines (in green) super-

imposed on the original images. First row: Label maps of

thin measuring lines. Second row: Label maps of thick length

measuring lines. 179

8.3 Architecture of the UNet for centerline area segmentation. . . . 181

8.4 Curves of train losses obtained by two different settings of batch

size. 182

xxxi

List of Figures

8.5 Evolution of the prediction map as the number of epochs in-

creases. (a) Original image; (b)-(f) The prediction map that is

obtained when the number of iterations is 5, 20, 50, 100 and

200, respectively. 182

8.6 The results of measuring line extraction (red lines superimposed

on the original image) obtained by the MS method (a) and the

NASAG method (b) on the image shown in Fig. 8.5(f). For a

better demonstration, a zoom-in view of the regions of interest

(indicated by windows) is displayed in the second row. 184

8.7 Demonstration of the MMPCF method. (a) The original image;

(b) The grayscale version; (c) The foreground silhouette; (d) The

horizontally aligned silhouette; (e) The result of skeletonization,

the starting point and the endpoint (in green); (f) The result of

geodesic distance transform, with the starting point as the seed

location; (g) The result of geodesic distance transform, with the

endpoint as the seed location; (h) The principal morphological

skeleton (in red); (i) The fitted polynomial curve overlaid on

the aligned silhouette; (j) The length measuring line overlaid

on the original image. 185

8.8 Sample images and the prediction maps yielded by the UNettn.

First column: The label maps of thin measuring lines superim-

posed on the original image. Second column to fifth column:

The prediction maps obtained on the sample images when the

number of epochs is 5, 10, 50 and 200, respectively. 188

8.9 Sample images and the prediction maps yielded by the UNettk.

First column: The label maps of thick measuring lines (in green)

superimposed on the original image. Second column to fifth

column: The prediction maps obtained on the sample images

when the number of epochs is 5, 10, 50 and 200, respectively. . 189

8.10 Comparison of different methods for measuring line extraction.

First row: The label maps of measuring lines (in green) super-

imposed on the sample images. Second row to bottom row: The

results of length measuring line extraction (in red) obtained by

different methods. 191

xxxii

List of Tables

3.1 Evaluation results obtained by different methods on the BSDS500

dataset. 54

3.2 Evaluation results in terms of runtime. 56

3.3 Saliency detection evaluation results in terms of mean absolute

error obtained on the sample images. 69

4.1 Evaluation results in terms of F -measure. 87

4.2 Evaluation results in terms of runtime (s). 90

5.1 PSNR (dB) of denoising results. 117

5.2 Execution time (s) of the different methods on each image. . . 118

6.1 Evaluation results obtained by each method on each fluorescence

microscopy cell image. 148

6.2 The average runtime (s) of each method for processing the

fluorescence microscopy cell images. The symbol † denotes the

execution time on the ImageJ platform. 149

6.3 The number of the correctly detected particles by different

methods on each nanoparticle image. 151

7.1 Evaluation results in terms of detection accuracy. 173

7.2 Evaluation results in terms of precision, recall and F -measure. 174

7.3 Evaluation results in terms of average runtime (s). 174

8.1 Quantitative evaluation results in terms of RMSE, MAE and

MAPE obtained by different methods. 190

xxxiii

PART I

INTRODUCTION AND PRELIMINARIES

1

1 Introduction

1.1. A general overview

Image analysis plays an indispensable role in many scientific studies, allow-

ing to extract meaningful information from raw images and generate novel

insights (Meijering et al., 2016). For instance, in bioscience engineering,

microscopy image analysis provides quantitative support for characterizing

organisms and assessing their activities (Xing et al., 2018). However, in many

scenarios, the labor-intensive manual analysis can hardly handle the increasing

amount of imagery data. It is highly desired to have access to automated image

analysis techniques that are more accurate, reliable and time-efficient.

Automated image analysis is an interdisciplinary task that involves subjects

of image processing, computer vision, machine learning, etc. One of its pivotal

procedures is feature extraction, since many image analysis tasks can be

essentially viewed as problems of feature mapping (LeCun et al., 2015). For

instance, image segmentation is a process of pixel-wise classification based

on both the local features (e.g., color and texture) and global features (e.g.,

spatial structure and semantic category) (Pont-Tuset et al., 2017).

Generally, existing feature extraction methods can be divided into two

categories: hand-crafted methods and deep learning methods (Litjens et al.,

2017). Most of the hand-crafted features are mathematically formulable and

have solid theoretical foundations. Therefore, they have comparatively better

interpretability, and their processing procedures can be well controlled by

explicitly defined parameters (Lopez-Molina et al., 2015). Representative

hand-crated features include edges (Canny, 1986), lines (Obara et al., 2012a)

and blobs (Ruusuvuori et al., 2010).

Edges are usually defined as sets of pixels at which the image intensity

or color changes abruptly. Edges are a kind of visual feature bridging the

gap between image pixels and many image analysis tasks (Li et al., 2015a),

such as image segmentation (Yu et al., 2012) and object detection (Zitnick

and Dollár, 2014). In literature, numerous edge detection methods have

been developed. Nevertheless, many existing methods are sensitive to noise

and have limitations in detecting multiscale edges. Lines (a.k.a. ridges or

curvilinear structures) are generally defined as elongated regions with dissimilar

intensities compared to their neighboring pixels. Such structures hold key

information for some image analysis tasks, such as road detection (Ferraz

3

Chapter 1. Introduction

et al., 2016), fungus extraction (Vidal-Diez de Ulzurrun et al., 2015), blood

vessel detection (Yang and Shi, 2014), and so on. Despite the significant

efforts carried out in the past decades, it is difficult to accurately detect lines

of which the prominence and widths are highly heterogeneous, especially in

a noisy environment. Blobs (a.k.a. particles or dots) are usually defined as

small structures of which the visual properties are different from those in their

surrounding regions. Many objects in images show a blob appearance, and as

such, blob detection has found applications in a wide variety of fields, such as

cell counting (Ruusuvuori et al., 2010), vanishing point detection (Kong et al.,

2013b), quantum dot recognition (Xu and Lu, 2013), and so on. Although a

number of blob detection methods have been developed, most of them have

limitations in dealing with adjacent blobs. In addition, existing methods can

hardly quantitatively measure the blob characteristics. Moreover, conventional

methods yield significant responses for not only blobs, but also non-blob

structures like lines and edges. Thus far, blob detection still remains a

challenging task.

In image analysis, hand-crafted methods are usually adopted when shallow

features can accomplish the task well. But when shallow features are insufficient

for solving the problems, it is preferred to use deep learning methods to

exploit high-level features (Krizhevsky et al., 2012). Deep learning methods

can automatically learn and represent the features from the raw data, and

have a powerful ability in feature learning and representation. Therefore,

compared with hand-crafted methods, deep learning methods require less

human interventions and usually obtain better performances for specific tasks.

Representative applications of deep learning methods include nucleus detection

using deep convolutional networks (Xu et al., 2016) and organ segmentation

using fully convolutional networks (Li et al., 2018). Despite their powerful

learning abilities, deep learning methods yet have limitations (Xing et al.,

2018). Firstly, many deep learning methods are supervised learning methods

and usually contain a large volume of parameters, and as such, they require a

large amount of training data and a great many of computing resources to train

the models. In particular, many end-to-end learning methods train the models

using the raw data and the ultimately desired output, which would make the

models more complex and less interpretable. Secondly, deep learning methods

sometimes are quite dependent on the training dataset. It is inconvenient to

adjust the trained model to adapt to another kind of input (Schmidhuber,

2015).

Hand-crafted methods and deep learning methods are not mutually ex-

clusive. On the contrary, in many applications, hand-crafted features have

been used for pre-processing input images or post-processing output results,

4

§1.1. A general overview

Figure 1.1: The flowchart of a typical image analysis method based on hand-crafted
features (Dewan et al., 2014) (a), the flowchart of a typical image analysis method
based on deep learning (Wang et al., 2017a) (b) and their potential collaborations.

thereby easing the difficulties of model design (Girshick et al., 2016). Besides,

hand-crafted methods can be used for labelling the ground truth (Vajda et al.,

2015), making data annotation easier to accomplish. Hence, in image analysis,

it is still necessary to further explore the potentials of hand-crafted features to

have more explicit toolkits, and to provide more explanations for deep learning

techniques. Moreover, it would be worth developing methods that jointly

exploit the advantages of hand-crafted methods and deep learning methods.

We show several potential collaborations between the two kinds of methods in

Fig. 1.1.

As mentioned earlier, with the advances in image processing, computer

vision, machine learning, etc., many automated image analysis methods have

been developed. Nonetheless, there are still many particular image analysis

tasks that have been seldom addressed. In aquaculture, the brine shrimp

Artemia is a widely used cost-effective diet for fish and crustacean, and

recently, the number of studies on Artemia is increasing. Since Artemia cysts

and nauplii/metanauplii are very small in size, they are usually observed by

a stereo-microscope, which can acquire a large amount of Artemia images

containing many Artemia objects. Conventionally, most of the Artemia

image analysis tasks are carried out manually. For example, when assessing

5

Chapter 1. Introduction

the hatching rate in Artemia incubation, the researcher should manually

count the number of cysts and nauplii separately. This process is quite time-

consuming and labor-intensive. Although many automated methods have been

developed for detecting moths (Ding and Taylor, 2016), fish (French et al.,

2015), shrimps (Kesvarakul et al., 2017; Kaewchote et al., 2018), etc., they

cannot be readily transferred to detect and count Artemia. This is because

the Artemia objects in images are usually seriously adjacent. Moreover, the

appearance of Artemia varies significantly over the different growth stages.

Therefore, it is quite necessary to design tailor-made methods for analyzing

Artemia images.

This thesis will be presented based on the considerations above. Specifically,

the main goals as well as the subtasks of this thesis are listed as follows:

1. Investigating an existing Gaussian-based convolutional kernel named

the first-order derivative of anisotropic Gaussian (FAG) kernel for edge

detection. Although the first-order derivative of isotropic Gaussian

kernel has been intensively studied for extracting edges (McIlhagga,

2011), recent biological findings reveal that kernels for edge detection

should be anisotropic (Shapley and Hawken, 2011). Some preliminary

studies have confirmed the superiority of anisotropic kernels in noise-

robustness over isotropic kernels (Shui and Zhang, 2012; Zhang et al.,

2017b). It is meaningful to expand the conventional FAG kernel into

scale-space for better detecting multiscale edges. Besides, the problem

of anisotropy stretch effect incurred by anisotropic kernels should be

addressed. The applications of the modified FAG kernels should also be

studied.

2. Modifying an existing Gaussian-based convolutional kernel called the

second-order anisotropic Gaussian kernel for line detection. A preliminary

work validates that the second-order anisotropic Gaussian kernel is

appropriate for detecting lines (Lopez-Molina et al., 2015). Nevertheless,

the preliminary work leaves several problems unsolved, including how to

normalize the kernels in scale-space and how to alleviate the anisotropy

stretch effect. The efficacy of the modified kernel can be tested on a

fungus extraction task. For illustration, an example fungus image is

displayed in Fig. 1.2(a).

3. Proposing novel Gaussian-based convolutional kernels for blob detection.

Among the existing kernels for blob detection, the second-order Gaussian

kernel and the Laplacian-of-Gaussian kernel have been widely used (Kong

et al., 2013a). However, both kinds of kernels have limitations. They

yield significant responses for not only blobs, but also non-blob structures

such as lines and edges. Besides, they can hardly quantitatively measure

6

§1.2. Scope of the thesis

the blob characteristics. Moreover, they usually underperform when

the blobs to be detected are seriously adjacent. These problems should

be addressed. The developed methods can be validated by performing

tasks that are highly related to blob detection, e.g., cell counting. For

illustration, we show an example cell image in Fig. 1.2(b), which contains

adjacent blobs.

4. Developing a method built on the deep convolutional network (CNN) (Kri-

zhevsky et al., 2012) to accomplish a particular image analysis task:

automated Artemia detection and counting. In many Artemia studies,

the numbers of Artemia objects in images are needed. As discussed

earlier, this problem has been seldom addressed so far (Kim and Cho,

2013). Moreover, existing object detection methods cannot readily be

transferred to detect and count Artemia, since the Artemia objects in

images are usually seriously adjacent, and the appearances of Artemia

objects vary significantly over the different growth stages, as shown in

Fig. 1.2(c). Therefore, it is highly desired to develop an automated

method to accomplish this task. And to this end, a dataset should also

be collected to train and test the proposed method.

5. Jointly using hand-crafted kernels and deep learning techniques to solve

a particular problem: automated Artemia length measurement. In many

Artemia studies, the length measures of the Artemia objects in images are

desired. Conventional manual length measurement is too labor-intensive

to process a large amount of images. Thus, an automated Artemia length

measurement method would greatly benefit a lot of Artemia studies.

To train and test the developed method, collecting a dataset is also

necessary.

In the next section, we provide an outline of how we present our contribu-

tions to the main goals and subtasks of this PhD thesis.

1.2. Scope of the thesis

This thesis is composed of four parts: one introductory part (I), two central

parts (II and III), and one concluding part (IV), as displayed in Fig. 1.3.

Firstly, for the reader’s convenience, we include two chapters (1-2) in Part I.

Besides the outline of this thesis, some concepts that are quite relevant to our

work are presented, including the basics of image processing, computer vision

and deep learning.

Part II consists of four chapters (3-6) and elaborates our contributions to

the investigations on three kinds of Gaussian-based convolutional kernels (the

7

Chapter 1. Introduction

(a) (b) (c)

Figure 1.2: Example images to be analyzed in this thesis. (a) An example fungus
image; (b) An example cell image; (c) An example Artemia image.

normalized first-order derivative of anisotropic Gaussian (NFAG) kernel, the

normalized and adaptive second-order anisotropic Gaussian (NASAG) kernel

and the unilateral second-order Gaussian (USG) kernel) and a novel filtering

method (iterative Laplacian-of-Gaussian (iLoG) filtering). By proposing novel

normalization methods, we enable the NFAG kernel and NASAG kernel to be

used in scale-space. These kernels can exploit the multiscale information in

feature extraction, while obtaining a good robustness to noise. In addition,

a scale-adaptive anisotropy factor is designed to attenuate the anisotropy

stretch effect. The favorable properties of the NFAG kernel are validated

on the tasks of contour detection and superpixel segmentation, while the

effectiveness of the normalized NASAG kernel is confirmed on the task of

fungus extraction. Capitalizing on the analysis of second-order Gaussian

kernels, we also propose a novel kernel named USG kernel. The USG kernel

can quantitatively characterize the blobs, while yielding little response for

non-blob structures. With its good properties, the USG kernel is successfully

applied to high-ISO long-exposure image denoising. Moreover, building on

the existing Laplacian-of-Gaussian kernel, we propose the iLoG filtering that

can be used for separating seriously adjacent blobs. Combining the iLoG

filtering and USG kernels, we propose an automated cell counting method

whose efficacy is validated by experiments.

Part III presents how we explore deep learning techniques for automated

Artemia image analysis. In Chapter 7, we propose an automated Artemia de-

tection and counting method using U-shaped fully convolutional networks (Ron-

neberger et al., 2015) and deep convolutional networks (Simonyan and Zis-

serman, 2015). Different from conventional methods, our method employs a

marker proposal network to yield target candidates. The target candidates

are subsequently classified into the categories or labelled as a non-target by

8

§1.2. Scope of the thesis

Figure 1.3: The structure of the thesis.

the designed CNN-based network. We also collect a dataset to train and

test the proposed method. Moreover, in Chapter 8, by employing both the

U-shaped fully convolutional network (UNet) and NASAG kernels, we develop

an automated Artemia length measurement method. The designed UNet

module is used for extracting the length measuring structure, while NASAG

kernels are employed to transform the length measuring structure into a thin

length measuring line with minimal loss of the length measurement. The

performance of this method is evaluated on a collected dataset.

Finally, Chapter 9 in Part IV lists the conclusions and potential research

directions.

9

2 Preliminaries

In this chapter, to assist the reader in understanding the contributions

of this dissertation, we introduce some relevant concepts that are widely

used in image analysis. We explain the basics of image processing, and,

subsequently, present several typical image analysis tasks. Example images are

also displayed for a better explanation. We also introduce several fundamental

concepts in deep learning. We refer the reader to the books Digital Image

Processing (González and Woods, 2010), Pattern Recognition and Machine

Learning (Bishop, 2006) and Deep Learning (Goodfellow et al., 2016) for more

detailed descriptions.

2.1. Several fundamental concepts in image pro-

cessing

2.1.1. About a digital image

When talking about a digital intensity (a.k.a. grayscale or brightness) image,

we refer to a 2-D array that is denoted by I(m) in this dissertation, where m =

[mx,my]
T denotes the discrete image coordinates. An intensity image is the

result of sampling and quantization on a continuous signal f . In an image,

the location m and the corresponding intensity value is termed a pixel, while

the plane that is spanned by the image coordinate is termed the spatial

domain.

For a pixel with coordinates m, its 8-neighbors include four horizontal

and vertical neighbors and four diagonal neighbors. In an intensity image, a

connected component is defined as a subset of pixels, in which each pixel can

find a path to any other pixels within the subset.

For an intensity image with 8-bit unsigned integers, its values are taken

from the range [0, 255], while for an intensity image with double precision,

the value of each pixel is usually taken from the range [0, 1]. For a binary

image, the values are either 0 or 1. The size of the image (a.k.a. resolution) is

represented as the number of columns by the number of rows in I.

A color image is composed of multiple channels, each of which is represented

by an intensity image map. There are quite a few color spaces for representing

the color information in the image field. One of the most commonly used

color space in practice is the RGB space, which consists of the red, green and

11

Chapter 2. Preliminaries

blue channels. A color image can be denoted as I = (Ir, Ig, Ib), in which Ir, Ig

and Ib are the color channels.

2.1.2. Spatial filtering and convolutional kernels

Spatial filtering is one of the principle image processing techniques. It oper-

ates directly in the spatial domain, as opposed to the frequency domain, in

which the operations are performed on, for example, the Fourier-transformed

result.

The spatial filtering can be denoted by the expression

Ĩ(m) = F (I(m)) , (2.1)

where I(m) and Ĩ(m) are the input image and the output image, respectively,

and F stands for an operator defined over a window (a.k.a. mask, patch or

neighborhood region) centered at the coordinate m. At each location m,

the spatial filtering operator yields a new pixel of which the value is the

result of the filtering operation. Accordingly, a full filtering map is obtained

as the center of the operator visits all the pixels of the input image. If the

operation performed on the image pixels is linear, the spatial filtering is termed

a linear spatial filtering operator. There are two kinds of approaches when

performing linear spatial filtering: correlation operations and convolution

operations. A correlation operation is a process of moving a filtering operator

over the image and computing the sum of products at each location, while

the process of convolution operation is the same except that the operator is

first rotated by 180◦. A convolution operation is implemented by sliding a

convolutional kernel over the image. Let κ be a convolutional kernel with

size (2 · rw + 1) × (2 · rh + 1), where rw and rh are positive integers. When

convolving κ with an image I, we obtain the convolutional response at the

location m as follows:

Ĩ(m) =

rw∑
ux=−rw

rh∑
uy=−rh

κ(ux, uy) · I(mx − ux,my − uy) , (2.2)

where [ux, uy]
T denotes the kernel coordinates. Figure 2.1 displays how a

convolutional kernel yields a response value at a specific location. By varying m,

we make the convolutional kernel κ visit all the pixels in I, thereby obtaining

the convolutional result

Ĩ = κ ∗ I , (2.3)

where ∗ denotes the convolutional operation.

12

§2.1. Several fundamental concepts in image processing

Figure 2.1: Illustration of the mechanics of a convolutional operation.

2.1.3. Gaussian kernel and scale-space representation

A fundamental convolutional kernel is the Gaussian kernel that can be used for

smoothing images or enhancing image features at different scales. A Gaussian

kernel is defined as

g(m;σ) =
1

2πσ
exp

(
−mTm

2σ2

)
, (2.4)

where σ is referred to as the scale parameter controlling the spatial extent of

the kernel. By convolving the Gaussian kernel with an image I, we obtain

scale-space representation of the image as follows (Lindeberg, 1998b):

Iss(m;σ) = g(m;σ) ∗ I(m) . (2.5)

In Fig. 2.2, we show the scale-space representation of an example image at

several scales. It can be seen that the noise points in the original image are

smoothed at the scale σ = 0.5. As the scale value increases, the image details

in the scale-space representation are reduced. Only the main contents of the

image are retained at a large scale.

Using the derivatives of the Gaussian kernel, we can also obtain the

derivatives of the scale-space representation, which is formulated as

I(α)ss (m;σ) = g(α)(m;σ) ∗ I(m) , (2.6)

where α ∈ N denotes the order of differentiation.

13

Chapter 2. Preliminaries

(a) (b)

(c) (d)

Figure 2.2: Illustration of the scale-space representation for an example image. (a)
Original image; (b) Scale-space representation at the scale σ = 0.5; (c) Scale-space
representation at the scale σ = 2; (d) Scale-space representation at the scale σ = 4.

2.2. Several typical image analysis tasks

2.2.1. Image denoising

Image denoising is usually a requisite procedure in image analysis, since

digital images can hardly get rid of the corruption of noise (Chang et al.,

2000a). Noise usually comes from the image acquisition procedure, since the

performance of imaging systems can be affected by numerous factors, e.g.,

the environmental condition and the sensor temperature. Besides, the image

can be degraded during the transmission procedure. For instance, when the

image is transmitted through radio channels, it might be degraded by the

interference of atmospheric disturbance (Dabov et al., 2007).

Usually, the image degradation process caused by noise can be modelled as

a degradation function, which is used to represent the impact of non-additive

noise, together with an additive noise term. Let D be a degradation function

14

§2.2. Several typical image analysis tasks

(a) (b)

Figure 2.3: A noisy image (a) and a denoising result (b).

and η be the additive noise term, the noisy image In can be formulated by

In(m) = D [Ic(m)] + η(m) , (2.7)

where Ic represents the clean image. Typical noise types include Gaussian

noise, impulse noise and high-ISO noise. The goal of image denoising is

to restore the clean image Ic from the noisy image In as much as possible.

For illustration, Fig. 2.3(a) displays a noisy image, and Fig. 2.3(b) shows a

denoising result. It can be seen that the image quality has been significantly

improved by an image denoising procedure.

2.2.2. Low-level feature extraction

In the image processing and computer vision fields, low-level features are usually

locally defined image patterns (Sochen et al., 1998). These image patterns

mainly describe the discontinuity and similarity in terms of intensity values or

color information. Low-level features reflect the preliminary processing results

of the human visual system (Akbarinia and Parraga, 2018). In some scenarios,

low-level features can be directly used to solve practical problems (Smith and

Brady, 1997). They can also be employed for further extracting the features at

higher levels. Typical low-level features include edges, lines and blobs.

Edges are usually defined as sets of pixels at which the image intensity

or image color changes abruptly (Canny, 1986). It is believed that edges

embody key visual information of an image. Edge detection is among the

earliest studied image processing techniques, and has been widely used in a

lot of image analysis systems (Sobel, 1970). A typical application of edges is

contour detection. Contours (a.k.a. boundaries) are highly related to edges,

which are defined as the borders between the objects and the background or

15

Chapter 2. Preliminaries

(a) (b)

Figure 2.4: An example image (a) and an example contour map (b).

(a) (b)

Figure 2.5: An example image (a) and a line detection result (b).

between different objects (Liu et al., 2017). For illustration, Fig. 2.4 displays an

example image and one manually annotated contour map. It can be seen that

not all the locations that have color discontinuities are reflected in the contour

map. Only the edges that are on the borders between different semantic object

regions form the contours (Arbelaez et al., 2011).

Lines are generally defined as elongated regions with dissimilar intensities

or color information compared to their neighboring pixels (Chaudhuri et al.,

1989). If we visualize an intensity image in three dimensions, the lines can

be viewed as either the geographical ridges (i.e., bright lines) or geographical

valleys (i.e., dark lines). Line detection has been employed for detecting blood

vessels (Obara et al., 2012a), fungal networks (Lopez-Molina et al., 2015),

power lines (Candamo et al., 2009), roads (Bae et al., 2015), and so on. For

illustration, we display a remote sensing image in Fig. 2.5(a) and a road

detection result in Fig. 2.5(b).

Blobs can be defined as small structures of which the visual properties are

different from those in their surrounding region (Koenderink, 1984). Many

16

§2.2. Several typical image analysis tasks

objects in images show a blob appearance, and as such, blob detection has

found applications in a wide variety of fields, such as cell counting (Ruusuvuori

et al., 2010), vanishing point detection (Kong et al., 2013b), quantum dot

recognition (Xu and Lu, 2013), and so on. For illustration, Fig. 2.6(a) shows

an image containing nanoparticles, and Fig. 2.6(b) displays a blob detection

result. From the detection result, some desired information, e.g., the number

of the nanoparticles, can be obtained.

2.2.3. Image segmentation and superpixel segmentation

Image segmentation is the process of partitioning an image into multiple re-

gions according to the visual contents (Martin, 2003), as shown in Fig. 2.7(b).

It can make the representation of an image more meaningful to analyze, and

therefore, image segmentation has played an indispensable role in numerous

applications (Arbelaez et al., 2011), such as instance detection, object tracking,

and so on. Image segmentation is more a semantic task than a low-level image

processing task, and thus, it usually suffers from either over-segmentation or

under-segmentation (Zhang et al., 2008). Comparatively, superpixel segmenta-

tion is a more practical technique for pixel grouping.

A superpixel denotes a set of pixels that have similar visual properties, as

displayed in Fig. 2.7(c). Compared with pixels, superpixels embody higher-

level features, and can therefore reduce the complexity of subsequent image

analysis tasks. With a great many of successful applications in object detection,

saliency detection, stereo matching, etc., superpixel segmentation has been a

fundamental task in image analysis (Stutz et al., 2018).

2.2.4. Object classification and object detection

Object classification and object detection are fundamental, sometimes highly

related, image analysis tasks. Object classification (a.k.a. object/target recog-

nition, image classification) is a process of classifying the content of the image

into a category (Haralick et al., 1973), while object detection is a process of

localizing and identifying the instances of semantic objects in an image (Viola

et al., 2001). For instance, the object classification result for Fig. 2.7(a) can

be the category of bear, while the object detection results should also indicate

the location of the object belonging to each category. As an illustration,

Fig. 2.7(d) shows a bear detection result. Object classification and object

detection are both pivotal procedures to accomplish a complete image under-

standing. Representative applications of object classification include image

retrieval (Karakasis et al., 2015), scene recognition (Farabet et al., 2013) and

image captioning (You et al., 2016), while example applications of object detec-

tion include face detection (Sun et al., 2018), pedestrian localization (Rasouli

17

Chapter 2. Preliminaries

(a) (b)

Figure 2.6: An example image (a) and a blob detection result (b).

(a) (b)

(c) (d)

Figure 2.7: Illustration of the tasks of image segmentation, superpixel segmentation
and object detection. (a) Original image; (b) An image segmentation result; (c) A
superpixel segmentation result; (d) A result of bear detection.

18

§2.3. Several fundamental concepts in deep learning

et al., 2017) and traffic surveillance (Moranduzzo and Melgani, 2013).

2.3. Several fundamental concepts in deep learn-

ing

Deep learning techniques have a powerful ability in feature learning, repre-

sentation and mapping, and have therefore achieved a remarkable success in

image analysis (LeCun et al., 2015). A brief introduction to several basic

concepts related to deep learning is presented as follows.

2.3.1. Supervised learning

Machine learning is a technique that provides systems with the ability to

automatically learn knowledge from experience without being explicitly pro-

grammed (Bishop, 2006). From the observations or examples (i.e., training

data), a machine learning technique explores their inherent patterns with a

strategy, thereby producing an inferred function (i.e., optimized model) to

make predictions or decisions for new data (i.e., test data).

The types of machine learning algorithms differ in the training strategies,

the types of training data, and the tasks that they are intended to solve.

Generally, machine learning techniques can be categorized into unsupervised

learning, semi-supervised learning, supervised learning and reinforcement

learning (Bishop, 2006). This thesis is mainly related to supervised learning,

in which the training data contain both the input and the desired output (i.e.,

ground truth labels).

Intuitively, the learning strategy should aim at a minimization of the

difference between the predictions and the desired output, which is also known

as empirical risk minimization. However, this strategy might lead to the

problem of overfitting, which degrades the generalization ability. Therefore,

the structural risk minimization, which minimizes the summation of the

empirical risk and a regularizer, is usually adopted in practice.

2.3.2. Artificial neural networks

Among the existing machine learning techniques, artificial neural networks

(ANN) are a kind of model that is inspired by biological neural networks in

the human brain (Hopfield, 1988). Artificial neural networks are composed of

a collection of connected units called artificial neurons.

An artificial neuron is essentially a mathematical function (Bishop, 2006).

It distributes a weight to each input (including a bias), and then computes

19

Chapter 2. Preliminaries

Figure 2.8: Illustration of an artificial neuron.

the sum of the weighted inputs. Subsequently, it passes the sum through a

non-linear activation function to obtain the output, as illustrated in Fig. 2.8.

Let X = [X1, X2, . . . , XJ]T be an input consisting of J elements, s a bias, w =

[w1, . . . , wJ]T the weight vector and N (·) the activation function. In most

cases, the activation function is configured to be a non-linear function. The

output of an artificial neuron for the input is given by

Z = N

 J∑
j=1

wjXj + s

 . (2.8)

A representative activation function is the sigmoid function, which is given by

Ns(Y) =
1

1 + e−Y
, (2.9)

where Y denotes the input of the function. Another widely used activation

function is the rectified linear unit (Hinton, 2010), which is given by

Nr(Y) = max(0, Y) . (2.10)

Artificial neural networks are designed by combining the artificial neurons

into layers and combining the layers into networks (Hopfield, 1988). A typical

architecture of artificial neural networks is the multi-layer perceptron (MLP),

which is a class of feedforward networks wherein connections between the

neurons do not form a cycle (Ruck et al., 1990). An MLP consists of at least

three kinds of layers: the input layer, hidden layer and output layer. For

illustration, we display an example MLP architecture in Fig. 2.9, which has

one input layer, three hidden layers and one output layer. Except for the

input layer, the input of each layer is composed of the output of the previous

layer and a bias. During the training procedure, all the weights in the MLP

are adjusted by the so-called backpropagation technique (LeCun et al., 1989),

20

§2.3. Several fundamental concepts in deep learning

Figure 2.9: Illustration of an example MLP architecture.

which is built on gradient descent optimization.

2.3.3. Deep convolutional neural networks

Capitalizing on artificial neural networks and the developments of computing

power, many deep learning techniques have been proposed for image analy-

sis (Krizhevsky et al., 2012). Compared with conventional artificial neural

networks, deep learning techniques increase the number of layers through which

the data is transformed, and use more complex network architectures (LeCun

et al., 2015), thereby obtaining a more powerful ability in feature learning and

representation.

Among the deep learning techniques, deep convolutional neural networks

(CNN) have become one of the most popular architectures in the computer

vision field. As illustrated in Fig. 2.10, a typical CNN architecture consists of a

sequence of convolutional layers, pooling layers and fully connected layers (Kri-

zhevsky et al., 2012).

A convolutional layer is composed of convolutional neurons, each of which

is represented by a trainable convolutional kernel (LeCun et al., 2015). Each

kernel performs a convolutional operation on the input, thereby yielding a

response map. Subsequently, the output feature map is obtained by passing

the response map through a non-linear activation unit.

A pooling layer is usually used for selecting the most promising features in

each feature map (LeCun et al., 2015). It slides a window over the input map.

21

Chapter 2. Preliminaries

Figure 2.10: Illustration of an architecture using deep convolutional networks.

At each location, the values in the sliding window are aggregated into a single

value. As a result, the dimension of the feature map is significantly reduced.

A widely adopted pooling scheme is the so-called max pooling. For each

input map, a max pooling layer partitions the input map into non-overlapping

regions and retains the maximum value in each region. A max pooling layer is

fixed and non-trainable.

The initial fully connected layer transforms the ultimate outputs of the

convolutional layers and the pooling layers into a vector. Then, each of the

following fully connected layer multiplies the layer input by a weight matrix

and then adds a bias vector.

For multi-category classification, the predicted probability of each category

is usually obtained by a softmax activation function. Using the prediction re-

sults and the ground truth labels, all the parameters in the CNN are iteratively

updated by the backpropagation mechanism (LeCun et al., 1989).

In view of the great success of CNN in object classification, many works

have tried to apply CNN for image segmentation. A straightforward scheme

is to classify all the image patches cropped by a sliding window (Ciresan

et al., 2012), but this scheme inevitably leads to a serious redundancy and a

heavy computation. To address such shortcomings, the architecture of fully

convolutional networks (FCN) (Long et al., 2015) was proposed for image

segmentation. We display a typical FCN architecture in Fig. 2.11. Compared

with a full CNN model, an FCN model replaces the fully connected layers in

the CNN model with the so-called deconvolution layers. In order to make the

sizes of the output map and input image identical, the FCN model upsamples

the output of the last convolutional layer by a deconvolution operation, while

exploiting the pooling results that are yielded by the intermediate layers of

the CNN. In the last layer, the network predicts the category for each pixel

using a non-linear activation function, e.g., the sigmoid function. Accordingly,

the training loss is an aggregation of the pixel-wise dissimilarity between the

prediction and the ground truth.

22

§2.3. Several fundamental concepts in deep learning

Figure 2.11: Illustration of an architecture using fully convolutional networks.

23

PART II

EXPLORATION OF GAUSSIAN-BASED

KERNELS FOR IMAGE ANALYSIS

25

3 First-order derivative of anisotropic

Gaussian kernel with its applications

In this section, we present a multiscale version of the normalized first-

order derivative of anisotropic Gaussian (NFAG) kernel. By proposing a

multiscale normalization method, we solve the problem that conventional

anisotropic Gaussian kernels (Shui and Zhang, 2012; Zhang et al., 2017b)

cannot be applied in scale-space directly. An adaptive anisotropy factor is also

designed to alleviate the anisotropy stretch effect. Using NFAG kernels, we

obtain the anisotropic edge strength that can benefit two subsequent methods.

Firstly, by employing the anisotropic edge strength and hierarchical superpixel

contrast, we propose a contour detection method that can exploit both edge

features and object shape information. Secondly, we develop a superpixel

segmentation method by incorporating the anisotropic edge strength into

an existing superpixel segmentation method, in which the distance between

neighboring superpixels is determined by both the color information and the

edge strength. Experiments performed on publicly available datasets validate

the efficacy of the proposed methods.

The material of this chapter is based on the following publications:

• Wang, G. and De Baets, B. (2017). Edge detection based on the fusion

of multiscale anisotropic edge strength measurements. In Proceedings of

the Conference of the European Society for Fuzzy Logic and Technology,

volume 3, pages 530–536

• Wang, G., Lopez-Molina, C., and De Baets, B. (2019b). Multiscale edge

detection using first-order derivative of anisotropic Gaussian kernels.

Journal of Mathematical Imaging and Vision, 61(8):1096–1111

• Wang, G. and De Baets, B. (2019a). Contour detection based on

anisotropic edge strength and hierarchical superpixel contrast. Signal,

Image and Video Processing, 13(8):1657–1665

• Wang, G. and De Baets, B. (2019b). Superpixel segmentation based on

anisotropic edge strength. Journal of Imaging, 5(6):57

27

Chapter 3. First-order derivative of anisotropic Gaussian kernel

3.1. Motivation

Edges are fundamental visual features bridging the gap between image pixels

and many image analysis tasks (Li et al., 2015a), like superpixel segmenta-

tion (Wang and De Baets, 2019b) and object detection (Zitnick and Dollár,

2014). In general, a good edge detector is expected to reliably detect the loca-

tions that reveal critical structural information of the image contents (Coleman

et al., 2010), which facilitates subsequent practical applications. Over the past

several decades, numerous edge detectors have been developed. Most of them

focus on two aspects: (1) computing the edge strength, and (2) binarizing

the edge strength into the binary edge map. In this section, we intend to

address the former one. The edge strength (a.k.a. edge saliency (Lindeberg,

1998a), edginess (Li and Chen, 1994) or edge response (Bao et al., 2005)) is

a measure of the local intensity variation and is widely considered the most

relevant representation of edges (Lopez-Molina et al., 2018). For the sake

of efficiency and interpretability, the edge strength is usually obtained by

differentiation-based methods. These methods can be subdivided into two

categories: monoscale methods and multiscale methods.

Early monoscale methods, such as the Sobel method (Sobel, 1970) and

the Prewitt method (Prewitt, 1970), employ very simple differential kernels

to compute the gradients, and accordingly compute the edge strength by the

magnitude of the gradients. These kernels are computationally cheap, yet

are of fixed size and sensitive to noise (Zhang et al., 2017b). To overcome

these shortcomings, some monoscale approaches employ kernels of which

the size is alterable. Marr and Hildreth (Marr and Hildreth, 1980) use the

Laplacian of Gaussian as convolution kernel. By adjusting the kernel size

through the scale of the Gaussian function, the Laplacian of Gaussian kernels

are applicable to either thin edges or wide edges. Nevertheless, it is the

Canny detector (Canny, 1986) that has gained the most prominent position

in the literature. For detecting isolated step edges corrupted by additive

white Gaussian noise, Canny derived the theoretically optimal operator based

on three criteria, i.e., good detection, good localization and low spurious

response. To make the detector computationally efficient, he uses the first-

order derivative of (isotropic) Gaussian (FDG) kernel as an approximation

of the optimal operator. However, the scale choice in the Canny method

is a dilemma. Although obtaining a better localization, a smaller scale is

more sensitive to noise compared with a coarser scale. It is worth noting that

Canny also agrees with the need for kernels with multiple scales and multiple

orientations (Canny, 1986). Employing the Canny method as a standard,

many edge detectors have been developed to revise the Canny method (Ding

and Goshtasby, 2001; Jacob and Unser, 2004; Xu et al., 2014b). Zhang et

28

§3.1. Motivation

al. (Zhang et al., 2017b) proposed a method using a directional version of

the first-order derivative of anisotropic Gaussian (FAG) kernel, ensuring a

good noise-robustness while maintaining a good detection for adjacent edges.

The anisotropy of this method makes an indispensable contribution to the

improvement of the signal-to-noise ratio (Zhang et al., 2017b). However, due to

the fact that the blurring extents of an anisotropic kernel along two orthogonal

directions are different, the use of the anisotropic kernel can incur an anisotropy

stretch effect. As a consequence, in the resulting edge strength map, there are

significant but factitious responses in the vicinity of blobs and corners, and

subsequently, these factitious responses will lead to spurious results when a

low threshold is used to detect weak edges (Zhang et al., 2017b).

The monoscale edge detectors mentioned above are mostly designed to

detect step edges, but edges usually extend over different widths (Perona

and Malik, 1990). Due to the focal properties of sensors, the penumbral

phenomenon of light, etc., in natural images, one can generally find spatially

scaled edges of which the intensity discontinuities vary over different widths (El-

der and Zucker, 1998). Therefore, the assumptions of most monoscale edge

detectors do not conform to actual situations, and as such, those monoscale

detectors are weak at detecting edges with heterogeneous widths (Torre and

Poggio, 1986; Elder and Zucker, 1998).

Multiscale edge detection, which is inspired by the mechanism of the human

visual system (Atick and Redlich, 1992), has gained increasing attention (Lopez-

Molina et al., 2018). Following an early proposal (Rosenfeld and Thurston,

1971), authors have developed different strategies to implement the multiscale

detection. One popular strategy is to fuse multiple edge strength maps that

are obtained at different scales. Bao et al. (2005) proposed such a method

using scale multiplication. Exploiting the fact that the product is large only

when all of the factors are large, this method computes the product of the

gradients obtained at two different scales as the edge strength. Adopting

a similar strategy, Shui and Zhang (2012) developed a method based on

both isotropic and anisotropic Gaussian kernels. This method obtains the

edge strength by computing the geometric mean of two gradient maps. One

gradient map is obtained by isotropic kernels, while the other one is obtained

by anisotropic kernels. In this way, the anisotropy stretch effect can also

be mitigated. Nonetheless, the employed isotropic kernels are sensitive to

noise (Shui and Zhang, 2012), which would lead to factitious responses in

the vicinity of true edges (Zhang et al., 2017b). Moreover, both the methods

in (Bao et al., 2005) and (Shui and Zhang, 2012) only consider gradient maps

at two user-specified scales, and therefore still have limitations in detecting

edges with heterogeneous widths.

29

Chapter 3. First-order derivative of anisotropic Gaussian kernel

There are also multiscale methods that find the optimal scale for each edge.

Elaborating the need for a multiscale framework, Elder and Zucker (1998)

proposed a scale estimation method based on the second-order derivative of

the image intensity, but prior knowledge of sensor noise is required. Building

on the scale-space theory, Lindeberg (1998a) developed an automatic scale

selection method using the normalized and directional isotropic Gaussian

kernels. A family of kernels covering all possible scales and orientations is

employed to filter the image, and for each pixel, the maximum response among

all the kernels is retained to form the edge strength map. We refer to this

scheme as maximum aggregation. Note that Lindeberg’s method is rotationally

invariant because a set of kernels with all possible orientations is employed.

However, as Lindeberg stated, there is a systematic bias in the edge strength

map produced by his method (Lindeberg, 1998a). For a spatially scaled edge,

the bias renders the obtained edge strength smaller than the true edge strength.

Moreover, like other methods based on isotropic kernels, Lindeberg’s method

is not robust to noise.

Besides the spatial-domain-based methods mentioned above, there are

quite a few wavelet-based methods (Mallat and Hwang, 1992) for edge de-

tection. Mallat and Zhong (1992) proposed an edge detection method using

a constructed quadratic spline dyadic wavelet that essentially approximates

the first derivative of Gaussian kernel. Therefore, this method is equivalent

to the Canny method (Canny, 1986). Zhang and Bao (2002) developed an

edge detection method using scale multiplication in the wavelet domain, which

can obtain a better noise-robustness than the Canny method. Nevertheless,

wavelets usually have a limited capability in extracting directional information.

To overcome this shortcoming, some authors employ contourlets (Po and

Do, 2006), complex wavelets (Selesnick et al., 2005), curvelets (Gebäck and

Koumoutsakos, 2009) and shearlets (Yi et al., 2009) for edge detection. It is

claimed that the shearlet-based methods have more desirable properties among

the wavelet-based/wavelet-like methods (Duval-Poo et al., 2015). However,

the evaluation results reported in (Duval-Poo et al., 2015) show that the

shearlet-based methods have limited superiority over the spatial-domain-based

methods, e.g., the Canny method.

Contour detection is an image analysis task that is highly related to edge

detection. Compared to edge detection, contour detection requires not only

low-level features but also mid-level and even high-level cues. In particular,

for detecting contours, edges that appear in the textural regions should be

suppressed (Martin et al., 2004). To this end, Grigorescu et al. (2003) proposed

a contour detection method based on the non-classical receptive field inhibition,

which can suppress the values of edge strength in textural regions. However,

30

§3.1. Motivation

this method is based on the surround modulation and mainly emphasizes

the orientation tuning property of the non-classical receptive fields (Yang

et al., 2014). Adopting a surround inhibition framework, Yang et al. (2014)

proposed a method using multiple features, including orientation, luminance

and luminance contrast. Although this method can suppress textures, it is

time-consuming to execute.

Another typical application of edge detection is superpixel segmentation.

A superpixel is a group of pixels that have similar image properties. Compared

with pixels, superpixels embody higher-level features and can sometimes reduce

the complexity of subsequent image analysis tasks. Quite a few superpixel

segmentation methods have been developed (Stutz et al., 2018), most of which

can be categorized into partition-based and graph-based methods. Partition-

based superpixel segmentation methods initially partition pixels into different

segments that look like grid cells, and then iteratively refine the segments

until some convergence criteria are satisfied (Wang et al., 2017c). A typical

example is the method based on simple linear iterative clustering (SLIC

method) (Achanta et al., 2012). However, the superpixels yielded by partition-

based methods might not adhere to object contours well, especially when

coarse superpixels are desired (Wei et al., 2018). Graph-based superpixel

segmentation methods group pixels or superpixels into larger superpixels

according to graph-based criteria (Liu et al., 2011). These methods treat

each pixel (or superpixel) as a vertex in a graph and use the distance (i.e.,

dissimilarity) between two neighboring superpixels as arc weight (Stutz et al.,

2018). Then, the superpixels are obtained by minimizing a cost function defined

over the weighted graph. Recently, Wei et al. (2018) proposed a graph-based

method to obtain the so-called superpixel hierarchy (SH method). This method

constructs the minimum spanning tree using the Bor̊uvka algorithm, which

considers a graph as a forest in which each vertex is initially a tree. These trees

grow as the iteration proceeds. For each tree, its aggregate feature value is

obtained by aggregating the features (e.g., color) embodied by all the internal

vertices. Compared with methods that only use pixel-level features, this

method is more robust for segmentation. The SH method benefits greatly from

the edge strength, and moreover, it has been confirmed that the segmentation

accuracy is dependent on the edge strength measurement methods (Wei et al.,

2018).

As reviewed above, edge detection, contour detection and superpixel seg-

mentation are three tasks that can benefit each other. In this section, firstly,

we present an edge detection method using NFAG kernels. By proposing

a multiscale normalization method, we solve the problem that conventional

anisotropic Gaussian kernels (Shui and Zhang, 2012; Zhang et al., 2017b) can-

31

Chapter 3. First-order derivative of anisotropic Gaussian kernel

not be applied in scale-space directly. We also propose an adaptive anisotropy

factor whose value decreases as the kernel scale increases to alleviate the

anisotropy stretch effect. Secondly, we propose a contour detection method

using hierarchical superpixel contrast and the anisotropic edge strength yielded

by NFAG kernels. The hierarchical superpixel contrast embodies shape infor-

mation and can facilitate a textural suppression. The anisotropic edge strength

can well reflect the extent of local discontinuities. Therefore, we compute the

contour strength map by multiplying the anisotropic edge strength map by the

average of the hierarchical superpixel contrast maps. Thirdly, we develop a

superpixel segmentation method by incorporate the anisotropic edge strength

into an existing superpixel segmentation method, in which the distance be-

tween neighboring superpixels is determined by both the color information

and the edge strength.

This chapter is organized as follows. Section 3.2 elaborates some preliminary

concepts that are of interest to our work. In Section 3.3, we present the NFAG

kernel, and subsequently, we use NFAG kernels to compute the anisotropic edge

strength. Besides, an adaptive anisotropy factor is also designed to address the

anisotropy stretch effect. Section 3.4 and Section 3.5 present the applications of

NFAG kernels in contour detection and superpixel segmentation, respectively.

We list the conclusions in Section 3.6.

3.2. Related work

This section presents several concepts related to this work: the scale-space

representation of images, the FAG kernel and graph-based superpixel segmen-

tation.

3.2.1. Normalized scale-space representation and its deri-

vative

In image analysis, the scale-space framework has been applied to a large variety

of topics, such as image matching (Lindeberg, 2015), line detection (Wang

et al., 2019c) and blob reconstruction (Kong et al., 2013a). The scale-space

representation of a signal is obtained by convolving the signal with Gaussian

kernels (Lindeberg, 2013). Considering the fact that the magnitude of a

non-normalized Gaussian kernel decreases over scales, Lindeberg introduced

a γ-parameterized normalized Gaussian kernel as follows (Lindeberg, 1998a):

ĝ(x;σ) = σ2γ · g(x;σ) , (3.1)

32

§3.2. Related work

where x = [x, y]T denotes the planar coordinates, σ ∈ R+ stands for a scale in

scale-space, γ ∈ R+ is referred to as the scale normalization factor and g(x;σ)

represents the non-normalized isotropic Gaussian kernel:

g(x;σ) =
1

2πσ2
exp

(
−xTx

2σ2

)
. (3.2)

From Eq. (3.1), it is easy to get the γ-parameterized normalized version of the

FDG kernel:

ĝ′(x;σ) = σ2γ · g′(x;σ) , (3.3)

where g′(x;σ) is the first-order derivative of g(x;σ) w.r.t. the argument x

in x:

g′(x;σ) = − x

σ2
· g(x;σ) . (3.4)

According to Lindeberg’s scale-space framework (Lindeberg, 1998a), given a

two-dimensional signal I(x), its normalized scale-space representation Iss(x;σ)

is computed by filtering the signal with the γ-parameterized normalized Gaus-

sian kernel:

Iss(x;σ) = ĝ(x;σ) ∗ I(x)

=
(
σ2γ · g(x;σ)

)
∗ I(x) , (3.5)

where ∗ denotes the convolution operation. Likewise, using Eq. (3.3), the

normalized first-order derivative of the scale-space representation is given

by:

I′ss(x;σ) = |ĝ′(x;σ) ∗ I(x)|
=
∣∣(σ2γ · g′(x;σ)

)
∗ I(x)

∣∣ . (3.6)

Lindeberg’s method (Lindeberg, 1998a) computes the edge strength at all

the scales using Eq. (3.6). Subsequently, for each edge, the matched scale

is identified as the scale that makes the edge strength locally maximal in

scale-space.

3.2.2. The non-normalized first-order derivative of an-

isotropic Gaussian kernel

A key development to the conventional Canny kernel is the use of anisotropic

Gaussian kernels (Shui and Zhang, 2012; Zhang et al., 2017b; Shui and Wang,

2017). Anisotropic Gaussian kernels have also found applications in corner

33

Chapter 3. First-order derivative of anisotropic Gaussian kernel

detection (Shui and Zhang, 2013) and ridge detection (Lopez-Molina et al.,

2015).

The directional version of an anisotropic Gaussian kernel is defined by (Shui

and Zhang, 2012; Wang and De Baets, 2017):

g(x;σ, ϕ, θ) =
1

2πϕσ2
exp

(
− 1

2σ2
xTRT

θ

[
1 0

0 ϕ−2

]
Rθx

)
, (3.7)

where ϕ ≥ 1 represents the anisotropy factor,

Rθ =

[
cos θ sin θ

− sin θ cos θ

]
(3.8)

denotes the rotation matrix, and θ ∈ [0, 2π[stands for the orientation.

Note that the anisotropic Gaussian kernel in Eq. (3.7) reduces to an isotropic

version when ϕ = 1. From Eq. (3.7), the FAG kernel is given by:

g′(x;σ, ϕ, θ) = − [cos θ, sin θ]x

σ2
g(x;σ, ϕ, θ) . (3.9)

In the methods that use first-order derivative of Gaussian kernels (Shui and

Zhang, 2012; Zhang et al., 2017b), for a specified scale, a family of first-order

derivative of Gaussian kernels covering all possible orientations is used to filter

the image signal, and, subsequently, the maximum response is selected as the

edge strength. Correspondingly, the direction of each edge is indicated by the

kernel that produces the maximum response.

It has been verified that the use of an anisotropy factor helps to improve the

robustness to noise (Shui and Zhang, 2012; Zhang et al., 2017b). Nonetheless,

the conventional methods only address the edge detection at one or two scales,

and as such, they still have limitations in detecting edges with heterogeneous

widths.

3.2.3. Graph-based superpixel segmentation

As introduced in Chapter 2, image segmentation and superpixel segmentation

are two highly related tasks. Image segmentation refers to the procedure of

partitioning an image into segments that have coherent semantic meanings.

Therefore, image segmentation methods require either interactions with users

or sufficient data to train ad hoc models (Arbelaez et al., 2011). Superpixel

segmentation groups pixels that have coherent color or other low-level prop-

erties, and as such, superpixel segmentation usually yields an oversegmented

34

§3.3. Normalized first-order derivative of anisotropic Gaussian kernel

result.

Both image segmentation and superpixel segmentation are supposed to

be hierarchical tasks, because even for a human observer, it is difficult to

determine a unique meaningful segmentation of a given image (Xu et al.,

2017b). Illustrations can be found in Section 3.5.2. In superpixel segmentation,

the hierarchical level is usually determined by the number of superpixels. In

most cases, the number of superpixels is manually specified (Achanta et al.,

2012).

Among existing superpixel segmentation methods, graph-based methods

are more appropriate to generate hierarchical superpixels, since they are usually

built on graph theory, which intrinsically provides a hierarchical structure.

Moreover, graph-based methods are also efficient to implement.

In mathematics, a weighted graph is a structure consisting of a set of

vertices, in which some pairs of vertices are connected by weighted arcs.

Particularly, an undirected graph is a graph whose arcs have no orientation.

In graph-based superpixel segmentation methods, each pixel in a given image

is represented by a vertex, while the distance between two neighboring pixels

is represented by an arc weight (Felzenszwalb and Huttenlocher, 2004). Then,

the superpixels are obtained by finding the minimum spanning tree of the

graph. A spanning tree is an undirected, weighted, and acyclic subgraph. The

minimum spanning tree is the spanning tree that has the lowest total arc

weight among all the possible spanning trees. Since superpixel segmentation is

a procedure of grouping pixels that are meaningfully similar, many graph-based

methods segment the image by constructing a minimum spanning tree (Saglam

and Baykan, 2017). In the literature, some superpixel segmentation methods

use the Kruskal algorithm (Calderero and Marques, 2010) and the Bor̊uvka

algorithm (Wei et al., 2018) to construct the minimum spanning tree.

3.3. Normalized first-order derivative of aniso-

tropic Gaussian kernel

In this section, we propose a multiscale version of the NFAG kernel to identify

the edge scales while yielding the multiscale edge strength maps. We also design

an adaptive anisotropy factor to address the anisotropy stretch effect.

3.3.1. Modelling the scaled edges

Many existing edge detectors are designed with the assumption that the local

variation of image intensity shows a step appearance. In fact, besides step

35

Chapter 3. First-order derivative of anisotropic Gaussian kernel

(a) (b) (c) (d)

Figure 3.1: Examples of edges with different widths. Their scales are ω0 ≈ 0 (a),
ω0 = 1 (b), ω0 = 3 (c) and ω0 = 5 (d), respectively.

edges, there are also spatially scaled edges in real images (McIlhagga, 2011). In

this work, we model the variation of image intensity using scaled edges, which

can be regarded as the convolutional result of a step edge and a Gaussian

kernel:

Ξ0(x) = g(x;ω0) ∗
(
c0 H

(
[cos θ0, sin θ0]x

)
+ b0

)
, (3.10)

where

H(x̃) =

{
0, if x̃ < 0

1, if x̃ ≥ 0
(3.11)

is the Heaviside step function, and

g(x;ω0) =
1

2πω2
0

exp

(
−xTx

2ω2
0

)
(3.12)

is a Gaussian kernel, in which θ0 ∈ [0, π[denotes the normal direction of the

edge, ω0 ∈ R+ stands for the edge scale which determines the spatial width

of intensity variation, c0 ∈ [0, 1] is a constant that controls the true edge

strength (i.e., extent of intensity change) and b0 (b0 + c0 ≤ 1) denotes the base

level reflecting the background intensity. Note that a scaled edge modelled

by Eq. (3.10) reduces to a step edge in case ω0 ≈ 0. As a matter of fact,

with respect to digital images, we always have ω0 > 0, since digital images

are discrete signals. In addition, practical edge detectors usually impose an

intrinsic smoothing on the image to get rid of the interference from noise, and

as such, we have ω0 ≥ 1 in most actual situations.

As an illustration, Fig. 3.1 displays several edges with different widths, and

Fig. 3.2 shows their horizontal profiles through the image centers.

36

§3.3. Normalized first-order derivative of anisotropic Gaussian kernel

Figure 3.2: The horizontal intensity profile through the center of the image shown
in Fig. 3.1(a), 3.1(b), 3.1(c) and 3.1(d), respectively.

3.3.2. Normalization in scale-space

Conventional non-normalized FAG kernels have been applied in edge detec-

tion (Shui and Zhang, 2012; Zhang et al., 2017b). To study their performance

in scale-space, from Eqs. (3.9) and (3.10), we compute the maximum edge

strength obtained by non-normalized FAG kernels at the center location of the

modelled edge. It has been proved that among all the directions, a kernel for

edge detection achieves its maximum response on the direction θ = θ0 (Shui

and Zhang, 2012). Then, the maximum response of non-normalized FAG

kernels is given by:

Enon = max
θ
|g′(x;σ, ϕ, θ) ∗Ξ0(x)|x=0

= |g′(x;σ, ϕ, θ0) ∗ ((c0H(x̃) + b0) ∗ g(x̃;ω0))|x=0

=
c0√

2π(ω2
0 + σ2)

. (3.13)

The detailed proof is presented in Appendix A.1. Note that the edge strength

in Eq. (3.13) is independent of the anisotropy factor ϕ. Unfortunately, it

can be learned that Enon is a monotonically decreasing function of σ. This

means the obtained edge strength Enon decreases as the kernel scale increases.

Therefore, we conclude that the non-normalized FAG kernels cannot be applied

in scale-space directly.

According to the analysis above, we learn that non-normalized FAG kernels

cannot identify the scale of the observed edge. To solve this problem, a

37

Chapter 3. First-order derivative of anisotropic Gaussian kernel

novel normalization method is needed. In literature, Lindeberg proposed

a γ-parameterized normalization method for Gaussian kernels (Lindeberg,

1998a), as formulated in Eq. (3.3). Inspired by this method, we obtain the

NFAG for edge detection by normalizing the FAG kernel as follows:

g′E(x;σ, ϕ, θ) = βσ2γ · g′(x;σ, ϕ, θ) , (3.14)

where β is a factor that controls the extent of the filtering response. We

determine the parameters as follows. As mentioned earlier, the maximum

response of directional FAG kernels occurs when θ = θ0. In scale-space, we

compute the edge strength Enorm obtained by the NFAG kernel at the center

location of an edge model as follows:

Enorm = max
θ
|g′E(x;σ, ϕ, θ) ∗Ξ0(x)|x=0

=
∣∣(βσ2γ · g′(x;σ, ϕ, θ0)

)
∗ ((c0H(x̃) + b0) ∗ g(x̃;ω0))

∣∣
x=0

= βc0
σ2γ√

2π(ω2
0 + σ2)

. (3.15)

The detailed proof is presented in Appendix A.2. To study the monotonic-

ity of Enorm in scale-space, we compute the derivative of Enorm w.r.t. σ as

follows:

∂Enorm

∂σ
=

√
2π

π
βc0γσ

2γ−1(ω2
0 + σ2)−

1
2 −
√

2π

2π
βc0σ

2γ+1(ω2
0 + σ2)−

3
2 .

(3.16)

For σ ∈ R+, it is easy to verify that the second-order derivative of Enorm

w.r.t. σ is negative. Therefore, by setting the partial derivative in Eq. (3.16)

to zero, we find that Enorm reaches its maximum value at the scale

σ∗ =

√
2γ

1− 2γ
ω0 . (3.17)

Since σ ∈ R+, we have γ ∈]0, 0.5[. To make Enorm reach its maximum value

at the original edge scale, i.e., σ∗ = ω0, we set γ = 0.25. Accordingly, the edge

strength in Eq. (3.15) becomes

E∗norm =
βc0

2
√
πω0

. (3.18)

Based on Eq. (3.18), β should be set as β = 2
√
πω0 to make E∗norm equal c0,

because in this case, the obtained edge strength would precisely reflect the true

edge strength. However, the parameter ω0, i.e., the scale of the observed edge, is

38

§3.3. Normalized first-order derivative of anisotropic Gaussian kernel

unknown beforehand. Fortunately, from Eqs. (3.16) and (3.17), the maximum

edge strength value in scale-space and the scale identification procedure are

both independent of the argument β. Here, we set β = 2
√
π at first, and

accordingly, the edge strength in Eq. (3.18) becomes

E∗norm =
c0√
ω0

. (3.19)

Once the edge scale ω0 is identified, the edge strength will be compensated

by a multiplication factor
√
ω0 to make the obtained edge strength equal the

true edge strength c0. The compensation procedure will be elaborated later.

Note that in Eq. (3.19), E∗norm does not depend on the anisotropy factor ϕ,

which means that the choice of ϕ will not affect the measure of edge strength

in a noise-free case.

Hence, having β = 2
√
π and γ = 0.25, from Eq. (3.14), the NFAG kernel

is given by:

g′E(x;σ, ϕ, θ) = 2
√
πσ

1
2 · g′(x;σ, ϕ, θ) . (3.20)

Consequently, using a family of NFAG kernels covering all possible scales

and orientations, we are able to identify the scales of the observed edges while

obtaining the edge strength maps in scale-space.

3.3.3. Alleviation of the anisotropy stretch effect

We have presented the multiscale normalization method for FAG kernels, but

the problem of the anisotropy stretch effect, as mentioned in the previous

sections, still remains unsolved. In order to obtain a good noise-robustness

and to alleviate the anisotropy stretch effect, based on an analysis in terms of

signal-to-noise ratio (SNR), we propose an adaptive anisotropy factor for the

NFAG kernel in this section.

It has been validated that the non-normalized FAG kernel obtains higher

robustness to noise compared with isotropic Gaussian kernels (Shui and Zhang,

2012). Next, we theoretically analyze the noise-robustness of the NFAG

kernels. To this end, we adopt the SNR, which is defined as the quotient

of the maximum signal response and the standard deviation of the filtered

noise (McIlhagga, 2011), to represent the capability of a kernel to suppress

noise (Li et al., 2015b).

Suppose that the scale set of the bank of NFAG kernels is S = {σ | σmin ≤
σ ≤ σmax} and the image to be processed is corrupted by zero-mean white

Gaussian noise ξ(x) with variance ε20. According to (Canny, 1986; Shui and

39

Chapter 3. First-order derivative of anisotropic Gaussian kernel

Zhang, 2012; McIlhagga, 2011), the intensity of filtered noise is represented by

the root-mean-squared response. Let

x̃ = [x̃, ỹ]T

=

[
cos θ0 sin θ0

− sin θ0 cos θ0

]
x (3.21)

be the rotated plane coordinates. Based on the computing method presented

in (Canny, 1986), we obtain the intensity of noise filtered by an NFAG kernel

at a given scale σ as follows:

εnorm = ε0

√¨
R2

(
g′E(x;σ, ϕ, θ)

)2
dx

∣∣∣∣
θ=θ0

= 2
√
πσ

1
2 ε0

√¨
R2

x̃2

4π2ϕ2σ8
exp

(
− x̃

2 + ϕ−2ỹ2

σ2

)
dx̃

= 2
√
πσ

1
2 ε0

√
1

4π2ϕ2σ8

ˆ +∞

−∞
x̃2 exp

(
− x̃

2

σ2

)
dx̃ ·
ˆ +∞

−∞

(
− ỹ2

(ϕσ)2

)
dỹ

=
ε0

σ
√

2ϕσ
. (3.22)

It can be seen that εnorm has an inverse relationship with the kernel scale σ

as well as the anisotropy factor ϕ. Thus, for a given scale set S = {σ |
σmin ≤ σ ≤ σmax}, kernels that have smaller scales tend to produce larger

noise responses, which therefore are more likely to be selected as the final

edge strength. Thus, the intensity of noise in the edge strength is mainly

determined by the small-scale kernels.

When ω0 is within the interval [σmin, σmax], multiscale NFAG kernels yield

the maximum response at the scale σ∗ = ω0. According to Equations (3.18)

and (3.22), the obtained SNR is computed as:

SNR∗norm =
E∗norm
εnorm

∣∣∣∣
σ=σmin

=
2c0σ

2
min

√
ϕ

ε0
√

2ω0σmin
. (3.23)

Therefore, the proposed NFAG kernel (ϕ > 1) obtains a higher SNR than

the isotropic kernel (ϕ = 1). Also, when we use NFAG kernels to detect an

edge in a noisy image, the SNR is mainly determined by ϕ and σmin. Thus,

we learn that it is not necessary to apply anisotropy factors in kernels at all

the scales, especially in kernels at large scales, since the latter can ensure a

40

§3.3. Normalized first-order derivative of anisotropic Gaussian kernel

good robustness to noise even if the anisotropy factor is absent.

It has been reported that the use of first-order derivative of anisotropic

Gaussian kernels incurs an anisotropy stretch effect (Shui and Zhang, 2012),

because the blurring extent w.r.t. x is determined by σ, while the blurring

extent w.r.t. y is determined by ϕσ. To address this problem, we embed an

adaptive anisotropy factor in NFAG kernels.

Given a scale set S = {σ | σmin ≤ σ ≤ σmax}, we obtain an adaptive

anisotropy factor as follows:

ϕ(σ) =

{
σ2
con

σ2 , if σmin ≤ σ ≤ σcon
1 , otherwise

, (3.24)

where σcon ∈ [σmin, σmax] stands for the robustness control scale. On the one

hand, when we use kernels at σ ≤ σcon, we introduce a large anisotropy factor

to improve the robustness to noise. On the other hand, when we use a kernel

at σ > σcon, the anisotropy factor is set as ϕ = 1 because a large σ is already

able to guarantee a good robustness to noise.

By substituting Eq. (3.24) into Eq. (3.23), we have

SNR∗norm =
2c0σminσcon
ε0
√

2ω0σmin
. (3.25)

It can be seen that once the scale set S is given, the SNR of the edge strength

can be controlled by σcon.

As for the setting of the control scale, we generally recommend to set σcon
as the geometric mean of σmin and σmax, because in this case the blurring

extent at each scale is determined by σϕ, which is given by

σϕ = σ · σ
2
con

σ2
=
σminσmax

σ
. (3.26)

Since σmin ≤ σ ≤ σmax, it holds that σϕ ≤ σmax, which means that in the

resulting multiscale edge strength, the blurring extent over all the directions

would be mainly determined by σmax. Consequently, the anisotropy stretch

effect can be alleviated by using an adaptive anisotropy factor.

Eventually, by substituting Eq. (3.24) into Eqs. (3.9) and (3.20), we get

NFAG kernels with an adaptive anisotropy factor.

41

Chapter 3. First-order derivative of anisotropic Gaussian kernel

3.3.4. Discrete filter bank

In order to accommodate the proposed NFAG kernels to digital image process-

ing, discrete versions of these kernels are needed. We obtain both the discrete

Gaussian kernel and the discrete NFAG kernel by sampling the formulae in

Eqs. (3.7), (3.9) and (3.20) in the 2D integer coordinate Z2:

g(m;σi, ϕi, θj) =
1

2πϕiσ2
i

exp

(
− 1

2σ2
i

mTRT
θj

[
1 0

0 ϕ−2i

]
Rθjm

)

g′E(m;σi, ϕi, θj) = −2
√
πσ

1
2
i ·

[cos θj , sin θj]m

σ2
i

g(m;σi, ϕi, θj) , (3.27)

where

ϕi = max

(
σ2
con

σ2
i

, 1

)
,

Rθj =

[
cos θj sin θj

− sin θj cos θj

]
, (3.28)

in which m = [mx,my]
T stands for the image coordinates, σi ∈ S, θj ∈ D

and ϕi denote the scale, orientation and adaptive anisotropy factor, respectively,

while S and D denote the scale set and orientation set, respectively. Examples

of discrete NFAG kernels are illustrated in Fig. 3.3.

Natural images have either one channel (grayscale images) or three channels

(color images). Let a 2D image signal I(q)(m) denote the q-th channel of a

given image I(m). A filter bank of discrete NFAG kernels covering all the

possible scales and orientations is employed to convolve each channel of the

image:

E(q)(m;σi, ϕi, θj) =
∣∣∣g′E(m;σi, ϕi, θj) ∗ I(q)(m)

∣∣∣ . (3.29)

Note that q = 1 for grayscale images while q ∈ {1, 2, 3} for color images.

At each location, by employing the maximum aggregation scheme in scale-

space for each channel and, subsequently, by selecting the maximum value of

the edge strength over all the channels (Koschan and Abidi, 2005; Wang and

Shui, 2016), we obtain the maximum response map by

E(m) = max
q

max
σi∈S

max
θj∈D

E(q)(m;σi, ϕi, θj) . (3.30)

As an illustration, Fig. 3.4(c) shows the resulting maximum response map

obtained on Fig. 3.4(a). In contrast, Fig. 3.4(b) shows an edge strength map

obtained at a single scale. Obviously, Fig. 3.4(c) has a better representation

42

§3.3. Normalized first-order derivative of anisotropic Gaussian kernel

Figure 3.3: Examples of discrete NFAG kernels. The control scale is set as σcon = 2.
Top row: Kernels with σ = 1 and ϕ = 4. Second row: Kernels with σ = 1.5
and ϕ = 1.78. Third row: Kernels with σ = 2 and ϕ = 1. Fourth row: Kernels
with σ = 3 and ϕ = 1. Bottom row: Kernels with σ = 4 and ϕ = 1. The intensity
range of each patch has been adjusted for better display.

for the spatially scaled edges than Fig. 3.4(b).

From Eqs. (3.16), (3.17) and (3.18), we learn that the response reaches its

maximum value at the scale of the original edge scale, and as such, at each

pixel position, the scale map is obtained by maximizing E(q)(m;σi, ϕi, θj) in

scale-space. More specifically, we obtain the scale map SE(m) by

SE(m) = argmax
σi∈S

max
q

max
θj∈D

E(q)(m;σi, ϕi, θj) . (3.31)

In addition, the edge direction map ΘE(m) is obtained by maximizing the

edge strength as follows:

ΘE(m) = argmax
θj∈D

max
q

max
σi∈S

E(q)(m;σi, ϕi, θj) . (3.32)

3.3.5. Compensated anisotropic edge strength

As mentioned earlier, there is a bias in the edge strength obtained by Eq. (3.30).

Fortunately, this bias can be compensated once the edge scale is identified.

We recommend a scale-based compensation procedure for the edge strength

map, especially in the scenario that many spatially scaled edges occur in the

image.

In practice, an edge detection result is usually represented by an edge map

43

Chapter 3. First-order derivative of anisotropic Gaussian kernel

(a) (b) (c)

Figure 3.4: Illustration of the monoscale response map and multiscale response
map. (a) The original image (courtesy of Dave Johnson); (b) Response map obtained
at a single scale; (c) Response map obtained by multiscale NFAG kernels.

(a) (b)

Figure 3.5: Comparison of the NMS result and the compensated NMS result. (a)
The NMS result of Fig. 3.4(c); (b) The compensated NMS result.

consisting of curved centerlines (one pixel wide) of edges. The candidate pixels

of edge centerlines can be identified by the technique of nonmaxima suppression

(NMS) (Rosenfeld et al., 1972). Thus, for the sake of computational efficiency,

there is no need to compensate the edge strength at all the positions. In

other words, it suffices to only compensate the edge strength at positions of

candidates of edge centerlines. According to Eq. (3.19), the compensation

factor is determined by the square root of the identified scale. Denoting the

result of the NMS procedure as Enms(m), we obtain the compensated edge

strength map as

Eae(m) = Enms(m) ·
√

SE(m) . (3.33)

As an illustration, the NMS result of Fig. 3.4(c) is shown in Fig. 3.5(a),

while the compensated edge strength map is shown in Fig. 3.5(b). Comparing

Fig. 3.5(b) to Fig. 3.5(a), it can be seen that the edge strength of some spatially

scaled edges has been enhanced by the compensation procedure.

44

§3.4. Application to contour detection

Figure 3.6: The flowchart of our framework for obtaining anisotropic edge strength.

In Fig. 3.6, we show the flowchart of our framework for extracting anisotropic

edge strength. Moreover, we summarize the proposed method to compute the

anisotropic edge strength in Algorithm 1.

3.4. Application to contour detection

Contour detection is an image analysis task that is highly related to edge

detection. In this section, we present a contour detection method using the

anisotropic edge strength and hierarchical superpixel contrast. We also evaluate

the proposed method on a widely adopted dataset.

3.4.1. Hierarchical superpixel maps

In literature, many superpixel segmentation methods have been developed (Wei

et al., 2018). We adopt the scheme of region merging, obtaining a set of

superpixel maps by hierarchically merging fine superpixels at different hierarchy

levels (Hu et al., 2013).

Firstly, the superpixel segmentation method based on simple linear iterative

clustering (SLIC method) (Achanta et al., 2012) is employed to generate a

superpixel map at a fine level. Denoting the number of pixels in the image

by |I|, we set the desired number of SLIC superpixels to be

N (0)
sp =

⌈
|I|

$ ×$

⌉
, (3.34)

where the symbol d·e denotes the ceiling function and $ denotes the grid cell

size of the initially latticed image. The local binary pattern map as well as its

local contrast are computed simultaneously (Ojala et al., 2002).

Secondly, the obtained superpixels are organized as a region adjacency

45

Chapter 3. First-order derivative of anisotropic Gaussian kernel

Algorithm 1 The proposed method for computing anisotropic edge strength

Require: Image I, scale set S, orientation set D, control scale σcon
Ensure: Anisotropic edge strength Eae

1: for each I(q) ∈ I do
2: for each σi ∈ S do

3: ϕi ← max
(
σ2
con

σ2
i
, 1
)

4: for each θj ∈ D do
5: E(q)(m;σi, ϕi, θj)←

∣∣g′E(m;σi, ϕi, θj) ∗ I(q)(m)
∣∣

6: end for
7: end for
8: end for
9: E(m)← max

q
max
σi∈S

max
θj∈D

E(q)(m;σi, ϕi, θj)

10: SE(m)← argmax
σi∈S

max
q

max
θj∈D

E(q)(m;σi, ϕi, θj)

11: ΘE(m)← argmax
θj∈D

max
q

max
σi∈S

E(q)(m;σi, ϕi, θj)

12: Enms(m)← NMS using E(m) and ΘE(m)
13: Eae(m)← Enms(m) ·

√
SE(m)

graph. In this graph, each arc weight represents the merging cost Ψi,j of two

superpixels:

Ψi,j =
|Pi| · |Pj |
|Pi|+ |Pj |

· 1

Φιi,j
· (wcDc + wtDt) , (3.35)

where |Pi| and |Pj | are the numbers of pixels in two neighbouring superpixels Pi
and Pj , Φi,j is the length of the shared border, ι ∈ [0, 1] is a parameter to

adjust the constraint of the shared border, Dc and Dt denote the distances

in terms of color and texture, while wc and wt are the corresponding weights

of Dc and Dt. The use of ι makes the neighboring superpixels with a larger Φi,j
have a lower merging cost. We empirically set ι as 0.5. To determine wc

and wt, we compute the histograms of each superpixel on each image channel.

Then, we obtain wc and wt as

wc =
√

min
(
h̄i, h̄j

)
and wt = 1− wc , (3.36)

respectively, where h̄i = 1
3

∑3
q=1 h

(q)
i , in which h

(q)
i denotes the maximum

frequency value in the histogram obtained on the q-th channel of Pi, while h̄j
is obtained likewise.

Then, the adjacent superpixels with the lowest merging cost are grouped

into a single region. This step is carried out iteratively until the number of

46

§3.4. Application to contour detection

Figure 3.7: Illustration of hierarchical superpixel maps (left column), the corre-
sponding superpixel mean color maps (middle column) and the superpixel contrast
maps (right column). In the images in the left column, the number of superpixels is
3152, 394, 50, 7 and 4, respectively.

superpixels reduces to the desired number, thereby resulting in hierarchical

superpixel maps. The desired number of superpixels at each level is:

N (l)
sp = dN (0)

sp · 2−le , (3.37)

where l ∈ {1, 2, 3, . . .} denotes the hierarchy level.

As an illustration, the left column of Fig. 3.7 displays several results of

superpixel merging at different levels.

47

Chapter 3. First-order derivative of anisotropic Gaussian kernel

3.4.2. Hierarchical superpixel contrast maps

Due to the regular spatial shapes, kernels with very large sizes will blur

the image seriously and result in gradient maps that show limited visual

information (Lindeberg, 1998b). By contrast, superpixels have spatial shapes

that are adapted to the image contents, and therefore, superpixels can better

capture the image contents at coarse levels. Contours are the borders between

different objects (Yang et al., 2014). Thus, in a superpixel map, the border

between two adjacent superpixels that have a larger difference is more likely

to belong to the contours. For an efficient implementation, we measure the

difference between two neighbouring superpixels using the color contrast. Given

a superpixel map at the level l, the mean color of each superpixel on each

channel is computed as:

Υ
(l, q)
i =

1

|P(l)
i |

∑
m∈P(l)

i

I(q)(m) , (3.38)

where P(l)
i denotes the i-th superpixel at the l-th level and |P(l)

i | represents

the number of pixels in P(l)
i . As an illustration, the middle column of Fig. 3.7

displays the superpixel mean color maps at different levels. The superpixel

mean color maps retain the image contents hierarchically. The textures

have been suppressed well in the maps at coarse levels. This facilitates the

recognition of contours that are situated in textures.

In a color image, the color contrast between two neighbouring superpixels,

which is referred to as the superpixel contrast, is obtained by:

Ω
(l)
i,j = max

q∈{1,2,3}
Υ

(l, q)
i − Υ (l, q)

j . (3.39)

Then, we obtain the superpixel contrast as follows:

Ω(l)(m) =

{
Ω

(l)
i,j , if m is on the border of P(l)

i and P(l)
j

0 , otherwise
. (3.40)

The right column of Fig. 3.7 displays the superpixel contrast maps at different

levels. It can be seen that positions situated on contours are more likely to

show significant values in the superpixel contrast maps. Nevertheless, since

the borders of superpixels are artificially depicted, in the superpixel contrast

maps, some positions where the contours do not exist also have significant

values. This problem will be addressed in the next step.

48

§3.4. Application to contour detection

3.4.3. Contour strength map

As discussed earlier, the anisotropic edge strength is a measurement of the

local discontinuity of the image intensity, but textures also have significant

local discontinuities. The superpixel contrast maps suppress textures well

while embodying some mid-level information, such as the shapes of objects and

the layout of the image contents, but the borders of superpixels are artificially

depicted, and as such, some positions at which the contours do not exist may

also show significant values.

To exploit the advantages of the anisotropic edge strength and the hierar-

chical superpixel contrast, we compute the contour strength at each hierarchy

level:

C(l)(m) = Ω(l)(m) ·Eae(m) , (3.41)

where Eae is the anisotropic edge strength obtained in Eq. (3.33).

In this way, only positions with both significant edge strength and significant

superpixel contrast show significant contour strength. To aggregate the contour

strength at different levels, we compute the average of all the contour strength

maps as the final contour strength:

C(m) =
1

|L|
∑
l∈L

C(l)(m) , (3.42)

where L denotes the set of hierarchy levels and |L| stands for the number of

hierarchy levels.

3.4.4. Binarization

Having obtained the contour strength map, we next require a binarization

procedure to segment and thin the contour strength map into a binary contour

map. As briefly mentioned in Section 3.1, quite a few techniques have been

proposed (Ray, 2013) to implement the binarization procedure. We straight-

forwardly adopt the widely used hysteresis segmentation (Canny, 1986; Shui

and Zhang, 2013; Wang and Shui, 2016; Zhang et al., 2017b) to produce the

binary contour map.

Hysteresis segmentation is a double-thresholding process (Canny, 1986). It

employs an upper threshold τ1 and a lower threshold τ2. Here, we empirically

set τ2 = τ1/2. Mostly, hysteresis segmentation is realized in two steps. Given

a contour strength map processed by the NMS procedure, all the locations

at which the contour strength exceeds the upper threshold are first labelled

as contour pixels. The locations at which the contour strength is between

49

Chapter 3. First-order derivative of anisotropic Gaussian kernel

Figure 3.8: Sample images and the ground truth contour maps from the BSDS500
dataset. Left column: Original images. Second to sixth columns: Ground truth
contour maps labelled by different annotators for each original image. Right column:
Aggregated ground truth for each original image.

the upper threshold and the lower threshold are labelled as potential contour

pixels. For each of these potential contour pixels, if there is a path to connect

it with a contour pixel, it is also marked as a contour pixel. Subsequently, all

these contour pixels form the binary detection result Cd.

3.4.5. Experimental validation

We have proposed a contour detection method based on the anisotropic edge

strength and the hierarchical superpixel contrast. To evaluate its performance,

like many contour detection studies (Pan et al., 2014; Yang et al., 2015a),

we test the proposed method on the Berkeley Segmentation Data Set and

benchmarks 500 (BSDS500) (Martin et al., 2004). In the BSDS500 dataset 1,

there are 200 test images as well as their ground truth contour maps, which

are labelled by different annotators (Martin et al., 2004). We illustrate three

sample images as well as their multiple ground truth contour maps in Fig. 3.8.

Despite the deviations between annotations depicted by different annotators,

the overall ground truth contour maps reflect the contours in the original

images very well. Note that there are a lot of spatially scaled edges in these

natural images. To make the evaluation more convincing, our method will

also be compared with a well-known contour detection method and several

recently proposed methods.

Evaluation metrics

Given a contour detection result and its corresponding ground truth contour

map(s), an evaluation procedure is needed to determine how well the detec-

tion result approximates the ground truth. Since contour detection can be

considered as a binary classification procedure discriminating contour pixels

1 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources

50

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources

§3.4. Application to contour detection

form non-contour pixels, the comparison between the detection result and the

ground truth can be formulated in terms of success and failure. In this respect,

the performance can be evaluated by the precision-recall framework. Precision

is the probability that a detected contour pixel is a true contour pixel, while

recall is the probability that a true contour pixel is successfully detected. In

practice, we carry out the performance evaluation using the paradigm proposed

by Martin (Martin, 2003), which is also widely adopted in literature (Arbelaez

et al., 2011; Dollár and Zitnick, 2015).

Let Cd be a contour detection result and let Igt =
(
I
(1)
gt , I

(2)
gt , . . . , I

(Ngt)
gt

)
be

its corresponding ground truth contour map(s), where Ngt ∈ N+ denotes the

total number of ground truth contour map(s). The Cost Scaling Assignment

(CSA) algorithm (Goldberg and Kennedy, 1995) is employed to perform a

pixel-to-pixel matching between Cd and each of the ground truth contour

maps in Igt. On the one hand, for each detected contour pixel in Cd, if it

matches any of the ground truth contour pixels in Igt within a spatial tolerance

distance, this detected contour pixel is considered as a true positive detection

pixel; otherwise, it is considered as a false positive detection pixel. On the

other hand, for each true contour pixel in each ground truth contour map,

if it is matched by a detected contour pixel in Cd within a spatial tolerance

distance, this ground truth contour pixel is counted as a matched ground truth

pixel; otherwise, it is counted as an unmatched ground truth pixel. These

matched ground truth pixels and unmatched ground truth pixels in all the

ground truth map(s) compose the aggregate matched ground truth pixels

and aggregate unmatched ground truth pixels, respectively. In this way, the

precision and recall are computed by:

Prec =
TP

TP + FP
, (3.43)

and

Rec =
MT

MT + UM
, (3.44)

where TP, FP, MT and UM are the numbers of true positive detection pixels,

false positive detection pixels, aggregate matched ground truth pixels and

aggregate unmatched ground truth pixels, respectively. Different thresholds

lead to different detection results, thus resulting different Prec-Rec pairs,

which can subsequently be interpolated to form a Precision-Recall (PR) curve.

For two PR curves, the curve that is farther from the origin is preferred. That

is, a curve that has larger area under the PR curve indicates a better detection

performance (Arbelaez et al., 2011). The area under the PR curve can also

be measured by the Average Precision (AP) (Dollár and Zitnick, 2015). A

51

Chapter 3. First-order derivative of anisotropic Gaussian kernel

deeper insight in evaluation paradigms can be found in (Lopez-Molina et al.,

2013, 2016).

To determine the optimal threshold for a contour detector, the F -measure,

which computes the harmonic mean of precision and recall as expressed in

Eq. (3.45), is used as an evaluation measure:

F =
2 ·Prec ·Rec

Prec + Rec
. (3.45)

There are two ways to determine the optimal threshold in terms of the F -

measure. The first way is to apply an identical threshold to all the contour

strength maps, and accordingly the threshold yielding the largest F -measure

(FODS) is named as the optimal dataset scale (ODS) threshold. The second way

is to apply a separate threshold to the contour strength maps one by one, and

for each contour strength map, the threshold yielding the largest F -measure

is selected to form the optimal image scale (OIS) thresholds. Accordingly, we

can obtain the OIS F -measure (FOIS) using the OIS thresholds.

We also adopt the evaluation measure Recall at 50% Precision (R50), which

reflects the detection accuracy when the recall is high (Dollár and Zitnick,

2015).

Experimental setup

To make the evaluation more convincing, we compare our method with several

competing methods, including the Canny method (Canny, 1986), the method

based on isotropic and anisotropic Gaussian kernels (IAGK method) (Shui

and Zhang, 2012), the method based on a gradient matrix with anisotropic

Gaussian direction derivatives (GM-AGDD method) (Wang and Shui, 2016)

and the method based on automatic anisotropic Gaussian kernels (AAGK

method) (Zhang et al., 2017b). All the competing methods are differentiation-

based and Gaussian-based methods, representing different strategies of mea-

suring the contour strength. To highlight the impact of different strategies on

contour strength measurement, the binarization procedure is kept identical for

all the methods.

The source codes of the IAGK and GM-AGDD methods have been obtained

from the authors2, while the codes of the Canny and AAGK methods are

reproduced according to the original papers. In this experimental validation

section, each method has been configured as follows:

• Canny: The scale is set to be
√

2. This setting is widely adopted in

2 http://see.xidian.edu.cn/faculty/plshui/resources.htm/

52

http://see.xidian.edu.cn/faculty/plshui/resources.htm/

§3.4. Application to contour detection

literature (Shui and Zhang, 2012; Zhang et al., 2017b; Shui and Wang,

2017).

• IAGK2: According to the original setting (Shui and Zhang, 2012), the

scale is specified as 4; the anisotropy factor is set to be 2
√

2 and the

number of kernel orientations is set to be 16.

• GM-AGDD2: The scale is set to be 6; the anisotropy factor is specified

as 6 and the number of kernel orientations is set to be 16. These

parameter settings are originally recommended in (Wang and Shui,

2016).

• AAGK: The number of kernel orientations is originally set to be 8 (Zhang

et al., 2017b), and accordingly, the scale and the anisotropy factor are

computed as
√

10 and
√

5, respectively.

• Proposed : For the bank of NFAG kernels, the scale set is configured

as S = {2 + 0.2 · (i− 1) | i = 1, 2, . . . , 11}, the control scale is set as 2,

and the number of kernel orientations is set as 8. The grid cell size

of the initially latticed image in the SLIC method is set as $ = 13,

and accordingly, the number of superpixels in each superpixel map is

computed by Eq. (3.34) or Eq. (3.37).

Furthermore, in the binarization procedure, the upper threshold is specified

with values from 0.01 to 0.99 with a step of 0.01. The matching tolerance

distance in the evaluation procedure is set to be 0.75% of the image diagonal.

This setting is widely adopted in literature (Arbelaez et al., 2011; Liu et al.,

2017; Xie and Tu, 2017).

Experimental results

The PR curves obtained by all the methods are illustrated in Fig. 3.9. It is easy

to see that the proposed method outperforms all the other competing methods,

since its PR curve is the farthest from the origin among all the methods. We

also report the quantitative evaluation results in Tab. 3.1. As we can see, the

proposed method achieves a better performance than the competing methods

in terms of FODS, FOIS, AP and R50.

We illustrate samples of contour detection results in Fig. 3.10. Compared

with the competing methods, our method detects more true contours while

yielding less false contours. For instance, in the results illustrated in the first

row of Fig. 3.10, our method depicts a full outline of the foreground flower,

while all the competing methods fail at depicting the full outline. Moreover,

due to the interference from textures, the competing methods yield many

false contours within the area of leaves in the detection results. In contrast,

53

Chapter 3. First-order derivative of anisotropic Gaussian kernel

Figure 3.9: PR curves of different methods obtained on the BSDS500 dataset.

Table 3.1: Evaluation results obtained by different methods on the BSDS500
dataset.

Methods FODS FOIS AP R50

Canny 0.58 0.61 0.57 0.68

IAGK 0.58 0.63 0.59 0.70

GM-AGDD 0.59 0.63 0.59 0.73

AAGK 0.59 0.64 0.60 0.72

Proposed 0.67 0.70 0.76 0.84

the result yielded by our method shows few false contours in the textural

areas, which demonstrates that our method can suppress textures in contour

detection.

With respect to the time efficiency, we test each method on a PC configured

with Intel Core i7-3770 CPU (3.40GHz) with 16-GB RAM, running MATLAB

R2018a. The runtime of each method is reported in Tab. 3.2. As can be seen,

our method is more efficient than the GM-AGDD method. Although consuming

more runtime than the Canny, IAGK and AAGK methods, our method obtains

a better detection performance at a cost of acceptable runtime.

54

§3.4. Application to contour detection

Original Canny IAGK GM-AGDD AAGK Proposed

Figure 3.10: Detection results of different methods on 10 sample images from the
BSDS500 dataset. Green pixels represent true positive detection pixels, blue ones
stand for false positive detection pixels and red ones denote unmatched ground truth
pixels. Note that the matched ground truth pixels are also colored in green. Contours
are thickened to two pixels wide for better illustration. Please zoom electronically
for a better view.

55

Chapter 3. First-order derivative of anisotropic Gaussian kernel

Table 3.2: Evaluation results in terms of runtime.

Methods Canny IAGK GM-AGDD AAGK Proposed

Runtime (s) 0.05 0.52 4.80 0.27 2.14

3.5. Application to superpixel segmentation

In this section, we introduce the graph-based SH method (Wei et al., 2018)

for superpixel segmentation. The SH method uses a graph to represent the

image, and constructs a minimum spanning tree using the Bor̊uvka algorithm

to obtain the superpixel map. In order to improve its performance in seg-

mentation accuracy, we incorporate the anisotropic edge strength, which has

been obtained in Section 3.3, into the distance measure between neighboring

superpixels.

3.5.1. Superpixel segmentation incorporating anisotropic

edge strength

In graph-based image processing, given an image I, each pixel I(m) is repre-

sented by a vertex Vi ∈ V and the distance between two neighboring pixels, Vi
and Vj , is represented by an arc weight A(Vi, Vj). All the arc weight values

form the arc weight set A. Then V and A form an undirected graph U = (V, A).

To construct a minimum spanning tree, initially, for each vertex, the Bor̊uvka

algorithm finds its nearest neighbor in terms of the Euclidean distance in color

space, and then groups them into a single tree. Subsequently, for each tree,

the Bor̊uvka algorithm finds its nearest neighbor. Denoting by T1 and T2 a

pair of neighboring trees, we compute the distance between them as follows:

T (T1,T2) = min
Vi∈T1, Vj∈T2

A(Vi, Vj) . (3.46)

Essentially, T (T1,T2) is a pixel-level distance measure, and as such, it is

reasonable when the number of vertices in each tree is small. However, when

the trees grow rather large, T (T1,T2) could hardly reflect the dissimilarity

between a pair of neighboring trees. Therefore, the pixel grouping procedure

is carried out for 4 iterations (Wei et al., 2018).

We have obtained the preliminary superpixel map by a pixel grouping

procedure, in which each superpixel is represented by a tree in a graph.

Nevertheless, as mentioned earlier, the distance measure defined in Eq. (3.46)

is inappropriate to be used for segmenting superpixels at higher hierarchy

56

§3.5. Application to superpixel segmentation

levels, since it only makes use of pixel-level features. As the superpixel grows,

the pixel-level features are sensitive to outliers, e.g., noisy pixels. Therefore,

in the following iterations, the distance between a pair of neighboring trees is

defined as follows:

T (T1,T2) = Te(T1,T2) · Tc(T1,T2) , (3.47)

where Te represents the mean edge strength of the pixels that are situated on

the shared border between T1 and T2. In the superpixel segmentation method

presented in (Wei et al., 2018), the edge strength is obtained by the learning-

based structured forest method (Dollár and Zitnick, 2015). In this section,

we use the NFAG-based anisotropic edge strength obtained in Eq. (3.33)

to compute Te(T1,T2), thereby applying the anisotropic edge strength to

superpixel segmentation.

In addition, in Eq. (3.47), Tc denotes the Chi-Squared histogram dis-

tance (Pele and Werman, 2010) between T1 and T2, which is computed

as (Arbelaez et al., 2011):

Tc(T1,T2) = χ2(hT1
, hT2

)

=
1

2

Nbin∑
i

(hT1
(i)− hT2

(i))
2

hT1(i) + hT2(i)
, (3.48)

where hT1
and hT2

are the color histograms of T1 and T2, respectively, i denotes

the bin index and Nbin stands for the number of bins in each histogram.

According to the parameter settings in (Wei et al., 2018), Nbin is set to

20.

According to the distance measure in Eq. (3.47), for each tree, the Bor̊uvka

algorithm finds its nearest tree and groups them into a single tree. As

the iteration continues, superpixel maps at higher hierarchy levels can be

obtained.

3.5.2. Experimental validation

We have presented the SH-based superpixel segmentation method which

incorporates the NFAG-based edge strength (SH+NFAG method). In or-

der to test whether or not the SH+NFAG method works well, we use our

method to obtain superpixels on three publicly available datasets, including

the BSDS500 dataset3 (Arbelaez et al., 2011), the systematic benchmarking

for aerial image segmentation (SBAIS) dataset4 (Yuan et al., 2013) and the

3 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping
4 http://jiangyeyuan.com/ASD

57

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping
http://jiangyeyuan.com/ASD

Chapter 3. First-order derivative of anisotropic Gaussian kernel

neuronal structures in electron microscopy stacks dataset (NSEMS) dataset5.

In addition, to explore the impact of different kinds of edge strength on the

segmentation accuracy, we also test the SH methods that incorporate edge

strength obtained by the structured forest edge (SH+SFE) method (Dollár

and Zitnick, 2015), the sparseness-constrained color-opponency (SH+SCO)

method (Yang et al., 2015a), the automated anisotropic Gaussian kernel

(SH+AAGK) method (Zhang et al., 2017b) and the surrounded-modulation

edge detection (SH+SED) method (Akbarinia and Parraga, 2018). Further-

more, we also select the widely used SLIC method (Achanta et al., 2012) for

comparison.

Evaluation metrics

In order to evaluate the segmentation accuracy, we adopt two widely used

evaluation measures: the Achievable Segmentation Accuracy (ASA) and the

Undersegmentation Error (UE).

The ASA reflects the fraction of ground truth (GT) segments that are

correctly labelled by superpixels. When compared with the GT, a correctly

segmented superpixel is supposed to be totally contained in a GT segment.

Otherwise, the superpixel overlaps with more than one GT segment. Then, we

use the label value of the GT segment that has the largest overlapping region

with this superpixel to label all the pixels within this superpixel. Consequently,

a map Ilb consisting of such labels is obtained. Comparing this map with the

GT, we compute the fraction of the correct labels in Ilb as the ASA. That is,

given a superpixel map Isp and the corresponding ground truth Tsp, the ASA

is computed as (Wei et al., 2018):

ASA =
1∑

Qj∈Tsp

|Qj |
∑

Pi∈Isp

max
Qj∈Tsp

|Pi ∩Qj | , (3.49)

where Pi and Qj denote the segments in Isp and Tsp, respectively, and | · |
stands for the number of pixels. For a superpixel segmentation method, a

higher ASA value is preferred.

The UE reflects the leakage of superpixels with respect to the corresponding

GT (Stutz et al., 2018). Comparing the superpixels with the GT, we affiliate

each superpixel with the GT segment that has the largest mutually overlapping

region. Then, within each superpixel, the pixels that incorrectly match the

GT segment are considered as leakage. Given a superpixel map Isp and the

corresponding ground truth Tsp, the UE is computed as (Stutz et al., 2018):

5 http://brainiac2.mit.edu/isbi_challenge/home

58

http://brainiac2.mit.edu/isbi_challenge/home

§3.5. Application to superpixel segmentation

UE =
1∑

Qj∈Tsp

|Qj |
∑

Qj∈Tsp

∑
Pi∩Qj 6=∅

min {|Pi ∩Qj | , |Pi \Qj |} , (3.50)

where Pi and Qj denote the segments in Isp and Tsp, respectively, and \ stands

for the set difference operation. For superpixel segmentation, a lower UE is

preferred.

Parameter settings

As mentioned earlier, we have selected several methods, including the SLIC,

SH+SFE, SH+SCO, SH+AAGK and SH+SED methods, as the competing

methods. To make the evaluation results reproducible, we list the parameter

settings of each method:

• SLIC: According to the original implementation, the compactness is set

to be 10 (Achanta et al., 2012).

• SH+SFE: The compactness parameter is set as 0.53. The SFE method,

in which the number of trees is set as 4, is trained on the BSDS500

dataset (Dollár and Zitnick, 2015).

• SH+SCO: The compactness parameter is set as 0.53. According to

the parameter setting reported in (Yang et al., 2015a), the size of the

receptive field is set as 1.1. The number of orientations is set as 8. The

connection weights from cones to retinal ganglion cells are set as 0.7 and

-0.7, respectively. The size of the local window for sparseness measure is

set as 11.

• SH+AAGK: The compactness parameter is set as 0.53. According

to (Zhang et al., 2017b), the number of kernel orientations is set as 8,

and accordingly, the scale and the anisotropy factor are computed as
√

10

and
√

5, respectively.

• SH+SED: The compactness parameter is set as 0.53. Adopting the

implementation of SED in (Akbarinia and Parraga, 2018), the size of the

receptive field in the lateral geniculate nucleus layer and in the primary

visual cortex is set as 0.5 and 1.5, respectively. The number of directions

is set as 12.

• SH+NFAG: The compactness parameter is set as 0.53. The num-

ber of directions is set as 8. The scale set is configured as S =

{1.0, 1.1, 1.2, . . . , 1.5}, while the control scale is set as 1.2.

59

Chapter 3. First-order derivative of anisotropic Gaussian kernel

Figure 3.11: Sample images as well as their multiple GT segmentation maps taken
from the BSDS500 dataset. Left column: Original images. Second to sixth columns:
GT segmentation maps labelled by different annotators for each original image.

Evaluation on the BSDS500 dataset

The BSDS500 dataset contains 200 test images and represents the diversity

of natural images. The resolution of each image is either 481 × 321 × 3 or

321× 481× 3. The corresponding GT segmentation maps of each test image

are labelled by different annotators (Arbelaez et al., 2011). We illustrate two

sample images as well as their multiple GT segmentation maps in Figure 3.11.

For each image, when comparing a superpixel map with the multiple GT

segmentation maps, we obtain multiple ASA and UE values. The best values

are retained as the evaluation results.

For each method, the curves of the average ASA and average UE values

over all 200 images with respect to different numbers of superpixels are

displayed in Figures 3.12(a) and 3.12(b). Among the SH-based methods, the

SH+NFAG and SH+SFE method obtain a competitive performance, achieving

higher average ASA values and lower average UE values than other methods.

This indicates that the edge strength maps obtained by the NFAG and SFE

method are more appropriate for superpixel segmentation. By comparison, the

SH+SCO and SH+AAGK methods obtain slightly worse performances, while

the SH+SED method obtains a limited performance. The main reason is that

the SED method mainly focuses on texture suppression. The edge strength

map yielded by the SED method is usually fragmented. Such edge strength

will inevitably lead to errors when used in the SH method for superpixel

segmentation. Moreover, compared with SH-based methods, the SLIC method

obtains a competitive performance when the number of superpixels is large,

but underperforms when coarse superpixels are desired. This is mainly because

the SLIC method is a partition-based method. It takes the edge strength into

consideration only in the initialization step.

Besides the quantitative evaluation results, we also illustrate sample su-

perpixel maps yielded by different methods in Figure 3.13. It can be seen

that, compared with the SLIC method, the SH-based methods, especially the

SH+NFAG and SH+SFE methods, adhere better to the object contours.

60

§3.5. Application to superpixel segmentation

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Evaluation results in terms of the average ASA and average UE. (a)
and (b): Results obtained on the BSDS500 dataset. (c) and (d): Results obtained
on the SBAIS dataset. (e) and (f): Results obtained on the NSEMS dataset.

61

Chapter 3. First-order derivative of anisotropic Gaussian kernel

S
L
IC

S
H
+
S
F
E

S
H
+
S
C
O

S
H
+
A
A
G
K

S
H
+
S
E
D

S
H
+
N
F
A
G

Figure 3.13: Superpixel maps yielded by different methods on sample images taken
from the BSDS500 dataset. The number of superpixels in each full superpixel map
is set to 400. For a better visualization, zoomed-in versions are displayed.

62

§3.5. Application to superpixel segmentation

Figure 3.14: Sample images as well as their multiple GT segmentation maps taken
from the SBAIS dataset. Left column: Original images. Second to fifth columns:
GT segmentation maps labelled by different annotators for each original image.

Evaluation on the SBAIS dataset

In the SBAIS dataset, there are 80 aerial images, each of which has a resolution

of 512 × 512 × 3. For each image, there are four manually labelled GT

segmentation maps. Two sample images as well as the GT segmentation maps

are displayed in Figure 3.14. For each aerial image, we obtain four ASA values

and four UE values when comparing a superpixel map with the multiple GT

segmentation maps. The best ASA and UE values for each image are retained

as the evaluation results.

For each method, the curves of average ASA and average UE values over

all the 80 images with respect to different numbers of superpixels are shown

in Figures 3.12(c) and 3.12(d). It can be seen that our method performs the

best among all the methods, obtaining higher average ASA values and lower

average UE values than the competing methods. Note that the SH+SFE

method is not the method obtaining the best performance in terms of the

average ASA and average UE, which is different from the results obtained on

the BSDS500 dataset. This is mainly because the edge detection model in the

learning-based SFE method is trained on the BSDS500 dataset which consists

of natural images. As a result, the SH+SFE method underperforms on the

aerial images from the SBAIS dataset. In addition, the SH+SED method, the

edge strength maps of which are not smooth, still performs the worst among

all the SH-based methods. Compared with the SH-based methods, the SLIC

method obtains a competitive performance when the number of superpixels is

large. That is, when the hierarchy level is low, but underperforms when the

number of superpixels is small. This is consistent with the experimental results

obtained on the BSDS500 dataset. As mentioned earlier, the main reason is

that the SLIC method is a partition-based method. It does not consider the

63

Chapter 3. First-order derivative of anisotropic Gaussian kernel

edge strength during the process of pixel clustering.

The superpixel maps yielded by different methods are illustrated in Fig-

ure 3.15. One can see that the SH-based methods adhere better to the contours

of regions than the SLIC method. In particular, compared with others, the

SH+NFAG and SH+AAGK methods retain more contours of regions in the

superpixel segmentation. It is believed that some subsequent tasks, e.g., remote

sensing imagery segmentation and classification (Zhang et al., 2015a; Csillik,

2017), will benefit from the accurately segmented superpixels.

Evaluation on the NSEMS dataset

In the NSEMS dataset, there are 30 grayscale electron microscopy images,

each of which has a resolution of 512× 512, as well as the GT segmentation

maps. Two sample images and the corresponding GT segmentation maps

are illustrated in Figure 3.16. Note that there is one GT segmentation map

for each microscopy image. In this experiment, we do not test the SH+SED

method since it is not applicable to grayscale images (Akbarinia and Parraga,

2018).

For each method, the curves of average ASA and average UE values over

all the 30 images with respect to different numbers of superpixels are shown in

Figures 3.12(e) and 3.12(f). It can be seen that our method performs better

than all the other methods, achieving higher average ASA values and lower

average UE values than the competing methods in most cases. Note that the

SH+SFE method is not the method obtaining the best performance in terms

of the average ASA and average UE, which is similar to the experimental

results obtained on the SBAIS dataset. This is because the edge detection

model in the SFE method is trained on the BSDS500 dataset, and as such, it

underperforms on electron microscopy images. Among all the methods, it is

the SH+SCO method that performs the worst. In addition, the SLIC method

performs better for fine superpixel segmentation than for coarse superpixel

segmentation, which is consistent with the experimental results reported earlier.

For illustration, Figure 3.17 displays the superpixel maps yielded by different

methods. It can be observed that our method adheres to the contours better

than the competing methods.

Superpixels for saliency detection

In previous experiments, we have confirmed that in superpixel segmentation,

our method has an overall advantage compared with the competing methods.

We next show how the superpixels yielded by our method facilitate subsequent

image processing with an example task of saliency detection.

64

§3.5. Application to superpixel segmentation

S
L
IC

S
H
+
F
E
D

S
H
+
S
C
O

S
H
+
A
A
G
K

S
H
+
S
E
D

S
H
+
N
F
A
G

Figure 3.15: Superpixel maps yielded by different methods on sample images taken
from the SBAIS dataset. The number of superpixels in each full superpixel map is
set as 500. For a better visualization, zoomed-in versions are displayed.

65

Chapter 3. First-order derivative of anisotropic Gaussian kernel

Figure 3.16: Sample images as well as their GT segmentation maps taken from
the NSEMS dataset. The first and the third columns: Original images. The second
and fourth columns: Corresponding GT segmentation maps.

In computer vision, saliency detection is aimed at finding the pixels that

belong to the most salient region attracting the attention of human visual

system. In literature, there are quite a few saliency detection methods that

are built on superpixel maps (Qin et al., 2018). A prominent method was

proposed by Qin et al. (Qin et al., 2015), in which the superpixels evolve

into a saliency detection result based on a cellular automaton mechanism

(SCA method). In the SCA method, the superpixels in the vicinity of the

image frame are grouped into several background clusters. Subsequently, a

propagation mechanism based on a cellular automaton is designed to exploit

the intrinsic dissimilarity between each superpixel and the background clusters

in terms of color difference and spatial distance. The saliency map is obtained

after a number of iterations. In the original method, the superpixels used are

generated by the SLIC method (SCA+SLIC) (Qin et al., 2015).

In this experiment, we use the SCA method based on superpixels generated

by our method (SCA+SH+NFAG) to obtain the saliency detection results on

four sample images that are taken from the extended complex scene saliency

dataset6 (Shi et al., 2016). We also compare our method with the original

SCA+SLIC method. The parameters are configured according to the original

implementation (Qin et al., 2015). In particular, the number of superpixels in

each method is set to be 300.

Figure 3.18 illustrates the saliency detection results. Compared with the

SCA+SLIC method, the SCA+SH+NFAG method yields saliency maps with

a higher accuracy. For instance, in the second row of Figure 3.18, the salient

boat is well separated from the non-salient regions by the SCA+SH+NFAG

method, while the SCA+SLIC method also assigns significant saliency values

to some non-salient pixels.

Complementary to the visual comparison, we also quantitatively evaluate

the saliency detection performance of the SCA+SLIC and SCA+SH+NFAG

6 http://www.cse.cuhk.edu.hk/~leojia/projects/hsaliency/dataset.html

66

http://www.cse.cuhk.edu.hk/~leojia/projects/hsaliency/dataset.html

§3.5. Application to superpixel segmentation

S
L
IC

S
H
+
S
F
E

S
H
+
S
C
O

S
H
+
A
A
G
K

S
H
+
N
F
A
G

Figure 3.17: Superpixel maps yielded by different methods on sample images taken
from the NSEMS dataset. The number of superpixels in each full superpixel map is
set as 2000. For a better visualization, zoomed-in versions are displayed.

67

Chapter 3. First-order derivative of anisotropic Gaussian kernel

Original GT SCA+SLIC SCA+SH+NFAG

Figure 3.18: Sample results of saliency detection obtained by the SCA+SLIC and
SCA+SH+NFAG methods.

methods in terms of the mean absolute error (MAE) representing the difference

between the obtained saliency map and the GT saliency map (Qin et al., 2018):

MAE =
1

Nsl

Nsl∑
i=1

|Isl(mi)−Tsl(mi)| , (3.51)

where mi denotes the pixel location, Isl and Tsl represent the obtained saliency

map and the GT saliency map, respectively, Nsl stands for the number of

pixels in the saliency map, and | · | denotes the absolute value of a real number.

For saliency detection, a lower MAE value is preferred. The evaluation results

obtained on the sample images are presented in Table 3.3. As can be seen, our

method obtains lower MAE values on all the sample images, outperforming

the SCA+SLIC method.

3.6. Conclusions

In this chapter, firstly, we have presented a multiscale version of NFAG kernels,

and accordingly, have developed a method to obtain the anisotropic edge

strength using the multiscale NFAG kernels. A scale-adaptive anisotropy

68

§3.6. Conclusions

Table 3.3: Saliency detection evaluation results in terms of mean absolute error
obtained on the sample images.

Methods
Index of the Sample Images

1 2 3 4

SCA+SLIC 0.0710 0.1094 0.1921 0.0789

SCA+SH+NFAG 0.0585 0.0846 0.1561 0.0519

factor has also been designed to address the problem of anisotropy stretch

effect. This method is able to quantitatively measure the edge strength, edge

direction and edge scale simultaneously, while reducing the impact of noise. It

is quite reliable in detecting edges with heterogeneous widths. Secondly, we

have developed a contour detection method using the NFAG-based anisotropic

edge strength and the hierarchical superpixel contrast. The experimental

results on a widely adopted dataset have validated the superiority of our

contour detection method over the competing method. Thirdly, we have

presented an SH-based superpixel segmentation method that incorporates the

anisotropic edge strength. Experimental results have confirmed that, in the

SH-based superpixel segmentation, the method incorporating the anisotropic

edge strength is less dataset-dependent. We have also illustrated that the

superpixels yielded by our method can facilitate a subsequent saliency detection

task.

69

4 Second-order anisotropic Gaussian

kernel with application to

line detection

In this section, we investigate an existing convolutional kernel named

the second-order anisotropic Gaussian (SAG) kernel (Lopez-Molina et al.,

2015). After rebuilding this kernel, we study a normalization method that

enables SAG kernels to quantitatively measure the line prominence and identify

the scales with scale-invariance in scale-space. Also, we theoretically prove

that the anisotropy of SAG kernels can improve the SNR of lineness. Based

on the SNR analysis, we design an adaptive anisotropy factor to enhance

the noise-robustness of small-scale kernels, thereby proposing the normalized

and adaptive second-order anisotropic Gaussian (NASAG) kernel. Using

NASAG kernels, we propose a full-fledged line detection method. Experiments

performed on a publicly available dataset validate the efficacy of the proposed

method.

The material of this chapter is based on the following publication:

• Wang, G., Lopez-Molina, C., Vidal-Diez de Ulzurrun, G., and De Baets,

B. (2019c). Noise-robust line detection using normalized and adaptive

second-order anisotropic Gaussian kernels. Signal Processing, 160:252–

262

4.1. Motivation

Lines, a.k.a. curvilinear structures or ridges, are generally defined as elon-

gated regions with dissimilar intensities compared to their neighboring pixels.

Such structures hold key information for some computer vision tasks, and

as such, line detection has been extensively studied in literature. In the

photogrammetry and remote sensing field, line detection is used to extract

roads (Ferraz et al., 2016) and rivers (Yang et al., 2015b) from different types

of images. In many biological or medical imagery analysis systems, line de-

tection is widely employed to extract graph-like structures, including fungal

networks (Vidal-Diez de Ulzurrun et al., 2015), blood vessels (Yang and Shi,

2014), neurons (Meijering et al., 2004), fibrous tissues (Krylov and Nelson,

2014) and leaf veins (Bühler et al., 2015). Moreover, line detection is also

applied to extract pavement cracks (Oliveira and Correia, 2013), painting

71

Chapter 4. Second-order anisotropic Gaussian kernel

cracks (Cornelis et al., 2013), facial wrinkles (Batool and Chellappa, 2015),

palmprints (Krylov and Nelson, 2014) and power lines (Candamo et al., 2009).

Nevertheless, line detection still faces problems other than the specificities

of each type of imagery. For example, the prominence, direction and scales

(a.k.a. sizes or widths) of line structures are usually heterogeneous in different

images. Also, images are usually corrupted by noise. These facts make line

detection remain a challenging task, despite the significant efforts carried out

in the past several decades.

Conventional methods can be divided into two categories, i.e., interactive

methods and automated methods. Interactive (a.k.a. semi-automated) methods

are implemented under manual supervision. For instance, Benmansour and

Cohen (2011) proposed a vessel extraction method using a minimal path

formulation and anisotropic enhancement. However, the user has to click

the source points and the endpoints of the line structures and provide the

minimum and maximum radius values. Compared with interactive approaches,

automated methods can be run without human interventions, and as such

are more efficient. The side benefits of this fact include the possibility of

processing large datasets with little labor, and the possibility of the algorithm

to be run by non-experts.

Concerning automated methods, one can adopt very different taxonomies.

A common taxonomy refers to the mathematical tool that the detector uses.

Adopting this taxonomy, we can identify methods based on transformation, wa-

tershed, Hessian matrix, matched filters, etc. Transformation-based methods

rely on the manifestations of lines in transformed spaces, paramount exam-

ples being those using the Hough transform (Xu et al., 2015) or the Radon

transform (Krylov and Nelson, 2014). These methods are computationally

expensive and not applicable to the detection of lines with large curvature.

Watershed-based methods (Obara et al., 2012b) do not suffer from this limita-

tion, but at the same time are only appropriate to extract dense line structure

networks in clean images.

Hessian-based methods have been more comprehensively studied compared

with others. A pioneering work is proposed by Haralick (1983), who defined

a bright line as positions at which the main eigenvalue has a maximal ab-

solute value. Lindeberg extended Haralick’s ideas to a multiscale context

and proposed a framework of scale-space representation for different visual

structures (Lindeberg, 1998a). Multiscale and normalized Hessian matrices are

calculated to get the corresponding eigenvalues that reflect the local change of

intensity, and to get the eigenvectors that denote the primary direction of the

local structure. Since visual structures suffer from decreasing visibility when

projected to large scales in scale-space, Lindeberg proposed a normalization

72

§4.1. Motivation

method to compensate the magnitude decrease over scales, and accordingly, de-

veloped a line detector using the square of the normalized eigenvalue difference.

However, Lindeberg’s method usually produces multiple peak responses for one

line segment, and as a result, outputs spurious detections. Meanwhile, other

works were also elaborated on the concepts of linear scale-space theory (Koen-

derink, 1984; Florack et al., 1992). The multiscale vessel enhancement filter

proposed by Frangi et al. (1998) enhances the prominence of vessels by combin-

ing the ratio of two eigenvalues with the local contrast, which is represented by

the root-sum square of the eigenvalues. Obara et al. (2012a) further developed

Lindeberg’s work and proposed a contrast-independent approach named the

phase congruency tensor vesselness, employing the oriented phase congruency.

The relationship between eigenvalues was also used by Meijering et al. (2004),

who successfully applied their proposal to neurite detection. Steger (1998,

2013) proposed an approach based on differential geometric properties of the

image intensity. Based on both the first and second derivatives of Gaussian

kernels, the Taylor polynomial is computed to decide whether or not the

current pixel belongs to a line structure. This method mainly addresses the

bias problem of line position, but its performance strongly depends on the

profile of the lines. In addition, assuming that the profile of a line structure

is bar-shaped, Bae et al. (2015) discussed the normalization of the Hessian

matrix and measured the prominence of roads in remote sensing images using

its maximum negative eigenvalue.

Hessian-based methods have a good computational efficiency because they

identify the direction of a line segment using the eigenvectors of the Hessian

matrix. However, the Hessian matrix usually provides only a qualitative

estimation instead of a quantitative measurement for a line segment. Besides,

all the above-mentioned Hessian-based methods employ isotropic Gaussian

kernels as well as their first and second derivatives (Shui and Zhang, 2012) to

compute the Hessian matrix. Because of the sensitivity of isotropic Gaussian

kernels to noise, these methods are not robust to noise in detecting narrow

lines.

Methods based on matched filters have received significant attention as

well. This might be due to their ability to make up for the weaknesses of

Hessian-based methods. In order to handle lines with various scales and

directions, these methods usually make use of a family of kernels that covers

a set of possible scales and directions. The maximum response among all

kernels is pixelwise selected as the lineness (a.k.a. line strength). We term this

scheme as maximum aggregation. Note that this kind of method also preserves

rotational invariance under the assumption that the set of kernels considers

all possible directions.

73

Chapter 4. Second-order anisotropic Gaussian kernel

A very relevant proposal based on matched filters was proposed by Chaud-

huri et al. (1989), using oriented Gaussian-shaped curve matching filters. With

the aim of improving the line detection resolution, Xiao et al. (2013) designed

the bi-Gaussian kernel by merging two Gaussians with different parameters.

Although this kind of kernel reduces adjacent disturbances, it is not noise-

robust enough for lines that have low SNR (Xiao et al., 2013). In order to

suppress the noise and deal with lines with different scales, multiscale filters

based on second-order Gaussian kernels have been studied as well. Based

on Lindeberg’s work (Lindeberg, 1998b), Sofka and Stewart (2006) discussed

the normalization problem of second-order Gaussian kernels, and employed

the same normalization parameter as proposed by Lindeberg. This method

has solid theoretical foundations and produces acceptable results in practical

applications. The obtained lineness usually shows a single peak response

for a given line segment, which helps to ease the problem of locating the

centerline. However, this method also has a critical drawback, since it shows

scale-variance in scale-space. In practical terms, for two line segments with

identical prominence but different scales, the lineness values obtained by this

method are different.

Recently, kernels based on the derivative of anisotropic Gaussian functions

have been successfully applied in edge detection (Shui and Zhang, 2012; Wang

and Shui, 2016; Zhang et al., 2017b; Shui and Wang, 2017; Wang and De

Baets, 2017) and corner classification (Shui and Zhang, 2013), showing certain

advantages compared with the isotropic Gaussian derivatives. Lopez-Molina

et al. (2015) introduced SAG kernels to line detection and validated their

performance on a dataset of fungal imagery. On line detection tasks, the

method based on SAG kernels outperforms methods based on isotropic kernels

in detecting bifurcations, junctions, crossings and adjacent lines. However,

essential theoretical explanations of efficacy are still absent in the work of

Lopez-Molina et al. (2015). In addition, they did not provide the normalization

of the kernels in scale-space. Moreover, the method is sensitive to noise and

easily produces spurious results on noisy images. Furthermore, because of the

stretch effect of anisotropic kernels, this approach produces spurious results

on endpoints of lines, as well as on blob structures.

In this chapter, we intend to expand the work in (Lopez-Molina et al.,

2015). We first present a rebuilt version of the SAG kernel. Subsequently,

we study a normalization method that enables SAG kernels to quantitatively

measure the line prominence and identify the scales with scale-invariance in

scale-space. We also prove that the anisotropy of the SAG kernel can improve

the SNR of lineness. Accordingly, we propose an adaptive anisotropy factor

to enhance the noise-robustness of small-scale kernels. Moreover, we present

74

§4.2. Related work

that the proposed NASAG kernels help to reduce the number of employed

kernels and alleviate the anisotropy stretch effect. Using the proposed NASAG

kernels, we develop a novel line detection method.

The remainder of this chapter is organized as follows. Section 4.2 recalls

some preliminary concepts that are of interest to this work. In Section 4.3,

we model line structures using directional Gaussian functions. Also, we

present a rebuilt version of SAG kernels together with the corresponding

scale-invariant normalization method. Based on a noise-robustness analysis in

terms of the SNR, we propose a novel adaptive anisotropy factor. Subsequently,

the proposed line detection method is elaborated. Experimental results are

reported in Section 4.4, while Section 4.5 lists our conclusions.

4.2. Related work

Anisotropic Gaussian kernels are a class of kernels based on the elongation

of regular (isotropic) Gaussian kernels, usually with the aim of improving

their adjustment to non-isotropic visual artifacts. These kernels, as well as

their derivatives, have been successfully applied in edge detection (Shui and

Zhang, 2012; Wang and Shui, 2016; Zhang et al., 2017b; Shui and Wang,

2017; Wang and De Baets, 2017) and corner detection (Shui and Zhang, 2013).

Conventionally, a two-dimensional anisotropic Gaussian kernel is defined as

g(x;σ, ρ, θ) =
1

2πσ2
exp

(
− 1

2σ2
xTRT

θ

[
ρ2 0

0 ρ−2

]
Rθx

)
, (4.1)

where all the arguments are defined the same as those in Eq. (3.7) except

that ρ is referred to as the anisotropy index. Note that this kernel reduces to

an isotropic Gaussian kernel when ρ = 1. Based on Eq. (4.1), an SAG kernel

is derived as follows:

g′′(x;σ, ρ, θ) =

(
(x cos θ + y sin θ)2

ρ−4σ4
− ρ2

σ2

)
· g(x;σ, ρ, θ) . (4.2)

Lopez-Molina et al. (2015) employed a family of discrete SAG kernels

combining all possible scales, directions and anisotropy indices to filter the

image signal. Using the maximum aggregation, for each pixel, the maximum

response among all kernels is then selected as the lineness. Correspondingly,

the direction and scale of each line structure are inferred by the kernel that

produces the maximum response.

75

Chapter 4. Second-order anisotropic Gaussian kernel

4.3. Normalized and adaptive second-order an-

isotropic Gaussian kernel

In this section, we firstly model a line structure using a direction Gaussian

function. Secondly, we present the rebuilt vision of the SAG kernel as well

as the corresponding normalization method. Thirdly, an adaptive anisotropy

factor is proposed. Based on filtering schemes and postprocessing techniques,

a novel line detection method using NASAG kernels is developed.

4.3.1. Modelling a line segment

Inspired by the work of Steger (2013), we model a line segment as a Gaussian

profile. In a small-enough local region, a line segment can be considered

straight and therefore is modelled by

Γ0(x) = p0 · exp

(
− (x̃− x0)T(x̃− x0)

2ω2
0

)
+ b0 , (4.3)

where

x̃ = [cos θ0, sin θ0]x , (4.4)

x0 = [x0, y0]T stands for the center location of the local line segment, and the

parameters b0, p0, ω0 and θ0 represent the base level, prominence, scale and

normal direction, respectively.

Figure 4.1 illustrates a local part of the line segment modelled by Eq. (4.3).

The base level reflects the intensity of the background, while the prominence

implies the local contrast between the background and the center of the line.

As the signal intensity Γ0(x) at position x0 is known, the base level b0 can

be calculated once the prominence p0 is obtained. Therefore, the task of

quantitative line detection can be considered as finding the parameters of

prominence p0, scale ω0 and direction θ0.

4.3.2. Rebuilding the conventional second-order aniso-

tropic Gaussian kernel

We rebuild the conventional anisotropic Gaussian kernel formulated in Eq. (4.1)

by introducing a new anisotropy factor ϕ instead of the original ρ:

g(x;σ, ϕ, θ) =
1

2πϕσ2
exp

(
− 1

2σ2
xTRT

θ

[
1 0

0 ϕ−2

]
Rθx

)
, (4.5)

76

§4.3. Normalized and adaptive second-order anisotropic Gaussian kernel

Figure 4.1: Illustration of the modelled local line segment and two measurable
characteristics: prominence and base level.

where ϕ ≥ 1 and the other arguments remain the same as those in Eq. (4.1).

The function in Eq. (4.5) is different from the conventional anisotropic Gaussian

kernel in (Shui and Zhang, 2012; Lopez-Molina et al., 2015; Zhang et al., 2017b).

Compared to Eq. (4.1), Eq. (4.5) can better show the relationship between

the scales in the x direction and the y direction, since it avoids binding the

two scales together with the parameter ρ. Note that the kernel in Eq. (4.5)

becomes isotropic when ϕ = 1.

Elaborating on Eq. (4.5), we obtain the rebuilt version of the SAG kernel

as follows:

g′′(x;σ, ϕ, θ) =

(
(x cos θ + y sin θ)2

σ4
− 1

σ2

)
· g(x;σ, ϕ, θ) . (4.6)

As introduced in previous chapters, the scale-space representation of a

two-dimensional signal I(x) is conventionally obtained by isotropic Gaussian

kernels. Here, by using the rebuilt anisotropic Gaussian kernel in Eq. (4.5),

we define the anisotropic and directional scale-space representation as follows:

Iss(x;σ, ϕ, θ) = g(x;σ, ϕ, θ) ∗ I(x) . (4.7)

Accordingly, the derivatives of the anisotropic and directional scale-space

representation are given by

I(α)ss (x;σ, ϕ, θ) = g(α)(x;σ, ϕ, θ) ∗ I(x) . (4.8)

77

Chapter 4. Second-order anisotropic Gaussian kernel

4.3.3. Scale-invariant normalization

In order to compensate the magnitude decrease in scale-space, inspired by

Lindeberg’s normalization method (Lindeberg, 1998a), we define a general

expression of the normalized SAG kernel, which would be used for line detection,

as

g′′L(x;σ, ϕ, θ) = (−1)η · β · σ2γ · g′′(x;σ, ϕ, θ) , (4.9)

where β is a constant ensuring that the obtained lineness precisely reflects

the prominence and γ denotes the scale normalization factor. Besides, the

parameter η ∈ {0, 1} allows the kernel to be applicable to both bright and dark

line structures. Optionally, we set η = 1 for bright line detection and η = 0 for

dark line detection. Without loss of generality, η is set as 1 in the following

elaboration within this section. Correspondingly, the normalized Gaussian

kernel in this chapter is denoted by gL(x;σ, ϕ, θ).

Based on Eq. (4.8), when we filter the line segment modelled in Eq. (4.3)

using the normalized SAG kernel in Eq. (4.9), we obtain the response as

follows:

L(x;σ, ϕ, θ) = g′′L(x;σ, ϕ, θ) ∗ Γ0(x) . (4.10)

For a given scale, the normalized SAG kernel that has the same direction

as the line segment produces the peak response, i.e., θ = θ0. Also, without

loss of generality, we consider the case x0 = 0 and θ0 = 0. Then, the peak

response L at the center location of the modelled line is given by

L = L(x;σ, ϕ, θ)|x=0,θ=θ0=0

= βp0ω0σ
2γ(ω2

0 + σ2)−
3
2 . (4.11)

The detailed proof is presented in Appendix A.3. Obviously, L is dependent

on the kernel scale σ. Thus, in scale-space, the derivative of L with respect

to σ is calculated as

∂L

∂σ
= βp0ω0σ

2γ−1(ω2
0 + σ2)−

5
2

(
2γω2

0 + (2γ − 3)σ2
)
. (4.12)

In order to identify the scale of the line structure, we need to find the

scale σ that produces the largest response in scale-space, that is, we should

find the scale σ that makes the derivative of L with respect to σ equal zero.

This leads to

σ∗ =
√

2γ
1
2 (3− 2γ)−

1
2ω0 , (4.13)

78

§4.3. Normalized and adaptive second-order anisotropic Gaussian kernel

where σ∗ denotes the scale at which the kernel g′′L(x;σ, ϕ, θ) produces the

maximum response in scale-space. Equation (4.13) indicates that σ∗ depends

on the parameter γ. In addition, we also impose 0 < γ < 1.5 to ensure σ∗ to

be positive. By substituting Eq. (4.13) into Eq. (4.11), we get the maximum

response of the modelled line structure in scale-space:

L =

√
3

9
βp0(2γ)γ(3− 2γ)

3
2−γω2γ−2

0 . (4.14)

Note that the maximum response in Eq. (4.14) is independent of the

anisotropy factor ϕ. Also, to ensure that the response does not rely on ω0,

i.e., the normalized SAG kernel is scale-invariant in scale-space, we should

set γ = 1. Consequently, L achieves its maximum value at the scale σ∗ =
√

2ω0.

In addition, Eq. (4.14) then becomes

L∗ =
2
√

3

9
βp0 . (4.15)

Consequently, we set β = 3
√

3/2, so that L∗p equals p0 while achieving its

maximum response at the scale σ∗ =
√

2ω0.

Eventually, taking Eq. (4.9) and the discussion above into consideration,

we get the scale-invariant normalized SAG kernel as follows:

g′′L(x;σ, ϕ, θ) = −3
√

3

2
σ2 · g′′(x;σ, ϕ, θ) . (4.16)

We are now in a position to summarize that the proposed normalized SAG

kernel yields the maximum response value p0 at the position x0 and at the

scale
√

2ω0.

4.3.4. Adaptive anisotropy factor

According to the differentiation properties of the convolution operation, from

Eqs. (4.8) and (4.10), we get the result of filtering a two-dimensional signal I

with a normalized SAG kernel

L(x;σ, ϕ, θ) = g′′L(x;σ, ϕ, θ) ∗ I(x)

= gL(x;σ, ϕ, θ) ∗ I′′(x) , (4.17)

where I′′ is the second-order derivative of I with respect to x along the

direction θ. Therefore, the response L(x;σ, ϕ, θ) can also be considered as a

smoothing operation on I′′ by gL(x;σ, ϕ, θ). It is inevitable that this Gaussian

79

Chapter 4. Second-order anisotropic Gaussian kernel

smoothing leads to blurring. For an anisotropic Gaussian kernel along the

direction θ, the blurring extent with respect to x is determined by σ, while

the blurring extent with respect to y is determined by ϕσ. As a result, the

SAG kernel incurs a stretch effect on the endpoints of the lines and blob

structures, especially for those kernels with large anisotropy factors. A similar

phenomenon also appears in edge detection (Shui and Zhang, 2012). This

phenomenon is called anisotropy stretch effect, which as a result leads to

spurious detection results. As presented in Chapter 3, the anisotropy stretch

effect also occurs in edge detection methods using first-order derivative of

Gaussian kernels. For this reason, large values of ϕ should be avoided. On the

contrary, the stretch effect of the isotropic Gaussian kernel is dim because it

blurs the signal isotropically.

In Chapter 3, we have confirmed that the NFAG kernel has a good noise-

robustness and have designed an adaptive anisotropy factor. Next, we analyze

the noise-robustness of the normalized SAG kernel. As presented in Chapter 3,

the capability of filters to suppress white Gaussian noise can be measured by

the standard deviation of the filtered noise (Canny, 1986; Shui and Zhang,

2012). Assuming that the two-dimensional signal I(x) is corrupted by additive

white Gaussian noise ξ(x) with zero mean and variance ε20, we obtain the

standard deviation ε of the noise that is smoothed by the kernel in Eq. (4.9)

as follows:

ε =

√
E
{(
g′′L(x;σ, ϕ, θ) ∗ ξ(x)

)2}
= ε0

√¨
R2

(
g′′L(x;σ, ϕ, θ)

)2
dx

=

√
3β

4
√
π
σ2γ−3ϕ−

1
2 ε0 , (4.18)

where E(·) denotes the mathematical expectation.

Since 0 < γ < 1.5 and β is a constant, one can see that ε is proportional

to the noise intensity ε0, but has a negative correlation with the kernel

scale σ as well as the anisotropy factor ϕ. Thus, for a given kernel scale

set S = {σ | σmin ≤ σ ≤ σmax}, if a maximum aggregation is employed,

kernels with smaller scales tend to produce larger noise responses, which

therefore are more likely to be retained in the final lineness map.

The SNR of the normalized SAG kernel is defined as the quotient of the

maximum signal response and the standard deviation of the smoothed noise

in the final lineness map. Assuming that we have identified the maximum

response of a line segment in scale-space, the SNR can be calculated by

80

§4.3. Normalized and adaptive second-order anisotropic Gaussian kernel

combining Eqs. (4.14) and (4.18):

SNR =
L

ε

=
4
√
π

9ε0
p0(2γ)γ(3− 2γ)

3
2−γω2γ−2

0 σ3−2γϕ
1
2 . (4.19)

From Eq. (4.19), we learn that the SNR is positively correlated with

the line prominence p0, the line scale ω0, the anisotropy factor ϕ and the

scale-normalization parameter γ. Note that the SNR is independent of the

parameter β. Thus, for a given line structure with specific p0 and ω0, the SNR

is mainly determined by σ, ϕ and γ.

In the works of Lindeberg (1998b) and Sofka and Stewart (2006), isotropic

kernels (ϕ = 1) are employed while setting the scale normalization factor γ =

0.75. Note that σmax occurs at ω0 in their works and therefore the value

of σmin in the scale set S should be selected to satisfy σmin ≤ ω0. Based on

Eq. (4.18), we can infer that the noise achieves its maximum response at the

scale σmin. Hence, these methods obtain the following SNR:

SNR1 =
L

ε

∣∣∣∣
γ= 3

4 , ϕ=1, σ=σmin

=

√
6π

3ε0
p0ω

− 1
2

0 σ
3
2

min . (4.20)

In addition, Bae et al. (2015) also employed isotropic Gaussian kernels

(ϕ = 1) while setting γ = 1. The SNR of this method is given by

SNR2 =
L

ε

∣∣∣∣
γ=1, ϕ=1, σ=σmin

=
8
√
π

9ε0
p0σmin . (4.21)

Furthermore, having ϕ ≥ 1 and γ = 1, the normalized SAG kernel obtains

the following SNR:

SNR3 =
L

ε

∣∣∣∣
γ=1

=
8
√
π

9ε0
p0σϕ

1
2 . (4.22)

From Eq. (4.22), we learn that the SNR performance of the normalized SAG

81

Chapter 4. Second-order anisotropic Gaussian kernel

kernel is mainly determined by σϕ
1
2 . Hence, on the one hand, for small-scale

kernels, it is necessary to employ an anisotropy factor to obtain a higher SNR.

On the other hand, for large-scale kernels, we do not have to use an anisotropy

factor since large scales can guarantee a high SNR even if the anisotropy factor

is absent.

In light of SNR enhancement and anisotropy stretch reduction, we propose

the adaptive anisotropy factor as follows:

ϕ =

{
σ2
con

σ2 , if σmin ≤ σ ≤ σcon
1 , otherwise

, (4.23)

where σcon ∈ [σmin, σmax] stands for the robustness control scale. Larger

values of σcon yield higher SNR, but exacerbate the stretch effect. Thus, the

setting of σcon should partly depend on the level of noise. Empirically, σcon is

specified as the geometric mean of σmin and σmax, since such a σcon always

ensures σϕ ≤ σmax.

In this way, the adaptive anisotropy factor has large values for small scales

and therefore the noise response will be suppressed. Also, the anisotropy

stretch effect can be alleviated, since ϕ is close to 1 for larger scales. Besides,

Eq. (4.11) indicates that the lineness map is independent of the anisotropy

factor ϕ, so the adaptive anisotropy factor will not hinder us from getting the

expected lineness.

Based on Eqs. (4.22) and (4.23), for all scales not larger than the control

scale σcon, the proposed NASAG method obtains the following SNR:

SNR3 =
8
√
π

9ε0
p0σcon . (4.24)

Thus, for a given noise-corrupted line structure, the SNR of the proposed

NASAG method is determined by σcon.

Comparing Eqs. (4.20), (4.21) and (4.24), we learn that SNR1 < SNR2 ≤
SNR3, which means the proposed NASAG kernel obtains the highest SNR

among the three kernels. Hence, the proposed NASAG kernel helps both to

reduce the anisotropy stretch effect and to improve the noise-robustness.

4.3.5. Discrete kernels

In order to accommodate the proposed method to digital image filtering,

the discrete version of the NASAG kernel should be given. We get both

the discrete anisotropic Gaussian kernel and the NASAG kernel by sampling

the formulae in Eqs. (4.5), (4.6) and (4.16) in the two-dimensional integer

82

§4.3. Normalized and adaptive second-order anisotropic Gaussian kernel

Figure 4.2: Illustration of the discrete version of NASAG kernels. The control scale
is set as σcon = 4. Top Row: Kernels with σ = 2 and ϕ = 4. Second Row: Kernels
with σ = 3 and ϕ = 1.78. Third Row: Kernels with σ = 4 and ϕ = 1. Bottom Row:
Kernels with σ = 5 and ϕ = 1. The intensity range of each patch has been adjusted
for better display.

coordinate Z2:

g(m;σi, ϕi, θj) =
1

2πϕiσ2
i

exp

(
− 1

2σ2
i

mTRT
θj

[
1 0

0 ϕ−2i

]
Rθjm

)
g′′L(m;σi, ϕi, θj) = −3

√
3

2
σ2
i ·
(

([cos θj , sin θj]m)2

σ4
i

− 1

σ2
i

)
· g(m;σi, ϕi, θj) ,

(4.25)

where

ϕi = max

(
σ2
con

σ2
i

, 1

)
,

Rθj =

[
cos θj sin θj

− sin θj cos θj

]
,

in which the arguments remain the same as those in Eq. (3.27). Note that

the arguments to determine an NASAG kernel are the scale, direction and

robustness control scale. Examples of discrete NASAG kernels are illustrated

in Fig. 4.2.

Hence, the result of filtering an image I with a discrete NASAG kernel is

given by:

L(m;σi, ϕi, θj) = g′′L(m;σi, ϕi, θj) ∗ I(m) . (4.26)

Using the maximum aggregation, for each pixel, the largest value among

the responses of all kernels is retained as the value of the lineness map:

L(m) = max
σi∈S

max
θj∈D

L(m;σi, ϕi, θj) . (4.27)

83

Chapter 4. Second-order anisotropic Gaussian kernel

As an illustration, Fig. 4.3(b) shows the resulting lineness map of the original

image in Fig. 4.3(a).

Usually, the line direction map is also required in postprocessing procedures.

As stated earlier, the kernel that has the same direction as the line produces

the peak response. Thus, for each pixel, the direction information is indicated

by the kernel that produces the largest response. That is, the line direction

map ΘL(m) is obtained by:

ΘL(m) = argmax
θj∈D

max
σi∈S

L(m;σi, ϕi, θj) . (4.28)

4.3.6. Postprocessing on lineness map

On many line detection tasks in which the centerline is desired, the lineness

map needs further processing to output a centerline map (Steger, 2013; Lopez-

Molina et al., 2015; Sironi et al., 2016). To this end, after obtaining the lineness

map, the techniques of NMS (Rosenfeld et al., 1972), double-thresholding and

hysteresis segmentation (Canny, 1986) are employed to produce the centerline

map.

The NMS technique was originally used for thinning edgeness in edge

detection (Canny, 1986). Here, we use the NMS technique to thin the lineness

map. For each pixel, if the lineness value L(m) at the current pixel location m

is the largest value compared to the other pixels along the direction ΘL(m),

the value will be retained. Otherwise, it will be nullified. The result of applying

the NMS technique to Fig. 4.3(b) is shown in Fig. 4.3(c).

The hysteresis segmentation requires an upper threshold τ1 and a lower

threshold τ2. In this chapter, we compute the two thresholds by the double-

thresholding technique that is presented in (Liu et al., 2013). All the pixels of

which the lineness exceeds the upper threshold are first labelled as strong line

candidates. The pixels whose lineness value is between the lower threshold and

the upper threshold are labelled as weak line candidates. Subsequently, for

each of those weak line candidates, if it is connected to a strong line candidate,

it is also marked as a strong line candidate. The hysteresis segmentation results

of Fig. 4.3(c) with different thresholds are illustrated in Figs. 4.3(d), 4.3(e)

and 4.3(f).

Finally, the strong line candidates are processed to form the detection

result Ld using morphological closing and length threshold deleting (Lopez-

Molina et al., 2015).

84

§4.4. Experimental validation

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Illustration of the line detection process. (a) Original image circuit ; (b)
Lineness map; (c) NMS result; (d)-(f) Hysteresis segmentation results using different
thresholds.

4.4. Experimental validation

In this section, we first quantitatively evaluate our method on a fungus image

dataset as well as a noisy version thereof. The proposed method is compared

with five selected competing methods. Furthermore, we present some potential

applications.

4.4.1. Application to fungus detection

We apply the proposed NASAG method, which is summarized in Algorithm 2,

to the Ghent University Fungal Images 1 1 (GUFI-1) dataset (Lopez-Molina

et al., 2015) as well as a noisy version thereof that is obtained by adding white

Gaussian noise with the level of ε0 = 10. The GUFI-1 dataset contains 100

fungal images and 100 corresponding ground truth images, each of which has

an identical resolution of 300 × 300. Five example images as well as their

ground truth line map are illustrated in Fig. 4.4. One can see that these

1 http://www.kermit.ugent.be

85

http://www.kermit.ugent.be

Chapter 4. Second-order anisotropic Gaussian kernel

Algorithm 2 Proposed line detection method

Require: Intensity image I, parameter η, scale set S, direction set D, control
scale σcon

Ensure: Line detection result Ld

1: for each σi ∈ S do

2: ϕi ← max
(σ2

con

σ2
i
, 1
)

3: for each θj ∈ D do
4: L(m;σi, ϕi, θj)← I(m) ∗ g′′L(m;σi, ϕi, θj)
5: end for
6: end for
7: L(m)← max

σi∈S
max
θj∈D

L(m;σi, ϕi, θj)

8: ΘL(m)← argmax
θj∈D

max
σi∈S

L(m;σi, ϕi, θj)

9: Lnms(m)← NMS using L(m) and ΘL(m)
10: Ld(m) ← double-thresholding, hysteresis segmentation and line length

thresholding on Lnms(m)

images contain a variety of line structures with various scales, directions and

prominence (Lopez-Molina et al., 2015).

We compare our method with several conventional line detectors, including

the methods based on the multiscale vessel enhancement filter (MVEF) (Frangi

et al., 1998; Jerman et al., 2015), the optimally oriented flux (OOF) (Law et al.,

2012), the phase congruency tensor vesselness (PCTV) (Obara et al., 2012a),

the normalized second derivative map (NSDM) (Bae et al., 2015) and the

conventional SAG kernels (Lopez-Molina et al., 2015). For a fair comparison,

the same post-processing procedures are applied to the lineness map obtained

by each method.

Since line detection can be considered as a binary classification procedure

of discriminating line pixels from non-line pixels, the comparison between

the output of a line detector and the manually specified ground truth can

be formulated in terms of success and failure. Hence, the precision-recall

framework is adopted as evaluation method. Precision is the quotient of the

number of true positive pixels and the number of all positive pixels in output.

It represents the probability that the detection result is valid. Recall is the

quotient of the number of true positive pixels and the number of all positive

pixels in GT. It represents the probability that the true line pixels have been

detected.

In this experiment, we also use F -measure to evaluate the performance of

each method in fungus detection. Different from the contour detection dataset

adopted in Chapter 3, the GUFI-1 dataset has only one ground truth map

86

§4.4. Experimental validation

for each fungus image. Therefore, the precision and recall are computed as

follows:

Prec =
TP

TP + FP
, (4.29)

and

Rec =
TP

TP + FN
, (4.30)

where TP, FP and FN are the numbers of true positive pixels, false positive

pixels and false negative pixels, respectively. Then, we obtain the F -measure

by computing the harmonic mean of the precision and the recall.

Considering that the detection result of a line detector might be slightly

different from the ground truth, when the detection result is compared with

the ground truth, the detected result which is slightly displaced from the

true position within a tolerance is also considered as correct detection. In

this experiment, the tolerance is set as 2% of the length of the image diago-

nal (Lopez-Molina et al., 2015).

With respect to the parameter configuration, the scale set in all methods

is set as S = {1 + 0.2 · (i− 1) | i ∈ {1, 2, 3, ..., 11}}. For reproducibility, other

parameters are listed as follows:

• MVEF: the thresholds controlling the blobness measure and the second

order structureness are set as 0.5 and 15, respectively;

• OOF: the largest eigenvalue of the OOF tensor is used;

• PCTV: the thresholds controlling the blobness measure and the sec-

ond order structureness are set as 0.5 and 15, respectively; the factor

controlling the sharpness of the cutoff is specified as 2;

• NSDM: the scale normalization factor is set as 1;

• SAG: the anisotropy factors set is configured with {1.0, 1.1, ..., 1.5}; the

number of filtering directions is set as 16;

• NASAG: the indicator for bright line detection, the control scale σcon and

the number of filtering directions are specified as 1, 2 and 8, respectively.

Table 4.1: Evaluation results in terms of F -measure.

Noise
Methods

MVEF OOF PCTV NSDM SAG NASAG

ε0 = 0 0.89 0.89 0.89 0.86 0.88 0.89

ε0 = 10 0.80 0.70 0.71 0.78 0.75 0.87

87

Chapter 4. Second-order anisotropic Gaussian kernel

Image 010 Image 020 Image 030 Image 040 Image 050

O
ri

g
in

a
l

M
V

E
F

O
O

F
P

C
T

V
N

S
D

M
S

A
G

N
A

S
A

G
G

T

Figure 4.4: Detection results on Images 010, 020, 030, 040 and 050. Please note
that the original images have been reversed (dark lines with a bright background)
for better display.

88

§4.4. Experimental validation

Image 010 Image 020 Image 030 Image 040 Image 050

O
ri

g
in

a
l

M
V

E
F

O
O

F
P

C
T

V
N

S
D

M
S

A
G

N
A

S
A

G
G

T

Figure 4.5: Detection results on the noisy version of Images 010, 020, 030, 040 and
050 corrupted by white Gaussian noise with an intensity of ε0 = 10. Please note
that the original images have been reversed (dark lines with a bright background)
for better display.

89

Chapter 4. Second-order anisotropic Gaussian kernel

Table 4.2: Evaluation results in terms of runtime (s).

Methods MVEF OOF PCTV NSDM SAG NASAG

Runtime 0.17 1.31 5.19 0.18 3.59 0.91

In the noise-free case, the quantitative evaluation results are reported in

Tab. 4.1. It is observed that all the methods yield acceptable results in terms

of F -measure. Specifically speaking, the MVEF method, the OOF method, the

PCTV method as well as the proposed method obtain the best performance,

while the NSDM method provides slightly lower F -measure values compared

with the other methods. We also illustrate the detection results of each method

on five sample images in Fig. 4.4. As we can see, most of the fungus centerlines

have been successfully extracted by each method respectively. Nevertheless, the

centerlines yielded by the MVEF method are not smooth enough, which may

cause subsequent errors for some applications, e.g. fungus length measurement.

In addition, the conventional SAG method sometimes yields false detection

results at positions of blob structures. This is mainly caused by the intrinsic

defect of the anisotropy stretch effect.

In the noisy case, as shown in Tab. 4.1, the F -measure values of the

competing methods decrease sharply as a consequence of noise corruption. In

addition, the detection results of each method on five sample noisy images are

illustrated in Fig. 4.5. In the results yielded by the competing method, many

true lines are missing, while some spurious results occur alongside the true

lines and in the background. In contrast, the NASAG method still obtains

an acceptable performance in terms of F -measure, and yields the best visual

results as shown in Fig. 4.5. This is mainly because we employ adaptive

anisotropy factors, thereby enhancing the noise-robustness. According to these

experimental results, we learn that the NASAG method is more robust to

noise than the competing methods.

With respect to the time efficiency, the runtime of each method has

been tested on a personal computer configured with Intel Core i7-3770 CPU

(3.40GHz) with 16-GB RAM, running MATLAB R2014b. For each method, the

average runtime for processing a single image is reported in Tab. 4.2. One can

see that the MVEF method and the NSDM method are among the most efficient

methods. The major reason is that they use Hessian-based methods instead

of matched filters, avoiding filtering the image in all directions. Moreover,

the runtime of our method is acceptable compared with the OOF method,

the PCTV method and the conventional SAG method. It is noteworthy that

the runtime of our method is much lower than the conventional SAG method,

90

§4.4. Experimental validation

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Illustration of detection results of vessels, roads and rivers using the
proposed method. (a)-(c) are original images while (d)-(f) are their corresponding
line detection results.

although both methods employ anisotropic Gaussian kernels. This is because

the adaptive anisotropy factor used in the NASAG method reduces a great

many unnecessary filtering steps.

In summary, on the one hand, in terms of the quantitative evaluation

and the visual illustration, the NASAG method is more noise-robust than

the competing methods, achieving a satisfactory detection performance in

both the noise-free and the noisy cases. On the other hand, the NASAG

method consumes an acceptable execution time and is more efficient than

the OOF method, the PCTV method and the SAG method. Although the

MVEF method runs the fastest among all the methods, it is vulnerable to

noise, and moreover, its detection results for straight lines are wavy rather

than smooth.

4.4.2. Other applications

While we have evaluated our method on a task of fungus detection, our

proposed method also shows considerable potential for some other applications

91

Chapter 4. Second-order anisotropic Gaussian kernel

in which line features play the leading role. As illustrated in Fig. 4.6, our

method yields acceptable results on tasks of vessel detection in retina images,

road detection in satellite images and river detection in synthetic-aperture

radar images. Further evaluation for other applications is the subject of future

research.

4.5. Conclusions

We have studied and presented a filtering framework for line detection based on

novel anisotropic Gaussian kernels. This framework can be easily adapted to

noisy environments, and is also reliable to detect lines that are heterogeneous

in terms of width, prominence, etc. We have also developed a full-fledged

algorithm for line detection using the proposed NASAG kernels. Experimental

results on a biological image dataset as well as a noisy version thereof demon-

strate that compared with the selected competing methods, the proposed

NASAG method improves the noise-robustness while consuming an acceptable

execution time.

92

5 Unilateral second-order Gaussian

kernel with application to

image denoising

In this chapter, we address the problem of blob characterization. We view

blobs as prominent and isolated visual artifacts, which are rather close to the

notion of mountains in topography. Therefore, we characterize a blob using

characteristics of spatial location, spatial scale, and intensity prominence. To

formalize this proposal, we study the properties of the normalized second-

order Gaussian kernel. Accordingly, we propose a novel kernel named the

unilateral second-order Gaussian kernel to obtain a quantitative measurement

of blob characteristics. This method not only identifies the blob position,

prominence and scale, but also suppresses non-blob structures well, and as

such, this method can facilitate the implementation of blob reconstruction and

blob reduction. Besides, to tackle the blob-like noise that occurs in high-ISO

long-exposure images, we develop a denoising scheme by employing a blob

reduction procedure for each of the selected conventional denoising methods.

The experimental results demonstrate that in high-ISO long-exposure image

denoising, the methods incorporating blob reduction outperform the original

conventional methods.

The material of this chapter is based on the following publications:

• Wang, G., Lopez-Molina, C., and De Baets, B. (2017b). Blob reconstruc-

tion using unilateral second order Gaussian kernels with application to

high-ISO long-exposure image denoising. In Proceedings of the IEEE

International Conference on Computer Vision, pages 4817–4825

• Wang, G., Lopez-Molina, C., and De Baets, B. (2019a). High-ISO long-

exposure image denoising based on quantitative blob characterization.

IEEE Transactions on Image Processing, Under revision

5.1. Motivation

Noise is intrinsic to imaging systems. When generating raw data, an image

sensor incorporates certain temporal noise, correlated random noise (Maggioni

et al., 2014) and fixed pattern noise (FPN) (Xu et al., 2018a; Tsin et al.,

2001). When transforming the raw data into digital images, the in-camera

93

Chapter 5. Unilateral second-order Gaussian kernel

image signal processor performs a series of operations, e.g. demosaicing, value

clipping, white balance, color adjustment, gamma correction, tone mapping,

JPEG compression, etc (Nam et al., 2016). These procedures inevitably add

or increase image noise (Tsin et al., 2001). Over the past several decades,

numerous methods have been proposed for image denoising (Shao et al., 2014).

Most of them assume that the occurred noise can be approximately synthesized

by Poisson or/and Gaussian noise (Foi et al., 2008; Luisier et al., 2011).

Generally, image denoising methods can be categorized into spatial-domain-

based methods, transform-domain-based methods and learning-based methods.

Spatial-domain-based methods mainly utilize local image correlations (e.g.,

the anisotropic diffusion (AD) method (Black et al., 1998) and the bilateral

filtering (BF) method (Tomasi and Manduchi, 1998)) or non-local image self-

similarities (e.g., the non-local means (NLM) method (Buades et al., 2005)).

Transform-domain-based methods usually represent image patches by the

orthonormal basis (e.g., wavelets (Chang et al., 2000b), curvelets (Starck

et al., 2002), contourlets (Do and Vetterli, 2005) and bandelets (Le Pennec

and Mallat, 2005)) with a series of coefficients. The smaller coefficients are

the high-frequency part of the processed image that are related to the image

details and noise. Therefore, noise can be suppressed by adjusting the smaller

coefficients. Representative methods include a method based on wavelet

soft-thresholding (Chang et al., 2000b) and a method based on Bayes least

squares-Gaussian scale mixtures (Portilla et al., 2003). In particular, Dabov

et al. (2007) proposed a method by exploiting the self-similarities of image

patches and the correlation of wavelet coefficients. Besides, there are also

methods based on dictionary learning (Elad and Aharon, 2006) or deep neural

networks (Zhang et al., 2017a; Remez et al., 2018).

The denoising methods mentioned above generally work well when the

image is captured with appropriate camera settings in a good light condition, or

when noise adapts to well-known parameterizations. Nevertheless, real-world

noise is more complex than synthetic noise, varying with different image sensors,

camera settings (e.g. ISO sensitivity and exposure value) and even imaging

environments. Typically, in images taken in low-light conditions, there is noise

incurred by high-ISO or/and long-exposure settings (Plotz and Roth, 2017),

especially when using suboptimal settings. This type of noise is composed of

signal-independent temporal noise, signal-dependent temporal noise (Liu et al.,

2006), spatially correlated random noise and spatially correlated FPN (Mag-

gioni et al., 2014). It has been reported that many representative methods,

including state-of-the-art ones, have limitations in removing such noise. Al-

though there are methods that can relieve low-light imaging problems at time

of capture, such as flash/no-flash pairs (Petschnigg et al., 2004), raw data

94

§5.1. Motivation

denoising (Chen et al., 2018a), low-light image enhancement (Guo et al., 2017)

or multiple frame denoising (Godard et al., 2018), methods for removing real-

world noise in existing images are still highly desired. In the specific case of

imaging in a low-light environment, alternative denoising methods in literature

include non-linear filtering (Rabie, 2004), multi-resolution denoising (Zhang

and Gunturk, 2008; Pyo et al., 2011) and sparse-coding-based processing (Xu

et al., 2018b). Nevertheless, few methods have addressed the noise incurred

by high-ISO and long-exposure settings.

In digital photography, high-ISO and long-exposure settings are necessary

for taking photos of objects in a low-light environment (Petschnigg et al.,

2004), especially when a large depth-of-field should be guaranteed. However,

such settings will compound FPN, thereby entailing heavy noise. The noise

will become more complex after passing through the in-camera image signal

processor. Visually, the resulting noise has a significant spatial heterogeneity.

An example patch of a black background affected by high-ISO and long-

exposure noise is displayed in Fig. 5.1. It can be seen that some noisy spots

are spatially non-uniform and locally isolated. In image processing, such

structures differing from their surroundings in visual properties, e.g. brightness

or color, are also referred to as blobs (Koenderink, 1984). Therefore, we refer

to the spatially non-uniform and locally isolated noise appearing in high-ISO

long-exposure images as blob noise. It can be seen that some noisy spots differ

from their surroundings in color. We refer to the spatially non-uniform but

locally isolated noise as blob noise. Different from other types of noise, blob

noise has a certain shape while occupying a certain area, and by its very nature,

blob noise seriously damages the image self-similarity (Buades et al., 2005).

Conventional denoising algorithms can hardly recognize whether a structure

is a noise blob or a visual image element (Chen et al., 2018a). Moreover,

it is difficult to tackle blob noise in the frequency domain, since blob noise

has a large number of low frequency components that are completely mixed

with true image contents (Pyo et al., 2011). These reasons make blob noise

reduction a very challenging task.

In order to tackle blob noise, we propose a denoising scheme that incorpo-

rates three sequential steps: blob characterization, blob reconstruction and

blob reduction. With respect to blob characterization, quite a few blob de-

tection methods have been developed over the past several decades, several

representative ones being the Laplacian of Gaussian (LoG) method (Lindeberg,

1998b), the Top-Hat (TH) method (Breen et al., 1991) and the Hessian-based

LoG (HLoG) method (Zhang et al., 2015b). Despite their popularity, these

methods are essentially used for blob enhancement, and thus, they can hardly

yield a quantitative measurement of blob characteristics. Therefore, they

95

Chapter 5. Unilateral second-order Gaussian kernel

(a) (b)

Figure 5.1: Image patch containing blob noise (a) and the 3D visualization of its
red channel (b).

cannot be applied to blob reconstruction and blob reduction. Moreover, they

also yield significant responses for some non-blob structures like edges and lines.

Hence, we are still in need of a method that can inherently and quantitatively

capture the physical characteristics of blobs, which can subsequently facilitate

blob reconstruction and blob reduction.

In this paper, capitalizing on multiscale computer vision, we explore a

topographical approach to characterize blobs, interpreting the image as a

geographical surface. This interpretation is not new and has produced inter-

esting methods in literature. In line detection, for example, authors use jargon

like valleys or ridges to describe curvilinear structures (Lindeberg, 1998a).

The topographical counterpart of a blob measurement is simple: mountain

measurement (Helman, 2005). As displayed in Fig. 5.1(b), blobs can be

thought of as prominent and isolated visual artifacts, which are rather close

to the notion of mountain in topography. Hence, in this work, we characterize

a blob using characteristics of spatial location, spatial scale and intensity

prominence.

To formalize our proposal, we study the properties of the normalized

second-order Gaussian kernel, and accordingly, propose a novel kernel, namely

the unilateral second-order Gaussian (USG) kernel, to obtain a quantitative

measurement of blob characteristics. In the scale-space framework, the USG

kernels are normalized to yield a maximum response, which exactly reflects the

blob prominence, at the scale of the observed blob. In addition, the proposed

USG kernels topographically retain the minimum response among all directions

96

§5.2. Related work

and therefore suppress non-blob structures effectively. In this way, we are

able to obtain a quantitative measurement of the blob position, the scale

as well as the prominence, and accordingly, we can reconstruct a blob map.

Subsequently, we design a scheme to tackle blob noise in high-ISO long-exposure

images, employing a blob reduction procedure as a cheap preprocessing step for

conventional denoising methods. The main part of the blob-like noise is reduced

by a reconstructed blob map, while the residual noise is further removed by each

of the selected conventional denoising methods, i.e., the BF method (Tomasi

and Manduchi, 1998), the NLM method (Buades et al., 2005) and the color

version of block-matching and 3-D filtering (CBM3D) method (Dabov et al.,

2007), the multi-channel weighted nuclear norm minimization (MWNNM)

method (Xu et al., 2017a) and the trilateral weighted sparse coding (TWSC)

method (Xu et al., 2018b).

This chapter is organized as follows. Section 5.2 recalls related work on

real-world image denoising and blob detection. In Section 5.3, we elaborate a

method to quantify blob characteristics. Subsequently, Section 5.4 presents a

denoising scheme targeting high-ISO long-exposure noise. The experimental

results as well as discussions are included in Section 5.5, while Section 5.6

concludes this chapter.

5.2. Related work

In this section, we recall related work on real-world image denoising and blob

detection, respectively.

5.2.1. Real-world image denoising

Generally, image noise can be divided into categories of temporal noise, corre-

lated noise and FPN (Azzari et al., 2018). Temporal noise includes thermal

noise, readout noise, quantization noise, shot noise, dark current noise, etc (Xu

et al., 2018a; Tsin et al., 2001). The specific causes for each type of noise

vary considerably. For example, thermal noise is generated by the load re-

sistor, and renders into additive white Gaussian noise (Hui and O’Sullivan,

2009). Readout noise, alternatively, is generated during the process of charge-

to-voltage conversion, which is inherently inaccurate (Brooks et al., 2019).

More detailed inspections for shot noise and temporal noise can be found

in (Hui and O’Sullivan, 2009) and (Akyüz and Reinhard, 2007), respectively.

Generally, temporal noise is usually assumed to obey Poisson or/and Gaussian

distributions. However, noise in real-world images also contains correlated

noise and FPN, which displays non-uniform spatial characteristics (Goossens

et al., 2012; Azzari et al., 2018). The correlated noise might be incurred by the

97

Chapter 5. Unilateral second-order Gaussian kernel

physics of the acquisition system, the readout process, the cross-talk between

neighboring pixels, or the processing performed on the raw data (Azzari et al.,

2018). The major sources of FPN include dark signal non-uniformity and

photon-response non-uniformity (Xu et al., 2018a). FPN will arise with the

increase of ISO sensitivity or/and exposure time. Thus, FPN usually appears

in images taken in a low-light environment. After passing through an image

signal processor, the noise will become very difficult to address (Tsin et al.,

2001). Due to the mismatch between the actual noise characteristics and the

simplified noise models, many conventional methods might underperform in

removing real-world noise (Pižurica et al., 2013).

In literature, there are already some proposals for denoising images taken

in low-light environments. A pioneering method is the one proposed by Rabie

(2004), which uses adaptive hybrid mean and median filters to attenuate

stuck-pixel noise, blue-channel noise and JPEG artifacts. But this method

still lacks an extensive and quantitative evaluation. The method presented

in (Zhang and Gunturk, 2008) classifies noise into low-frequency and high-

frequency noise, and then reduces low-frequency noise by multiresolution

bilateral filters. This proposal is further developed in (Pyo et al., 2011), which

uses the BM3D method (Dabov et al., 2007) to process the down-sampled

chrominance channel. Sadly, such down-sampling also leads to a loss of certain

image details. Chatterjee et al. (2011) proved that demosaicing is the main

cause of random mid-frequency splotch noise, which led to a joint proposal for

denoising and demosaicing. Although promising, this method is not applicable

to noisy images, of which the raw data is not available. There are also

methods developed for addressing correlated noise (a.k.a. colored noise) that is

caused by the physics of the acquisition system, the procedure of demosaicking,

etc. (Azzari et al., 2018). Goossens et al. (2008) modified the NLM method by

further employing a post-processing procedure and a correlated noise estimator.

Compared with the methods designed for Gaussian noise, the improved NLM

method for correlated noise removal (NLMC method) (Goossens et al., 2008)

can better suppress the correlated noise. In addition, building on the estimation

of the probability of signal presence, hidden Markov tree models and Gaussian

scale mixture models, Goossens et al. (2009) modelled the signal of interest in

the wavelet domain for correlated noise removal. Other example methods for

correlated noise removal can be found in (Matrecano et al., 2012), (Mäkinen

et al., 2019) and (Tiirola, 2019). For removing noise specifically brought by

high-ISO settings, Xu et al. (2017a) proposed the MWNNM method, but this

method is rather time-consuming to execute. A very recent method uses the

trilateral weighted sparse coding scheme (TWSC method) (Xu et al., 2018b)

and obtains a promising performance, but it still has limitations to address

noisy patches that are quite spatially correlated. Besides, benefiting from the

98

§5.2. Related work

modelling capability of deep neural networks, some methods introduce deep

learning techniques to image denoising, and have achieved state-of-the-art

performance on some datasets. However, such methods might be over-fitted

to the noise in the training datasets, and thus, might generalize poorly to

noisy images with more complex noise (Guo et al., 2019). Despite the works

mentioned above, high-ISO long-exposure image denoising still remains a

challenging task.

5.2.2. Blob detection

Blob detection is a long-standing task in image processing. Quite a few blob

detection methods have been developed, and most of them rely on a signal-

based interpretation. Two pioneering approaches are the LoG method and

Difference of Gaussian method (Marr and Hildreth, 1980), both of which are

inspired by the early computational models of the human visual system. The

two methods perform an intrinsic Gaussian smoothing that makes them more

noise-robust than morphology-based methods, like the TH method (Breen

et al., 1991) or the H-dome method (Vincent, 1993). For detecting blobs with

heterogeneous sizes, Lindeberg (1998b) proposed the multiscale LoG (MLoG)

method in the context of the then-new scale-space theory. The MLoG method

convolves the image with a bank of kernels that covers all possible scales of

blobs, yielding a maximum convolutional response at the matched scale (a.k.a.

characteristic scale) for each blob (Diciotti et al., 2010). Lindeberg (1998b)

also used the determinant of the Hessian (DoH) to detect blob structures,

embodying the idea that positions in the image with large and positive DoH

values are likely to belong to blobs. Compared to the MLoG method, the

DoH method only produces responses for regions that contain significant

variations along two orthogonal directions, and therefore implies a more

restrictive condition for detecting blobs than the MLoG method (Lindeberg,

2015). Elaborating on Lindeberg’s work and the theory of multiscale computer

vision, several other authors have presented more advanced proposals. For

instance, Kong et al. (2013a) presented a method based on generalized LoG

kernels (gLoG method), which estimates scales (a.k.a. sizes), shapes and

orientations of the observed blobs using a bank of multiscale and anisotropic

convolutional kernels, at the cost of heavy computation. Also, Zhang et al.

(2015b) proposed the HLoG method that smooths the image using LoG kernels

and subsequently identifies the (overall) optimal scale using a Hessian analysis.

However, the HLoG method tends to underperform when the blobs in the

image are heterogeneous in size.

99

Chapter 5. Unilateral second-order Gaussian kernel

Figure 5.2: Visual representation of a blob structure and its measurable character-
istics.

5.3. The unilateral second-order Gaussian ker-

nel

As stated earlier, existing blob detection methods are not able to yield a

quantitative measurement of blob characteristics. Moreover, these methods

sometimes produce significant responses for non-blob structures. To overcome

these shortcomings, in this section, we study the properties of the normalized

second-order Gaussian kernels in scale-space, thereby proposing the USG

kernel, which can quantitatively measure the blob characteristics.

5.3.1. Modelling a blob structure

Blobs have been modelled in different ways in literature. In this paper, we

adopt the definition presented by Lindeberg (1993), which mathematically

describes a blob based on the idea that a blob would extend until it merges

with another blob. Let a two-dimensional continuous signal I : R2 → R obtain

a local maximum I(x0) at the location x0 = [x0, y0]T, and let C(x0) be a

convex region that contains x0. For any value of the signal intensity b ∈
[0, I(x0)[, topographically, the protuberance surface B(x; x0, b) is defined as

follows:

B(x; x0, b) =
{

(x, I(x)) | x ∈ C(x0), b ≤ I(x) ≤ I(x0)
}
. (5.1)

Obviously, (x0, I(x0)) is the peak point of the protuberance surface.

Since (x0, I(x0)) is a local maximum, in general, we can find a b < I(x0)

that results in an B(x; x0, b) such that there exists a monotonically increasing

100

§5.3. The unilateral second-order Gaussian kernel

path from any point within the set B(x; x0, b) to the peak point (x0, I(x0)).

Subsequently, we reduce b until we reach a b0 such that within the resul-

tant B(x; x0, b0) not all the points have a monotonically increasing path to

the peak point (x0, I(x0)). Here, the resultant B(x; x0, b0) is referred to as a

blob structure, while the b0 is defined as its base level. Accordingly, the blob

prominence is defined as the intensity difference between the local maximum

and the base level, i.e.,

p0 = I(x0)− b0 . (5.2)

Mathematically, we assume that a blob structure has a Gaussian shape (Smal

et al., 2010). Based on the aforementioned definition of a blob structure as

well as its characteristics, we describe a blob structure using four parameters:

the center position, the scale, the prominence and the base level. Specifically,

we formulate a blob structure as follows:

Λ0(x) = p0 · exp

(
− (x− x0)T(x− x0)

2ω2
0

)
+ b0 , (5.3)

where x0 represents the center position, p0 ∈]0, 1] the prominence, b0 ∈ [0, 1[

the base level and ω0 the spatial scale. As an illustration, Fig. 5.2 displays a

blob structure as well as its characteristics.

In fact, the image intensity at each location is known once the image is

given. Thus, according to Eq. (5.2), we can have b0 once p0 is obtained. That is,

the center position, the prominence and the blob scale are sufficient to describe

a modelled blob. Therefore, the blob can be delimited and reconstructed once

these parameters are determined.

5.3.2. Scale-invariant normalized second-order Gaussian

kernel

The second-order Gaussian (SOG) kernel and its variants have been widely

used for blob detection (Kong et al., 2013a). The expression of an SOG kernel

is given by (Wang et al., 2019c):

g′′(x;σ) =
x2 − σ2

2πσ6
exp

(
−xTx

2σ2

)
. (5.4)

We easily obtain the directional version of an SOG kernel by rotating the

kernel with an orientation θ (Lopez-Molina et al., 2015):

g′′(x;σ, θ) =
([cos θ, sin θ]x)

2 − σ2

2πσ6
exp

(
−xTRT

θ Rθx

2σ2

)
, (5.5)

101

Chapter 5. Unilateral second-order Gaussian kernel

where

Rθ =

[
cos θ sin θ

− sin θ cos θ

]
. (5.6)

Since the magnitude of a non-normalized Gaussian kernel (and that of

its derivatives) decreases as σ increases, conventionally, the SOG kernel is

normalized as follows (Lindeberg, 1998a):

ĝ′′(x;σ) = σ2γ · g′′(x;σ) . (5.7)

where γ ∈ R+ is referred to as the scale normalization factor.

Although having gained popularity, conventionally normalized SOG kernel

also produces significant responses for some non-blob structures. Moreover,

the relationship between the obtained response and the true blob prominence is

implicit, thereby leading to failures of blob reconstruction and blob reduction.

For this reason, we intend to design a kernel that can yield a quantitative

measurement of blob characteristics. Inspired by the normalization method

in Eq. (5.7), we normalize the SOG kernel, which would be used for blob

characterization, as follows:

g′′B(x;σ) = (−1)η · β · σ2γ · g′′(x;σ) , (5.8)

where β is a constant ensuring that the obtained prominence measurement

precisely reflects the original blob prominence, while η ∈ {0, 1} allows the

kernel to be applicable to both bright (η = 1) and dark (η = 0) blob detection.

In this work, we address the detection of bright blobs, thus setting η = 1.

To obtain the response of the SOG kernel to a blob, we convolve g′′B(x;σ)

with the blob structure in Eq. (5.3). Without loss of generality, we consider

the case x0 = 0. The resulting response at the center location of the blob is

given by:

B = g′′B(x;σ) ∗Λ0(x) |x=x0

= −βσ2γ · g′′(x;σ) ∗
(
p0 · exp

(
−xTx

2ω2
0

)
+ b0

) ∣∣∣∣∣
x=x0

= βp0σ
2γ−2ω2

0(ω2
0 + σ2)−1

(
1− ω2

0(ω2
0 + σ2)−1

)
. (5.9)

The detailed proof is presented in Appendix A.4.

In order to identify the scale of the blob, we intend to find the σ that yields

a maximum response in scale-space. For σ ∈ R+, it is easy to verify that the

second-order derivative of B w.r.t. σ is negative. Hence, we determine the

102

§5.3. The unilateral second-order Gaussian kernel

maximum value of B in scale-space by computing the first derivative of B

w.r.t. σ and setting it to zero. After a few algebraic manipulations, we find

that B reaches its maximum value at the scale:

σ∗ = γ
1
2 (2− γ)−

1
2ω0 . (5.10)

Substituting the σ in Eq. (5.9) by that in Eq. (5.10), we obtain the maximum

response in scale-space:

B∗ =
βp0γ

4(2− γ)γ−2
ω2γ−2
0 . (5.11)

In order to make the normalized SOG kernel scale-invariant, i.e., the re-

sponse B∗ is independent from ω0, we set γ = 1. Accordingly, Eq. (5.10)

becomes σ∗ = ω0, while Eq. (5.11) becomes

B∗ =
1

4
βp0 . (5.12)

To make the obtained response precisely reflect the blob prominence, i.e., B∗ =

p0, we set β = 4.

Eventually, taking Eq. (5.8) and the discussion above into consideration,

we get the scale-invariant normalized SOG kernel:

g′′B(x;σ) = −4σ2 · g′′(x;σ) . (5.13)

To illustrate the effectiveness of the normalized SOG kernel in blob char-

acterization, we model a blob based on Eq. (5.3), setting ω0 = 4, p0 = 0.8

and b0 = 0.1, as displayed in Fig. 5.3(a). Subsequently, we convolve g′′B(x;σ)

with the modelled blob. The black curve in Fig. 5.3(b) illustrates the responses

obtained at the blob center in scale-space. According to Eq. (5.9), the theo-

retical responses obtained at the blob center are supposed to follow the red

curve in Fig. 5.3(b). As can be seen, the obtained responses agree with the

theoretical values very well. Moreover, in scale-space, the normalized SOG

kernel obtains its maximum value at the scale of 4, which is identical to the

scale of the modelled blob. Furthermore, the maximum response of g′′B(x;σ)

is 0.8, which equals the prominence of the modelled blob.

We are now in a position to summarize that the scale-invariant normalized

SOG kernels yield the maximum response at the location x0 and at the scale ω0.

Moreover, the maximum response B∗ precisely reflects the blob prominence p0,

regardless of the blob scale.

103

Chapter 5. Unilateral second-order Gaussian kernel

(a) (b)

Figure 5.3: Illustration of a modelled blob and the obtained responses at the blob
center. (a) A modelled blob (ω0 = 4, p0 = 0.8 and b0 = 0.1); (b) The responses
yielded by the normalized SOG kernels in scale-space and the analytical values of B
obtained by varying σ in scale-space (γ = 1, β = 4).

5.3.3. The unilateral second-order Gaussian kernel

We premise the discussion above on the assumption that the blob structure has

a flat surrounding background. In fact, blobs are usually situated adjacent to

other image structures. That is, the intensity differences in different directions

are not always identical. According to the definition of blob prominence in

Section 5.2, we need to find the prominence as the minimum intensity difference

among all directions. For this purpose, we propose to use the USG kernel,

which inherits the aforementioned merit of the scale-invariant normalized SOG

kernel, to obtain the intensity difference along each direction.

According to Eqs. (5.5) and (5.13), the directional version of the scale-

invariant normalized SOG kernel is given by:

g′′B(x;σ, θ) = 2
σ2 − ([cos θ, sin θ]x)

2

πσ4
exp

(
−xTR−θRθx

2σ2

)
. (5.14)

We illustrate such a kernel in Fig. 5.4.

From Eq. (5.14) and Fig. 5.4, we see that a scale-invariant normalized

SOG kernel spatially consists of three parts, i.e., a central part κc as well as

two symmetrical side parts κl and κr. Each of them can be expressed as an

104

§5.3. The unilateral second-order Gaussian kernel

(a) (b)

Figure 5.4: Three-dimensional and planar representations of a normalized SOG
kernel.

individual kernel, leading to:

κc(x;σ, θ) =

{
g′′B(x;σ, θ) , if g′′B(x;σ, θ) > 0

0 , otherwise

κl(x;σ, θ) =

{
g′′B(x;σ, θ) , if g′′B(x;σ, θ) < 0 and x < −y tan θ

0 , otherwise

κr(x;σ, θ) =

{
g′′B(x;σ, θ) , if g′′B(x;σ, θ) < 0 and x > −y tan θ

0 , otherwise

. (5.15)

Note that κl(x;σ, θ) and κr(x;σ, θ) have the same sign, while κc(x;σ, θ) has

the opposite one.

As a matter of fact, the kernel g′′B(x;σ, θ) measures the intensity difference

between the central part and its two side parts, i.e., the average of the intensity

difference on both sides along the direction θ. As a result, traditional SOG

kernels usually lead to a great loss of directional information, since they always

bind the two side parts together. In order to measure the blob prominence

defined in Section 2, we propose the unilateral second-order Gaussian kernel

as follows.

For a given scale σ, the USG kernel along the direction θ is defined by

κu(x;σ, θ) = κc(x;σ, θ) + 2λ(x)κl(x;σ, θ) + 2(1− λ(x))κr(x;σ, θ) , (5.16)

105

Chapter 5. Unilateral second-order Gaussian kernel

Figure 5.5: Three-dimensional illustration of a USG kernel.

where

λ(x) =

{
1 , if |κl(x;σ, θ) ∗ Ip(x)| > |κr(x;σ, θ) ∗ Ip(x)|
0 , otherwise

, (5.17)

where Ip(x) is the image patch centered on x with the same size of κu(x;σ, θ).

As an illustration, Fig. 5.5 shows a three-dimensional appearance of an USG

kernel.

To make the filtering more efficient, we develop an equivalent implementa-

tion, convolving the SOG kernel with the signal as follows:

Bu(x;σ, θ) = κu(x;σ, θ) ∗ I(x)

= λ(x)
[
(κc(x;σ, θ) + 2κl(x;σ, θ)) ∗ I(x)

]
+

(1− λ(x))
[
(κc(x;σ, θ) + 2κr(x;σ, θ)) ∗ I(x)

]
, (5.18)

where

λ(x) =

{
1 , if (−κl(x;σ, θ) + κr(x;σ, θ)) ∗ I(x) > 0

0 , otherwise
. (5.19)

Obviously, in this way, the directions uniformly selected from the range of [0, π[

are able to cover all possible directions.

5.3.4. Topographical measurement of blob characteris-

tics

In order to accommodate the proposed USG kernels to digital image processing,

discrete versions of these kernels are needed. We get the discrete SOG kernel

106

§5.3. The unilateral second-order Gaussian kernel

by sampling the formula in Eq. (5.14) in the 2D integer coordinates:

g′′B(m;σi, θj) = 2
σ2
i − ([cos θj , sin θj]m)

2

πσ4
i

exp

(
−

mTRT
θj

Rθjm

2σ2
i

)
(5.20)

with

Rθj =

[
cos θj sin θj

− sin θj cos θj

]
, (5.21)

where σi denotes the discrete scale taken from a scale set S, and θj stands for

the discrete direction taken from a direction set D.

According to the expression of an SOG kernel in Eq. (5.20), we can easily

obtain the discrete USG kernel κu(m;σi, θj) by Eqs. (5.15), (5.16) and (5.17).

Figure 5.6 displays the kernels that are used to generate USG kernels at a

specific scale.

We obtain the response of the discrete USG kernel as follows:

Bu(m;σi, θj) = κu(m;σi, θj) ∗ I(m) . (5.22)

According to the definition of the blob prominence in Section 2, at each scale,

the minimum response among all the directions is selected as the scale blob

prominence. Therefore, at a give scale σi, the blob prominence is represented

by

Bu(m;σi) = min
θj∈D

Bu(m;σi, θj) . (5.23)

Subsequently, the maximum blob prominence in scale-space is retained as the

final blob prominence:

Bu(m) = max
σi∈S

Bu(m;σi) . (5.24)

We then identify the positions of the blobs as the local maximizers of Bu(m),

and thereby obtaining the map of blob prominence based on the responses at

these positions.

With respect to the scale information, as stated earlier, the response in

scale-space reaches its maximum value at the scale of the original blob scale.

As such, the scale of each blob is identified by

Su(m) = argmax
σi∈S

Bu(m;σi) . (5.25)

Consequently, we obtain the blob characterization method based on the

107

Chapter 5. Unilateral second-order Gaussian kernel

Figure 5.6: A bank of kernels that is used to generate USG kernels at a specific
scale. The top row shows (κc +2κl), the middle row shows (κc +2κr) and the bottom
row shows (−κl + κr). The intensity range of each patch has been adjusted for a
better display.

unilateral second-order Gaussian kernel (USG method) to quantitatively mea-

sure the blob characteristics, including the position, the prominence and the

scale.

5.4. High-ISO long-exposure image denoising

Having proposed a method to quantitatively measure blob characteristics,

in this section, we intend to tackle the problem of high-ISO long-exposure

image denoising, which is rarely addressed in literature. We firstly present an

approach to model high-ISO long-exposure noise. Subsequently, we propose a

denoising scheme by employing a step of blob reduction as a preprocessing

step for six selected conventional denoising methods, i.e. the BF (Tomasi and

Manduchi, 1998), NLM (Buades et al., 2005), NLMC (Goossens et al., 2008),

CBM3D (Dabov et al., 2007), MWNNM (Xu et al., 2017a) and TWSC (Xu

et al., 2018b) methods.

5.4.1. Spatially modelling blob noise

Denoising is the process of restoring the original image by reducing the

undesirable noise from a noisy image (Huang et al., 2014). As argued earlier,

real-world noise is very complex, and might combine signal-dependent noise,

signal-independent noise, FPN, etc (Xu et al., 2018a), apart from that induced

by the own image processor. Approximately, real-world noise ψrw can be

modelled by

ψrw(m) = Disp

(
Dclip

(
ψsd (Ic(m)) +ψsi +ψscr(Ic(m),m) +ψfpn(Ic(m),m)

))
,

(5.26)

where Disp denotes the degradation in the image signal processor (Guo

et al., 2019), Dclip represents the degradation brought by the clipping op-

eration (Plotz and Roth, 2017), ψsd stands for spatially uncorrelated signal-

dependent noise, ψsi denotes spatially uncorrelated signal-independent noise, ψscr

108

§5.4. High-ISO long-exposure image denoising

stands for spatially correlated random noise (Maggioni et al., 2014), ψfpn rep-

resents spatially correlated FPN and Ic is the true (i.e. clean) image signal.

From Eq. (5.26), it can be learned that modelling ψrw in the spatial space

is very difficult. We simplify this problem by assuming that the blob-like

artifacts in ψrw can be represented as additive blob noise. Therefore, we

spatially model the degradation process brought by high-ISO long-exposure

settings as a degradation function together with additive blob noise.

Accordingly, we model the noisy image in the spatial domain as follows:

I
(q)
noi(m) = D(q)

(
I(q)c (m)

)
+ ξ

(q)
b (m) , (5.27)

where I
(q)
noi (q ∈ {1, 2, 3}) denote the q-th channel of a noisy color image, I

(q)
c

denotes the q-th channel of the true (i.e., clean) image, ξ
(q)
b stands for the

additive blob-like noise, while D(q) represents a degradation process on the

image imposed by other types of noise, e.g., white Gaussian noise, Poisson

noise, etc. As for ξ
(q)
b , we model it using spatially mixed Gaussian functions

as follows:

ξ
(q)
b =

∑
mi∈I(q)c

H(q)(ε− ε0) ·G(q)(m; mi, σ̂i, p̂i) , (5.28)

where H(q) represents the Heaviside step function:

H(q)(ε− ε0) =

{
0 , if ε− ε0 < 0

1 , otherwise
, (5.29)

in which ε denotes an argument that follows the continuous uniform distribution

on the unit interval [0, 1] and ε0 ∈ [0, 1] is a constant. The term H(q) reflects

the probability of FPN occuring at a location. If FPN occurs at mi, the blob

noise is approximated by a local blob structure G(q):

G(q)(m; mi, σ̂i, p̂i) = p̂i · exp

(
− (m−mi)

T(m−mi)

2σ̂2
i

)
, (5.30)

where σ̂i and p̂i, which are both normally distributed, denote the prominence

and scale, respectively, and mi represents the center position of a blob-like

structure. In Fig. 5.7, we display a blob noise map modelled by Eq. (5.28).

Although not perfect, the modelled noise can reflect the appearance of real

high-ISO long-exposure noise.

109

Chapter 5. Unilateral second-order Gaussian kernel

Figure 5.7: Illustration of the real high-ISO long-exposure noise (left) and the
modelled noise (right). Please zoom electronically for a better view.

5.4.2. Denoising methods incorporating blob reduction

As elaborated in the previous section, we use the USG method to obtain

a quantitative measurement of blob characteristics, including the position,

the prominence and the scale. Subsequently, according to the blob model

in Eq. (5.3), we are able to reconstruct the blobs using the quantitative

measurements. Specifically, we obtain a binary blob center map Blm using the

local maximizers of Bu. For a blob centered at the location mi, we can get its

blob prominence pi = Bu(mi) and blob scale σi = Su(mi). Then, similar to

Eq. (5.30), we reconstruct this blob as follows:

Λ(i)(m) = pi · exp

(
− (m−mi)

T(m−mi)

2σ2
i

)
. (5.31)

Subsequently, the aggregate of all the reconstructed Λ(i) is computed as the

blob reconstruction map. In this way, for a given channel of the high-ISO

long-exposure image, we can also obtain a map of reconstructed blob noise Î
(q)
b .

Then, according to Eqs. (5.28) and (5.30), for each channel of the noisy image,

we use Î
(q)
b as an approximation of ξ

(q)
b . Therefore, using Î

(q)
b , we reduce the

main part of the blob-like noise as follows:

I
(q)
br = I

(q)
noi − ξ

(q)
b ≈ I

(q)
noi − Î

(q)
b . (5.32)

In a real-world noisy image case, Fig. 5.8(b) displays the red channel of the

noisy image shown in Fig. 5.8(a). Figure 5.8(c) displays the blob reduction

result based on Eq. (5.32). One can see that, although the result is not perfect,

most of the blob-like noise has been reduced.

To further restore the image, we select several conventional denoising

110

§5.5. Experimental validation

(a) (b)

(c) (d)

Figure 5.8: Illustration of the process of the proposed denoising scheme. (a) A
noisy image; (b) The red channel of (a); (c) Result of a blob reduction on the
red-channel image; (d) The denoising result of the proposed BR-CBM3D method.

methods to reduce both the residual noise and the errors caused by the blob

reduction procedure, respectively. In this section, we adopt three widely used

methods, i.e., the BF (Tomasi and Manduchi, 1998), NLM (Buades et al., 2005),

NLMC (Goossens et al., 2008) and CBM3D (Dabov et al., 2007) methods,

and two state-of-the-art methods, i.e., the MWNNM (Xu et al., 2017a) and

TWSC (Xu et al., 2018b) methods. In this way, we get six denoising methods

that incorporate a blob reduction (BR) procedure, and accordingly, we refer to

the six proposed denoising methods as the BR-BF, BR-NLM, BR-NLMC, BR-

CBM3D, BR-MWNNM and BR-TWSC methods. As an example, Fig. 5.8(d)

shows a denoising result obtained by the BR-CBM3D method.

5.5. Experimental validation

We have presented the USG method to quantitatively measure the blob char-

acteristics. Building on this method, we have also developed a denoising

111

Chapter 5. Unilateral second-order Gaussian kernel

Algorithm 3 The USG method for blob reconstruction and reduction

Require: Original image I, scale set S, direction set D
Ensure: Blob reduction result Ibr
1: for each σi ∈ S do
2: for each θj ∈ D do
3: Bu(m;σi, θj)← κu(m;σi, θj) ∗ I(m)
4: end for
5: Bu(m;σi)← min

θj∈D
Bu(m;σi, θj)

6: end for
7: Bu(m)← max

σi∈S
Bu(m;σi)

8: Su(m)← argmax
σi∈S

Bu(m;σi)

9: Blm(m)← local maximizers of Bu(m)

10: Îb ← Blob reconstruction based on Bu(m), Blm(m) and Su(m)

11: Ibr ← I− Îb

scheme by employing blob reduction as a preprocessing step for six conven-

tional denoising methods, thereby getting six denoising methods based on

blob reduction. In this section, firstly, we test the USG method for blob

reconstruction and blob reduction on an image containing synthetic blobs

and white Gaussian noise. Secondly, in order to confirm whether or not the

proposed denoising scheme can tackle the real noise occurring in high-ISO

long-exposure images, we employ the developed denoising methods, i.e., the

BR-BF, BR-NLM, BR-NLMC, BR-CBM3D, BR-MWNNM and BR-TWSC

methods, to remove real blob-like noise.

5.5.1. Experiments on removing synthetic blobs and noise

To highlight the advantages of the USG method for blob characterization, on

a synthetic image, we use the proposed USG method, which is summarized in

Algorithm 3, to characterize, reconstruct and remove the blobs. Subsequently,

we further remove the white Gaussian noise, using the BR-NLM method as a

representative method.

The synthetic image, as shown in Fig. 5.9(a), contains blobs whose scales

vary from 3 to 4, accompanied by some non-blob structures, like edges, bar-

shaped lines, corners and terminations. The noisy synthetic image is obtained

by adding Gaussian white noise with zero mean and a variance of 0.005. As for

the parameter settings of the USG method, the multiple scales are taken from

the scale set S =
{

3, 103 ,
11
3 , 4

}
, which covers the scales of the synthetic blobs,

while the directions are selected from π/8 to π with a step of π/8. The blob

reconstruction and blob reduction results are shown in Figs. 5.9(b) and 5.9(c).

112

§5.5. Experimental validation

(a) (b)

(c) (d)

Figure 5.9: Results of blob reconstruction (b) and blob reduction (c) obtained by
the USG method on a synthetic image (a) as well as the denoising result obtained
by the BR-NLM method (d). For a better visualization, the images are displayed
using the heat maps of intensity.

It can be seen that the blobs in the synthetic images have been reconstructed

and removed successfully. Moreover, the denoising result of the BR-NLM

method displayed in Fig. 5.9(d) demonstrates that the designed denoising

scheme can remove both blobs and white Gaussian noise effectively.

For comparison, we use several widely adopted blob detection methods,

including the TH, MLoG and gLoG methods, to characterize the blobs. The

parameters in these methods are set according to the characteristics of the

synthetic blobs and the original implementation. For reproducibility, the

parameter settings of each method are listed as follows:

• TH: The morphological structuring element is set as a disk-shaped

element. The scale of the structuring element is set to be 4.0 (i.e., the

radius is 13 pixels).

• MLoG: The multiple scales are taken from 3 to 4 with a step of 1/3.

113

Chapter 5. Unilateral second-order Gaussian kernel

(a) (b)

(c) (d)

Figure 5.10: Responses obtained by the USG method (a), the TH method (b), the
MLoG method (c) and the gLoG method (d). For a better visualization, the images
are displayed using the heat maps of intensity.

• gLoG: The multiple scales are taken from 3 to 4 with a step of 1/3. The

directions are selected from π/9 to π with a step of π/9.

The responses of the different methods are shown in Fig. 5.10. In contrast

to the response of the USG method shown in Fig. 5.10(a), which has significant

values only for blobs, the responses yielded by the competing methods also

have significant values for non-blob structures. The TH method is sensitive

to noise, while the MLoG and gLoG methods yield significant responses at

locations of edges, corners, etc. Therefore, these competing methods can

hardly be used for precise blob characterization.

114

§5.5. Experimental validation

5.5.2. Experiments on removing real noise

Experimental setup

In this section, we test the developed denoising methods, i.e., the BR-BF,

BR-NLM, BR-NLMC, BR-CBM3D, BR-MWNNM and BR-TWSC methods,

to remove real high-ISO long-exposure noise. To demonstrate the effectiveness

of the blob reduction, we also compare the developed denoising methods with

the conventional denoising methods.

In the selected conventional methods, most of the parameters are set

according to the original papers. For the sake of fairness, some parameters

are also optimally set by selecting the parameters that yield the best result.

Specifically, to make the results reproducible, the parameter settings are listed

as follows:

• BF: The degree of smoothing is optimally selected from 0.001 to 0.060

with a step of 0.001.

• NLM: The size of the similarity square neighborhood and the size of the

search window are set as 7 and 21, respectively (Buades et al., 2005).

The parameter determining the filtering strength is optimally selected

from 0.050 to 0.080 with a step of 0.005.

• NLMC1: The size of the similarity square neighborhood and the size of

the search window are set as 11 and 31, respectively (Goossens et al.,

2008). The noise standard deviation is optimally selected from 1 to 50

with a step of 1.

• CBM3D2: The block size, the sliding step and the length of the search

neighborhood are set as 8, 3 and 39, respectively (Dabov et al., 2007).

The algorithm is carried out in Aopp color space (Ghimpeţeanu et al.,

2016). The standard deviation, i.e., the assumed noise intensity, is

optimally selected from 1 to 50 with a step of 1.

• MWNNM3: The size of local patches, the size of the search window, the

number of non-local similar patches, the initial penalty parameter and

the number of iterations are set as 6, 40, 70, 6 and 2, respectively (Xu

et al., 2017a). The noise estimation parameter is optimally selected from

0.5 to 5.0 with a step of 0.5.

• TWSC4: The size of local patches, the size of the search window, the

number of similar patches, the initial penalty parameter, the penalty

1 https://quasar.ugent.be/bgoossen/download_nlmeans/
2 http://www.cs.tut.fi/~foi/GCF-BM3D/
3 https://github.com/csjunxu/MCWNNM-ICCV2017/
4 https://github.com/csjunxu/TWSC-ECCV2018/

115

https://quasar.ugent.be/bgoossen/download_nlmeans/
http://www.cs.tut.fi/~foi/GCF-BM3D/
https://github.com/csjunxu/MCWNNM-ICCV2017/
https://github.com/csjunxu/TWSC-ECCV2018/

Chapter 5. Unilateral second-order Gaussian kernel

parameter update factor and the maximum number of iterations are set

as 6, 60, 90, 0.5, 1.1 and 10, respectively (Xu et al., 2018b). The noise

estimation parameter is optimally selected from 0.5 to 5.0 with a step of

0.5.

In the proposed blob reduction method, we adopt RGB color space and

configure the direction set as D = {π · i/8 | i ∈ 1, 2, . . . , 8}. The scale set is

configured according to the size of the blob noise. For a blob noise structure

having a radius r (r ≥ 3), the corresponding kernel scale is supposed to be (r−
1)/3. In this experiment, we configure the scale set as S =

{
2
3 , 1,

4
3 ,

5
3

}
.

When conducting experiments on standard images, we also adopt two other

methods for comparison, i.e. the AD method (Black et al., 1998) and the

denoising method using deep convolutional neural networks (DnCNN) (Zhang

et al., 2017a). Furthermore, in the experiments of real-world image denois-

ing, we adopt a state-of-the-art low-light image enhancement method named

LECARM (Ren et al., 2019). The parameters in the DnCNN5 and LECARM6

methods are set as the default values. When performing the AD methods,

we set the number of diffusion iterations Nitr in two ways. The optimal

anisotropic diffusion (oAD) method is configured with the Nitr that yields

the best quantitative evaluation result, while the strong anisotropic diffusion

(sAD) method is configured with Nitr = 7.

All the experiments are conducted in a Matlab (R2014b) environment and

on a computer with Intel Core(TM) i7-3770 CPU 3.40GHz × 2 and RAM

16.00GB.

Performance on standard images

We first carry out the experiments on noisy versions of the selected standard

images, which are obtained by adding real high-ISO long-exposure noise.

The real noise is obtained by taking black photos using a digital single-lens

reflex camera with high ISO sensitivity and long exposure time. As shown in

Fig. 5.11, the selected standard images include the Baboon, Barbara, Lena,

Peppers7 and Sailboat8 (a.k.a. Sailboat on lake), all of which have an identical

resolution 512 × 512 × 3. These images reflect a diversity of image content

and are extensively used in the field of image processing. In this way, we have

both the ground truth clean image and noisy images, and as such, we are able

to obtain a quantitative evaluation.

5 https://github.com/cszn/DnCNN
6 https://github.com/baidut/LECARM
7 https://homepages.cae.wisc.edu/~ece533/images
8 http://sipi.usc.edu/database/database.php?volume=misc

116

https://github.com/cszn/DnCNN
https://github.com/baidut/LECARM
https://homepages.cae.wisc.edu/~ece533/images
http://sipi.usc.edu/database/database.php?volume=misc

§5.5. Experimental validation

Table 5.1: PSNR (dB) of denoising results.

Method Baboon Barbara Lena Peppers Sailboat

oAD 26.79 28.52 28.89 27.01 28.12

sAD 23.61 26.64 28.40 26.98 26.80

DnCNN 26.39 27.96 28.47 26.87 27.89

BF 27.01 29.42 29.52 27.58 28.54

BR-BF 28.45 31.66 32.18 31.07 30.46

NLM 24.92 29.69 29.32 27.32 27.34

BR-NLM 25.51 31.52 31.15 30.00 28.20

NLMC 26.40 29.38 29.30 26.36 27.24

BR-NLMC 28.30 30.79 31.58 30.55 30.11

CBM3D 26.94 30.03 29.46 27.32 28.19

BR-CBM3D 28.55 32.59 32.14 30.94 30.42

MWNNM 27.12 30.06 29.30 27.56 28.42

BR-MWNNM 28.44 32.31 31.91 31.02 30.41

TWSC 27.05 30.07 29.59 27.47 28.31

BR-TWSC 28.55 32.40 32.27 31.03 30.53

In this experiment, we adopt the widely used Peak Signal-to-Noise Ratio

(PSNR) as a quantitative evaluation metric, which is defined by:

Psnr = 10log10

 |Ic|∑
m∈Ic

(Ic(m)− Idn(m))
2

 , (5.33)

where Ic represents the true image, Idn the denoising result and |Ic| the

number of pixels in Ic. Note that both the Ic and Idn have been transformed

into the intensity range of [0, 1]. For image denoising, a higher PSNR is

preferred.

The obtained quantitative evaluation results are reported in Table 5.1 and

the visual denoising results are shown in Figs. 5.11, 5.12 and 5.13. It can be

seen that all methods struggle with the complexity of the task. The oAD

method, for example, cannot remove the noise effectively. Although the sAD

method can attenuate the blob noise better than the oAD method, it expectedly

suppresses image details, which leads to a significant decrease of the PSNR

values. The DnCNN method also underperforms in removing blob noise. This

is reasonable, because the generalization of deep convolutional neural networks

117

Chapter 5. Unilateral second-order Gaussian kernel

Table 5.2: Execution time (s) of the different methods on each image.

Method Baboon Barbara Lena Peppers Sailboat

oAD 0.08 0.08 0.08 0.23 0.08

sAD 0.38 0.38 0.39 0.40 0.42

DnCNN 16.54 16.51 16.52 16.63 17.05

BF 0.05 0.05 0.05 0.05 0.06

BR-BF 2.13 1.88 1.98 1.88 1.82

NLM 140.54 140.83 141.28 141.18 140.80

BR-NLM 142.65 142.11 143.49 143.22 142.07

NLMC 61.56 60.74 61.72 60.80 60.98

BR-NLMC 63.33 62.64 63.56 62.53 62.96

CBM3D 4.75 4.64 5.21 5.22 5.15

BR-CBM3D 6.44 6.26 7.11 7.12 6.90

MWNNM 286.58 277.91 277.14 281.39 280.17

BR-MWNNM 288.59 279.17 278.98 283.28 281.94

TWSC 136.44 134.06 134.70 138.11 136.13

BR-TWSC 138.39 135.68 136.72 140.02 137.88

largely depends on the ability in memorizing training data, and the original

DnCNN is essentially trained by images corrupted by additive white Gaussian

noise (Guo et al., 2019). Compared with the AD and DnCNN methods, the

BF, NLM, NLMC, CBM3D, MWNNM and TWSC methods perform slightly

better in terms of PSNR and visual denoising results. However, these methods,

including the TWSC method that has been designed for removing real-world

noise, still have limitations in removing blob noise. In contrast, the methods

incorporating blob reduction achieve a considerable performance in removing

blob noise. This is confirmed on all the test images in terms of PSNR and

visual denoising results, which demonstrates that the use of blob reduction

can effectively benefit high-ISO long-exposure noise removal.

The execution time of each method is reported in Tab. 5.2. The oAD,

sAD and BF methods are comparatively more efficient to execute, while the

MWNNM and BR-MWNNM methods are the most time-consuming among all

the methods tested. Note that compared with the original denoising methods,

our methods incorporating blob reduction obtain better performances at the

expense of acceptable additional computation (around 2 seconds in terms of

runtime). Moreover, in our method, the convolution operations performed

by the proposed USOG kernels are essentially linear filtering. The filtering

118

§5.5. Experimental validation

Baboon Barbara Lena Peppers Sailboat

N
o
is
y

C
le
a
n

o
A
D

sA
D

D
n
C
N
N

Figure 5.11: Noisy standard images corrupted by real noise along with the ground
truth, and the denoising results obtained by the oAD, sAD, and DnCNN methods.
Please zoom electronically for a better view.

procedures among different kernels are mutually independent. Thus, our

method can be further accelerated by parallel computing.

Nonetheless, our methods still have limitations in denoising areas with

plenty of textural structures. For instance, the denoising results on the image

Baboon show a limited performance in terms of PSNR (less than 30dB). This

is because the methods have to make a difficult compromise between removing

more noise and preserving more structural details.

Performance on real-world images

We further apply the proposed denoising methods as well as the competing

methods to real-world noisy images. As shown in Fig. 5.14, these noisy images

are highly corrupted by high-ISO long-exposure noise that is difficult to remove

119

Chapter 5. Unilateral second-order Gaussian kernel

Baboon Barbara Lena Peppers Sailboat

B
F

B
R
-B

F
N
L
M

B
R
-N

L
M

N
L
M
C

B
R
-N

L
M
C

Figure 5.12: Denoising results on the noisy standard images obtained by the BF,
NLM, NLMC methods and the proposed methods incorporating blob reduction.
Please zoom electronically for a better view.

120

§5.5. Experimental validation

Baboon Barbara Lena Peppers Sailboat

C
B
M
3
D

B
R
-C

B
M
3
D

M
W

N
N
M

B
R
-M

W
N
N
M

T
W

S
C

B
R
-T

W
S
C

Figure 5.13: Denoising results on the noisy standard images obtained by the
CBM3D, MWNNM, TWSC methods and the corresponding methods incorporating
blob reduction. Please zoom electronically for a better view.

121

Chapter 5. Unilateral second-order Gaussian kernel

Image #1 Image #2 Image #3 Image #4 Image #5
N
o
is
y

sA
D

D
n
C
N
N

L
E
C
A
R
M

Figure 5.14: Five real-world noisy images (top row) (Courtesy: Peter K. Burian,
Dave Johnson and Ziwei Liu (Liu et al., 2014)) and the processing results of the
sAD, DnCNN and LECARM methods. Please zoom electronically for a better view.

by the sAD and DnCNN methods. Moreover, this type of noise can hardly be

reduced by the low-light enhancement LECARM method.

The denoising results obtained by the BR-based methods as well as the

original methods are displayed in Figs. 5.15 and 5.16. The original BF,

NLM, NLMC, CBM3D, MWNNM and TWSC methods also underperform

in removing blob noise. Comparatively, the methods incorporating blob

reduction yield results with better visual quality. This is consistent with the

experimental results obtained on the standard images. For example, when

denoising the real-world noisy Image #5 shown in the top right of Fig. 5.14,

the original BF, NLM, NLMC, CBM3D, MWNNM and TWSC methods fail

in removing the heavy noise. In their denoising results, the blob noise is

blurred and mingled, which damages the quality of the images. By contrast,

the methods incorporating blob reduction remove more noise. This is mainly

because the blob reduction procedure can significantly reduce the mass of the

blob noise while retaining the image contents and structures, which highly

benefits a subsequent denoising procedure. It is worth noting that our methods

might underperform when FPN is extremely spatially correlated. For instance,

when processing the real-world noisy Image #5, our methods fail to remove

122

§5.5. Experimental validation

Image #1 Image #2 Image #3 Image #4 Image #5

B
F

B
R
-B

F
N
L
M

B
R
-N

L
M

N
L
M
C

B
R
-N

L
M
C

Figure 5.15: Denoising results on five real-world noisy images obtained by the BF,
NLM, NLMC methods and the corresponding methods incorporating blob reduction.
Please zoom electronically for a better view.

123

Chapter 5. Unilateral second-order Gaussian kernel

Image #1 Image #2 Image #3 Image #4 Image #5

C
B
M
3
D

B
R
-C

B
M
3
D

M
W

N
N
M

B
R
-M

W
N
N
M

T
W

S
C

B
R
-T

W
S
C

Figure 5.16: Denoising results on five real-world noisy images obtained by the
CBM3D, MWNNM, TWSC methods and the corresponding methods incorporating
blob reduction. Please zoom electronically for a better view.

124

§5.6. Conclusions

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5.17: Illustration of the removed noise on the real-world noisy Image #5
(red channel) obtained by the (a) BF, (b) BR-BF, (c) NLM, (d) BR-NLM, (e) NLMC,
(f) BR-NLMC, (g) CMB3D, (h) BR-CBM3D, (i) MWNNM, (j) BR-MWNNM, (k)
TWSC and (l) BR-TWSC methods, respectively. For a better visualization, the
images are displayed using the heat maps of intensity.

some noisy spots. This is because such heavy noise does not agree with the

assumptions of our blob characterization method.

In Fig. 5.17, we also show the removed noise (a.k.a. method noise (Buades

et al., 2005)) obtained on the red channels of the real-world noisy Image #3

displayed in Fig. 5.14. These maps of the removed noise also demonstrate that

the blob reduction helps remove more blob noise.

Therefore, it can be inferred that the BF, NLM, NLMC, CBM3D, MWNNM

and TWSC methods can benefit from the proposed blob reduction procedure

in tackling high-ISO long-exposure noise. Although not providing a perfect

solution, the proposed blob reduction method helps remove the high-ISO

long-exposure noise in a cheap way.

5.6. Conclusions

In this chapter, we have presented a computational method to quantitatively

measure the blob characteristics, using the proposed unilateral second-order

Gaussian kernels. This method not only identifies the blob position, the

prominence and the scale, but also suppresses non-blob structures well, and as

such, this method can facilitate the implementation of the blob reconstruction

and blob reduction. Moreover, to tackle the blob-like noise that occurs in

high-ISO long-exposure images, we have developed a denoising scheme by

employing a blob reduction procedure for each of the selected conventional

125

Chapter 5. Unilateral second-order Gaussian kernel

denoising methods. The experimental results have demonstrated that in high-

ISO long-exposure image denoising, the methods incorporating blob reduction

outperform the original conventional methods.

126

6 Iterative Laplacian-of-Gaussian

filtering with application to

blob detection

Detecting overlapping blob objects is a classical, yet challenging prob-

lem. In this chapter, we present a novel blob detection method based on

iterative Laplacian-of-Gaussian filtering and unilateral second-order Gaussian

kernels. The iteration of the Laplacian of Gaussian reduces the degree of

overlap, facilitating a subsequent blob extraction procedure. The unilateral

second-order Gaussian kernels yield responses only for blob objects, and the

blob objects can therefore be pinpointed by a thresholding step. The exper-

imental results demonstrate that the proposed method shows a promising

performance in detecting fluorescence microscopy cells and electron micrograph

nanoparticles.

The material of this chapter is based on the following publication:

• Wang, G., Lopez-Molina, C., and De Baets, B. (2020). Automated blob

detection using iterative Laplacian of Gaussian filtering and unilateral

second-order Gaussian kernels. Digital Signal Processing, 96:102592

6.1. Motivation

In image processing, blobs can be defined as small structures whose visual

properties, e.g. brightness or color, are different from those in their surrounding

region (Koenderink, 1984). Many objects in images show a blob-like appear-

ance, and as such, blob detection has found applications in a wide variety

of fields, such as cell counting (Zhang et al., 2015b), vanishing point detec-

tion (Kong et al., 2013b), bubble extraction (Zhang et al., 2012), quantum

dot recognition (Xu et al., 2014a), and so on.

Over the past several decades, a variety of blob detection methods have

been developed. A significant portion of these methods employ the Laplacian

of Gaussian, or the approximating Difference of Gaussian, to enhance blob

structures. The monoscale Laplacian of Gaussian kernel, which was proposed by

Marr and Hildreth (1980), essentially measures the local contrast by subtracting

the surrounding intensity from the central intensity at a given scale, thereby

yielding positive and significant responses to blob structures. In the context of

127

Chapter 6. Iterative Laplacian-of-Gaussian filtering

the then-new scale-space theory, Lindeberg (1998b) proposed a method based

on multiscale Laplacian of Gaussian filtering (LoG filtering), which has become

a standard approach for blob detection. In this method, a bank of normalized

Laplacian of Gaussian kernels (LoG kernels) covering all possible scales is

used to convolve the image, yielding a maximum convolutional response at

the characteristic scale for each blob. Lindeberg also used the determinant

of the Hessian matrix (Lindeberg, 1998b) to detect blobs, embodying the

idea that positions at which the determinant of the Hessian matrix is large

and positive are likely to be blobs. Elaborating on Lindeberg’s work and

the theory of multiscale computer vision, several other authors presented

more advanced proposals. Kong et al. (2013a) proposed a method based on

generalized Laplacian of Gaussian kernels, which estimates the scale, shape

and orientation of the observed blob by a bank of multiscale and anisotropic

kernels. The method presented in (Moon et al., 2013) enhances blobs using the

likelihood of blob-like structures as well as the magnitude of the eigenvalues

at each pixel, which are computed from the eigenvalues of the Hessian matrix

in scale-space. Zhang et al. (2015b) developed a method using both LoG

filtering and the Hessian matrix to estimate the (overall) optimum scale. Also,

following the works in (Moon et al., 2013) and (Frangi et al., 1998), they

estimated the regional likelihood of blobness using the trace and determinant

of the Hessian matrix, which is computationally cheaper than the method

relying on eigenvalues (Moon et al., 2013). But the method in (Zhang et al.,

2015b) works under the premise that the blobs are homogeneous in size and

the degree of overlap is fairly low. Despite a lot of successful applications,

the methods reviewed above have limitations in separating overlapping (a.k.a.

adjacent or occluded) blobs, which occur ubiquitously in real imagery, e.g. cell

or molecule images (Xing and Yang, 2016).

Driven by experimental and practical demands, many approaches have been

presented to address overlapping blobs. Arslan et al. (2013), for example, pro-

posed a method to separate overlapping blobs using contours, but this method

underperforms when the overlapping blobs have similar grayscale intensities,

or when the objects are rich in texture. The H-dome transformation (Smal

et al., 2010), which suppresses the pixels whose relative height/depth is less

than a given H-value in a grayscale image, is an effective tool to find regional

maxima/minima in an image. Hence, it can be used for blob detection. To

get rid of the interferences from noise or texture, the H-dome transformation

is often paired with a blob enhancement filter, distance transformation, etc.

But this method is sensitive to the choice of H-value. A small H-value might

fail to separate overlapping blobs, while a large H-value might lead to false

negative results. An alternative is the method based on wavelets (Püspöki

et al., 2016), which can identify both the position and size of the blob to be

128

§6.1. Motivation

detected. This method has been implemented as an ImageJ plugin with a

user-friendly interface. Besides, Descombes (2017) proposed a multiple blob

detection method using a marked point process framework. A global energy

function is built on the local contrast measure and the overlap degree. Subse-

quently, a so-called multiple births and deaths algorithm (Descombes et al.,

2009) is employed to minimize the global energy function. It is reported that

this method can deal with partially overlapping objects well. Nevertheless,

the non-convexity of the function to be minimized usually leads to a high

computational cost (Descombes, 2017; Ortner et al., 2008).

Instead of analyzing grayscale images, some methods separate the overlap-

ping blobs in binarized images that are obtained by thresholding. For instance,

Dewan et al. (2014) binarize a grayscale image using either Poisson-distribution-

based minimum error thresholding (Fan, 1998) or Otsu thresholding (Otsu,

1979). Subsequently, in the binarized image, the result of the distance transfor-

mation is pixelwise computed as the distance between each zero pixel and the

nearest nonzero pixel. On the distance transformation result, the H-dome ap-

proach is used to find the blob markers which facilitates a subsequent watershed

segmentation procedure. Note that the performance of watershed segmentation

highly depends on the detection of blob markers (Park et al., 2013), since the

watershed algorithm usually suffers from oversegmentation (Xu et al., 2014a).

There are some other methods that detect blobs in binarized images, such as

the method based on ultimate erosion (Yang et al., 2006), the method based

on ultimate erosion for convex sets (Park et al., 2013), the method based on

bounded erosion and the fast radial symmetry transform (Zafari et al., 2015),

etc. However, methods designed for binary blobs entail the assumption that

the foreground blob objects are distinguishable enough to be segmented from

the background (Park et al., 2013; Zafari et al., 2015).

Despite the vast literature, detecting overlapping blob objects still remains

a challenging topic. To address this problem, we propose an automated blob

detection method combining iterative Laplacian-of-Gaussian (iLoG) filtering

and unilateral second-order Gaussian (USG) kernels (Wang et al., 2017b).

Firstly, we present a multiscale normalization method for LoG kernels, thus

proposing iLoG filtering to attenuate the overlapping regions of the adjacent

blobs. We also explore the issue of scale setting in such an iterative process.

Secondly, we investigate the potential of USG kernels, which topographically

measure the minimum local contrast of a region among all directions, for

separating overlapping blobs in the response of iLoG filtering. We also explain

how to set the scale set appropriately. Subsequently, the blob detection result

is obtained by applying a thresholding procedure to the response map yielded

by USG kernels. This method can tackle both isolated blobs and partially

129

Chapter 6. Iterative Laplacian-of-Gaussian filtering

overlapping blobs. We have applied the proposed method to both fluorescence

microscopy cell images and electron micrograph nanoparticle images to evaluate

its performance on blob detection.

The remainder of this chapter is organized as follows. Section 6.2 revisits

the LoG kernel. In Section 6.3, we reduce the degree of overlap by iLoG

filtering, and subsequently extract the positions of blobs using USG kernels.

The experimental validation is presented in Section 6.4, while the conclusions

are listed in Section 6.5 concludes this chapter.

6.2. Related work

In this section, we revisit the definition and formulation of the LoG kernel,

which has enjoyed a great popularity in blob detection. Conventionally, the

multiscale LoG kernel is built on the normalized Gaussian kernel proposed by

Lindeberg (1998b):

ĝ(x;σ) = (−1)η · σ2 · g(x;σ) , (6.1)

where g(x;σ) is the Gaussian kernel formulated in Eq. (3.2) and η ∈ {0, 1}
allows the kernel to be applicable to both bright (η = 1) and dark (η = 0)

structures.

Accordingly, the LoG kernel for detecting bright blobs (Lindeberg, 1998b)

is given by:

∇2ĝ(x;σ) = −σ2 ·

(
∂2g(x;σ)

∂x2
+
∂2g(x;σ)

∂y2

)

= −x
2 + y2 − 2σ2

2πσ4
exp

(
−xTx

2σ2

)
. (6.2)

In (Lindeberg, 1998b), Lindeberg theoretically proved that, for the modelled

blobs, including symmetric/non-symmetric Gaussian blobs and sine blobs, the

response of LoG filtering reaches the maximum at the characteristic scale,

and as such, the response at the characteristic scale is usually selected as the

measure of the blob strength (a.k.a. blob saliency). For a given 2D signal I(x),

the final response of LoG filtering is obtained by:

Ĵ(x) = max
σ∈S

∇2ĝ(x;σ) ∗ I(x) , (6.3)

where S denotes a scale set that contains the characteristic scale.

As illustrated in Fig. 6.1, the LoG kernel is isotropic, i.e., rotationally

130

§6.3. Method for detecting overlapping blobs

(a) (b)

Figure 6.1: Illustration of a conventional Laplacian of Gaussian kernel. (a) Three-
dimensional visualization; (b) Planar visualization.

symmetric. Despite its popularity, the conventional LoG kernel still has limi-

tations. It essentially measures the average local contrast between the central

region and the surrounding, and as such, the LoG kernel yields significant

responses at locations where the grayscale intensity changes sharply, including

edges, ridges, corners and blobs.

6.3. Method for detecting overlapping blobs

In this section, an automated blob detection method is proposed to tackle

both isolated and overlapping blobs. In this method, iterative LoG filtering is

used to enhance the isolated objects while reducing the degree of overlap of

the overlapping blobs. Subsequently, USG kernels are employed to suppress

non-blob structures. By incorporating a thresholding procedure, a full-fledged

blob detection method is developed. For a better visualization, the proposed

method is elaborated on an example image (Lehmussola et al., 2007) that

contains both isolated and overlapping blobs.

6.3.1. Reducing the degree of overlap by iterative Lapla-

cian of Gaussian filtering

As mentioned earlier, the LoG kernel yields significant responses for regions

where the image intensity changes sharply, especially for blobs, and has

therefore been used for blob detection. In literature, existing LoG-based

methods use LoG filtering for blob enhancement, but they can hardly separate

overlapping blob objects.

In essence, the LoG kernel measures the average local contrast over all

131

Chapter 6. Iterative Laplacian-of-Gaussian filtering

(a) (b)

Figure 6.2: Comparison of the protrusion region and overlapping region in terms
of average local contrast. (a) The protrusion region has positive and significant local
contrast over the orientation range ϑ1; (b) The overlapping region has positive and
significant local contrast over the orientation range ϑ2 + ϑ3.

directions. For partially overlapping objects, there exists both a protrusion

region and an overlapping region for each blob. Compared to the overlapping

region, the protrusion region has a larger positive local contrast between the

interior and the surrounding. For example, as shown in Fig. 6.2, the protrusion

region has a positive and significant local contrast over the orientation range ϑ1,

while the overlapping region has a positive and significant local contrast over

the orientation range ϑ2 + ϑ3, and obviously, we usually have ϑ1 > ϑ2 + ϑ3.

Therefore, the LoG kernel tends to yield larger responses for protrusion regions

than for overlapping regions, and this difference can be accumulated by an

iterative procedure. Capitalizing on this fact, iterative LoG filtering is applied

to the image to retain the isolated blobs while attenuating the overlapping

regions of overlapping blobs.

The use of iLoG filtering brings up the problem of scale determination.

Before addressing this problem, we introduce a blob model, and, subsequently,

rescale Lindeberg’s LoG kernel.

Firstly, like many conventional methods, we model a blob by a 2D Gaussian

function, which is formulated by:

Λ0(x) = p0 exp

(
− (x− x0)T(x− x0)

2ω2
0

)
+ b0 , (6.4)

where x0 represents the center position, p0 ∈]0, 1] the prominence, ω0 the

blob scale and b0 ∈ [0, 1[the base level (background intensity). A modelled

Gaussian blob is shown in Fig. 6.3(a). For simplicity, we set x0 = [0, 0]T, and

132

§6.3. Method for detecting overlapping blobs

(a) (b)

Figure 6.3: A modelled Gaussian blob (b0 = 0, p0 = 0.8 and ω0 = 15) as well as
its corresponding response yielded by an LoG kernel at the scale σ = 15.

accordingly, the blob model formulated by Eq. (6.4) becomes

Λ0(x) = p0 exp

(
−xTx

2ω2
0

)
+ b0 . (6.5)

The spatial extension of a Gaussian blob, which can be represented by the ra-

dius R0, is usually determined by the scale, and can therefore be approximated

by

R0 ≈ 3ω0 . (6.6)

This is rooted in the fact that 99% of the mass of a Gaussian is concentrated

within three standard deviations of its mean (Kong et al., 2013a).

Secondly, we rescale Lindeberg’s LoG kernel in Eq. (6.2), thereby obtaining

the kernel that would be used in iLoG filtering. The rescaled kernel formulated

as follows:

∇2giL(x;σ) = 2 · ∇2ĝ(x;σ)

= −x
2 + y2 − 2σ2

πσ4
exp

(
−xTx

2σ2

)
. (6.7)

The rescaling will make the response of the kernel precisely reflect the promi-

nence of the blob to be detected, as we will explain in this work.

Having both the blob model and the rescaled LoG kernel, we obtain the

response of the initial LoG filtering by convolving Λ0 with ∇2giL(x;σ), which

133

Chapter 6. Iterative Laplacian-of-Gaussian filtering

is given by:

J0(x;σ) = ∇2giL(x;σ) ∗Λ0(x)

=
∂2

∂x2
(giL(x;σ) ∗Λ0(x)) +

∂2

∂y2
(giL(x;σ) ∗Λ0(x))

= −2p0ω
2
0σ

2

ω2
0 + σ2

(
∂2

∂x2
exp

(
− xTx

2(ω2
0 + σ2)

)
+

∂2

∂y2
exp

(
− xTx

2(ω2
0 + σ2)

))

= −2p0ω
2
0σ

2 · x
2 + y2 − 2(ω2

0 + σ2)

(ω2
0 + σ2)3

exp

(
− xTx

2(ω2
0 + σ2)

)
. (6.8)

By setting x = 0, the response at the blob center is easily computed as

follows:

J0(0;σ) =
4p0ω

2
0σ

2

(ω2
0 + σ2)2

. (6.9)

To find the characteristic scale of the blob, we intend to find the σ at

which J0(0;σ) yields a maximum response in scale-space (Wang and De

Baets, 2019b). For σ ∈ R+, it is easy to verify that the second-order derivative

of J0(0;σ) with respect to σ is negative. Thus, we determine the maxi-

mum value of J0(0;σ) in scale-space by computing the first-order derivative

of J0(0;σ) with respect to σ and then setting it to zero. Specifically, the

first-order derivative of J0(0;σ) with respect to σ is given by:

∂J0(0;σ)

∂σ
= 8p0ω

2
0σ

ω4
0 − σ4

(ω2
0 + σ2)4

. (6.10)

By setting this partial derivative to 0, we obtain σ = ω0. This means that, for

a given Gaussian blob with scale ω0, LoG kernels yield the maximum response

in scale-space at the scale

σ∗ = ω0 . (6.11)

In addition, having σ∗ = ω0, we compute the maximum response of J0(0;σ)

in scale-space as follows:

J0(0;σ∗) = p0 . (6.12)

That is, convolving a Gaussian blob with the rescaled LoG kernel formulated in

Eq. (6.7), we obtain the maximum response p0, which equals the prominence

of the original blob, at the scale σ∗ = ω0. This is the essential reason why we

rescale Lindeberg’s LoG kernel in Eq. (6.7).

134

§6.3. Method for detecting overlapping blobs

Consequently, according to Eq. (6.8), the resulting response of the LoG

kernel at the scale σ∗ = ω0 is:

J0(x;σ∗) = −p0(x2 + y2 − 4ω2
0)

4ω2
0

· exp

(
−xTx

4ω2
0

)
. (6.13)

For detecting bright blobs, only positive values in J0(x;σ∗) are kept as the blob

strength map. Thus, the resulting response Λ1 is obtained as follows:

Λ1(x) = max (J0(x;σ∗), 0) , (6.14)

which is visualized in Fig. 6.3(b). It can be seen that Λ1 also tends to

appear as a Gaussian blob. Since Λ1 is rotationally symmetric, its radius R1

can be computed from the zero points of J0(x;σ∗) on the y-axis. Setting

both J0(x;σ∗) = 0 and y = 0, we get the radius of Λ1 as:

R1 = 2ω0 . (6.15)

Hence, if we approximate Λ1 as a Gaussian blob, according to Eq. (6.6), the

scale is approximated as:

ω1 ≈
R1

3
=

2ω0

3
. (6.16)

This means that there is a scale decay (decrease) for the Gaussian blob in

the initial LoG filtering process. The comparison of the spatial extension

between Λ0 and Λ1 is also demonstrated in Fig. 6.4, in which we can see that

the profile radius of Λ1 is narrower than that of Λ0.

According to Eqs. (6.11) and (6.16), when we filter Λ1 using the rescaled

LoG kernels, the characteristic scale is supposed to be

σ∗∗ ≈ ω1 =
2σ∗

3
. (6.17)

More specifically, if the characteristic scale σ∗ is used in the first round

of LoG filtering, then, in the second LoG filtering, the scale should be set

to σ∗∗ = 2/3σ∗.

In real-life imagery, blobs are usually heterogeneous in size. In order to cope

with this problem, we use a scale set S(1) that covers the values in the vicinity

of the characteristic scale σ∗ for the first LoG filtering. Then, according to

the discussion above, in the following LoG filtering, the proper scales should

135

Chapter 6. Iterative Laplacian-of-Gaussian filtering

Figure 6.4: The horizontal intensity profiles through the center of Figs. 6.3(a)
and 6.3(b).

be set as

S(k) = ςk−1 · S(1) , (6.18)

where k ∈ {1, 2, . . . ,K} denotes the k-th iteration, K is the total number of

iterations and ς represents the scale decay factor. According to Eqs. (6.16)

and (6.17), ς is supposed to be 2/3.

We illustrate a practical example in Fig. 6.5, which contains fourteen blob

objects with a high degree of overlap. We apply iLoG filtering on the image,

obtaining responses in which the degree of overlap is reducing as the number

of iterations increases. After two or three iterations of LoG filtering, the blob

objects are fairly separable from each other.

It is worth noting that too many rounds of LoG filtering may lead to

the extinction of some blobs, since the spatial extension of the resulting

response decreases as the number of iterations increases. Fortunately, in most

practical cases, two or three iterations are able to reduce the degree of overlap

significantly.

However, in the final response of iLoG filtering, some blobs may be still

topo-graphically connected to each other with saddle regions. This problem

will be addressed in the next step.

136

§6.3. Method for detecting overlapping blobs

(a) (b)

(c) (d)

Figure 6.5: Illustration of the responses of iLoG filtering. (a)-(d): The original
image, the response of the first LoG filtering, the response of the second LoG filtering
and the response of the third LoG filtering.

6.3.2. Non-blob structure suppression using unilateral

second-order Gaussian kernels

We have used iLoG filtering to attenuate the overlapping regions of partially

overlapping blobs. Nevertheless, some blobs in the response map obtained by

iLoG filtering may still remain connected, which hinders a threshold-based

segmentation of blobs. Conventionally, the H-dome transformation (Smal

et al., 2010) is used to suppress the saddle regions. But the choice of H-value

is arduous, and the H-dome transformation is not good at suppressing noise,

as mentioned in Section 6.1. Instead, we use USG kernels (Wang et al., 2017b),

which yield responses only for blobs, to extract the blobs while suppressing

non-blob structures, including the saddle regions.

The USG kernel has already been applied to blob noise removal in Chapter 5.

Here, we further exploit its potential for separating partially overlapping blobs.

For ease of presentation, based on the prior work, we restate the USG kernel

137

Chapter 6. Iterative Laplacian-of-Gaussian filtering

(a) (b)

Figure 6.6: Illustration of a USG kernel. (a) Three-dimensional visualization; (b)
Planar visualization.

for a blob detection task. In particular, we explain how to appropriately

set the scales for the USG kernels used for convolving the response of iLoG

filtering.

The expression of the USG kernel has been given by Eq. (5.16). Figure 6.6

displays a single USG kernel. Essentially, a single USG kernel measures the

local contrast along a given orientation at a specific scale. For each USG

kernel, its response to an image I(x) is obtained by:

U(x;σ, θ) = κu(x;σ, θ) ∗ I(x) , (6.19)

where θ ∈ [0, 2π[denotes the direction taken from a direction set Du.

We next turn to the problem of scale selection for USG kernels. Similar to

Eq. (6.5), we model a Gaussian blob ΛK by:

ΛK(x) = pK exp

(
−xTx

2ω2
K

)
+ bK , (6.20)

where pK ∈]0, 1] denotes the prominence, ωK is the blob scale and bK ∈ [0, 1[

stands for the base level. Convolving ΛK with a USG kernel along the

direction θ = 0, we have the response at the center of the blob:

UK(0;σ) = κu(x;σ, θ) ∗ΛK(x)
∣∣
θ=0,x=0

=
4pKω

2
Kσ

2

(ω2
K + σ2)2

. (6.21)

138

§6.3. Method for detecting overlapping blobs

Computing its derivative with respect to σ, we have:

∂UK(0;σ)

∂σ
= 8pKω

2
Kσ

ω4
K − σ4

(ω2
K + σ2)4

. (6.22)

By setting this partial derivative to 0, we obtain σ = ωK , which means that,

for a given Gaussian blob with scale ωK , USG kernels yield the maximum

response in scale-space at the scale

σ† = ωK , (6.23)

and, according to Eq. (6.21), the maximum response is:

UK(0;σ†) =
4pKω

2
Kσ

2

(ω2
K + σ2)2

∣∣∣∣
σ=ωK

= pK . (6.24)

We learn that if we convolve USG kernels with a Gaussian blob having

scale ωK and prominence pK , the maximum response pK is obtained at the

scale σ† = ωK .

As discussed earlier, for a Gaussian blob with scale ω0, after K rounds

of LoG filtering, the scale has been approximately reduced to ωK = ςK · ω0.

Therefore, having the scale set S(1) that is used in the first LoG filtering, we

should set the scale set of the USG kernels to be:

Su = ςK · S(1) . (6.25)

Having the USG kernels as well as the appropriate scale set, we are able

to use the USG kernels to suppress non-blob structures. Topographically

speaking, a salient blob has a positive local contrast in all directions, which

makes blobs distinguishable from all the other image structures. In other

words, compared to non-blob structures, the minimum local contrast of a

blob among all directions is still positive and significant. This is also the

premise of the method based on the determinant of Hessian, the H-Dome

method (Vincent, 1993), the Top-Hat method (Breen et al., 1991), etc. To

capitalize on this fact, at a given scale, USG kernels are used to measure

the local contrast of a region in all directions and subsequently select the

minimum value as the response. Consequently, the non-blob structures can

be suppressed. Formalizing this proposal, we obtain the final response of the

USG kernels by:

U(x) = max
σ∈Su

min
θ∈Du

U(x;σ, θ) . (6.26)

139

Chapter 6. Iterative Laplacian-of-Gaussian filtering

(a) (b)

(c) (d)

Figure 6.7: Illustration of the responses of USG kernels as well as the blob
detection results. (a) The response of the USG kernels obtained on the image shown
in Fig. 6.5(d); (b) The Otsu thresholding result of (a); (c) The Rosin thresholding
result of (a); (d) The extracted blob markers (in red) superimposed on the original
image.

Figure 6.7(a) shows the response of the USG kernels obtained on the re-

sponse map shown in Fig. 6.5(d). As can be seen, only the central blob

regions show significant responses, while all the non-blob structures have been

suppressed.

Subsequently, we can easily obtain the blob detection result Ibw by applying

a thresholding technique to the response of USG kernels. We illustrate the

binarization results obtained by Otsu thresholding (Otsu, 1979) and Rosin

thresholding (Rosin, 2001) in Figs. 6.7(b) and 6.7(c). Both thresholding

techniques are able to segment the blobs from the background. As can be

see in Fig. 6.7(d), all of the fourteen blobs have been pinpointed correctly,

regardless of the fairly high degree of overlap. Furthermore, for a finer blob

locating, the centroids of each 8-connected component in Ibw are selected to

form the map of blob centers Ibc.

140

§6.4. Experimental validation

Algorithm 4 The proposed method for blob detection

Require: Image I, the initial scale set S(1), the direction set Du, the number
of iterations K, the scale decay factor ς

Ensure: The map of blob centers Ibc
1: while k ≤ K do
2: S(k) = ςk−1 · S(1)
3: for each σ ∈ S(k) do
4: J(m;σ)← ∇2giL(m;σ) ∗ I(m)
5: end for
6: J(m)← max

σ∈S(k)
J(m;σ)

7: I(m)← max
(
J(m), 0

)
8: end while
9: Su = ςK · S(1)

10: for each σ ∈ Su do
11: for each θ ∈ Du do
12: U(m;σ, θ)← κu(m;σ, θ) ∗ I(m)
13: end for
14: end for
15: U(m)← max

σ∈Su
min
θ∈Du

U(m;σ, θ)

16: Ibw ← Rosin thresholding on U(m);
Ensure: Ibc ← centroid of each 8-connected component in Ibw.

In digital image processing, we employ the discrete versions of all the

kernels mentioned above. Each discrete kernel is obtained by sampling the

continuous kernel in 2D integer coordinates, in which m = [mx,my]T denotes

the image coordinates.

6.4. Experimental validation

Having presented the proposed blob detection method based on iLoG filtering

and the use of USG kernels (iLoG-USG method), we are now in a position

to evaluate its practical performance. In this section, we apply our method,

which is summarized in Algorithm 4, to both fluorescence microscopy im-

ages (Lehmussola et al., 2007) as well as electron micrography nanoparticle

images (Park et al., 2013). Moreover, we compare our method with competing

methods to make the validation more convincing.

6.4.1. Evaluation on an example image

We first test our method on an example image taken from (Descombes, 2017),

which is shown in Fig. 6.8(a). This image contains a collection of blobs on

141

Chapter 6. Iterative Laplacian-of-Gaussian filtering

(a) (b)

(c) (d)

Figure 6.8: Example image containing a collection of blobs on a heterogeneous
background (a) and the blob detection results obtained by the MLoG method (b),
the MPP method (c) and the iLoG-USG method (d). The red, green and blue
crosses denote the correctly detected, falsely rejected and falsely detected results,
respectively.

a heterogeneous background. We compare the proposed method with the

MLoG method, which is quite related to our work, and the method based on

a marker point process framework (MPP method) (Descombes, 2017). For a

fair comparison, the parameters of the MLoG method and our method have

been adjusted optimally to yield the best results, while the detection result of

the MPP method is taken from the original work (Descombes, 2017).

As can be seen in Fig. 6.8, all three methods are able to detect the isolated

blobs, despite the heterogeneous background. Nevertheless, the MLoG method

fails to identify most of the overlapping blobs. While the MPP method misses

one blob that has a high degree of overlap, the proposed method detects all

the blobs successfully. This manifests that the proposed method can tackle

the detection of overlapping blobs on a heterogeneous background.

142

§6.4. Experimental validation

6.4.2. Evaluation of robustness to noise

To illustrate the noise-robustness of our method, we perform the iLoG-USG

method on noisy versions1 of the image shown in Fig. 6.5a. Firstly, we

obtain detection results on images corrupted by zero-mean Gaussian noise. As

displayed in Fig. 6.9, when the variance of the Gaussian noise increases to 0.72,

the iLoG-USG method can still yield a good detection result. This method

yields an incorrect detection when this variance reaches 0.82. Secondly, we

evaluate the robustness of our method to speckle noise. Speckle noise can be

simulated by multiplying the image intensity by uniformly distributed zero-

mean noise with variance ξ2spk. As shown in Fig. 6.10, the iLoG-USG method

can yield a good detection result on the image corrupted by speckle noise

with a variance ξ2spk = 1.02. When the variance increases to 1.12, an incorrect

detection occurs. Moreover, we apply our method on an image corrupted by

Poisson noise. The detection result is displayed in Fig. 6.11. It can be seen

that our method successfully detects all the blob objects despite the presence

of Poisson noise. From the experimental results presented above, we conclude

that the iLoG-USG method can effectively tackle noisy images.

6.4.3. Evaluation on fluorescence microscopy cell images

In this experiment, we test our method on synthetic fluorescence microscopy

cell images (Lehmussola et al., 2007; Ruusuvuori et al., 2008) taken from

the publicly available SIMCEP dataset 2. From the subsets with increasing

probability of clustering (PoC), including the PoC 0%, PoC 15%, PoC 30%

and PoC 45%, we sample two images from each subset, as shown in Figs. 6.12

and 6.13. One can see that there are populations of cells with heterogeneous

grayscale intensity. Moreover, in the images with high PoC, quite a few cells

are situated close to each other with a high degree of overlap.

We also compare our method with several competing methods, including

the Top-Hat method (TH) (Breen et al., 1991), the LoG method (Lindeberg,

1998b), the determinant of Hessian method (DoH) (Lindeberg, 1998b), the H-

dome method (HD) (Vincent, 1993; Xu and Lu, 2013), the method combining

the LoG and the H-dome (LH) (Smal et al., 2010), the gLoG method (Kong

et al., 2013a), the MSSEF method (Jaiswal et al., 2015) and the fast wavelet-

based spot detection (FWSD) method (Püspöki et al., 2016).

All of the methods are implemented on a personal computer configured

with Intel Core i7-3770 CPU (3.40GHz) with 16-GB RAM. The FWSD method

runs in ImageJ, while the other methods run in Matlab R2018a.

1 https://www.mathworks.com/help/images/ref/imnoise.html
2 http://www.cs.tut.fi/sgn/csb/simcep/benchmark/

143

https://www.mathworks.com/help/images/ref/imnoise.html
http://www.cs.tut.fi/sgn/csb/simcep/benchmark/

Chapter 6. Iterative Laplacian-of-Gaussian filtering

(a) (b)

(c) (d)

Figure 6.9: Detection results on images corrupted by Gaussian noise. (a-b) Image
corrupted by zero-mean Gaussian noise with a variance of 0.72 and the detection
result; (c-d) Image corrupted by zero-mean Gaussian noise with a variance of 0.82

and the detection result. The red and blue crosses denote the correct and incorrect
detections, respectively.

To obtain a quantitative evaluation, we still adopt precision, recall as well

as the F -measure (Basset et al., 2015) as evaluation measures. The method

to compute the F -measure in this experiment is slightly different from those

used in Chapter 3 and Chapter 4. In this experiment, the comparison between

the cell detection result and the ground truth is formulated in terms of success

and failure. Precision is the quotient of the number of correctly detected

cell objects and the number of all the declared cell objects in the output.

It represents the probability that the detected cells are valid. Recall is the

quotient of the number of correctly detected cell objects and the number of

all true cell objects in the ground truth. It represents the probability that the

true cells have been correctly detected. Therefore, the precision and recall are

computed as follows:

Prec =
NTP

NTP +NFP
(6.27)

144

§6.4. Experimental validation

(a) (b)

(c) (d)

Figure 6.10: Detection results on images corrupted by speckle noise. (a-b) Image
corrupted by speckle noise with a variance of 1.02 and the detection result; (c-d)
Image corrupted by speckle noise with a variance of 1.12 and the detection result.
The red and blue crosses denote the correct and incorrect detections, respectively.

(a) (b)

Figure 6.11: Detection result (b) on an image corrupted by Poisson noise (a).

145

Chapter 6. Iterative Laplacian-of-Gaussian filtering

and

Rec =
NTP

NTP +NFN
, (6.28)

in which NTP, NFP and NFN represent the numbers of true positive (correctly

detected) objects, false positive (falsely detected) and false negative (falsely

rejected) objects, respectively. Accordingly, we obtain the F -measure by

computing the harmonic mean of the precision (Prec) and recall (Rec).

For each method, we select the parameters that yield the best overall

performance. Since the cells in the fluorescence microscopy images are fairly

homogeneous in size, for methods based on multiscale kernels, we consider the

scales from 3.5 to 6.0 with a step of 0.5. Also, taking into account the time

efficiency, we select as few scales as possible. For the sake of reproducibility,

the parameter settings for all of the methods are listed below:

• LoG: The scale set is configured as S = {4.5, 5.0}.

• DoH: The scale set is configured as S = {5.0, 5.5, 6.0}.

• TH: The radius of morphological structuring element is set as 20.

• HD: The H-value (relative height) is set as 0.6.

• LoG-HD: The scale set of LoG kernels is configured as S = {4.5, 5.0},
while the H-value is set as 0.2.

• gLoG: The scale set is configured as S = {4.5, 5.0}, the direction set

is originally configured as D = {π · i/8 | i ∈ {0, 1, 2, . . . , 7}}, and the

parameter controlling the blob-center detection accuracy and the blob

eccentricity is originally set as 1.

• MSSEF: The scale set is configured as S = {5.0, 4.5, 4.0, 3.5} and the

thresholding parameter is set as 0.5.

• FWSD: The minimum radius, the maximum radius and the overlap

tolerance are set as 9 pixels, 15 pixels and 10 pixels, respectively. The

minimum contrast is set as 0.1.

• The proposed method: The initial scale set and the direction set are

configured as S(1) = {5.0, 5.5} and Du = {π · i/2 | i ∈ {0, 1, 2, 3}},
respectively. The number of iterations of LoG filtering is set as K = 3,

while the scale decay factor is set as ς = 2/3.

In a preprocessing step, the blue channel of each original fluorescence

microscopy image is selected to form the grayscale image. In addition, in the

binarization procedure of all the methods except the MSSEF method, we have

used Otsu thresholding (Otsu, 1979) and Rosin thresholding (Rosin, 2001).

146

§6.4. Experimental validation

(a) (b) (c) (d)

Figure 6.12: Cell detection results obtained by the proposed method on the Images
PoC 0%-1 (a), PoC 0%-2 (b), PoC 15%-1 (c) and PoC 15%-2 (d). The red, green and
blue crosses denote the TP, FN and FP results, respectively. For a better illustration,
the images in the first row are the blue channel of the original fluorescence microscopic
images. In each column, the image in the second row shows the zoomed-in patches
corresponding to the green windows in the first row.

For each method, the thresholding technique yielding the better performance

is used to produce the final results.

We report the quantitative evaluation results in Tab. 6.1 and illustrate the

cell detection results obtained by our method in Figs. 6.12 and 6.13. All of the

methods yield a high precision, which indicates that all of the methods can

retain the cell objects while suppressing the background. The high precision

is also due to a high signal-to-noise ratio in the original images. Nevertheless,

in terms of the recall and F -measure, the proposed method outperforms all of

the competing methods. On the images with low PoC, most of the methods

yield acceptable detection results, while the TH method yields slightly lower

values of the recall and F -measure. As the PoC increases, the performances of

the competing methods decrease significantly, while the proposed method still

obtains a high recall and high F -measure value. Compared with our method,

although some methods obtain slightly higher precision values in several cases,

but their recall and F -measure values are much lower. These experimental

results demonstrate that our method can tackle both isolated and partially

overlapping blobs.

With respect to the time efficiency, the average runtime of each method for

processing a single fluorescence microscopy cell image is reported in Tab. 6.2.

Among the methods, the TH method is the most efficient method to run, while

147

Chapter 6. Iterative Laplacian-of-Gaussian filtering

Table 6.1: Evaluation results obtained by each method on each fluorescence mi-
croscopy cell image.

Images Metrics
Methods

LoG DoH TH HD LoG-HD gLoG MSSEF FWSD iLoG-USG

PoC 0%-1 F 0.990 0.997 0.967 0.983 0.998 0.992 0.987 0.987 1.000

Prec 0.997 0.997 1.000 0.990 1.000 0.984 0.993 0.997 1.000

Rec 0.983 0.997 0.937 0.977 0.997 1.000 0.980 0.977 1.000

PoC 0%-2 F 0.995 0.995 0.980 0.980 0.997 0.988 0.988 0.980 1.000

Prec 1.000 1.000 1.000 0.990 0.997 0.987 0.993 0.993 1.000

Rec 0.990 0.990 0.960 0.970 0.997 0.990 0.983 0.967 1.000

PoC 15%-1 F 0.901 0.963 0.861 0.897 0.976 0.945 0.898 0.942 0.990

Prec 0.996 1.000 1.000 0.984 0.997 1.000 0.996 0.985 1.000

Rec 0.834 0.929 0.756 0.824 0.956 0.895 0.817 0.902 0.980

PoC 15%-2 F 0.935 0.967 0.875 0.902 0.974 0.949 0.914 0.928 0.988

Prec 1.000 1.000 1.000 0.992 1.000 0.996 1.000 0.992 1.000

Rec 0.878 0.936 0.777 0.828 0.949 0.905 0.841 0.872 0.976

PoC 30%-1 F 0.897 0.952 0.804 0.829 0.956 0.917 0.855 0.899 0.988

Prec 0.983 1.000 1.000 0.981 0.996 0.988 1.000 0.983 0.996

Rec 0.824 0.909 0.673 0.718 0.919 0.856 0.747 0.828 0.979

PoC 30%-2 F 0.891 0.941 0.803 0.852 0.957 0.9023 0.858 0.910 0.984

Prec 0.987 1.000 1.000 0.986 1.000 0.9836 0.991 0.988 0.990

Rec 0.813 0.889 0.670 0.750 0.917 0.8333 0.757 0.844 0.979

PoC 45%-1 F 0.903 0.943 0.812 0.883 0.957 0.931 0.862 0.888 0.982

Prec 0.996 1.000 1.000 0.952 0.993 0.996 1.000 0.979 1.000

Rec 0.826 0.892 0.670 0.823 0.924 0.875 0.757 0.813 0.965

PoC 45%-2 F 0.890 0.949 0.775 0.824 0.964 0.928 0.835 0.876 0.982

Prec 1.000 1.000 1.000 0.990 1.000 0.992 0.995 0.971 0.996

Rec 0.802 0.903 0.632 0.705 0.931 0.872 0.719 0.799 0.969

148

§6.4. Experimental validation

(a) (b) (c) (d)

Figure 6.13: Cell detection results obtained by the proposed method on the Images
PoC 30%-1 (a), PoC 30%-2 (b), PoC 45%-1 (c) and PoC 45%-2 (d). The red,
green and blue crosses denote the TP, FN and FP results, respectively. For a
better illustration, the images in the first row are the blue channel of the original
fluorescence microscopic images. In each column, the image in the second row shows
the zoomed-in patches corresponding to the green windows in the first row.

Table 6.2: The average runtime (s) of each method for processing the fluorescence
microscopy cell images. The symbol † denotes the execution time on the ImageJ
platform.

Methods LoG DoH TH HD LoG-HD gLoG MSSEF FWSD iLoG-USG

Runtime 0.17 0.22 0.14 0.20 0.19 0.42 0.24 5.28† 0.41

the FWSD method consumes the highest execution time. The LoG, DoH, HD,

LoG-HD and MSSEF methods are also relatively efficient, consuming approxi-

mately half of the runtime of the gLoG method or our method. Nevertheless,

the computational cost of the proposed method is usually affordable, and,

moreover, the proposed method achieves the best performance among all of

the methods.

6.4.4. Evaluation on nanoparticle images

In addition to the experiment on fluorescence microscopy cell images, we further

apply the proposed method to a nanoparticle dataset (Park et al., 2013). The

microscopy images contain nanoparticles that have a medium or high degree of

overlap (Zafari et al., 2015). In each image, the total number of nanoparticles is

provided by the original work (Park et al., 2013) and can be validated by manual

counting. The detection of nanoparticles has been addressed in literature.

149

Chapter 6. Iterative Laplacian-of-Gaussian filtering

Figure 6.14: Nanoparticle detection results of the proposed method. The red,
green and blue crosses denote the TP, FN and FP results, respectively.

Existing methods include the iterative voting method (IVM) (Parvin et al.,

2007), the morphological multiscale decomposition method (MMD) (Schmitt

and Hasse, 2009), the sliding band filter method (SBF) (Quelhas et al., 2010),

the ultimate erosion for convex sets method (UECS) (Park et al., 2013) and

the state-of-the-art method that is based on bounded erosion and the fast

radial symmetry transform (BEFRS) (Zafari et al., 2015). We compare our

method with these existing methods. Following the works in (Park et al., 2013)

and (Zafari et al., 2015), we evaluate the performance of each method in terms

of the number of correctly detected particles.

The sizes of the nanoparticles are not identical in different images. For

each image, we individually set the proper initial scale set and accordingly

obtain the evaluation results.

Table 6.3 shows the evaluation results of nanoparticle detection from (Park

et al., 2013) and (Zafari et al., 2015), updated with the results of the proposed

method, while Fig. 6.14 shows all the object detection results that are obtained

by the proposed method. As we can see, SBF, BEFRS as well as the proposed

method have correctly detected all the objects in Image #1. On all the

remaining images, the proposed method achieves the best performance among

all the methods. It is worth noting that compared to the cases with a

150

§6.5. Conclusions

Table 6.3: The number of the correctly detected particles by different methods on
each nanoparticle image.

Images

Degree of Number of Methods

overlap particles IVM MMD SBF UECS BEFRS Proposed

#1 Medium 28 25 20 28 26 28 28

#2 Medium 52 45 48 43 48 46 49

#3 Medium 459 227 429 262 437 425 452

#4 Medium 19 16 16 6 17 18 19

#5 Medium 108 85 92 99 103 104 108

#6 Medium 29 21 23 19 25 25 29

#7 High 63 42 40 42 54 52 61

#8 High 44 27 28 28 34 37 43

#9 High 45 24 22 25 33 33 42

Total - 847 512 718 552 777 768 831

medium degree of overlap, the advantage of the proposed method over the

competing methods is more significant in the cases with a high degree of

overlap. In Fig. 6.14, one can see that most of the nanoparticles have been

detected successfully, despite of the serious overlap, the high density and the

heterogeneous particle sizes.

6.5. Conclusions

There is a significant demand for detecting overlapping blob objects using

automated image analysis techniques. To address this classical, yet challenging

problem, in this chapter, we have presented a novel blob detection method

based on iterative Laplacian-of-Gaussian filtering and unilateral second-order

Gaussian kernels. The iteration of the Laplacian-of-Gaussian filtering reduces

the degree of overlap, facilitating a subsequent blob extraction procedure. The

employed unilateral second-order Gaussian kernels yield responses only for

blob objects, and as such, the blob objects can be pinpointed by a thresholding

step. The experimental results have demonstrated that the proposed method

shows a promising performance in detecting fluorescence microscopy cells

and electron micrograph nanoparticles, even when there is a high degree of

overlap.

151

PART III

EXPLORATION OF DEEP

CONVOLUTIONAL NETWORKS FOR

IMAGE ANALYSIS

153

7 Automated Artemia detection and

counting

The brine shrimp Artemia is an important organism in aquaculture, and the

number of studies on Artemia is increasing. Artemia detection and counting

is a fundamental task in Artemia image analysis. To facilitate this task, we

propose an automated detection and counting method in this chapter. Our

method consists of a UNet-based marker proposal network and a CNN-based

target classifier, and we therefore term it as the Marker-CNN method. The

marker proposal network introduces the image segmentation scheme into object

detection. It can generate target candidates, separate highly adjacent objects

and obtain the object structural information simultaneously. The target

classifier determines the category of each target candidate, thereby yielding

the Artemia detection and counting results. Moreover, we have compiled an

Artemia detection and counting dataset to train and test the proposed method.

Experimental results manifest that the proposed Marker-CNN method can

accurately detect and count the Artemia objects in images.

The material of this chapter is based on the following publication:

• Wang, G., Van Stappen, G., and De Baets, B. (2019e). Automated

detection and counting of artemia using U-shaped fully convolutional

networks and deep convolutional networks. Expert Systems with Appli-

cations, Under review

7.1. Motivation

The brine shrimp Artemia is a genus of aquatic crustaceans. Artemia cysts

are robust to store and are convenient to hatch into nauplii, which have a high

nutritional content. Therefore, Artemia nauplii are extensively used as a kind

of cost-effective live diet for fish and crustacean larvae, while Artemia cysts

are also an essential and expensive commodity in larval aquaculture (Le et al.,

2018). Artemia is also considered as a useful organism for stress response

studies since it has been naturally found in a variety of harsh environments

worldwide (El-Magsodi et al., 2016). Besides, Artemia has been employed as

a test organism in toxicological assays and various other biological disciplines.

Since Artemia cysts and nauplii are very small in size, they are usually

observed by a stereo-microscope (Ates et al., 2013). Currently, most of the

Artemia image analysis tasks are carried out manually. Such a typical image

155

Chapter 7. Automated Artemia detection and counting

analysis task is to detect and count the number of objects. For example,

when assessing the hatching rate in Artemia incubation, which is an important

commercial quality criterion, the number of cysts and nauplii should be counted

separately(Kim and Cho, 2013). However, manual analysis is time-consuming

and labor-intensive. It is very difficult to analyze high-throughput imagery data

manually (Meijering et al., 2016). With the rapid development of computer

vision techniques and their applications in image analysis (Geweid et al., 2019),

it would be highly desired to have access to automated Artemia detection and

counting methods.

Over the past several decades, many automated object detection and count-

ing methods have been proposed (Kamilaris and Prenafeta-Boldú, 2018). Exam-

ples are automated methods for counting cells (Choudhry, 2016), fruits (Chen

et al., 2017), people (Hashemzadeh and Farajzadeh, 2016), etc. Early methods

detect objects using hand-crafted features. For example, many conventional

pedestrian detection methods employ the histograms of oriented gradients to

make the target separable from the background (Pang et al., 2011). Another ex-

ample is the cell detection approach based on multiscale Laplacian-of-Gaussian

features (Kong et al., 2013a). Generally, methods based on hand-crafted

features have a good interpretability, and the detection procedure can be

well controlled by a few key parameters (Kong et al., 2013a). Nevertheless,

these methods are limited in describing semantic information, and as such,

they might underperform when the appearances of the targets vary signifi-

cantly (Ronneberger et al., 2015).

Recently, relying on their powerful feature learning and representation

abilities, deep learning techniques have been widely used for object detec-

tion (Han et al., 2018). For generic object detection, the goal is to plot the

bounding box, which represents the position and spatial extent of an object,

while determining the category of this object (Szegedy et al., 2013). These

methods can be mainly grouped into two classes: methods based on regression

and methods based on region proposals. Methods based on regression compute

the confidence scores of bounding boxes and categories in a single stage (Liu

et al., 2016). For instance, Redmon et al. (2016) proposed a one-stage method

named You-Only-Look-Once (YOLO). This method divides an image into grid

cells. Capitalizing on the feature map extracted by deep convolutional neural

networks (Krizhevsky et al., 2012), this method computes the confidence scores

for both multiple bounding boxes and multiple categories in each grid cell.

Thus, a grid cell with a high score for both a bounding box and a category

is determined as a positive detection result. The YOLO method has a good

computational efficiency. It detects objects using relatively larger anchor

boxes, hence it produces comparatively fewer false positives in the background.

156

§7.1. Motivation

Nonetheless, this scheme assumes that each grid cell only contains a single ob-

ject, and therefore, the YOLO method sometimes leads to errors of localization

and false negatives for small objects (Han et al., 2018).

Detection methods based on region proposals localize the objects by simulat-

ing the attention mechanism of the human visual system. With a coarse-to-fine

scheme, these methods usually include procedures of region proposing, fea-

ture extraction, classification and bounding box regression. A representative

method is the one proposed by Girshick et al. (2016), which combines a region

proposal network with a deep convolutional neural network (R-CNN method).

The R-CNN method uses anchor boxes and selective search to generate thou-

sands of region proposals. It also extracts features using a deep convolutional

neural network, which facilitates a subsequent category classification procedure.

With the confidence scores of categories generated by a support vector machine,

the R-CNN method refines the bounding boxes, thereby yielding the detection

results. Since the R-CNN method carefully considers each potential region,

it usually achieves a high degree of recall. Nevertheless, this scheme entails

a considerable redundancy and a heavy computation (Girshick, 2015; Ren

et al., 2016). A more detailed review on generic object detection can be found

in (Han et al., 2018).

The aforementioned deep convolutional neural network (CNN) is a powerful

tool for image classification (Rawat and Wang, 2017). In literature, many types

of CNN architectures have been developed, such as the AlexNet (Krizhevsky

et al., 2012), Visual-Geomery-Group-16 (VGG16) (Simonyan and Zisserman,

2015), Residual Net (He et al., 2016), etc. In practical applications, the CNN

has also enjoyed a great success in the fields of disease diagnosis (Vo et al.,

2019), remote sensing (Kussul et al., 2017), autonomous driving (Bresson

et al., 2017), etc. Nevertheless, since a CNN makes decisions using the

global information of the input image, it has limitations in object localization.

Therefore, it is inappropriate to straightforwardly employ a CNN for image

segmentation (Long et al., 2015). To explore deep learning techniques in

pixel-level prediction, Long et al. (2015) proposed an architecture named

fully convolutional network (FCN) by transforming the fully connected layers

in a CNN into convolutional layers. In addition, to obtain an output map

that has the same size as the input, the FCN upsamples the last layer of

the CNN by a deconvolution operation. Building on the FCN, Ronneberger

et al. (2015) designed a U-shaped fully convolutional network (UNet). The

UNet has both contracting (a.k.a. downsampling or encoding) convolutional

layers and expanding (a.k.a. upsampling or decoding) convolutional layers.

The pooling maps yielded by the layers in the contracting path are used

in the expanding path to progressively obtain an output that has the same

157

Chapter 7. Automated Artemia detection and counting

size as the input. Thus far, the UNet has been successfully applied in road

extraction (Zhang et al., 2018), liver segmentation (Liu et al., 2019), cell

counting (Ronneberger et al., 2015), etc. Nonetheless, the UNet is mostly used

for image segmentation, and as such, it cannot be readily used for counting

objects belonging to multiple categories (Ronneberger et al., 2015).

As mentioned earlier, the demand for automated Artemia detection and

counting is increasing. However, to the best of our knowledge, this problem

has been seldom addressed so far. The only existing Artemia counting method

is the one proposed by Kim and Cho (2013). Their method roughly obtains

the foreground objects, including the cysts, nauplii and artefacts, using a

binarization technique. Some small noisy points are removed by morphological

operations. Subsequently, in the binary image, the method determines the

connected components with a high circularity as cysts, and the connected

components with a low circularity as nauplii. However, this method would

yield many false results when the background is not clean. Moreover, this

method can hardly separate adjacent objects, and would thus lead to a

serious detection error. Besides, although many automated methods have been

developed for detecting moths (Ding and Taylor, 2016), fish (French et al.,

2015), shrimps (Kesvarakul et al., 2017; Kaewchote et al., 2018), etc., they

cannot be readily transferred to detect and count Artemia. This is because

the Artemia objects in images are usually highly adjacent. Moreover, the

appearance of Artemia varies significantly over the different growth stages.

Therefore, it is quite necessary to design a tailor-made method for analyzing

Artemia images.

In this chapter, we aim at an automated method that can detect and

count Artemia objects accurately and efficiently. Inspired by the scheme of

the R-CNN method, we propose a two-stage method by combining a target

marker proposal network with a CNN-based classifier (Marker-CNN method).

In the first stage, instead of generating region proposals by blind anchor boxes,

we design a target marker proposal network that has a UNet architecture.

The markers are represented by thick trunk skeletons of the objects. We

design the marker proposal network because of the following reasons. Firstly,

compared with the conventional bounding box annotation (Ren et al., 2016),

or the full instance mask annotation (He et al., 2017), the thick trunk skeleton

marker annotation is easier for annotators, which can be accomplished by one

stroke. Secondly, compared with bounding boxes, the thick trunk skeleton

markers indicate not only the positions and extents, but also the spatial

structures. Therefore, our marker proposal network can effectively separate

the Artemia objects that are highly adjacent. Thirdly, our marker proposal

network can accurately indicate target candidates, which significantly facilitates

158

§7.2. Preliminaries on convolutional neural networks

a subsequent classification procedure. Then, in the second stage, we design

a CNN-based network to classify the target candidates into the categories or

label as a non-target. Furthermore, we have compiled a dataset to train and

test the proposed method.

The remainder of this chapter is organized as follows. Section 7.2 recalls

several related works. In Section 7.3, we present an Artemia detection and

counting dataset, and subsequently, we elaborate the proposed Marker-CNN

method. In Section 7.4, we report and discuss the experimental results. Finally,

conclusions are listed in Section 7.5.

7.2. Preliminaries on convolutional neural net-

works

In this section, we present two concepts that are highly related to our work:

deep convolutional neural networks and U-shaped fully convolutional net-

works.

7.2.1. Deep convolutional neural networks

The CNN is one of the most popular architectures among the deep learning

techniques (Rawat and Wang, 2017). A typical CNN architecture consists

of a sequence of convolutional layers, pooling layers and fully connected

layers (LeCun et al., 2015). A convolutional layer is composed of convolutional

neurons (LeCun and Bengio, 1995). Each neuron is represented by a trainable

kernel. The response of each kernel is obtained by convolving the kernel with

the output of the previous layer. The convolutional response is then passed

through a non-linear activation unit, e.g., a rectified linear unit (Hinton, 2010),

to obtain the feature map. In this way, different neurons yield different feature

maps. Compared with the scheme considering an image as a vector (Kang

and Palmer-Brown, 2008), convolutional operations can better exploit the

spatial information of the image, since spatially neighboring pixels are often

highly correlated in content (LeCun et al., 2015). Besides, convolutional

operations can obtain a good translation invariance that can benefit the image

classification greatly. In a pooling layer, the input map is partitioned into non-

overlapping regions, and subsequently, the values in each region are aggregated

into a single value. As a result, the dimension of the feature map is significantly

reduced (Boureau et al., 2010). Moreover, a pooling operation can make the

model more robust to spatial shifts. A fully connected layer multiplies the layer

input by a weight matrix and then adds a bias vector, thereby exploiting the

extracted high-level features. In the training procedure, all the parameters in

159

Chapter 7. Automated Artemia detection and counting

Figure 7.1: Illustration of the Artemia growth stages.

the CNN are iteratively updated by the backpropagation mechanism (LeCun

et al., 1989).

7.2.2. U-shaped fully convolutional networks

In view of the great success of CNN in object classification, many works have

tried to apply CNN for image segmentation, which is also a fundamental task

in the computer vision filed. A straightforward scheme is to classify all the

image patches cropped by a sliding window (Ciresan et al., 2012), but this

scheme inevitably leads to a serious redundancy and a heavy computation.

To address such shortcomings, the FCN (Long et al., 2015), which replaces

the fully connected layers in the CNN with convolutional layers, was proposed

for image segmentation. In order to make the sizes of the output and input

identical, the FCN method upsamples the output of the last convolutional

layer by a deconvolution operation, while exploiting the pooling results that

are yielded by the intermediate layers of the CNN (Oliveira et al., 2018). The

UNet extends the FCN architecture into a U-shaped network(Ronneberger

et al., 2015), which has both contracting convolutional layers and expanding

convolutional layers. The pooling maps yielded by the layers in the contracting

path are also used in the expanding path to progressively obtain an output

with the same size as the input. In this way, the UNet model can exploit the

localization information from the intermediate CNN layers and the extracted

high-level features simultaneously.

7.3. Automated Artemia detection and count-

ing method

In many Artemia studies, e.g., in a commercial quality assessment of Artemia

hatching, accurate numbers of Artemia cysts and nauplii are highly de-

sired (Lopes-dos Santos et al., 2019). As shown in Fig. 7.1, an Artemia

life cycle mainly includes the cyst, nauplius/metanauplius, juvenile and adult

stages. The Artemia juveniles and adults are comparatively large in the field

160

§7.3. Automated Artemia detection and counting method

Figure 7.2: Illustration of the proposed Marker-CNN method for Artemia detection
and counting.

of view in a microscope, and therefore, the number of Artemia adults (usually

less than 5) in the image can be easily obtained by a glance. In this chapter, we

therefore focus on detecting and counting Artemia objects that are in the cyst

stage, nauplius stage (the first growth stage after the cyst stage) and metanau-

plius stage (the subsequent growth stage to the nauplius stage). Hundreds

or thousands of cysts or nauplii/metanauplii may be present in a microscopy

image. For convenience, we use the term nauplius to collectively refer to the

terms nauplius and metanauplius. As mentioned earlier, automated Artemia

detection and counting is a challenging task. The Artemia objects in images

might be seriously adjacent, and moreover, the appearances of Artemia objects

vary significantly over the different growth stages. Aiming at automated

Artemia detection and counting, we employ deep learning techniques, which

can exploit semantic information and high-level features, to overcome these

problems. We design a two-stage method using the UNet architecture and the

CNN architecture. In the first stage, we design a UNet-based marker proposal

network. This module can indicate target candidates while separating adjacent

objects. In the second stage, we develop a CNN-based classifier to classify the

target candidates into the categories or label as a non-target, thereby obtaining

the detection results. The flowchart of the proposed Marker-CNN method is

illustrated in Fig. 7.2. To train and test this method, we have compiled an

Artemia detection and counting (ArtDeCo) dataset1.

1 https://github.com/GangWangUgent/ArtDeCo/

161

https://github.com/GangWangUgent/ArtDeCo/

Chapter 7. Automated Artemia detection and counting

7.3.1. The Artemia detection and counting dataset

The method we designed for detecting and counting Artemia objects is based

on supervised learning. Before elaborating the proposed method, we introduce

an Artemia detection and counting dataset. We captured Artemia images by

a stereo-microscope (SMZ1270, Nikonr) connected to a lens of Nikonr (Plan

Apo). The Artemia objects were fixed with lugol solution (1%). Using the

acquired images, we built two subsets, an Artemia marker dataset and an

Artemia classification dataset.

In the Artemia marker dataset, there are 70 images (with a resolution

of 512× 512× 3) containing 1353 cysts and 2421 nauplii. The corresponding

ground truth marker maps have been manually labelled, as shown in Fig. 7.3.

For each Artemia cyst and nauplius, only the thick trunk skeleton is labelled as

a positive marker. As discussed earlier, compared with conventional annotation

approaches, such as bounding boxes and full instance masks, our annotation

approach has several advantages. Our annotation approach is easier to carry

out. Instead of finding a rectangular bounding box that fully encloses an object,

or labelling all the pixels of an object mask, we mark an object by only one

stroke. In addition, it has been validated that skeleton extraction can benefit

the instance segmentation task (Shen et al., 2017), since the skeleton embodies

information on both the object position and the spatial structure. Moreover,

in our annotation method, labels of thick trunk skeletons can facilitate the

separation of highly adjacent objects. Furthermore, it is worth pointing out

that thick trunk skeletons are more appropriate than thin skeletons in our

framework, because the latter occupy far less pixels than thick ones, thus

avoiding the problem of pixel-class imbalance (Sironi et al., 2016). Although

some approaches, e.g., the training strategy using the focal loss function (Lin

et al., 2017), have been proposed to relieve the problem of pixel-class imbalance,

thin skeletons are very fragile to extract, and fractured thin skeletons would

indicate superfluous target regions for a specific target.

In the Artemia classification dataset, there are 2100 images (with a resolu-

tion of 128 × 128 × 3), including 900 cyst images, 900 nauplius images and

300 non-target images. Figure 7.4 displays several sample images for each

category. Besides, we collected 80 images (with a resolution of 512× 512× 3)

for evaluating the performance in object detection and counting. These test

images contain 1336 cysts and 3335 nauplii in total.

7.3.2. The marker proposal network

Our Artemia detection and counting method mainly consists of two modules:

the marker proposal network and the classifier for target identification. The

162

§7.3. Automated Artemia detection and counting method

Im
a
g
es

M
a
rk
er

m
a
p
s

Figure 7.3: Sample Artemia images and the corresponding labelled marker maps
for training the marker proposal network.

C
y
s
t
s

N
a
u
p
li
i

N
o
n
-t

a
r
g
e
t
s

Figure 7.4: Sample images for training the CNN-based target classifier. Top
row: Samples of cysts; Second row: Samples of nauplii; Bottom row: Samples of
non-targets.

markers are represented by the thick trunk skeletons of objects, which embody

information on the positions, extents and spatial structures. Instead of using

numerous blind anchor boxes (Girshick et al., 2016), we extract the target

markers through a semantic image segmentation procedure.

As reviewed earlier, the UNet has been widely used in image segmenta-

tion, due to its good properties in object localization and shape description.

Therefore, we design a UNet-based architecture to yield the markers. The

architecture of our marker proposal network is displayed in Fig. 7.5. It can be

seen that the overall network is nearly symmetric, containing a contracting

path and an expanding path.

The contracting path is built on a sequence of convolutional layers and max

pooling layers (Krizhevsky et al., 2012). Each convolutional layer performs

a convolution operation on the input maps and the trainable kernels. Each

kernel extracts the features of a receptive field from the previous layer, thereby

163

Chapter 7. Automated Artemia detection and counting

Figure 7.5: Architecture of the UNet-based marker proposal network.

contributing a convolutional response map. Let I(l−1) be an input map of

the l-th convolutional layer. For a trainable kernel κ in the l-th layer, the

convolutional response map Y(l) is obtained as

Y(l) = I(l−1) ∗ κ , (7.1)

where ∗ denotes a convolution operation. The trainable kernels are updated on

each iteration through the backpropagation mechanism (LeCun et al., 1989).

In each convolutional layer, the number of kernels is configured as shown in

Fig. 7.5. In addition, since a convolution operation leads to a size decrease

for the processed map, we employ a replication padding when performing the

convolution operation, thereby making the sizes of the input map and the

convolutional response map identical. For each convolutional response map,

we obtain the corresponding feature map based on a non-linear activation

function. We employ the rectified linear unit (ReLU) (Hinton, 2010) as the

activation function, in view of its advantages in training speed. In the ReLU,

only positive values are retained. That is, after passing through the ReLU,

164

§7.3. Automated Artemia detection and counting method

the convolutional response Y(l) becomes

I(l)(m) = Nr

(
Y(l)(m)

)
= max

(
Y(l)(m), 0

)
, (7.2)

where m stands for the image coordinates and Nr(·) represents the ReLU

function, as defined earlier. Moreover, we adopt the max pooling opera-

tion (Boureau et al., 2010) to reduce the dimensionality of the feature maps.

In a max pooling layer, the elements of the output are obtained by sliding

a square window over the input map with a specified sliding stride, while

selecting the maximum value within the window. In our model, the size of the

window and the sliding stride are set to be 2× 2 and 2, respectively. The UNet

model we designed consists of five contracting steps. At each contracting step,

the number of feature maps is doubled. Furthermore, to address the problem

of overfitting, we employ the so-called dropout technique (Srivastava et al.,

2014), which sets the output of each hidden neuron to zero with probability

50%. The neurons that are dropped out make no contribution to the forward

pass process and their weights are not updated during the backpropagation

process. In our UNet model, the dropout technique is used for the layers

illustrated in Fig. 7.5.

The expanding path is built on a stack of convolutional layers and up-

convolution layers. The convolutional layers work in the same way as those in

the contracting path. An up-convolution layer doubles the size of each input

map by adding zero pixels with a stride, and, subsequently, yields the output

map by a convolutional operation. At each expanding step, the number of

feature maps is halved. In particular, in order to better exploit the localization

information, the feature maps yielded in the contracting path are concatenated

with the corresponding feature maps in the expanding layers, as illustrated in

Fig. 7.5.

At the end, the prediction map Z is obtained by a sigmoid function that is

given by

Z(m) =
1

1 + exp (−Zin(m))
, (7.3)

where Zin denotes the input of the last layer.

The parameters in the UNet model are trained by minimizing the loss

function that reflects the difference between the ground truth label map and the

yielded prediction map. Since the segmentation in our method is a binarization

problem, we define the loss function based on weighted binary cross entropy.

Given a prediction map Z and its corresponding ground truth label map T,

165

Chapter 7. Automated Artemia detection and counting

the pixel-weighted cross-entropy loss is computed as follows:

Lpc(Z,T) = − 1

Npm

∑
m∈T

T(m) log (Z(m)) + wpc · (1−T(m)) log (1− Z(m)) ,

(7.4)

where

wpc =

∑
m∈T

T(m)

Npm −
∑
m∈T

T(m)
(7.5)

denotes the loss weight of a pixel and Npm represents the number of pixels in

the prediction map.

7.3.3. The target classifier

It has been widely acknowledged that the CNN is powerful in object classifica-

tion. Since object detection is a procedure combining object localization and

classification, the CNN has also been incorporated in many object detection

methods. As mentioned earlier, the R-CNN object detection method (Gir-

shick et al., 2016) employs a CNN module to extract the features and uses

a support vector machine to determine whether a region of interest belongs

to a target category or not. In Section 7.3.2, we have designed the marker

proposal network to obtain the target candidates. Next, we develop a classifier

to classify the target candidates using the CNN.

Capitalizing on the extensively used VGG16 architecture (Simonyan and

Zisserman, 2015), we design a CNN-based target classifier as displayed in

Fig. 7.6. Our CNN-based classifier consists of seven convolutional layers, three

max pooling layers and three fully connected layers. The convolutional layers

and max pooling layers (Krizhevsky et al., 2012) work in the same way as

those in the UNet-based marker proposal network. To avoid a size decrease

during the convolution operation, we also apply a replication padding in the

convolutional layers.

In the last part of our CNN-based classifier, by flattening (i.e., vectorizing)

the feature maps, the fully connected layers connect every neuron in one layer

to every neuron in another layer, thereby implementing a high-level reasoning

for object classification. Mathematically, a fully connected layer is represented

as:

r
(l)
fc = Nr

(
W(l)r

(l−1)
fc + s(l)

)
, (7.6)

where r
(l)
fc stands for the l-th fully connected layer, s(l) is the bias vector

166

§7.3. Automated Artemia detection and counting method

Figure 7.6: Architecture of our CNN-based target classifier.

and W(l) denotes the weight matrix. Each element of W(l) represents the

weight between a pair of connected neurons. Since fully connected layers are

usually prone to overfitting, we also employ the dropout technique (Srivastava

et al., 2014) in the fully connected layers. The probability of setting the output

of a hidden neuron to zero is also configured as 50%. Besides, the size of the

input images is set as 128× 128× 3.

The training strategy for the CNN-based target classifier is to minimize the

cross-entropy loss function representing the dissimilarity between the ground

truth category labels and the predicted confidence scores (i.e., probabilities).

Using the one-hot encoding scheme, we transform each category label into

a J×1 vector of zeros while setting the j-th digit to be 1, where J is the number

of categories including the non-target. Here, the categories of non-target, cyst

and nauplius are represented by [1, 0, 0], [0, 1, 0] and [0, 0, 1], respectively.

The predicted probability for the j-th category is obtained by a softmax

function (Bishop, 2006), which is given by

zi =
e%i∑J
j=1 e

%j
, (7.7)

where i and j denote the category indices, and %j stands for the output

value of the last fully connected layer for the j-th category. Accordingly, the

cross-entropy loss is calculated as

Lce(z, t) = −
J∑
j=1

υj log zj , (7.8)

167

Chapter 7. Automated Artemia detection and counting

where z and t represent the predicted probability vector and the ground truth

label vector, respectively, υj is the indicator that the input image belongs to

the j-th category, and zj is the softmax output for the j-th category.

7.4. Experiments and results

We have proposed an automated Artemia detection and counting method using

a UNet-based marker proposal network and a CNN-based target classifier

(Marker-CNN method). Having presented the method and the compiled

dataset, we train the Marker-CNN model, and, subsequently, evaluate its

performance. For comparison, we also present a method using the marker-

controlled watershed segmentation (MCWS method), a technique that has

been widely employed to detect objects in microscope images (Koyuncu et al.,

2016).

7.4.1. Training procedure

The whole model of the Marker-CNN method has been implemented in Python

3.5.6 running on a PC configured with Intel i7-6800K, 64GB RAM and

GEFORCE GTX 1080Ti GPU. We train the UNet-based marker proposal

network and the CNN-based target classifier separately.

In order to overcome the overfitting problem, besides the aforementioned

dropout technique, we also employ the method of data augmentation (Ding

et al., 2016). We artificially enlarge the training image dataset by means of

scaling, rotation, translation and reflection. Note that no shearing transforma-

tion is used, since it would change the eccentricity values of the cyst objects.

For the marker proposal network training data, we apply the same spatial

transformation to both the image and the corresponding marker map to make

the images and the label maps consistently matching. For illustration, we show

the augmented images and the corresponding marker maps in Fig. 7.7. Like-

wise, we augment the training data for object classification while preserving

the corresponding category labels.

When training the UNet-based marker proposal network, we initialize

the weights in each layer by the method presented in (He et al., 2015). The

size of the input images is transformed into 512 × 512 × 3. The output is

a 512× 512 grayscale map. We use the Adaptive Moment Estimation method

(Adam) (Kingma and Ba, 2015) to train the UNet model, setting the learning

rate and the two decay rates as 10−4, 0.9 and 0.999, respectively. As for the

training batch size, we have separately trained the UNet with a batch size

of 2, 4 and 8. All the settings lead to a good convergence of the training

168

§7.4. Experiments and results

Im
a
g
es

M
a
rk
er

m
a
p
s

(a) (b) (c) (d) (e)

Figure 7.7: Illustration of the data augmentation results. (a) Original training
image and the corresponding ground truth marker map; (b)-(e) The augmented
training images and the corresponding ground truth marker maps.

loss. Here, we set the batch size as 4 and set the total number of epochs

as 200. To show the evolution of the prediction ability of the marker proposal

network during the training procedure, in Fig. 7.8, we display the prediction

maps obtained on three sample images when the number of epochs is 5, 10,

50 and 200, respectively. It can be seen that the marker proposal network

learns to segment the foreground object in the initial phase. As the number

of epochs increases, the marker proposal network tends to yield large values

at the locations in the vicinity of the trunk skeletons. Eventually, after 200

epochs, the marker proposal network is able to yield markers for the Artemia

objects.

When training the CNN-based classifier, we also initialize the weights in

each layer by the method presented in (He et al., 2015). The size of the input

images is transformed into 128× 128× 3. The number of output categories is

three, including the non-target, cyst and nauplius. We still adopt the Adam

optimizer (Kingma and Ba, 2015) to train the classifier, but setting the learning

rate and two decay rates as 10−3, 0.9 and 0.999, respectively. Besides, we

have trained the network with a batch size of 8, 16, 32 and 64, respectively.

These settings are all able to yield a good convergence of the classification

accuracy. We set the batch size as 64 and set the total number of epochs

as 200. Figure 7.9 shows the curves of the training accuracy and validation

accuracy with respect to the number of epochs. It can be seen that after 200

epochs of training, the network has obtained a good classification accuracy.

Here, the classification accuracy is computed as

Acc =
Ncd

Nao
, (7.9)

169

Chapter 7. Automated Artemia detection and counting

(a) (b) (c) (d) (e)

Figure 7.8: Evolution of the prediction maps yielded by the UNet as the number of
epochs increases. (a) Original images; (b)-(e) The prediction maps that are obtained
when the number of iterations is 5, 10, 50 and 200, respectively.

where Ncd denotes the number of correctly detected objects and Nao represents

the number of all the objects to be detected.

7.4.2. The watershed-based method for comparison

To highlight the superiority of the Marker-CNN method, we compare our

method with a hand-crafted method based on the marker-controlled watershed

technique (Rivest et al., 1992).

Watershed segmentation is a widely used image processing technique. To-

pographically, this technique views a grayscale image in three dimensions. It

finds the watershed lines that separate the locations with locally minimum val-

ues into different connected components. In the marker-controlled watershed

method, which was proposed to address the oversegmentation problem, the

locations with locally minimum values that belong to the same object are con-

nected by a so-called internal marker, while the locations with locally minimum

values in the background are connected by external markers (González and

Woods, 2010). In the MCWS method for Artemia detection and counting, the

internal markers are obtained by a morphological erosion operation followed by

a morphological reconstruction operation (Xu et al., 2011), while the external

markers are obtained by skeletonizing the binarized background (Herbin et al.,

170

§7.4. Experiments and results

Figure 7.9: Training accuracy and validation accuracy of the target classifier with
respect to the number of training epochs.

1996). Subsequently, we compute the gradient map of the image, and set the

marker areas in the gradient map as local minima. Then, the watershed tech-

nique is employed to segment the foreground targets and to separate adjacent

objects as much as possible. Eventually, the connected components obtained

by the watershed transformation are classified into categories according to the

degree of circularity (Kim and Cho, 2013), which is defined as

Cir =
4πAr
P 2
r

, (7.10)

where Ar and Pr denote the area and perimeter of the connected component,

respectively. Empirically, a connected component with a degree of circularity

that is lower than 0.70 is determined as a cyst. Otherwise, it is classified as a

nauplius.

7.4.3. Performance evaluation

In order to evaluate the Artemia detection and counting performance of our

method, we apply our method and the MCWS method to 80 real-life Artemia

images, which contain 1336 cysts and 3335 nauplii in total. As shown in

Fig. 7.10(a), there are quite a few cysts and nauplii that are seriously adjacent.

There are also artefacts in the backgrounds.

With respect to the evaluation measures, we compute the detection and

counting accuracy using Eq. (7.9). In addition, since the identification of each

category can be considered as a binary classification procedure, we employ

171

Chapter 7. Automated Artemia detection and counting
S
a
m
p
le

#
1

S
a
m
p
le

#
2

S
a
m
p
le

#
3

S
a
m
p
le

#
4

S
a
m
p
le

#
5

(a) (b) (c) (d)

Figure 7.10: Illustration of the marker maps and detection results yielded by our
method, and the detection results obtained by the MCWS method. (a) Original
images; (b) Marker maps yielded by the marker proposal network; (c) Detection
results obtained by the Marker-CNN method; (d) Detection results obtained by the
MCWS method. The blue and green bounding boxes indicate the detection results
of cysts and nauplii, respectively, while the red rectangles indicate the incorrect
detection results.

172

§7.4. Experiments and results

Table 7.1: Evaluation results in terms of detection accuracy.

Methods
Subcategory

Overall
Cyst Nauplius

MCWS 95.5% 85.4% 88.5%

Marker-CNN 99.9% 99.5% 99.6%

the precision and recall as evaluation measures, which have been given by

Eqs. (6.27) and (6.28). Accordingly, we compute the harmonic mean of the

precision and recall, thereby obtaining the F -measure.

The quantitative evaluation results are reported in Tabs. 7.1 and 7.2,

while some visual detection results are displayed in Fig. 7.10. The MCWS

method obtains an acceptable performance in detecting and counting Artemia

cysts, but underperforms in detecting and counting Artemia nauplii. This

is because the MCWS method mainly exploits low-level features. For the

Artemia cysts that have a regular round shape, the MCWS method works

well in object separation and recognition. Nevertheless, the MCWS method

cannot semantically describe the appearance of Artemia nauplii, and therefore,

it underperforms in detecting and counting the nauplius objects, especially

the adjacent ones. As can be seen in Fig. 7.10(d), the MCWS method yields

quite a few false detection results.

Comparatively, the Marker-CNN method achieves a much better perfor-

mance in detecting and counting Artemia objects, regardless of a high degree

of adjacency, variations of the object size and the interference from non-target

objects in the background. This is because the Marker-CNN method benefits

from both the marker proposal network and the target classifier. On the one

hand, for a given image, the marker proposal module yields markers only

for the Artemia objects, while suppressing the non-target artefacts and the

background. The obtained markers localize potential targets, separate the

adjacent objects and roughly indicate the sizes of the targets. We show the

intermediate results in Fig. 7.10(b). On the other hand, the target candidates

are further confirmed and classified by the CNN-based classifier. Furthermore,

the final detection and counting results that are displayed in Fig. 7.10(c) vali-

date the effectiveness of the Marker-CNN in detecting and counting Artemia

objects.

With respect to time efficiency, for each method, we report its average

runtime of processing a single image in Tab. 7.3. As can be seen, the Marker-

CNN is quite efficient to run. With the help of GPU acceleration, our method

processes each image with an average runtime of 0.16s, much faster than the

173

Chapter 7. Automated Artemia detection and counting

Table 7.2: Evaluation results in terms of precision, recall and F -measure.

Methods
Cyst Nauplius

Prec Rec F Prec Rec F

MCWS 0.890 0.955 0.922 0.864 0.854 0.859

Marker-CNN 0.994 0.999 0.996 0.999 0.995 0.997

MCWS method.

Table 7.3: Evaluation results in terms of average runtime (s).

Methods MCWS Marker-CNN

Runtime 1.62 0.16

7.5. Conclusions

The brine shrimp Artemia is an important organism in aquaculture, and the

number of studies on Artemia is increasing. Artemia detection and counting is

a fundamental task in Artemia image analysis. To facilitate this task, we have

proposed an automated detection and counting method in this chapter. Our

method consists of a UNet-based marker proposal network and a CNN-based

target classifier, and we therefore term it as the Marker-CNN method. The

marker proposal network introduces the image segmentation scheme into object

detection. It can generate target candidates, separate highly adjacent objects

and obtain the object structural information simultaneously. The target

classifier determines the category of each target candidate, thereby yielding

the Artemia detection and counting results. Moreover, we have compiled an

Artemia detection and counting dataset to train and test the proposed method.

Experimental results have manifested that the proposed Marker-CNN method

can accurately detect and count the Artemia objects in images.

174

8 Automated Artemia length

measurement

Length measurement plays an important role in many Artemia studies.

In this chapter, we propose an automated length measurement method using

UNet and NASAG kernels. The UNet model is used to extract the length

measuring line structure, while NASAG kernels are employed to transform the

length measuring line structure into a thin measuring line with minimal loss

of the length measure. For comparison, we also follow traditional approaches

and present a non-learning-based method using mathematical morphology

and polynomial curve fitting. In the experiments, we evaluate the proposed

method as well as the competing methods on the compiled Artemia length

measurement dataset. The experimental results confirm that the proposed

method can accurately measure the length of Artemia objects in images.

The material of this chapter is based on the following publication:

• Wang, G., Van Stappen, G., and De Baets, B. (2019d). Automated

artemia length measurement using U-shaped fully convolutional net-

works and second-order anisotropic Gaussian kernels. Computers and

Electronics in Agriculture, Accepted

8.1. Motivation

Image-based length measurement plays an indispensable role in many aquacul-

ture or marine studies (Hao et al., 2015), such as species classification (Chuang

et al., 2016), wild creature monitoring (Muñoz-Benavent et al., 2018), fish-

ery surveillance (French et al., 2015), quality grading (Misimi et al., 2008),

etc. These methods are generally divided into two categories: manual pro-

cessing methods and automated methods. Manual processing methods are

time-consuming and labor-intensive, and as such, they are less preferred

than automated methods when having to process large volumes of imagery

data (Meijering et al., 2016).

In literature, some automated fish length measurement methods have

already been developed. A straightforward and simplified idea is to consider

a fish as a rigid body. For example, the method proposed by Hsieh et al.

(2011) determines the length measuring line by finding the straight line passing

through the snout and the tail. Another example is the method proposed

175

Chapter 8. Automated Artemia length measurement

in (Balaban et al., 2010), which measures the salmon fish length using a

rectangular box fitting the fish body well (Lee et al., 2013). However, in many

practical applications, these methods underperform when the fish body shows

a curved appearance.

Comparatively, a more authentic scheme is to extract a curve along the

lengthways centerline of the fish body as the length measuring line. Strachan

(1993) designed an equipment consisting of a conveyor and a camera. For each

fish in the image, the middle points of the body transverse lines are connected

to form a length measuring line. This method has been successfully applied

in fish sorting (Strachan, 1994) and species recognition (White et al., 2006).

Nevertheless, using a polyline to approximate the length will inevitably incur

a considerable measurement error. Huang et al. (2016) proposed a method

that delineates the length measuring line based on a recursive morphological

erosion process. Similarly, the method presented in (Saberioon and Ćısař,

2018) determines the length measuring line by applying the distance transform

on the fish silhouette. This method represents the fish silhouette by zero and

the background by non-zero. Subsequently, it uses the distance transform

algorithm to compute the Euclidean distance between each zero pixel and

its nearest non-zero pixel. The resulting image contains ridges and the ridge

connecting the head point and the tail point is determined as the length

measuring line. Besides, there are also methods that determine the length

measuring line using morphological thinning or skeletonization (Han et al.,

2009; Pan et al., 2009). However, these methods are based on the premise

that the contour of the silhouette is smooth, and as such, these methods are

vulnerable to structures such as fish fins. To overcome this shortcoming, the

method in (Miranda and Romero, 2017) determines the length measuring line

by fitting a polynomial curve using all the points within the fish silhouette.

However, this method underperforms when the fish body shows a significant

distortion.

Not only in fish studies, but also in Artemia studies, an accurate length

measurement is desired (Toi et al., 2013). We have introduced some biological

background of Artemia in Chapter 7. In many Artemia studies, the length

information is considered a key dependent variable or feature (Balachandar

and Rajaram, 2019). For instance, in a controlled pond Artemia production,

which has become an effective way to meet the growing demand of Artemia

cysts supply, the individual Artemia length is usually adopted as a metric in

evaluating the feeding strategies of intensive Artemia culture (Lopes-dos Santos

et al., 2019). Despite an increasing demand for Artemia length measurement,

to the best of our knowledge, the problem of automated Artemia length

measurement has so far not been addressed in literature. Traditionally, the

176

§8.1. Motivation

length measuring line is delineated following a manual approach. As mentioned

earlier, this method is time-consuming and labor-intensive, having limitations

in processing large sets of imagery. Moreover, due to the distortion of non-rigid

bodies, the variation over growth stages, the variation over species and the

interference from the antennae and other appendages, existing methods that

have been applied for fish length measurement cannot be readily transferred to

measure the Artemia length. Therefore, it is desired to develop an automated

Artemia length measurement method in the Artemia research field.

For automated Artemia length measurement, it is pivotal to determine

the length measuring line semantically and accurately. Considering the length

measuring line as a positive foreground, the task of measuring line extrac-

tion can be viewed as a semantic segmentation problem. Relying on their

powerful feature learning and representation ability, approaches using deep

convolutional neural networks have achieved considerable progress in the image

segmentation filed. Representative examples include the method using deep

convolutional neural networks (CNN) (Ciresan et al., 2012), the method using

fully convolutional networks (FCN) (Long et al., 2015) and the method using

U-shaped fully convolutional networks (UNet) (Ronneberger et al., 2015). We

have introduced these networks in previous chapters.

In this chapter, aiming at measuring the length of Artemia in images,

we propose a method to delineate the length measuring line, using UNet

and normalized adaptive second-order anisotropic Gaussian (NASAG) kernels.

The trained UNet model is used to extract a length measuring line structure,

while the NASAG kernels are employed to transform the thick measuring line

structure into a thin measuring line. For comparison, we also follow several

existing fish length measurement approaches and design a method using

mathematical morphology and polynomial curve fitting (MMPCF method).

This method firstly extracts the principal lengthways morphological skeleton,

and subsequently uses the points on the skeleton to fit a polynomial curve.

The polynomial curve is then considered the length measuring line. Besides,

we have compiled an Artemia length measurement dataset to train and test

our method.

The remainder of this chapter is organized as follows. In Section 8.2, we

present an Artemia length measurement dataset and an automated length mea-

surement method, while in Section 8.3 we report and discuss the experimental

results. Section 8.4 lists our conclusions.

177

Chapter 8. Automated Artemia length measurement

(a) (b)

Figure 8.1: Illustration of an adult female Artemia (a) and an adult male
Artemia (b).

8.2. Materials and methods

In this section, we firstly introduce the Artemia length measurement dataset

containing 150 train images and 100 test images1. Subsequently, we propose a

method for measuring the Artemia length in images.

8.2.1. The Artemia length measurement dataset

The length of Artemia is considered an important feature for indicating

the growing status, and, as such, length measure data are highly desired in

many Artemia studies (Lopes-dos Santos et al., 2019). Nonetheless, image-

based Artemia length measurement is a challenging task, since the biological

morphology of Artemia individuals varies significantly with the growth stage.

As introduced in Chapter 7, an Artemia life cycle mainly includes the dormant

cyst, nauplius/metanauplius, juvenile and adult stages. The whole life cycle

may last several weeks. For the nauplii/metanauplii, juveniles and adults,

automated Artemia length measurement would suffer from the interference

of the antennae, thoracopods, claspers, brood sac, etc., as shown in Fig. 8.1.

Therefore, automated Artemia length measurement requires not only low-

level image features, but also semantic information. Aiming at developing

an automated length measurement method, we compiled a set of images

containing Artemia Franciscana individuals of different gender and in different

growth stages (including nauplius/metanauplius, juvenile and adult).

For each Artemia individual to be measured, the full body was fixed

1 https://github.com/GangWangUgent/Artemia_length_measurement/

178

https://github.com/GangWangUgent/Artemia_length_measurement/

§8.2. Materials and methods

Figure 8.2: Sample label maps of length measuring lines (in green) superimposed
on the original images. First row: Label maps of thin measuring lines. Second row:
Label maps of thick length measuring lines.

with lugol solution (1%). Subsequently, the image was acquired by a stereo-

microscope (SMZ1270, Nikonr) connected to a lens of Nikonr (Plan Apo).

The relationship between pixels and the real-life length was obtained by the

software NIS Elements (version 4.40, Nikonr).

We aim at accurate length measurements for Artemia individuals. However,

the real-life length measures of Artemia individuals vary significantly with the

growth stage. Therefore, in view of a normalized performance evaluation, we

report the Artemia individual length in terms of pixels in this chapter.

We obtained 250 color images, including 85 juvenile/adult images and 165

nauplius/metanauplius images. Comparatively, we collected more nauplius/

metanauplius images, because the appearance of the Artemia body varies

more significantly during the nauplius/metanauplius stage. Subsequently, we

transformed each image into a resized version that has a resolution of 256×
256 × 3. We split the 250 images into two subsets: a training subset (150

images) and a test subset (100 images).

To produce the label maps of length measuring lines, we manually delineated

the length measuring line for each Artemia individual. The Artemia length is

considered the length of the measuring line, as shown in Fig. 8.2. Moreover,

for each Artemia image, besides a label map of the thin (one-pixel in width)

measuring line, we also delineated a thick measuring line structure, as shown

in Fig. 8.2. The reason is that thin measuring lines are inappropriate for

training an image segmentation model (Sironi et al., 2016). As a pixel on a

length measuring line is visually similar to its neighboring pixels, it is difficult

to accurately segment a one-pixel wide line from an Artemia body. We will

also address this in terms of the experimental results in Section 8.3.1.

179

Chapter 8. Automated Artemia length measurement

8.2.2. Automated Artemia length measurement using U-

shaped fully convolutional networks

Next, we design a UNet model for extracting a length measuring line structure

from an image. Subsequently, we transform the length measuring line structure

into a thin measuring line using NASAG kernels.

The architecture of the designed UNet model

The architecture of the UNet model we designed is displayed in Fig. 8.3. As

can be seen, the overall model is similar to the UNet used in Chapter 7. The

contracting path is built on a succession of convolutional layers and max pooling

layers (Krizhevsky et al., 2012). In each convolutional layer, the number of

kernels is configured as reported in Fig. 8.3. In addition, we also employ a

replication padding to make the sizes of the input map and the response map

identical. The rectified linear unit (Hinton, 2010) is selected as the activation

function. The size of the window and the sliding stride are set to be 2× 2 and

2, respectively. The UNet model we designed consists of five contracting steps.

Furthermore, the so-called dropout technique (Srivastava et al., 2014) is also

used to address the problem of overfitting. In the designed UNet model, the

dropout technique is used for the layers illustrated in Fig. 8.3.

The expanding path is built on a succession of convolutional layers and

up-convolution layers. The convolutional layers work in the same way as

those in the contracting path. The up-convolution layers double the size of

each input map. In particular, in order to better exploit the localization

information, the feature maps yielded in the contracting path are concatenated

with the corresponding feature maps in the expanding layers, as illustrated in

Fig. 8.3.

At the end, the prediction map P is obtained by a sigmoid function as

formulated in Eq. 7.3.

The UNet training process

A UNet model usually contains a high number of parameters. To prevent the

UNet model from overfitting, a large amount of training data is required. Since

there are only 150 images for training, we augmented the training data by

means of scaling, rotation, translation, shearing and reflection. To make the

images and the label maps consistently matching, we applied the same spatial

transformation to the image and the corresponding label map. In this way, we

obtained 3000 augmented images and corresponding label maps.

We train the UNet by minimizing the loss function that represents the

180

§8.2. Materials and methods

Figure 8.3: Architecture of the UNet for centerline area segmentation.

difference between the ground truth label map and the yielded prediction map.

Since the segmentation in our method is a binarization problem, we define

the loss function based on pixel-weighted cross-entropy. We use the adaptive

moment estimation (Adam) method to train the UNet model (Kingma and

Ba, 2015). The learning rate and the two decay rates are set as 10−4, 0.9 and

0.999, respectively.

The weights in each layer are initialized by the method presented in (He

et al., 2015). As for the training batch size (BS), we have separately trained

the UNet with BS = 4 and BS = 8. Both settings lead to a good convergence,

as shown in Fig. 8.4. In our method, we set the batch size as BS = 4 and the

total number of epochs as 200.

To present the evolution of the prediction ability during the training

procedure, we display in Fig. 8.5 the prediction map obtained on a sample

test image when the number of epochs is 5, 20, 50, 100 and 200, respectively.

The UNet model learns to segment the foreground object in the initial phase.

As the number of epochs increases, the UNet model tends to yield large values

at the locations of the lengthways central region. Eventually, after 200 epochs,

181

Chapter 8. Automated Artemia length measurement

Figure 8.4: Curves of train losses obtained by two different settings of batch size.

(a) (b) (c)

(d) (e) (f)

Figure 8.5: Evolution of the prediction map as the number of epochs increases. (a)
Original image; (b)-(f) The prediction map that is obtained when the number of
iterations is 5, 20, 50, 100 and 200, respectively.

the UNet model is able to segment the length measuring line structure for a

given Artemia object.

182

§8.2. Materials and methods

The UNet model has been implemented and trained on Python 3.5.6

running on a PC configured with Intel i7-6800K, 64GB RAM and GEFORCE

GTX 1080Ti GPU.

Obtaining the thin length measuring line

The prediction map yielded by the UNet shows a thick measuring line structure,

as displayed in Fig. 8.5(f). It is required to transform the length measuring

line structure into a thin measuring line. A straightforward method is to

binarize the prediction map (Otsu, 1979) and subsequently employ a mor-

phological skeletonization process (Herbin et al., 1996; Kong and Rosenfeld,

1996; González and Woods, 2010) to obtain the thin skeleton, e.g., the length

measuring line. However, this will lead to a loss of length measure at the

endpoints of the line. We desire a method that can obtain the thin centerline

with minimal loss of length measure.

In literature, NASAG kernels have already been used for line detec-

tion (Wang et al., 2019c). They can delineate the thin centerline of a thick

curvilinear structure that is heterogeneous in terms of width, direction and

prominence. Therefore, we here employ NASAG kernels to extract the thin

measuring line from the prediction map yielded by the UNet.

Having the prediction map P yielded by the UNet, we obtain the final

response of NASAG kernels as follows:

Ll(m) = max
σi∈S

max
θj∈D

g′′L(m;σi, ϕi, θj) ∗P(m) , (8.1)

where g′′L(m;σi, ϕi, θj) denotes the discrete version of the NASAG kernel.

Moreover, the direction map Θl(m) is obtained as:

Θl(m) = argmax
θj∈D

max
σi∈S

g′′L(m;σi, ϕi, θj) ∗P(m) . (8.2)

Subsequently, based on Ll(m) and Θl(m), we use the NMS technique (Rosen-

feld et al., 1972) to obtain the thin measuring line. For each pixel, if the value

of Ll(m) at the current pixel position m is the largest value compared to the

other pixels along the direction Θl(m), the value will be retained. Otherwise,

it will be nullified. The result of applying the NMS technique to Fig. 8.5(f)

is shown in Fig. 8.6(b). For comparison, we also display the result obtained

by the morphological skeletonization (MS) method in Fig. 8.6(a). As can be

seen, the MS method leads to a loss of length measure at the endpoints of the

length measuring line, while the NASAG method yields a length measuring

line with minimal loss of length measure.

183

Chapter 8. Automated Artemia length measurement

(a) (b)

Figure 8.6: The results of measuring line extraction (red lines superimposed on
the original image) obtained by the MS method (a) and the NASAG method (b) on
the image shown in Fig. 8.5(f). For a better demonstration, a zoom-in view of the
regions of interest (indicated by windows) is displayed in the second row.

8.2.3. A method using mathematical morphology and

polynomial curve fitting

For comparison, we also follow several existing fish length measurement ap-

proaches (Huang et al., 2016; Miranda and Romero, 2017), and design a method

using mathematical morphology and polynomial curve fitting. This method

is based on the premise that the silhouette of the object to be measured is

usually symmetric. Specifically, we implement the MMPCF method in three

steps: silhouette segmentation, silhouette alignment and measuring line fitting.

For a better presentation, we elaborate our method by processing an example

Artemia image displayed in Fig. 8.7(a).

Silhouette segmentation and alignment

It is observed that the Artemia bodies are significantly different from the

background. Therefore, in most cases, the foreground silhouette can be

extracted using the Otsu thresholding technique (Otsu, 1979) on the grayscale

version of the original image. For illustration, Fig. 8.7(b) shows the grayscale

image and Fig. 8.7(c) displays the segmented silhouette.

The Artemia in the captured image appears along a random direction,

184

§8.2. Materials and methods

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8.7: Demonstration of the MMPCF method. (a) The original image; (b)
The grayscale version; (c) The foreground silhouette; (d) The horizontally aligned
silhouette; (e) The result of skeletonization, the starting point and the endpoint (in
green); (f) The result of geodesic distance transform, with the starting point as the
seed location; (g) The result of geodesic distance transform, with the endpoint as
the seed location; (h) The principal morphological skeleton (in red); (i) The fitted
polynomial curve overlaid on the aligned silhouette; (j) The length measuring line
overlaid on the original image.

which will hinder a subsequent procedure of polynomial curve fitting. To

align the silhouette horizontally, we determine the principal direction of the

silhouette based on the image moments, which have been extensively used in

many computer vision systems (Karakasis et al., 2015). For a given binary

image K, the ij-th order image moment is computed as follows (Prokop and

Reeves, 1992):

Mij =
∑
m∈K

mi
xm

j
y ·K(m) , (8.3)

where [mx,my]T denotes the image coordinates. Based on the image moments,

we are able to compute an equivalent ellipse corresponding to the silhouette,

the covariance matrix V of which is computed as follows:

V =

[
V1,1 V1,2

V2,1 V2,2

]
(8.4)

where

V1,1 =
M00M20 −M2

10

M2
00

,

185

Chapter 8. Automated Artemia length measurement

V1,2 = V2,1 =
M00M11 −M10M10

M2
00

,

V2,2 =
M00M02 −M2

01

M2
00

. (8.5)

According to the covariance matrix, the principal direction of the main body

is computed as

ϑ̃ =
1

2
arctan

2 ·V1,2

V1,1 −V2,2
. (8.6)

In addition, we compute the standard deviations ζh and ζl of the locations

within K along the horizontal and longitudinal axis, respectively. Since the

standard deviation along the lengthways direction is larger than that along the

transverse direction, the principal direction in Eq. (8.6) is modified as

ϑ̂ =

 ϑ̃− π

2
|ϑ̃| , if ζh < ζl

ϑ̃ , otherwise
. (8.7)

Consequently, using the principal direction ϑ̂, we obtain the horizontally aligned

Artemia silhouette, which is denoted by Kh. As an illustration, the Kh shown

in Fig. 8.7(d) is the result of rotating K by ϑ̂.

Polynomial curve fitting

Having the aligned Artemia silhouette, we next describe the approach to

delineate the length measuring line. As mentioned earlier, some authors have

proposed methods for extracting the lengthways centerline of a fish body, which

is considered an approximation of the length measuring line. However, these

existing methods cannot be readily applied to Artemia length measurement,

due to the serious distortion of non-rigid bodies, the variations over growth

stages and the interference from the antennae, telopodite and endopodite,

etc. In our method, we determine the length measuring line of the Artemia

silhouette as follows.

We apply a morphological opening operation (González and Woods, 2010)

to Kh to remove the antenna areas. Subsequently, we select the rightmost and

leftmost pixels as the starting point and endpoint, respectively. Then, to find

more points that are close to the lengthways centerline of the full silhouette,

we compute the skeleton map Ksk of Kh as follows:

Ksk =

Nsk⋃
j=0

(Kh 	 κse)(j) \
[
(Kh 	 κse)(j+1) ⊕ κse

]
, (8.8)

186

§8.3. Experiments and results

where κse denotes the disk structuring element with a radius of 2, j stands for

the j-th successive operation and

Nsk = max
{
j | (Kh 	 κse)(j) 6= ∅

}
. (8.9)

For demonstration, in Fig. 8.7(e), we show the skeleton map Ksk obtained

on Fig. 8.7(d). In Ksk, we determine the principal morphological skeleton by

finding the shortest skeleton passing through both the starting point and the

endpoint. Setting the starting point or the endpoint as the seed location, we

compute two maps of the geodesic distance transform (Cárdenes et al., 2010)

on Ksk, as illustrated in Figs. 8.7(f) and 8.7(g). In the sum of the two geodesic

distance transform maps, the principal morphological skeleton is identified as

the set of locations at which the intensities are regional minima, as displayed

in Fig. 8.7(h).

Having the points that are close to the lengthways centerline of the sil-

houette, we fit a four-order polynomial curve in a least-squares sense, as

illustrated in Fig. 8.7(i). Furthermore, to reduce the error brought by the

rotation procedure, we rotate the obtained polynomial curve by -ϑ̂. Eventually,

we obtain the length measuring line of the Artemia silhouette, as shown in

Fig. 8.7(j).

8.3. Experiments and results

In the previous section, we have proposed an automated method to measure

the Artemia length in images using UNet and NASAG kernels (UNet+NASAG

method). In this section, we apply the UNet+NASAG method to real Artemia

images to evaluate its performance.

8.3.1. Comparison between two models trained by differ-

ent types of label maps

The UNet model for extracting the length measuring line structure plays a

pivotal role in our method. In Section 8.2.2, we have trained a UNet model by

label maps of thick measuring lines. Alternatively, it is also possible to train

the UNet using label maps of thin measuring lines. In literature, the method

in (Shen et al., 2017) trains a model for skeleton extraction using label maps of

thin skeletons. To compare the performance of the two schemes, we separately

train a UNet model using label maps of thin measuring lines (UNettn) and a

UNet model using label maps of thick measuring lines (UNettk). For a fair

comparison, the parameters in the UNettn and UNettk are set the same.

187

Chapter 8. Automated Artemia length measurement

Figure 8.8: Sample images and the prediction maps yielded by the UNettn. First
column: The label maps of thin measuring lines superimposed on the original image.
Second column to fifth column: The prediction maps obtained on the sample images
when the number of epochs is 5, 10, 50 and 200, respectively.

In Fig. 8.8, we display samples of prediction maps yielded by the UNettn,

while in Fig. 8.9, we show samples of prediction maps yielded by the UNettk.

It can be seen that the UNettn sometimes yields a prediction map in which the

length measuring line structures are disconnected. Even worse, the UNettn

sometimes fails to yield a full measuring line structure. In contrast, the UNettk

successfully yields the length measuring line structure for all the three sample

images.

8.3.2. Length measurement evaluation

We apply our method to 100 real-life Artemia images, the GT length measuring

lines of which have been labelled manually. Several example images as well as

their GT label maps are displayed in Fig. 8.2. The Artemia objects in these

images are in different growth stages and are situated in inhomogeneous back-

grounds. Some Artemia objects have seriously distorted shapes. To highlight

the role of the NASAG kernels in our method, we also compare the proposed

UNet+NASAG method with the method that uses the morphological skele-

tonization technique (González and Woods, 2010) to transform the prediction

map of the UNet into a thin measuring line (UNet+MS method).

In addition, we compare our method with two existing methods that are

originally designed for fish length measurement, including the method that

188

§8.3. Experiments and results

Figure 8.9: Sample images and the prediction maps yielded by the UNettk. First
column: The label maps of thick measuring lines (in green) superimposed on the
original image. Second column to fifth column: The prediction maps obtained on
the sample images when the number of epochs is 5, 10, 50 and 200, respectively.

uses the mid-line points yielded by a recursive erosion (MPRE method) (Huang

et al., 2016) and the method employing a polynomial curve fitting process on

the silhouette (PCFS method) (Miranda and Romero, 2017).

To obtain quantitative evaluation results, we adopt three widely used

evaluation measures. The first one is the root mean square error (RMSE),

which measures the differences between the estimated values and the true

values as follows:

Rmse =

√√√√ 1

Nim

Nim∑
i=1

(
Z

(i)
e − Z(i)

t

)2
, (8.10)

where Z
(i)
e and Z

(i)
t denote the i-th estimated length and the i-th true length,

respectively, and Nim represents the number of images in the dataset. The

second evaluation measure is the mean absolute error (MAE), which represents

the average absolute difference between the estimated length values and the

true length values, as follows:

Mae =
1

Nim

Nim∑
i=1

∣∣∣Z(i)
e − Z

(i)
t

∣∣∣ . (8.11)

189

Chapter 8. Automated Artemia length measurement

Table 8.1: Quantitative evaluation results in terms of RMSE, MAE and MAPE
obtained by different methods.

Methods RMSE (pixels) MAE (pixels) MAPE (%)

MPRE 41.45 25.96 12.02

PCFS 27.69 14.98 6.91

MMPCF 13.89 7.27 3.11

UNet+MS 11.53 10.57 4.76

UNet+NASAG 3.77 2.67 1.16

We also adopt the mean absolute percentage error (MAPE) as an evaluation

measure, which is defined as:

Mape =
1

Nim

Nim∑
i=1

∣∣∣Z(i)
e − Z(i)

t

∣∣∣
Z

(i)
t

× 100% . (8.12)

The quantitative evaluation results are reported in Tab 8.1. The MPRE

and PCFS methods, which work well for fish length measurement, under-

perform for Artemia length measurement. This is mainly because the two

methods are vulnerable to the structures of antenna, telopodite, endopodite,

etc. In addition, although the designed MMPCF method obtains an accept-

able performance in terms of the MAE and MAPE, its RMSE value is fairly

large, which indicates that the performance is unstable. Comparatively, the

UNet+MS and UNet+NASAG methods obtain a more stable performance. In

particular, among all the methods, the UNet+NASAG method obtains the

best performance in terms of the three evaluation measures.

In Fig. 8.10, we also show the length measuring line extraction results of

different methods obtained on sample images. As can be seen, the methods

based on mathematical morphology operations, including the MPRE, PCFS

and MMPCF methods, are able to tackle the object with a symmetric silhouette.

However, they usually underperform when processing images like Sample #4

and Sample #5, the objects in which have asymmetric silhouettes. In contrast,

the UNet+MS and UNet+NASAG methods work well for measuring the

objects that have asymmetric silhouettes. Furthermore, it can be seen that

the UNet+MS method leads to a loss of length measure in the morphological

skeletonization procedure, while the UNet+NASAG method measures the

Artemia length accurately. This manifests that the employed NASAG kernels

transform the prediction map yielded by the UNet into a thin measuring line

with minimal loss of length measure.

190

§8.3. Experiments and results

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5

G
T

M
P
R
E

P
C
F
S

M
M
P
C
F

U
N
et
+
M
S

U
N
et
+
N
A
S
A
G

Figure 8.10: Comparison of different methods for measuring line extraction. First
row: The label maps of measuring lines (in green) superimposed on the sample
images. Second row to bottom row: The results of length measuring line extraction
(in red) obtained by different methods.

191

Chapter 8. Automated Artemia length measurement

8.4. Conclusions

The brine shrimp Artemia is widely used as a live food for fish and shellfish

larviculture, and the Artemia length measurement plays an important role in

many Artemia studies. Aiming at automated Artemia length measurement,

we have compiled a dataset that contains 250 Artemia images and the ground

truth maps of length measuring lines. We have proposed an automated length

measurement method using UNet and NASAG kernels. In this method, the

trained UNet model is used to extract the length measuring line structure,

while the NASAG kernels are employed to transform the length measuring line

structure into a thin measuring line with minimal loss of length measure. For

comparison, we have also followed traditional approaches and presented a non-

learning-based method using mathematical morphology and polynomial curve

fitting. In the experiments, we have evaluated the proposed method as well

as the competing methods on the Artemia length measurement dataset. The

experimental results have confirmed that the proposed method can accurately

measure the length of Artemia objects in images.

192

PART IV

EPILOGUE

193

9 Conclusions and future work

With the increasing use of imaging systems in scientific studies, automated

image analysis has attracted much attention over the past decades, due to its

superiority in processing efficiency and assessment objectivity over manual

image analysis. Aiming at more automated image analysis techniques, in

this thesis, we have investigated several Gaussian-based convolutional kernels,

and accordingly, have proposed several methods to accomplish particular

tasks. In addition, to facilitate Artemia studies, we have also developed two

automated methods for analyzing Artemia images. Below, we summarize the

main conclusions that can be drawn from this thesis, and, subsequently, list

several pending issues that might be included in future work.

9.1. Conclusions

In this thesis, we have investigated three Gaussian-based convolutional kernels

(i.e., the NFAG kernel, NASAG kernel and USG kernel) and have proposed a

novel filtering method (i.e., iLoG filtering). In addition, to facilitate Artemia

studies, we have developed two automated methods for analyzing Artemia

images: an automated Artemia detection and counting method and an auto-

mated Artemia length measurement method. All of the proposed methods

have been validated on in-house datasets.

In Chapter 3, we have proposed a multiscale version of NFAG kernels. These

kernels are able to quantitatively measure the edge strength, edge direction

and edge scale simultaneously, while reducing the impact of noise. They are

also quite reliable in detecting edges with heterogeneous widths. In addition,

building on these kernels, we have also proposed a contour detection method.

In this method, the anisotropic edge strength is computed using NFAG kernels.

Using a hierarchical set of superpixel maps, the superpixel contrast maps

at different hierarchy levels are also computed. Subsequently, the contour

strength map is obtained as the product of the anisotropic edge strength map

and the average of the hierarchical superpixel contrast maps. The experimental

results obtained on widely used datasets have validated the superiority of our

contour detection method over the competing methods. For further expanding

the use of NFAG kernels, we have also presented a superpixel segmentation

method using NFAG kernels. The NFAG-based anisotropic edge strength

is incorporated into a distance measure, which computes the dissimilarity

between two neighboring superpixels by combining the edge strength and

195

Chapter 9. Conclusions and future work

the color distance. In this way, we have modified an existing superpixel

segmentation method. Experimental results on three datasets have manifested

that our superpixel segmentation method is less dataset-dependent than the

competing methods. Furthermore, it has also been illustrated that our method

can facilitate a subsequent saliency detection task.

In Chapter 4, we have studied and presented a line detection method

based on NASAG kernels. This method is reliable to detect lines that are

heterogeneous in width and prominence. Moreover, this method can be easily

adapted to noisy environments. A scale-adaptive anisotropy factor has also

been designed to attenuate the anisotropy stretch effect. Experimental results

on a publicly available biological image dataset as well as a noisy version thereof

have demonstrated that compared with the selected competing methods, our

line detection method can significantly improve the robustness to noise while

consuming an acceptable execution time.

In Chapter 5, we have proposed the USG kernel, and accordingly, have

presented a method to quantitatively measure the blob characteristics. This

method not only identifies the blob position, prominence and scale, but also

suppresses non-blob structures well, and thus, this method can facilitate the

implementation of blob reconstruction and blob reduction. Moreover, to

tackle the blob-like noise that occurs in high-ISO long-exposure images, we

have developed a denoising scheme by employing a blob reduction procedure

for each of the selected conventional denoising methods. The experimental

results have demonstrated that in high-ISO long-exposure image denoising, the

methods incorporating blob reduction outperform the original conventional

methods.

In Chapter 6, in order to accurately detect overlapping blob objects, we

have presented a novel blob detection method based on iLoG filtering and

USG kernels. The iteration of the Laplacian of Gaussian reduces the degree

of overlap, facilitating a subsequent blob extraction procedure. The USG

kernels yield responses only for blob objects, and as such, the blob objects

can be pinpointed by a thresholding step. The experimental results have

demonstrated that the proposed method shows a promising performance in

detecting fluorescence microscopy cells and electron micrograph nanoparticles,

even when there is a high degree of overlap.

In Chapter 7, we have addressed the issue of automated Artemia detection

and counting, which is highly desired in many Artemia studies. We have

proposed a method consisting of a UNet-based marker proposal network and

a CNN-based target classifier, which is therefore termed as the Marker-CNN

method. The marker proposal network introduces the image segmentation

scheme into object detection. This network can generate target candidates,

196

§9.2. Potential research directions

separate seriously adjacent objects and obtain the object structural informa-

tion simultaneously. The target classifier determines the category of each

target candidate, thereby yielding the Artemia detection and counting results.

Moreover, we have collected an Artemia detection and counting dataset to

train and test the proposed method. Experimental results have manifested

that the proposed Marker-CNN method can accurately detect and count the

Artemia objects in images.

In Chapter 8, aiming at an accurate Artemia length measurement in images,

we have proposed an automated method using UNet and NASAG kernels. In

this method, the UNet model is used to extract the length measuring line

structure, while the NASAG kernels are employed to transform the length

measuring line structure into a thin measuring line with minimal loss of

length measure. In addition, to train and test the proposed method, we have

collected an Artemia length measurement dataset. For comparison, we have

also followed traditional approaches and have presented a method based on

mathematical morphology and polynomial curve fitting. In the experiments,

we have evaluated the proposed method as well as the competing methods on

the collected Artemia length measurement dataset. The experimental results

have confirmed that the proposed method can accurately measure the length

of Artemia objects in images.

9.2. Potential research directions

In this thesis, we have studied and proposed several automated image analysis

methods using hand-crafted features and deep learning techniques. Besides the

contributions to solving particular problems, our studies have indicated several

potential research directions, which might be included in future work.

9.2.1. Texture suppression using superpixels for contour

detection

Contour detection is a fundamental problem in image analysis and a great

many of contour detection methods have been developed. In terms of contour

detection performance, there is still a significant gap between hand-crafted

methods and human abilities. The interference in contour detection is mainly

from textures, since textural regions also show intensity/color discontinuities.

In literature, several efforts have been made for texture suppression. Some

methods suppress textures by simulating the mechanism of human visual

systems (Yang et al., 2014; Akbarinia and Parraga, 2018), but these methods

usually entail a heavy computation. Another kind of methods estimate the

texture strength using spatial sparseness measurement (Alpert et al., 2012;

197

Chapter 9. Conclusions and future work

Yang et al., 2015a), and then, use the texture strength map to suppress

textural edges. It has been validated that contour detection can benefit from

a sparseness-constraint. Nevertheless, existing methods compute the spatial

sparseness measure using a regular window, which makes the measurement

not content-aware and shape-adaptive. Actually, contours are the borders

between the objects and the background or between different objects, and

thus, contours are highly related to image contents and object shapes. In

this thesis, we have presented a contour detection method that exploits shape

information by superpixels. Despite its good properties, our method still has

limitations in exploiting textural features. One possible way to improve our

method is to modify the superpixel contrast measure. Currently, we obtain

superpixel contrast maps using the mean color of each superpixel. Despite its

good time efficiency, this approach does not exploit textural information well.

Therefore, in a modified version, we could incorporate texture dissimilarity

into the superpixel contrast measure. Another possible approach to improve

the current method is to incorporate a spatial sparseness measurement. A

map of spatial sparseness measurement reflects the intensity of textures, and

thus, we could employ it to further suppress the textural responses in the

contour strength map that is yielded by our current method.

9.2.2. Line detection based on image segmentation and

line thinning

Line detection is a long-standing problem in image analysis, and has been

widely used for detecting roads (Bae et al., 2015), blood vessels (Obara et al.,

2012a), etc. Among the existing methods, both hand-crafted methods and deep

learning methods have their own advantages and disadvantages. Nonetheless,

in terms of detection accuracy, deep learning methods comparatively perform

better, and thus, they have attracted increasing attention recently. Typical

existing methods consider line detection as a regression problem (Sironi et al.,

2016). Despite the significant improvements over the competing methods,

these methods usually yield isolated erroneous responses, discontinuities and

topological errors (Sironi et al., 2015). One reason is that they use the

distance transformation result of the thin centerlines as the ground truth,

and accordingly, the trained model tends to yield fragile predicted lines. We

have also argued this problem in this thesis. Experimental results have

manifested that thick line structures are more robust to learn and represent

than thin line structures. Besides, in Chapters 4 and 8, we have validated

the efficacy of the UNet and NASAG kernels in line structure extraction

or line structure thinning. These works suggest that it is meaningful to

jointly use UNet and NASAG kernels for detecting line-like structures, such

as fungi in microscopy images and rivers in remote sensing images. Currently,

198

§9.2. Potential research directions

the challenging problems in line detection include weak line extraction and

spatial structure preservation. Besides approaches of data augmentation (Peng

et al., 2018), structure learning (Dollár and Zitnick, 2015), etc., we can also

address these problems by adjusting the training data. The thin centerlines in

the ground truth can be quantitatively diffused into thick line structures by

NASAG kernels. The obtained thick line structures can be used for training

the UNet. It has been argued that training by thick line structures can ease

the problem of pixel-class imbalance and can facilitate structure preservation.

Since a UNet model trained by such training data would accordingly yield

segmentation results that contain thick line structures, we can use NASAG

kernels to transform these structures into thin lines.

9.2.3. Noise-aware and content-aware image denoising

Image denoising has been intensively studied for quite a long time. Despite a

great many of achievements, most of the conventional methods are designed and

tested for removing artificially modelled noise instead of real-world noise. Thus,

these methods might underperform when dealing with real-world noise (Xu

et al., 2018a). Moreover, many existing methods work well only if the noise level

is known beforehand. Their performance would be degraded significantly if the

noise level is incorrectly estimated. Quite a few methods have been developed

to address real-world noise (Chen et al., 2018b) and to estimate the noise

level (Dong et al., 2017), but thus far, there is no method for identifying and

estimating high-ISO long-exposure noise. The blob characterization method we

have proposed in Chapter 5 might provide cues for solving this problem.

Content-aware processing is a technique in which the processing operation

varies adaptively according to the image contents (Rivera et al., 2012). Existing

content-aware denoising methods are mainly used for preserving image details

during the denoising procedure. Actually, a content-aware method for high-

ISO long-exposure image denoising is also meaningful. This is because when

reducing high-ISO long-exposure noise, our method removes blob structures

indiscriminately, and therefore, some semantic blob objects, e.g., traffic lights

in the far background, would also be removed. Although this kind of situations

is generally rare, it would be desired to fix this potential vulnerability in some

scenarios. A possible solution is to use CNN to develop a method that can

detect semantic blob regions (Li et al., 2017). Such regions would be excluded

in a subsequent blob reduction procedure, so that the denoising method would

not remove the semantic objects.

199

Chapter 9. Conclusions and future work

9.2.4. Extensions of the automated Artemia analysis me-

thods

Many biological studies consider image data as a primary source of information

in unraveling the mechanisms of the observed organism (Meijering et al., 2016),

and many such studies desire automated techniques for an accurate, efficient

and objective image analysis. In this thesis, we have proposed two automated

methods for performing Artemia image analysis tasks, which would benefit

some Artemia studies. Nevertheless, extra work is still required to make these

methods more adaptable.

Firstly, the Artemia detection method elaborated in Chapter 7 is currently

used for detecting and counting cysts and nauplii. This method can be further

extended for detecting Artemia objects belonging to other categories, including

the juvenile, male adult and female adult. To this end, we can compile an

extended dataset that contains annotated Artemia objects belonging to other

categories. Also, the number of output categories should be adjusted by

increasing the output of the Marker-CNN model.

Secondly, the colors of Artemia objects and the background are highly

related to the used fixatives. The proposed Artemia analysis methods can

be improved by making them more adaptable to different fixative colors.

Moreover, Artemia objects appear nearly transparent when no fixative is

applied. Methods for analyzing nearly transparent Artemia objects are also

desired in practice. To achieve this goal, we can design a tailor-made image

enhancement method, and compile a dataset containing Artemia objects that

appear nearly transparent.

Thirdly, most of the images in the compiled datasets have clean back-

grounds. To make the designed object detection and counting method more

robust to undesired artefacts, we can collect and annotate more images that

contain undesired artefacts, e.g., salt crystals, bioflocs and other zooplankton

organisms.

Fourthly, the performance of the currently designed methods might be

improved by using more advanced neural networks. For example, some recent

works have manifested that a UNet architecture that is built on residual

neural networks (He et al., 2016) might help to improve the segmentation

performance (Zhang et al., 2018).

Besides, it would be interesting to expand the use of the proposed methods

into some Artemia video analysis tasks, e.g., Artemia tracking. Artemia

tracking is the process of keeping watch on the Artemia objects of interest.

There are three key steps to accomplish this task: object detection, object

200

§9.2. Potential research directions

tracking from frame to frame, and behavior analysis using the object tracks. It

is believed that the proposed Artemia detection method can make contributions

to the first two steps. For example, on the initial video frame, the Artemia

detection method can indicate all the possible targets and distribute an

identification number for each target, which would facilitate the subsequent

tracking and behavior analysis.

9.2.5. Transfer use of the developed Artemia image anal-

ysis methods

In this thesis, we have developed an Artemia detection/counting method and

an Artemia length measurement method. To train and test the methods,

we have also compiled the corresponding datasets. As stated earlier, many

biological studies desire automated techniques for image analysis. Therefore,

it would be interesting to transfer the developed methods to process images

of other species that have a visual similarity to Artemia, e.g., shrimps or

copepods. To achieve such objectives, the following approaches can be taken

into account.

Firstly, when developing methods for analyzing images of other species,

we can adopt transfer learning schemes (Tajbakhsh et al., 2016) and use the

pre-trained models. The initial layers of the deep convolutional networks are

mainly used for extracting and representing low-level features, and as such,

these layers can be applied to images of other species. Using pre-trained models

is also helpful for relieving the over-fitting problem, especially when the sizes of

the datasets are small. We can fine-tune either the whole pre-trained models or

the last several layers of the pre-trained models. In the fine-tuning procedure,

we can use completely compiled datasets containing annotated images of other

species. Besides, we can also use expandable datasets whose training data can

be expanded by the users’ interactive annotation incrementally.

Secondly, when annotating images of other species, we can adopt active

learning techniques (Zhou et al., 2017) that are able to interactively query

the annotations from the users. Among the unlabelled images, active learning

techniques help us indicate the samples that should be labelled preferentially,

and thus, the model to be trained can achieve a good performance with

comparatively less annotated data.

9.2.6. Open-source software and image material

In bioscience engineering, there are many studies that require automated

methods to analyze the acquired image data (Xing et al., 2018). In response

to such demand, some open-source platforms (or toolkits) have been released

201

Chapter 9. Conclusions and future work

publicly. A representative platform is Fiji, a further developed version of

the long-standing ImageJ (Schindelin et al., 2012). In the Fiji platform, the

internal image analysis algorithms are transparent and can be further modified

if desired. Most of the algorithms are based on hand-crafted features, so their

use can be controlled by adjusting a few key parameters. Having an increasing

number of algorithms, this platform provides a software library for a rapid

transfer from conventional algorithms to practical image-analysis tools.

With the development of deep learning, many bioimage analysis methods

using deep neural networks have been proposed. Many particular tasks have

been addressed in literature, but only a small portion of these methods make

their source codes and datasets publicly available, which leads to obstacles

to reproduce or further improve these methods. Generally, models built on

deep learning methods are more complex than those built on hand-crafted

methods. The performance of a specific deep learning method might vary

significantly with the settings of hyper-parameters, and as such, it is rather

difficult to build a generic deep learning platform for solving a wide range of

problems. Nevertheless, it is quite meaningful to develop a deep-learning-based

platform (Gibson et al., 2018) that can solve a group of similar tasks (e.g.,

irregular cell/nucleus counting), or to build a platform for a specific field (e.g.,

Artemia image analysis). In this thesis, although we have accomplished several

Artemia analysis tasks, there still remains a lot of work to build a full Artemia

image analysis platform. To make contributions to such a platform, we have

made the source codes of our Artemia detection & counting method and the

Artemia length measurement method publicly available1. Moreover, we hope

that our methods would contribute to some similar tasks, e.g., shrimp length

measurement (Kesvarakul et al., 2017).

It is also encouraged that researchers in the bioscience engineering field

could make more image materials open to the computer science community. On

the one hand, image materials are pivotal for data-driven methods, and opening

up more image datasets would help to attract more attention from software

developers. On the other hand, although a lot of methods have been developed

in literature, many of these methods still have room for improvement. Opening

up image datasets would facilitate comparisons between conventional methods

and new methods. Recently, there are more and more publicly available

bioimage datasets, which have solicited a lot of solutions to the particular

problems (Ronneberger et al., 2015). However, these existing datasets are far

from enough. To attract more attention to Artemia analysis tasks, we have

released our in-house datasets, the Artemia detection & counting dataset and

the Artemia length measurement dataset, open to the public1.

1 https://github.com/GangWangUgent?tab=repositories/

202

https://github.com/GangWangUgent?tab=repositories/

Appendices

203

A Appendix

A.1. Proof of Eq. (3.13)

Let

x̃ = [x̃, ỹ]T

=

[
cos θ0 sin θ0

− sin θ0 cos θ0

]
x

be the rotated plane coordinates, ũ = [ũ, ṽ]T an alternative notation of x̃,

and u = [u, v]T an alternative notation of x. Then, the edge model formulated

in Eq. (3.10) becomes

Ξ0(x) = g(x;ω0) ∗ (c0 H (x̃) + b0) .

In this edge model, g(x;ω0) is a rotational symmetric Gaussian function, and

as such, it holds that

g(x;ω0) = g(x̃;ω0)

=
1

2πω2
0

exp

(
− x̃Tx̃

2ω2
0

)
.

Besides, the first derivative of g(x̃;ω0) w.r.t. x is given by

g′(x̃;ω0) = − x̃

ω2
0

g(x̃;ω0)

= − x̃

2πω4
0

exp

(
− x̃

2 + ỹ2

2ω2
0

)
.

With respect to the anisotropic Gaussian kernel, by setting the value of θ

as θ0, we have

g(x;σ, ϕ, θ0) =
1

2πϕσ2
exp

(
− 1

2σ2
xTRT

θ0

[
1 0

0 ϕ−2

]
Rθ0x

)

=
1

2πϕσ2
exp

(
− x̃2 + ϕ−2ỹ2

2σ2

)
.

Moreover, based on the algebraic properties of a convolution operation,

205

Chapter A. Appendix

given two signals f and g, it holds that

f ∗ g′ = g′ ∗ f
= f ′ ∗ g
= (f ∗ g)

′
.

Then, we compute the Enon in Eq. (3.13) as follows:

Enon

= max
θ

∣∣g′(x;σ, ϕ, θ) ∗Ξ0(x)
∣∣
x=0

=
∣∣g′(x;σ, ϕ, θ) ∗Ξ0(x)

∣∣
x=0,θ=θ0

=
∣∣Ξ0(x) ∗ g′(x;σ, ϕ, θ0)

∣∣
x=0

=
∣∣(c0H(x̃) + b0) ∗ g(x̃;ω0) ∗ g′(x;σ, ϕ, θ0)

∣∣
x=0

=
∣∣(c0H(x̃) + b0) ∗ g(x̃;ω0) ∗ g′(x;σ, ϕ, θ0)

∣∣
x=0

=
∣∣(c0H(x̃) + b0) ∗ g′(x̃;ω0) ∗ g(x;σ, ϕ, θ0)

∣∣
x=0

=
∣∣(c0H(x̃) ∗ g′(x̃;ω0) + b0 ∗ g′(x̃;ω0)

)
∗ g(x;σ, ϕ, θ0)

∣∣
x=0

=
∣∣(c0H(x̃) ∗ g′(x̃;ω0) + 0

)
∗ g(x;σ, ϕ, θ0)

∣∣
x=0

= c0

∣∣∣∣(¨
R2

H(0− ũ) · g′(ũ;ω0)dũ

)
∗ g(ũ;σ, ϕ, θ0)

∣∣∣∣
x=0

= c0

∣∣∣∣(− 1

2πω4
0

ˆ ũ

−∞
ũ exp

(
− ũ2

2ω2
0

)
dũ

ˆ +∞

−∞
exp

(
− ṽ2

2ω2
0

)
dṽ

)
∗ g(ũ;σ, ϕ, θ0)

∣∣∣∣
x=0

= c0

∣∣∣∣(− 1

2πω4
0

·
(
−ω2

0 exp

(
− ũ2

2ω2
0

))
·
√

2πω0

)
∗ g(ũ;σ, ϕ, θ0)

∣∣∣∣
x=0

= c0

∣∣∣∣ 1√
2πω0

exp

(
− ũ2

2ω2
0

)
∗ g(ũ;σ, ϕ, θ0)

∣∣∣∣
x=0

= c0

∣∣∣∣ 1√
2πω0

exp

(
− ũ2

2ω2
0

)
∗
(

1

2πϕσ2
exp

(
− ũ

2 + ϕ−2ṽ2

2σ2

))∣∣∣∣
x=0

= c0

∣∣∣∣¨
R2

1√
2πω0

exp

(
− (0− x̃)2

2ω2
0

)
·
(

1

2πϕσ2
exp

(
− x̃

2 + ϕ−2ỹ2

2σ2

))
dx̃

∣∣∣∣
= c0

∣∣∣∣ˆ +∞

−∞

1√
2πω0

exp

(
− (0− x̃)2

2ω2
0

)
· 1√

2πσ
exp

(
− x̃2

2σ2

)
dx̃

∣∣∣∣ ·∣∣∣∣ˆ +∞

−∞

1√
2πϕσ

exp

(
− ỹ2

2(ϕσ)2

)
dỹ

∣∣∣∣
= c0

1√
2π(ω2

0 + σ2)
· 1

=
c0√

2π(ω2
0 + σ2)

.

206

§A.2. Proof of Eq. (3.15)

A.2. Proof of Eq. (3.15)

We compute the Enorm in Eq. (3.15) as follows:

Enorm

= max
θ

∣∣g′E(x;σ, ϕ, θ) ∗Ξ0(x)
∣∣
x=0

=
∣∣Ξ0(x) ∗ g′E(x;σ, ϕ, θ)

∣∣
x=0,θ=θ0

=
∣∣(c0H(x̃) + b0) ∗ g(x̃;ω0) ∗

(
βσ2γ · g′(x;σ, ϕ, θ0)

)∣∣
x=0

= βσ2γ
∣∣(c0H(x̃) + b0) ∗ g(x̃;ω0) ∗ g′(x;σ, ϕ, θ0)

∣∣
x=0

= βσ2γ
∣∣(c0H(x̃) + b0) ∗ g′(x̃;ω0) ∗ g(x;σ, ϕ, θ0)

∣∣
x=0

= βσ2γ
∣∣(c0H(x̃) ∗ g′(x̃;ω0) + b0 ∗ g′(x̃;ω0)

)
∗ g(x;σ, ϕ, θ0)

∣∣
x=0

= βσ2γ
∣∣(c0H(x̃) ∗ g′(x̃;ω0) + 0

)
∗ g(x;σ, ϕ, θ0)

∣∣
x=0

= βc0σ
2γ

∣∣∣∣(¨
R2
H(0− ũ) · g′(ũ;ω0)dũ

)
∗ g(ũ;σ, ϕ, θ0)

∣∣∣∣
x=0

= βc0σ
2γ

∣∣∣∣(− 1

2πω4
0

ˆ ũ
−∞

ũ exp

(
−
ũ2

2ω2
0

)
dũ

ˆ +∞

−∞
exp

(
−
ṽ2

2ω2
0

)
dṽ

)
∗ g(ũ;σ, ϕ, θ0)

∣∣∣∣
x=0

= βc0σ
2γ

∣∣∣∣(− 1

2πω4
0

·
(
−ω2

0 exp

(
−
ũ2

2ω2
0

))
·
√
2πω0

)
∗ g(ũ;σ, ϕ, θ0)

∣∣∣∣
x=0

= βc0σ
2γ

∣∣∣∣ 1
√
2πω0

exp

(
−
ũ2

2ω2
0

)
∗ g(ũ;σ, ϕ, θ0)

∣∣∣∣
x=0

= βc0σ
2γ

∣∣∣∣ 1
√
2πω0

exp

(
−
ũ2

2ω2
0

)
∗
(

1

2πϕσ2
exp

(
−
ũ2 + ϕ−2ṽ2

2σ2

))∣∣∣∣
x=0

= βc0σ
2γ

∣∣∣∣¨
R2

1
√
2πω0

exp

(
−
(0− x̃)2

2ω2
0

)
·
(

1

2πϕσ2
exp

(
−
x̃2 + ϕ−2ỹ2

2σ2

))
dx̃

∣∣∣∣
= βc0σ

2γ

∣∣∣∣ˆ +∞

−∞

1
√
2πω0

exp

(
−
(0− x̃)2

2ω2
0

)
·

1
√
2πσ

exp

(
−
x̃2

2σ2

)
dx̃

∣∣∣∣
·
∣∣∣∣ˆ +∞

−∞

1
√
2πϕσ

exp

(
−

ỹ2

2(ϕσ)2

)
dỹ

∣∣∣∣
= βc0σ

2γ ·
1√

2π(ω2
0 + σ2)

· 1

= βc0
σ2γ√

2π(ω2
0 + σ2)

.

207

Chapter A. Appendix

A.3. Proof of Eq. (4.11)

For bright line detection, we have η = 1. Without loss of generality, we

consider the case θ0 = 0 and x0 = 0. Then, the line model formulated in

Eq. (4.3) becomes

Γ0(x) = p0 · exp

(
− (x̃− x0)T(x̃− x0)

2ω2
0

)
+ b0

∣∣∣∣∣
θ0=0,x0=0

= p0 · exp

(
−xTx

2ω2
0

)
+ b0 .

In this case, the anisotropic Gaussian kernel becomes

g(x;σ, ϕ, θ) =
1

2πϕσ2
exp

(
− 1

2σ2
xTRT

θ

[
1 0

0 ϕ−2

]
Rθx

)∣∣∣∣∣
θ=0

=
1

2πϕσ2
exp

(
−x

2 + ϕ−2y2

2σ2

)
=

1√
2πσ

exp

(
− x2

2σ2

)
· 1√

2πϕσ
exp

(
−ϕ
−2y2

2σ2

)
.

Accordingly, the normalized SAG kernel g′′L(x;σ, ϕ, θ) is given by

g′′L(x;σ, ϕ, θ) = (−1)η · β · σ2γ · g′′(x;σ, ϕ, θ)

= −1 · βσ2γ · 1

2πϕσ2
exp

(
−x

2 + ϕ−2y2

2σ2

)
= −βσ2γ · 1√

2πσ
exp

(
− x2

2σ2

)
· 1√

2πϕσ
exp

(
−ϕ
−2y2

2σ2

)
.

Then, the proof of Eq. (4.11) is given as follows:

L

= L(x;σ, ϕ, θ)|x=0,θ=0

= g′′L(x;σ, ϕ, θ) ∗ Γ0(x)|x=0,θ=0

=

(
−βσ2γ ·

(
x2

σ4
−

1

σ2

)
· g(x;σ, ϕ, θ)

)
∗
(
p0 · exp

(
−
x2

2ω2
0

)
+ b0

)∣∣∣∣∣
x=0,θ=0

=

(
p0 · exp

(
−
x2

2ω2
0

)
+ b0

)
∗
(
−βσ2γ ·

(
x2

σ4
−

1

σ2

)
· g(x;σ, ϕ, θ)

)∣∣∣∣∣
x=0,θ=0

= −βσ2γ ·
(
p0 · exp

(
−
x2

2ω2
0

)
+ b0

)
∗
((

x2

σ4
−

1

σ2

)
· g(x;σ, ϕ, θ)

)∣∣∣∣∣
x=0,θ=0

208

§A.3. Proof of Eq. (4.11)

= −βσ2γ ·
¨

R2

(
p0 · exp

(
−
(0− u)2

2ω2
0

)
+ b0

)
·
((

u2

σ4
−

1

σ2

)
· g(u;σ, ϕ, θ)

)
du

∣∣∣∣∣
θ=0

= −βσ2γ

¨
R2

(
p0 exp

(
−
u2

2ω2
0

)
+ b0

)
·
((

u2

σ4
−

1

σ2

)
·

1

2πϕσ2
exp

(
−
u2 + ϕ−2v2

2σ2

))
du

= −βσ2γ

¨
R2

(
p0 exp

(
−
u2

2ω2
0

))
·
(
u2

σ4
−

1

σ2

)
·

1

2πϕσ2
exp

(
−
u2 + ϕ−2v2

2σ2

)
du

+ b0 ·
¨

R2

(
u2

σ4
−

1

σ2

)
·

1

2πϕσ2
exp

(
−
u2 + ϕ−2v2

2σ2

)
du

= −p0βσ2γ

¨
R2

exp

(
−
u2

2ω2
0

)
·
(
u2

σ4
−

1

σ2

)
·

1

2πϕσ2
exp

(
−
u2 + ϕ−2v2

2σ2

)
du + 0

= −p0βσ2γ

¨
R2

(
u2

σ4
−

1

σ2

)
· exp

(
−
u2

2ω2
0

)
·

1

2πϕσ2
· exp

(
−
u2 + ϕ−2v2

2σ2

)
du

= −p0βσ2γ

¨
R2

(
u2

σ4
−

1

σ2

)
exp

(
−
u2

2ω2
0

)
1

√
2πσ

exp

(
−
u2

2σ2

)
1

√
2πϕσ

exp

(
−
ϕ−2v2

2σ2

)
du

= −p0βσ2γ

ˆ +∞

−∞

(
u2

σ4
−

1

σ2

)
· exp

(
−
u2

2ω2
0

)
·

1
√
2πσ

exp

(
−
u2

2σ2

)
du

·
ˆ +∞

−∞

1
√
2πϕσ

exp

(
−
ϕ−2v2

2σ2

)
dv

= −p0βσ2γ

ˆ +∞

−∞

(
u2

σ4
−

1

σ2

)
exp

(
−
u2

2ω2
0

)
·

1
√
2πσ

exp

(
−
u2

2σ2

)
du · 1

= −p0βσ2γ

(ˆ +∞

−∞

u2

σ4
· exp

(
−
u2

2ω2
0

)
·

1
√
2πσ

exp

(
−
u2

2σ2

)
du

)
+ p0βσ

2γ

(ˆ +∞

−∞

1

σ2
· exp

(
−
u2

2ω2
0

)
·

1
√
2πσ

exp

(
−
u2

2σ2

)
du

)
= −p0βσ2γ

(
σ−2ω3

0(ω
2
0 + σ2)−

3
2 − σ−2ω0(ω

2
0 + σ2)−

1
2

)
= βp0ω0σ

2γ(ω2
0 + σ2)−

3
2

209

Chapter A. Appendix

A.4. Proof of Eq. (5.9)

For bright blob detection, we have η = 1. Without loss of generality, we

consider the case x0 = 0. Then, the blob model becomes

Λ0(x) = p0 · exp

(
−xTx

2ω2
0

)
+ b0 .

We compute B in Eq. (5.9) as follows:

B

= g′′B(x;σ) ∗Λ0(x)|x=0

= g′′B(x;σ) ∗
(
p0 · exp

(
−
x2 + y2

2ω2
0

)
+ b0

)∣∣∣∣∣
x=0

=

(
g′′B(x;σ) ∗

(
p0 · exp

(
−
x2 + y2

2ω2
0

))
+ g′′B(x;σ) ∗ b0

)∣∣∣∣∣
x=0

=

(
g′′B(x;σ) ∗

(
p0 · exp

(
−
x2 + y2

2ω2
0

))
+ 0

)∣∣∣∣∣
x=0

=

(
−1 · βσ2γ ·

(
x2

σ4
−

1

σ2

)
·

1

2πσ2
exp

(
−
x2 + y2

2σ2

))
∗
(
p0 · exp

(
−
x2 + y2

2ω2
0

))∣∣∣∣∣
x=0

= −p0βσ2γ

((
x2

σ4
−

1

σ2

)
·

1

2πσ2
exp

(
−
x2 + y2

2σ2

))
∗ exp

(
−
x2 + y2

2ω2
0

)∣∣∣∣∣
x=0

= −p0βσ2γ

¨
R2

(
(0− u)2

σ4
−

1

σ2

)
·

1

2πσ2
exp

(
(0− u)2 + (0− v)2

−2σ2

)
· exp

(
−
u2 + v2

2ω2
0

)
du

∣∣∣∣∣
x=0

= −p0βσ2γ

¨
R2

(
u2

σ4
−

1

σ2

)
·

1

2πσ2
exp

(
−
u2 + v2

2σ2

)
· exp

(
−
u2 + v2

2ω2
0

)
du

= −p0βσ2γ

¨
R2

(
u2

σ4
−

1

σ2

)
·

1

2πσ2
exp

(
−
u2

2σ2

)
exp

(
−
v2

2σ2

)
· exp

(
−
u2

2ω2
0

)
exp

(
−
v2

2ω2
0

)
du

= −p0βσ2γ

ˆ +∞

−∞

1
√
2πσ

(
u2

σ4
−

1

σ2

)
· exp

(
−
u2

2σ2

)
exp

(
−
u2

2ω2
0

)
du

·
ˆ +∞

−∞

1
√
2πσ

exp

(
−
v2

2σ2

)
exp

(
−
v2

2ω2
0

)
dv

= −p0βσ2γ
(
ω0(ω

2
0 + σ2)−

1
2

)(
σ−2ω3

0(ω
2
0 + σ2)−

3
2 − σ−2ω0(ω

2
0 + σ2)−

1
2

)
= −p0βσ2γ

(
σ−2ω4

0(ω
2
0 + σ2)−2 − σ−2ω2

0(ω
2
0 + σ2)−1

)
= βp0σ

2γ−2ω2
0(ω

2
0 + σ2)−1

(
1− ω2

0(ω
2
0 + σ2)−1

)

210

Bibliography

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012).

SLIC superpixels compared to state-of-the-art superpixel methods. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 34(11):2274–

2282.

Akbarinia, A. and Parraga, C. A. (2018). Feedback and surround modulated

boundary detection. International Journal of Computer Vision, 126(12):1367–

1380.

Akyüz, A. O. and Reinhard, E. (2007). Noise reduction in high dynamic range

imaging. Journal of Visual Communication and Image Representation,

18(5):366–376.

Alpert, S., Galun, M., Brandt, A., and Basri, R. (2012). Image segmentation by

probabilistic bottom-up aggregation and cue integration. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 34(2):315–327.

Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detec-

tion and hierarchical image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 33(5):898–916.

Arslan, S., Ersahin, T., Cetin-Atalay, R., and Gunduz-Demir, C. (2013).

Attributed relational graphs for cell nucleus segmentation in fluorescence

microscopy images. IEEE Transactions on Medical Imaging, 32(6):1121–

1131.

Ates, M., Daniels, J., Arslan, Z., and Farah, I. O. (2013). Effects of aqueous

suspensions of titanium dioxide nanoparticles on Artemia salina: Assessment

of nanoparticle aggregation, accumulation, and toxicity. Environmental

Monitoring and Assessment, 185(4):3339–3348.

Atick, J. J. and Redlich, A. N. (1992). What does the retina know about

natural scenes? Neural Computation, 4(2):196–210.

Azzari, L., Borges, L. R., and Foi, A. (2018). Modeling and estimation of

signal-dependent and correlated noise. In Denoising of Photographic Images

and Video, pages 1–36. Springer.

Bae, Y., Lee, W.-H., Choi, Y., Jeon, Y. W., and Ra, J. B. (2015). Automatic

road extraction from remote sensing images based on a normalized second

derivative map. IEEE Geoscience and Remote Sensing Letters, 12(9):1858–

1862.

211

Bibliography

Balaban, M. O., Ünal Şengör, G. F., Soriano, M. G., and Ruiz, E. G. (2010).

Using image analysis to predict the weight of Alaskan salmon of different

species. Journal of Food Science, 75(3):E157–E162.

Balachandar, S. and Rajaram, R. (2019). Influence of different diets on the

growth, survival, fecundity and proximate composition of brine shrimp

Artemia franciscana (kellog, 1906). Aquaculture Research, 50(2):376–389.

Bao, P., Zhang, L., and Wu, X. (2005). Canny edge detection enhancement by

scale multiplication. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27(9):1485–1490.

Basset, A., Boulanger, J., Salamero, J., Bouthemy, P., and Kervrann, C.

(2015). Adaptive spot detection with optimal scale selection in fluorescence

microscopy images. IEEE Transactions on Image Processing, 24(11):4512–

4527.

Batool, N. and Chellappa, R. (2015). Fast detection of facial wrinkles based on

Gabor features using image morphology and geometric constraints. Pattern

Recognition, 48(3):642–658.

Benmansour, F. and Cohen, L. D. (2011). Tubular structure segmentation

based on minimal path method and anisotropic enhancement. International

Journal of Computer Vision, 92(2):192–210.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Black, M. J., Sapiro, G., Marimont, D. H., and Heeger, D. (1998). Robust

anisotropic diffusion. IEEE Transactions on Image Processing, 7(3):421–432.

Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010). A theoretical analysis of

feature pooling in visual recognition. In Proceedings of the International

Conference on Machine Learning, pages 111–118.

Breen, E., Joss, G., and Williams, K. (1991). Locating objects of interest within

biological images: The Top Hat box filter. Journal of Computer-Assisted

Microscopy, 3:97–102.

Bresson, G., Alsayed, Z., Yu, L., and Glaser, S. (2017). Simultaneous localiza-

tion and mapping: A survey of current trends in autonomous driving. IEEE

Transactions on Intelligent Vehicles, 2(3):194–220.

Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., and Barron, J. T.

(2019). Unprocessing images for learned raw denoising. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages

11036–11045.

212

Bibliography

Buades, A., Coll, B., and Morel, J. M. (2005). A non-local algorithm for image

denoising. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, volume 2, pages 60–65.

Bühler, J., Rishmawi, L., Pflugfelder, D., Huber, G., Scharr, H., Hülskamp,

M., Koornneef, M., Schurr, U., and Jahnke, S. (2015). Phenovein-A tool for

leaf vein segmentation and analysis. Plant Physiology, 169(4):2359–2370.

Calderero, F. and Marques, F. (2010). Region merging techniques using

information theory statistical measures. IEEE Transactions on Image

Processing, 19(6):1567–1586.

Candamo, J., Kasturi, R., Goldgof, D., and Sarkar, S. (2009). Detection of

thin lines using low-quality video from low-altitude aircraft in urban settings.

IEEE Transactions on Aerospace and Electronic Systems, 45(3):937–949.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 8(6):679–698.

Cárdenes, R., Alberola-López, C., and Ruiz-Alzola, J. (2010). Fast and

accurate geodesic distance transform by ordered propagation. Image and

Vision Computing, 28(3):307–316.

Chang, S. G., Yu, B., and Vetterli, M. (2000a). Adaptive wavelet threshold-

ing for image denoising and compression. IEEE Transactions on Image

Processing, 9(9):1532–1546.

Chang, S. G., Yu, B., and Vetterli, M. (2000b). Adaptive wavelet threshold-

ing for image denoising and compression. IEEE Transactions on Image

Processing, 9(9):1532–1546.

Chatterjee, P., Joshi, N., Kang, S. B., and Matsushita, Y. (2011). Noise

suppression in low-light images through joint denoising and demosaicing.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 321–328.

Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M. (1989).

Detection of blood vessels in retinal images using two-dimensional matched

filters. IEEE Transactions on Medical Imaging, 8(3):263–269.

Chen, C., Chen, Q., Xu, J., and Koltun, V. (2018a). Learning to see in the

dark. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3291–3300.

Chen, J., Chen, J., Chao, H., and Yang, M. (2018b). Image blind denoising

with generative adversarial network based noise modeling. In Proceedings of

213

Bibliography

the IEEE Conference on Computer Vision and Pattern Recognition, pages

3155–3164.

Chen, S. W., Shivakumar, S. S., Dcunha, S., Das, J., Okon, E., Qu, C., Taylor,

C. J., and Kumar, V. (2017). Counting apples and oranges with deep

learning: A data-driven approach. IEEE Robotics and Automation Letters,

2(2):781–788.

Choudhry, P. (2016). High-throughput method for automated colony and cell

counting by digital image analysis based on edge detection. PloS One, 11(2).

Chuang, M.-C., Hwang, J.-N., and Williams, K. (2016). A feature learning and

object recognition framework for underwater fish images. IEEE Transactions

on Image Processing, 25(4):1862–1872.

Ciresan, D., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2012).

Deep neural networks segment neuronal membranes in electron microscopy

images. In Proceedings of the Conference on Neural Information Processing

Systems, pages 2843–2851.

Coleman, S. A., Scotney, B. W., and Suganthan, S. (2010). Edge detecting

for range data using Laplacian operators. IEEE Transactions on Image

Processing, 19(11):2814–2824.

Cornelis, B., Ružić, T., Gezels, E., Dooms, A., Pižurica, A., Platǐsa, L.,

Cornelis, J., Martens, M., De Mey, M., and Daubechies, I. (2013). Crack

detection and inpainting for virtual restoration of paintings: The case of

the Ghent altarpiece. Signal Processing, 93(3):605–619.

Csillik, O. (2017). Fast segmentation and classification of very high resolution

remote sensing data using SLIC superpixels. Remote Sensing, 9(3):24301–

24319.

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Image denoising

by sparse 3-D transform-domain collaborative filtering. IEEE Transactions

on Image Processing, 16(8):2080–2095.

Descombes, X. (2017). Multiple objects detection in biological images using a

marked point process framework. Methods, 115:2–8.

Descombes, X., Minlos, R., and Zhizhina, E. (2009). Object extraction using a

stochastic birth-and-death dynamics in continuum. Journal of Mathematical

Imagfing and Vision, 33(3):347–359.

Dewan, M. A., Ahmad, M. O., and Swamy, M. N. (2014). A method for

automatic segmentation of nuclei in phase-contrast images based on intensity,

214

Bibliography

convexity and texture. IEEE Transactions on Biomedical Circuits and

Systems, 8(5):716–728.

Diciotti, S., Lombardo, S., Coppini, G., Grassi, L., Falchini, M., and Mascalchi,

M. (2010). The LoG characteristic scale: A consistent measurement of

lung nodule size in CT imaging. IEEE Transactions on Medical Imaging,

29(2):397–409.

Ding, J., Chen, B., Liu, H., and Huang, M. (2016). Convolutional neural net-

work with data augmentation for SAR target recognition. IEEE Geoscience

and Remote Sensing Letters, 13(3):364–368.

Ding, L. and Goshtasby, A. (2001). On the Canny edge detector. Pattern

Recognition, 34(3):721–725.

Ding, W. and Taylor, G. (2016). Automatic moth detection from trap images

for pest management. Computers and Electronics in Agriculture, 123:17–28.

Do, M. N. and Vetterli, M. (2005). The contourlet transform: an efficient

directional multiresolution image representation. IEEE Transactions on

Image Processing, 14(12):2091–2106.

Dollár, P. and Zitnick, C. L. (2015). Fast edge detection using structured

forests. IEEE Transactions on Pattern Analysis and Machine Intelligence,

37(8):1558–1570.

Dong, L., Zhou, J., and Tang, Y. Y. (2017). Noise level estimation for natural

images based on scale-invariant kurtosis and piecewise stationarity. IEEE

Transactions on Image Processing, 26(2):1017–1030.

Duval-Poo, M. A., Odone, F., and De Vito, E. (2015). Edges and corners with

shearlets. IEEE Transactions on Image Processing, 24(11):3768–3780.

El-Magsodi, M. O., Baruah, K., Norouzitallab, P., Bossier, P., Sorgeloos, P.,

and Van Stappen, G. (2016). Hydration/dehydration cycles imposed on

Artemia cysts influence the tolerance limit of nauplii against abiotic and

biotic stressors. Aquaculture International, 24(2):429–439.

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant

representations over learned dictionaries. IEEE Transactions on Image

processing, 15(12):3736–3745.

Elder, J. H. and Zucker, S. W. (1998). Local scale control for edge detection

and blur estimation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20(7):699–716.

Fan, J. (1998). Notes on Poisson distribution-based minimum error threshold-

ing. Pattern Recognition Letters, 19(5-6):425–431.

215

Bibliography

Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013). Learning

hierarchical features for scene labeling. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 35(8):1915–1929.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient graph-based image

segmentation. International Journal of Computer Vision, 59(2):167–181.

Ferraz, A., Mallet, C., and Chehata, N. (2016). Large-scale road detection in

forested mountainous areas using airborne topographic lidar data. ISPRS

Journal of Photogrammetry and Remote Sensing, 112:23–36.

Florack, L. M., ter Haar Romeny, B. M., Koenderink, J. J., and Viergever,

M. A. (1992). Scale and the differential structure of images. Image and

Vision Computing, 10(6):376–388.

Foi, A., Trimeche, M., Katkovnik, V., and Egiazarian, K. (2008). Practical

Poissonian-Gaussian noise modeling and fitting for single-image raw-data.

IEEE Transactions on Image Processing, 17(10):1737–1754.

Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever, M. A. (1998).

Multiscale vessel enhancement filtering. In Proceedings of the International

Conference on Medical Image Computing and Computer-Assisted Interven-

tion, pages 130–137.

French, G., Fisher, M. H., Mackiewicz, M., and Needle, C. L. (2015). Con-

volutional neural networks for counting fish in fisheries surveillance video.

Proceedings of the Workshop on Machine Vision of Animals and Their

Behaviour, pages 1–10.

Gebäck, T. and Koumoutsakos, P. (2009). Edge detection in microscopy images

using curvelets. BMC Bioinformatics, 10(1):75.

Geweid, G. G., Elsisy, M., Faragallah, O. S., and Fazel-Rezai, R. (2019).

Efficient tumor detection in medical images using pixel intensity estima-

tion based on nonparametric approach. Expert Systems with Applications,

120:139–154.

Ghimpeţeanu, G., Batard, T., Bertalmı́o, M., and Levine, S. (2016). A

decomposition framework for image denoising algorithms. IEEE Transactions

on Image Processing, 25(1):388–399.

Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D. I., Wang, G., Eaton-

Rosen, Z., Gray, R., Doel, T., Hu, Y., et al. (2018). NiftyNet: A deep-

learning platform for medical imaging. Computer Methods and Programs in

Biomedicine, 158:113–122.

216

Bibliography

Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1440–1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2016). Region-based

convolutional networks for accurate object detection and segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 38(1):142–158.

Godard, C., Matzen, K., and Uyttendaele, M. (2018). Deep burst denoising. In

Proceedings of the European Conference on Computer Vision, pages 538–554.

Goldberg, A. V. and Kennedy, R. (1995). An efficient cost scaling algorithm

for the assignment problem. Mathematical Programming, 71(2):153–177.

González, R. C. and Woods, R. E. (2010). Digital Image Processing. Pearson

Education.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT

Press.

Goossens, B., Luong, H., Aelterman, J., Pižurica, A., and Philips, W. (2012).

Realistic camera noise modeling with application to improved HDR synthesis.

EURASIP Journal on Advances in Signal Processing, 2012(1):171.

Goossens, B., Luong, H., Pizurica, A., and Philips, W. (2008). An improved

non-local denoising algorithm. In Proceedings of the International Workshop

on Local and Non-Local Approximation in Image Processing, pages 143–156.

Goossens, B., Pizurica, A., and Philips, W. (2009). Removal of correlated noise

by modeling the signal of interest in the wavelet domain. IEEE Transactions

on Image Processing, 18(6):1153–1165.

Grigorescu, C., Petkov, N., and Westenberg, M. A. (2003). Contour detection

based on nonclassical receptive field inhibition. IEEE Transactions on Image

Processing, 12(7):729–739.

Guo, S., Yan, Z., Zhang, K., Zuo, W., and Zhang, L. (2019). Toward convo-

lutional blind denoising of real photographs. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1712–1722.

Guo, X., Li, Y., and Ling, H. (2017). LIME: Low-light image enhancement

via illumination map estimation. IEEE Transactions on Image Processing,

26(2):982–993.

Han, J., Honda, N., Asada, A., and Shibata, K. (2009). Automated acoustic

method for counting and sizing farmed fish during transfer using DIDSON.

Fisheries Science, 75(6):1359.

217

Bibliography

Han, J., Zhang, D., Cheng, G., Liu, N., and Xu, D. (2018). Advanced deep-

learning techniques for salient and category-specific object detection: A

survey. IEEE Signal Processing Magazine, 35(1):84–100.

Hao, M., Yu, H., and Li, D. (2015). The measurement of fish size by machine

vision-A review. In Proceedings of the International Conference on Computer

and Computing Technologies in Agriculture, pages 15–32.

Haralick, R. M. (1983). Ridges and valleys on digital images. Computer Vision,

Graphics, and Image Processing, 22(1):28–38.

Haralick, R. M., Shanmugam, K., and Dinstein, I. H. (1973). Textural

features for image classification. IEEE Transactions on Systems, Man,

and Cybernetics, (6):610–621.

Hashemzadeh, M. and Farajzadeh, N. (2016). Combining keypoint-based and

segment-based features for counting people in crowded scenes. Information

Sciences, 345:199–216.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. In

Proceedings of the IEEE International Conference on Computer Vision,

pages 2961–2969.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages

1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for

image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 770–778.

Helman, A. (2005). The Finest Peaks-Prominence and Other Mountain Mea-

sures. Trafford Publishing.

Herbin, M., Bonnet, N., and Vautrot, P. (1996). A clustering method based

on the estimation of the probability density function and on the skeleton

by influence zones: Application to image processing. Pattern Recognition

Letters, 17(11):1141–1150.

Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines vinod nair. In Proceedings of the International Conference on

Machine Learning, pages 807–814.

Hopfield, J. J. (1988). Artificial neural networks. IEEE Circuits and Devices

Magazine, 4(5):3–10.

218

Bibliography

Hsieh, C.-L., Chang, H.-Y., Chen, F.-H., Liou, J.-H., Chang, S.-K., and Lin,

T.-T. (2011). A simple and effective digital imaging approach for tuna fish

length measurement compatible with fishing operations. Computers and

Electronics in Agriculture, 75(1):44–51.

Hu, Z., Wu, Z., Zhang, Q., Fan, Q., and Xu, J. (2013). A spatially-constrained

color–texture model for hierarchical VHR image segmentation. IEEE Geo-

science and Remote Sensing Letters, 10(1):120–124.

Huang, D.-A., Kang, L.-W., Wang, Y.-C. F., and Lin, C.-W. (2014). Self-

learning based image decomposition with applications to single image de-

noising. IEEE Transactions on Multimedia, 16(1):83–93.

Huang, T.-W., Hwang, J.-N., and Rose, C. S. (2016). Chute based automated

fish length measurement and water drop detection. In Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 1906–1910.

Hui, R. and O’Sullivan, M. (2009). Fiber Optic Measurement Techniques.

Academic Press.

Jacob, M. and Unser, M. (2004). Design of steerable filters for feature detection

using Canny-like criteria. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26(8):1007–1019.

Jaiswal, A., Godinez, W. J., Eils, R., Lehmann, M. J., and Rohr, K. (2015).

Tracking virus particles in fluorescence microscopy images using multi-

scale detection and multi-frame association. IEEE Transactions on Image

Processing, 24(11):4122–4136.

Jerman, T., Pernuš, F., Likar, B., and Špiclin, Ž. (2015). Beyond Frangi:

An improved multiscale vesselness filter. In Proceedings of SPIE Medical

Imaging 2015: Image Processing, volume 9413, pages 1–11.

Kaewchote, J., Janyong, S., and Limprasert, W. (2018). Image recognition

method using Local Binary Pattern and the Random forest classifier to

count post larvae shrimp. Agriculture and Natural Resources, 52(4):371–376.

Kamilaris, A. and Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture:

A survey. Computers and Electronics in Agriculture, 147:70–90.

Kang, M. and Palmer-Brown, D. (2008). A modal learning adaptive func-

tion neural network applied to handwritten digit recognition. Information

Sciences, 178(20):3802–3812.

Karakasis, E. G., Amanatiadis, A., Gasteratos, A., and Chatzichristofis, S. A.

(2015). Image moment invariants as local features for content based image

219

Bibliography

retrieval using the bag-of-visual-words model. Pattern Recognition Letters,

55:22–27.

Kesvarakul, R., Chianrabutra, C., and Chianrabutra, S. (2017). Baby shrimp

counting via automated image processing. In Proceedings of the International

Conference on Machine Learning and Computing, pages 352–356.

Kim, S. and Cho, H.-Y. (2013). Automatic estimation of Artemia hatching

rate using an object discrimination method. Ocean and Polar Research,

35(3):239–247.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization.

In Proceedings of the International Conference on Learning Representations.

Koenderink, J. J. (1984). The structure of images. Biological Cybernetics,

50(5):363–370.

Kong, H., Akakin, H. C., and Sarma, S. E. (2013a). A generalized Laplacian

of Gaussian filter for blob detection and its applications. IEEE Transactions

on Cybernetics, 43(6):1719–1733.

Kong, H., Sarma, S. E., and Tang, F. (2013b). Generalizing Laplacian of Gaus-

sian filters for vanishing-point detection. IEEE Transactions on Intelligent

Transportation Systems, 14(1):408–418.

Kong, T. Y. and Rosenfeld, A. (1996). Topological Algorithms for Digital

Image Processing. Elsevier.

Koschan, A. and Abidi, M. (2005). Detection and classification of edges in

color images. IEEE Signal Processing Magazine, 22(1):64–73.

Koyuncu, C. F., Akhan, E., Ersahin, T., Cetin-Atalay, R., and Gunduz-Demir,

C. (2016). Iterative h-minima-based marker-controlled watershed for cell

nucleus segmentation. Cytometry Part A, 89(4):338–349.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification

with deep convolutional neural networks. In Proceedings of the Conference

on Neural Information Processing Systems, pages 1097–1105.

Krylov, V. A. and Nelson, J. D. (2014). Stochastic extraction of elongated

curvilinear structures with applications. IEEE Transactions on Image

Processing, 23(12):5360–5373.

Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A. (2017). Deep learning

classification of land cover and crop types using remote sensing data. IEEE

Geoscience and Remote Sensing Letters, 14(5):778–782.

Law, M. W., Tay, K., Leung, A., Garvin, G. J., and Li, S. (2012). Dilated

220

Bibliography

divergence based scale-space representation for curve analysis. In Proceedings

of the European Conference on Computer Vision, pages 557–571. Springer.

Le, T. H., Hoa, N. V., Sorgeloos, P., and Van Stappen, G. (2018). Artemia

feeds: A review of brine shrimp production in the Mekong Delta, Vietnam.

Reviews in Aquaculture, 1:1–7.

Le Pennec, E. and Mallat, S. (2005). Sparse geometric image representations

with bandelets. IEEE Transactions on Image Processing, 14(4):423–438.

LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech,

and time series. In The Handbook of Brain Theory and Neural Networks,

pages 255–258.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,

521(7553):436.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,

W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip

code recognition. Neural Computation, 1(4):541–551.

Lee, D.-G., Cha, B.-J., Park, S.-W., Kwon, M.-G., Xu, G.-C., and Kim, H.-J.

(2013). Development of a vision-based automatic vaccine injection system

for flatfish. Aquacultural Engineering, 54:78–84.

Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., and Yli-Harja,

O. (2007). Computational framework for simulating fluorescence microscope

images with cell populations. IEEE Transactions on Medical Imaging,

26(7):1010–1016.

Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., and Yan, S. (2017). Perceptual

generative adversarial networks for small object detection. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages

1222–1230.

Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., and Heng, P.-A. (2018). H-

DenseUNet: Hybrid densely connected UNet for liver and tumor segmenta-

tion from CT volumes. IEEE Transactions on Medical Imaging, 37(12):2663–

2674.

Li, X. and Chen, T. (1994). Nonlinear diffusion with multiple edginess thresh-

olds. Pattern Recognition, 27(8):1029–1037.

Li, Y., Wang, S., Tian, Q., and Ding, X. (2015a). A survey of recent advances

in visual feature detection. Neurocomputing, 149:736–751.

Li, Z., Ahmed, E., Eltawil, A. M., and Cetiner, B. A. (2015b). A beam-

221

Bibliography

steering reconfigurable antenna for WLAN applications. IEEE Transactions

on Antennas and Propagation, 63(1):24–32.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for

dense object detection. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2980–2988.

Lindeberg, T. (1993). Detecting salient blob-like image structures and their

scales with a scale-space primal sketch: A method for focus-of-attention.

International Journal of Computer Vision, 11(3):283–318.

Lindeberg, T. (1998a). Edge detection and ridge detection with automatic

scale selection. International Journal of Computer Vision, 30(2):117–156.

Lindeberg, T. (1998b). Feature detection with automatic scale selection.

International Journal of Computer Vision, 30(2):79–116.

Lindeberg, T. (2013). Scale selection properties of generalized scale-space

interest point detectors. Journal of Mathematical Imaging and Vision,

46(2):177–210.

Lindeberg, T. (2015). Image matching using generalized scale-space interest

points. Journal of Mathematical Imaging and Vision, 52(1):3–36.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,

M., Van Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. (2017). A

survey on deep learning in medical image analysis. Medical Image Analysis,

42:60–88.

Liu, C., Freeman, W. T., Szeliski, R., and Kang, S. B. (2006). Noise estimation

from a single image. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, volume 1, pages 901–908.

Liu, M., Tuzel, O., Ramalingam, S., and Chellappa, R. (2011). Entropy

rate superpixel segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2097–2104.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg,

A. C. (2016). SSD: Single shot multibox detector. In Proceedings of the

European Conference on Computer Vision, pages 21–37.

Liu, X., Yu, Y., Liu, B., and Li, Z. (2013). Bowstring-based dual-threshold

computation method for adaptive Canny edge detector. In Proceedings of

the International Conference Image and Vision Computing New Zealand,

pages 13–18.

Liu, Y., Cheng, M., Hu, X., Wang, K., and Bai, X. (2017). Richer convolutional

222

Bibliography

features for edge detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 5872–5881.

Liu, Z., Song, Y.-Q., Sheng, V. S., Wang, L., Jiang, R., Zhang, X., and Yuan,

D. (2019). Liver CT sequence segmentation based with improved U-Net and

graph cut. Expert Systems with Applications, 126:54–63.

Liu, Z., Yuan, L., Tang, X., Uyttendaele, M., and Sun, J. (2014). Fast burst

images denoising. ACM Transactions on Graphics, 33(6):232:1–232:9.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3431–3440.

Lopes-dos Santos, R., Groot, R., Liying, S., Bossier, P., and Van Stappen, G.

(2019). Halophilic bacteria as a food source for the brine shrimp artemia.

Aquaculture, 500:631–639.

Lopez-Molina, C., Bustince, H., and De Baets, B. (2016). Separability criteria

for the evaluation of boundary detection benchmarks. IEEE Transactions

on Image Processing, 25(3):1047–1055.

Lopez-Molina, C., De Baets, B., and Bustince, H. (2013). Quantitative error

measures for edge detection. Pattern Recognition, 46(4):1125–1139.

Lopez-Molina, C., Montero, J., Bustince, H., and De Baets, B. (2018). Self-

adapting weighted operators for multiscale gradient fusion. Information

Fusion, 44:136–146.

Lopez-Molina, C., Vidal-Diez de Ulzurrun, G., Baetens, J. M., Van Den Bulcke,

J., and De Baets, B. (2015). Unsupervised ridge detection using second

order anisotropic Gaussian kernels. Signal Processing, 116:55–67.

Luisier, F., Blu, T., and Unser, M. (2011). Image denoising in mixed Poisson-

Gaussian noise. IEEE Transactions on Image Processing, 20(3):696–708.

Maggioni, M., Sánchez-Monge, E., and Foi, A. (2014). Joint removal of

random and fixed-pattern noise through spatiotemporal video filtering.

IEEE Transactions on Image Processing, 23(10):4282–4296.

Mäkinen, Y., Azzari, L., and Foi, A. (2019). Exact transform-domain noise

variance for collaborative filtering of stationary correlated noise. In Pro-

ceedings of the IEEE International Conference on Image Processing, pages

185–189.

Mallat, S. and Hwang, W. L. (1992). Singularity detection and processing

with wavelets. IEEE Transactions on Information Theory, 38(2):617–643.

223

Bibliography

Mallat, S. and Zhong, S. (1992). Characterization of signals from multiscale

edges. IEEE Transactions on Pattern Analysis and Machine Intelligence,

(7):710–732.

Marr, D. and Hildreth, E. (1980). Theory of edge detection. In Proceedings of

Royal Society of London, volume B207, pages 187–217.

Martin, D. R. (2003). An Empirical Approach to Grouping and Segmentation.

PhD thesis, University of California, Berkeley.

Martin, D. R., Fowlkes, C. C., and Malik, J. (2004). Learning to detect natural

image boundaries using local brightness, color, and texture cues. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(5):530–549.

Matrecano, M., Poggi, G., and Verdoliva, L. (2012). Improved BM3D for

correlated noise removal. In Proceedings of the International Conference on

Computer Vision Theory and Applications, pages 129–134.

McIlhagga, W. (2011). The Canny edge detector revisited. International

Journal of Computer Vision, 91(3):251–261.

Meijering, E., Carpenter, A. E., Peng, H., Hamprecht, F. A., and Olivo-

Marin, J.-C. (2016). Imagining the future of bioimage analysis. Nature

Biotechnology, 34(12):1250–1255.

Meijering, E., Jacob, M., Sarria, J.-C., Steiner, P., Hirling, H., and Unser, M.

(2004). Design and validation of a tool for neurite tracing and analysis in

fluorescence microscopy images. Cytometry Part A, 58(2):167–176.

Miranda, J. M. and Romero, M. (2017). A prototype to measure rainbow

trout’s length using image processing. Aquacultural Engineering, 76:41–49.

Misimi, E., Erikson, U., and Skavhaug, A. (2008). Quality grading of at-

lantic salmon (Salmo salar) by computer vision. Journal of Food Science,

73(5):E211–E217.

Moon, W. K., Shen, Y.-W., Bae, M. S., Huang, C.-S., Chen, J.-H., and

Chang, R.-F. (2013). Computer-aided tumor detection based on multi-scale

blob detection algorithm in automated breast ultrasound images. IEEE

Transactions on Medical Imaging, 32(7):1191–1200.

Moranduzzo, T. and Melgani, F. (2013). Automatic car counting method for

unmanned aerial vehicle images. IEEE Transactions on Geoscience and

Remote Sensing, 52(3):1635–1647.

Muñoz-Benavent, P., Andreu-Garćıa, G., Valiente-González, J. M., Atienza-

Vanacloig, V., Puig-Pons, V., and Espinosa, V. (2018). Enhanced fish

224

Bibliography

bending model for automatic tuna sizing using computer vision. Computers

and Electronics in Agriculture, 150:52–61.

Nam, S., Hwang, Y., Matsushita, Y., and Joo Kim, S. (2016). A holistic

approach to cross-channel image noise modeling and its application to image

denoising. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1683–1691.

Obara, B., Fricker, M., Gavaghan, D., and Grau, V. (2012a). Contrast-

independent curvilinear structure detection in biomedical images. IEEE

Transactions on Image Processing, 21(5):2572–2581.

Obara, B., Grau, V., and Fricker, M. D. (2012b). A bioimage informatics

approach to automatically extract complex fungal networks. Bioinformatics,

28(18):2374–2381.

Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987.

Oliveira, A., Pereira, S., and Silva, C. A. (2018). Retinal vessel segmenta-

tion based on fully convolutional neural networks. Expert Systems with

Applications, 112:229–242.

Oliveira, H. and Correia, P. L. (2013). Automatic road crack detection and

characterization. IEEE Transactions on Intelligent Transportation Systems,

14(1):155–168.

Ortner, M., Descombe, X., and Zerubia, J. (2008). A marked point process of

rectangles and segments for automatic analysis of digital elevation models.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1):105–

119.

Otsu, N. (1979). A threshold selection method from gray-level histograms.

IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66.

Pan, P., Li, J., Lv, G., Yang, H., Zhu, S., and Lou, J. (2009). Prediction of

shelled shrimp weight by machine vision. Journal of Zhejiang University

Science B, 10(8):589–594.

Pan, X., Ye, Y., Wang, J., Gao, X., He, C., Wang, D., Jiang, B., and Li, L.

(2014). Complex composite derivative and its application to edge detection.

SIAM Journal on Imaging Sciences, 7(4):2807–2832.

Pang, Y., Yuan, Y., Li, X., and Pan, J. (2011). Efficient HOG human detection.

Signal Processing, 91(4):773–781.

225

Bibliography

Park, C., Huang, J. Z., Ji, J. X., and Ding, Y. (2013). Segmentation, inference

and classification of partially overlapping nanoparticles. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(3):669–681.

Parvin, B., Yang, Q., Han, J., Chang, H., Rydberg, B., and Barcellos-Hoff,

M. H. (2007). Iterative voting for inference of structural saliency and char-

acterization of subcellular events. IEEE Transactions on Image Processing,

16(3):615–623.

Pele, O. and Werman, M. (2010). The Quadratic-Chi histogram distance

family. In Proceedings of the European Conference on Computer Vision,

pages 749–762.

Peng, X., Tang, Z., Yang, F., Feris, R. S., and Metaxas, D. (2018). Jointly

optimize data augmentation and network training: Adversarial data aug-

mentation in human pose estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2226–2234.

Perona, P. and Malik, J. (1990). Scale-space and edge detection using

anisotropic diffusion. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 12(7):629–639.

Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and Toyama,

K. (2004). Digital photography with flash and no-flash image pairs. ACM

Transactions on Graphics, 23(3):664–672.

Pižurica, A., Portilla, J., Hirakawa, K., and Egiazarian, K. (2013). Advanced

statistical tools for enhanced quality digital imaging with realistic capture

models.

Plotz, T. and Roth, S. (2017). Benchmarking denoising algorithms with real

photographs. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1586–1595.

Po, D.-Y. and Do, M. N. (2006). Directional multiscale modeling of images

using the contourlet transform. IEEE Transactions on Image Processing,

15(6):1610–1620.

Pont-Tuset, J., Arbelaez, P., Barron, J. T., Marques, F., and Malik, J. (2017).

Multiscale combinatorial grouping for image segmentation and object pro-

posal generation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 39(1):128–140.

Portilla, J., Strela, V., Wainwright, M. J., and Simoncelli, E. P. (2003). Image

denoising using scale mixtures of Gaussians in the wavelet domain. IEEE

Transactions Image Processing, 12(11).

226

Bibliography

Prewitt, J. M. (1970). Object enhancement and extraction. Picture Processing

and Psychopictorics, 10(1):15–19.

Prokop, R. J. and Reeves, A. P. (1992). A survey of moment-based techniques

for unoccluded object representation and recognition. CVGIP: Graphical

Models and Image Processing, 54(5):438–460.

Püspöki, Z., Sage, D., Ward, J. P., and Unser, M. (2016). Spotcaliper: Fast

wavelet-based spot detection with accurate size estimation. Bioinformatics,

32(8):1278–1280.

Pyo, Y. I., Park, R. H., and Chang, S. (2011). Noise reduction in high-

ISO images using 3-D collaborative filtering and structure extraction from

residual blocks. IEEE Transactions on Consumer Electronics, 57(2):687–695.

Qin, Y., Feng, M., Lu, H., and Cottrell, G. W. (2018). Hierarchical cellular

automata for visual saliency. International Journal of Computer Vision,

126(7):751–770.

Qin, Y., Lu, H., Xu, Y., and Wang, H. (2015). Saliency detection via cellular

automata. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 110–119.

Quelhas, P., Marcuzzo, M., Mendonça, A. M., and Campilho, A. (2010). Cell

nuclei and cytoplasm joint segmentation using the sliding band filter. IEEE

Transactions on Medical Imaging, 29(8):1463–1473.

Rabie, T. (2004). Adaptive hybrid mean and median filtering of high-ISO

long-exposure sensor noise for digital photography. Journal of Electronic

Imaging, 13(2):264.

Rasouli, A., Kotseruba, I., and Tsotsos, J. K. (2017). Agreeing to cross: How

drivers and pedestrians communicate. In Proceedings of the IEEE Intelligent

Vehicles Symposium, pages 264–269.

Rawat, W. and Wang, Z. (2017). Deep convolutional neural networks for image

classification: A comprehensive review. Neural Computation, 29(9):2352–

2449.

Ray, K. (2013). Unsupervised edge detection and noise detection from a single

image. Pattern Recognition, 46(8):2067–2077.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You Only

Look Once: Unified, real-time object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 779–788.

Remez, T., Litany, O., Giryes, R., and Bronstein, A. M. (2018). Class-aware

227

Bibliography

fully convolutional Gaussian and Poisson denoising. IEEE Transactions on

Image Processing, 27(11):5707–5722.

Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster R-CNN: Towards

real-time object detection with region proposal networks. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39(6):1137–1149.

Ren, Y., Ying, Z., Li, T. H., and Li, G. (2019). LECARM: Low-light image

enhancement using the camera response model. IEEE Transactions on

Circuits and Systems for Video Technology, 29(4):968–981.

Rivera, A. R., Ryu, B., and Chae, O. (2012). Content-aware dark image

enhancement through channel division. IEEE Transactions on Image Pro-

cessing, 21(9):3967–3980.

Rivest, J.-F., Beucher, S., and Delhomme, J. (1992). Marker-controlled

segmentation: An application to electrical borehole imaging. Journal of

Electronic Imaging, 1(2):136–143.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional

networks for biomedical image segmentation. In Proceedings of the Inter-

national Conference on Medical Image Computing and Computer-Assisted

Intervention, pages 234–241.

Rosenfeld, A. and Thurston, M. (1971). Edge and curve detection for visual

scene analysis. IEEE Transactions on Computers, C-20(5):562–569.

Rosenfeld, A., Thurston, M., and Lee, Y.-H. (1972). Edge and curve detection:

Further experiments. IEEE Transactions on Computers, 100(7):677–715.

Rosin, P. L. (2001). Unimodal thresholding. Pattern Recognition, 34(11):2083–

2096.

Ruck, D. W., Rogers, S. K., Kabrisky, M., Oxley, M. E., and Suter, B. W.

(1990). The multilayer perceptron as an approximation to a Bayes optimal

discriminant function. IEEE Transactions on Neural Networks, 1(4):296–298.

Ruusuvuori, P., Äijö, T., Chowdhury, S., Garmendia-Torres, C., Selinummi,

J., Birbaumer, M., Dudley, A. M., Pelkmans, L., and Yli-Harja, O. (2010).

Evaluation of methods for detection of fluorescence labeled subcellular

objects in microscope images. BMC Bioinformatics, 11(1):248.

Ruusuvuori, P., Lehmussola, A., Selinummi, J., Rajala, T., Huttunen, H., and

Yli-Harja, O. (2008). Benchmark set of synthetic images for validating cell

image analysis algorithms. In Proceedings of the European Signal Processing

Conference, pages 1–5.

228

Bibliography

Saberioon, M. and Ćısař, P. (2018). Automated within tank fish mass es-

timation using infrared reflection system. Computers and Electronics in

Agriculture, 150:484–492.

Saglam, A. and Baykan, N. A. (2017). Sequential image segmentation based

on minimum spanning tree representation. Pattern Recognition Letters,

87:155–162.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Piet-

zsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y.,

White, D., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A.

(2012). Fiji: An open-source platform for biological-image analysis. Nature

Methods, 9(7):676.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview.

Neural Networks, 61:85–117.

Schmitt, O. and Hasse, M. (2009). Morphological multiscale decomposition

of connected regions with emphasis on cell clusters. Computer Vision and

Image Understanding, 113(2):188–201.

Selesnick, I. W., Baraniuk, R. G., and Kingsbury, N. G. (2005). The dual-tree

complex wavelet transform. IEEE Signal Processing Magazine, 22(6):123–

151.

Shao, L., Yan, R., Li, X., and Liu, Y. (2014). From heuristic optimization

to dictionary learning: A review and comprehensive comparison of image

denoising algorithms. IEEE Transactions on Cybernetics, 44(7):1001–1013.

Shapley, R. and Hawken, M. J. (2011). Color in the cortex: Single-and

double-opponent cells. Vision Research, 51(7):701–717.

Shen, W., Zhao, K., Jiang, Y., Wang, Y., Bai, X., and Yuille, A. (2017).

DeepSkeleton: Learning multi-task scale-associated deep side outputs for

object skeleton extraction in natural images. IEEE Transactions on Image

Processing, 26(11):5298–5311.

Shi, J., Yan, Q., Xu, L., and Jia, J. (2016). Hierarchical image saliency

detection on extended CSSD. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38(4):717–729.

Shui, P. and Wang, F. (2017). Anti-impulse-noise edge detection via anisotropic

morphological directional derivatives. IEEE Transactions on Image Process-

ing, 26(10):4962–4977.

Shui, P. and Zhang, W. (2012). Noise-robust edge detector combining isotropic

and anisotropic Gaussian kernels. Pattern Recognition, 45(2):806–820.

229

Bibliography

Shui, P. and Zhang, W. (2013). Corner detection and classification using

anisotropic directional derivative representations. IEEE Transactions on

Image Processing, 22(8):3204–3218.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for

large-scale image recognition. In Proceedings of the International Conference

on Learning Representations.

Sironi, A., Lepetit, V., and Fua, P. (2015). Projection onto the manifold of

elongated structures for accurate extraction. In Proceedings of the IEEE

International Conference on Computer Vision, pages 316–324.

Sironi, A., Türetken, E., Lepetit, V., and Fua, P. (2016). Multiscale centerline

detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

38(7):1327–1341.

Smal, I., Loog, M., Niessen, W., and Meijering, E. (2010). Quantitative

comparison of spot detection methods in fluorescence microscopy. IEEE

Transactions on Medical Imaging, 29(2):282–301.

Smith, S. M. and Brady, J. M. (1997). SUSAN—A new approach to low level

image processing. International Journal of Computer Vision, 23(1):45–78.

Sobel, I. (1970). Camera Models and Machine Perception. PhD thesis, Stanford

University.

Sochen, N., Kimmel, R., and Malladi, R. (1998). A general framework for low

level vision. IEEE Transactions on Image Processing, 7(3):310–318.

Sofka, M. and Stewart, C. V. (2006). Retinal vessel centerline extraction using

multiscale matched filters, confidence and edge measures. IEEE Transactions

on Medical Imaging, 25(12):1531–1546.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: A simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958.

Starck, J.-L., Candès, E. J., and Donoho, D. L. (2002). The curvelet transform

for image denoising. IEEE Transactions on Image Processing, 11(6):670–684.

Steger, C. (1998). An unbiased detector of curvilinear structures. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(2):113–125.

Steger, C. (2013). Unbiased extraction of lines with parabolic and Gaussian

profiles. Computer Vision and Image Understanding, 117(2):97–112.

Strachan, N. (1993). Length measurement of fish by computer vision. Com-

puters and Electronics in Agriculture, 8(2):93–104.

230

Bibliography

Strachan, N. (1994). Sea trials of a computer vision based fish species sorting

and size grading machine. Mechatronics, 4(8):773–783.

Stutz, D., Hermans, A., and Leibe, B. (2018). Superpixels: An evaluation of

the state-of-the-art. Computer Vision and Image Understanding, 166:1–27.

Sun, X., Wu, P., and Hoi, S. C. (2018). Face detection using deep learning:

An improved faster RCNN approach. Neurocomputing, 299:42–50.

Szegedy, C., Toshev, A., and Erhan, D. (2013). Deep neural networks for

object detection. In Proceedings of the Conference on Neural Information

Processing Systems, pages 2553–2561.

Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B.,

Gotway, M. B., and Liang, J. (2016). Convolutional neural networks for

medical image analysis: Full training or fine tuning? IEEE Transactions

on Medical Imaging, 35(5):1299–1312.

Tiirola, J. (2019). A learning based approach to additive, correlated noise

removal. Journal of Visual Communication and Image Representation,

62:286–294.

Toi, H. T., Boeckx, P., Sorgeloos, P., Bossier, P., and Van Stappen, G. (2013).

Bacteria contribute to Artemia nutrition in algae-limited conditions: A

laboratory study. Aquaculture, 388:1–7.

Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color

images. In Proceedings of the IEEE International Conference on Computer

Vision, volume 98, pages 836–846.

Torre, V. and Poggio, T. A. (1986). On edge detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, PAMI-8(2):147–163.

Tsin, Y., Ramesh, V., and Kanade, T. (2001). Statistical calibration of CCD

imaging process. In Proceedings the IEEE International Conference on

Computer Vision, volume 1, pages 480–487.

Vajda, S., Rangoni, Y., and Cecotti, H. (2015). Semi-automatic ground

truth generation using unsupervised clustering and limited manual labeling:

Application to handwritten character recognition. Pattern Recognition

Letters, 58:23–28.

Vidal-Diez de Ulzurrun, G., Baetens, J. M., Van den Bulcke, J., Lopez-Molina,

C., De Windt, I., and De Baets, B. (2015). Automated image-based analysis

of spatio-temporal fungal dynamics. Fungal Genetics and Biology, 84:12–25.

Vincent, L. (1993). Morphological grayscale reconstruction in image analy-

231

Bibliography

sis: Applications and efficient algorithms. IEEE Transactions on Image

Processing, 2(2):176–201.

Viola, P., Jones, M., et al. (2001). Robust real-time object detection. Interna-

tional Journal of Computer Vision, 4(34-47):4.

Vo, D. M., Nguyen, N.-Q., and Lee, S.-W. (2019). Classification of breast

cancer histology images using incremental boosting convolution networks.

Information Sciences, 482:123–138.

Wang, C., Elazab, A., Wu, J., and Hu, Q. (2017a). Lung nodule classification

using deep feature fusion in chest radiography. Computerized Medical

Imaging and Graphics, 57:10–18.

Wang, F. and Shui, P. (2016). Noise-robust color edge detector using gradient

matrix and anisotropic Gaussian directional derivative matrix. Pattern

Recognition, 52:346–357.

Wang, G. and De Baets, B. (2017). Edge detection based on the fusion

of multiscale anisotropic edge strength measurements. In Proceedings of

the Conference of the European Society for Fuzzy Logic and Technology,

volume 3, pages 530–536.

Wang, G. and De Baets, B. (2019a). Contour detection based on anisotropic

edge strength and hierarchical superpixel contrast. Signal, Image and Video

Processing, 13(8):1657–1665.

Wang, G. and De Baets, B. (2019b). Superpixel segmentation based on

anisotropic edge strength. Journal of Imaging, 5(6):57.

Wang, G., Lopez-Molina, C., and De Baets, B. (2017b). Blob reconstruction

using unilateral second order Gaussian kernels with application to high-ISO

long-exposure image denoising. In Proceedings of the IEEE International

Conference on Computer Vision, pages 4817–4825.

Wang, G., Lopez-Molina, C., and De Baets, B. (2019a). High-ISO long-

exposure image denoising based on quantitative blob characterization. IEEE

Transactions on Image Processing, Under revision.

Wang, G., Lopez-Molina, C., and De Baets, B. (2019b). Multiscale edge

detection using first-order derivative of anisotropic Gaussian kernels. Journal

of Mathematical Imaging and Vision, 61(8):1096–1111.

Wang, G., Lopez-Molina, C., and De Baets, B. (2020). Automated blob

detection using iterative Laplacian of Gaussian filtering and unilateral

second-order Gaussian kernels. Digital Signal Processing, 96:102592.

232

Bibliography

Wang, G., Lopez-Molina, C., Vidal-Diez de Ulzurrun, G., and De Baets,

B. (2019c). Noise-robust line detection using normalized and adaptive

second-order anisotropic Gaussian kernels. Signal Processing, 160:252–262.

Wang, G., Van Stappen, G., and De Baets, B. (2019d). Automated artemia

length measurement using U-shaped fully convolutional networks and second-

order anisotropic Gaussian kernels. Computers and Electronics in Agriculture,

Accepted.

Wang, G., Van Stappen, G., and De Baets, B. (2019e). Automated detection

and counting of artemia using U-shaped fully convolutional networks and

deep convolutional networks. Expert Systems with Applications, Under

review.

Wang, M., Liu, X., Gao, Y., Ma, X., and Soomro, N. Q. (2017c). Superpixel

segmentation: A benchmark. Signal Processing: Image Communication,

56:28–39.

Wei, X., Yang, Q., Gong, Y., Ahuja, N., and Yang, M. (2018). Superpixel

hierarchy. IEEE Transactions on Image Processing, 27(10):4838–4849.

White, D. J., Svellingen, C., and Strachan, N. J. (2006). Automated measure-

ment of species and length of fish by computer vision. Fisheries Research,

80(2-3):203–210.

Xiao, C., Staring, M., Wang, Y., Shamonin, D. P., and Stoel, B. C. (2013). Mul-

tiscale bi-Gaussian filter for adjacent curvilinear structures detection with

application to vasculature images. IEEE Transactions on Image Processing,

22(1):174–188.

Xie, S. and Tu, Z. (2017). Holistically-nested edge detection. International

Journal of Computer Vision, 125(1-3):3–18.

Xing, F., Xie, Y., Su, H., Liu, F., and Yang, L. (2018). Deep learning

in microscopy image analysis: A survey. IEEE Transactions on Neural

Networks and Learning Systems, 29(10):4550–4568.

Xing, F. and Yang, L. (2016). Robust nucleus/cell detection and segmentation

in digital pathology and microscopy images: A comprehensive review. IEEE

Reviews in Biomedical Engineering, 9:234–263.

Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., and Madabhushi, A.

(2016). Stacked sparse autoencoder (SSAE) for nuclei detection on breast

cancer histopathology images. IEEE Transactions on Medical Imaging,

35(1):119–130.

Xu, J., Zhang, L., and Zhang, D. (2018a). External prior guided internal prior

233

Bibliography

learning for real-world noisy image denoising. IEEE Transactions on Image

Processing, 27(6):2996–3010.

Xu, J., Zhang, L., and Zhang, D. (2018b). A trilateral weighted sparse coding

scheme for real-world image denoising. In Proceedings of the European

Conference on Computer Vision, pages 20–36.

Xu, J., Zhang, L., Zhang, D., and Feng, X. (2017a). Multi-channel weighted

nuclear norm minimization for real color image denoising. In Proceedings of

the IEEE International Conference on Computer Vision, pages 1105–1113.

Xu, L. and Lu, H. (2013). Automatic morphological measurement of the

quantum dots based on marker-controlled watershed algorithm. IEEE

Transactions on Nanotechnology, 12(1):51–56.

Xu, L., Lu, H., and Zhang, M. (2014a). Automatic segmentation of clustered

quantum dots based on improved watershed transformation. Digital Signal

Processing, 34:108–115.

Xu, Q., Varadarajan, S., Chakrabarti, C., and Karam, L. J. (2014b). A

distributed Canny edge detector: Algorithm and FPGA implementation.

IEEE Transactions on Image Processing, 23(7):2944–2960.

Xu, S., Liu, H., and Song, E. (2011). Marker-controlled watershed for lesion

segmentation in mammograms. Journal of Digital Imaging, 24(5):754–763.

Xu, Y., Carlinet, E., Géraud, T., and Najman, L. (2017b). Hierarchical

segmentation using tree-based shape spaces. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 39(3):457–469.

Xu, Z., Shin, B.-S., and Klette, R. (2015). Accurate and robust line segment ex-

traction using minimum entropy with Hough transform. IEEE Transactions

on Image Processing, 24(3):813–822.

Yang, J. and Shi, Y. (2014). Towards finger-vein image restoration and

enhancement for finger-vein recognition. Information Sciences, 268:33–52.

Yang, K., Gao, S., Guo, C., Li, C., and Li, Y. (2015a). Boundary detection using

double-opponency and spatial sparseness constraint. IEEE Transactions on

Image Processing, 24(8):2565–2578.

Yang, K., Li, M., Liu, Y., Cheng, L., Huang, Q., and Chen, Y. (2015b). River

detection in remotely sensed imagery using Gabor filtering and path opening.

Remote Sensing, 7(7):8779–8802.

Yang, K. F., Li, C. Y., and Li, Y. J. (2014). Multifeature-based surround

inhibition improves contour detection in natural images. IEEE Transactions

on Image Processing, 23(12):5020–5032.

234

Bibliography

Yang, X., Li, H., and Zhou, X. (2006). Nuclei segmentation using marker-

controlled watershed, tracking using mean-shift, and Kalman filter in time-

lapse microscopy. IEEE Transactions on Circuits and Systems I: Regular

Papers, 53(11):2405–2414.

Yi, S., Labate, D., Easley, G. R., and Krim, H. (2009). A shearlet approach

to edge analysis and detection. IEEE Transactions on Image Processing,

18(5):929–941.

You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016). Image captioning with

semantic attention. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4651–4659.

Yu, P., Qin, A., and Clausi, D. A. (2012). Unsupervised polarimetric SAR

image segmentation and classification using region growing with edge penalty.

IEEE Transactions on Geoscience and Remote Sensing, 50(4):1302–1317.

Yuan, J., Gleason, S. S., and Cheriyadat, A. M. (2013). Systematic benchmark-

ing of aerial image segmentation. IEEE Geoscience and Remote Sensing

Letters, 10(6):1527–1531.

Zafari, S., Eerola, T., Sampo, J., Kälviäinen, H., and Haario, H. (2015).

Segmentation of overlapping elliptical objects in silhouette images. IEEE

Transactions on Image Processing, 24(12):5942–5952.

Zhang, G., Jia, X., and Hu, J. (2015a). Superpixel-based graphical model

for remote sensing image mapping. IEEE Transactions on Geoscience and

Remote Sensing, 53(11):5861–5871.

Zhang, H., Fritts, J. E., and Goldman, S. A. (2008). Image segmentation

evaluation: A survey of unsupervised methods. Computer Vision and Image

Understanding, 110(2):260–280.

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017a). Beyond

a Gaussian denoiser: Residual learning of deep CNN for image denoising.

IEEE Transactions on Image Processing, 26(7):3142–3155.

Zhang, L. and Bao, P. (2002). Edge detection by scale multiplication in wavelet

domain. Pattern Recognition Letters, 23(14):1771–1784.

Zhang, M. and Gunturk, B. K. (2008). Multiresolution bilateral filtering for

image denoising. IEEE Transactions on Image Processing, 17(12):2324–2333.

Zhang, M., Wu, T., and Bennett, K. M. (2015b). Small blob identifica-

tion in medical images using regional features from optimum scale. IEEE

Transactions on Biomedical Engineering, 62(4):1051–1062.

235

Zhang, W., Zhao, Y., Breckon, T. P., and Chen, L. (2017b). Noise robust

image edge detection based upon the automatic anisotropic Gaussian kernels.

Pattern Recognition, 63:193–205.

Zhang, W.-H., Jiang, X., and Liu, Y.-M. (2012). A method for recognizing

overlapping elliptical bubbles in bubble image. Pattern Recognition Letters,

33(12):1543–1548.

Zhang, Z., Liu, Q., and Wang, Y. (2018). Road extraction by deep residual

U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5):749–753.

Zhou, Z., Shin, J., Zhang, L., Gurudu, S., Gotway, M., and Liang, J. (2017).

Fine-tuning convolutional neural networks for biomedical image analysis:

Actively and incrementally. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 7340–7351.

Zitnick, C. L. and Dollár, P. (2014). Edge boxes: Locating object proposals

from edges. In Proceedings of the European Conference on Computer Vision,

pages 391–405.

236

Curriculum Vitae

Personalia and contact

Name Gang Wang

Place of birth Shandong, P. R. China

Nationality P. R. China

ORCID https://orcid.org/0000-0002-1916-6110

E-mail gang.wang@ugent.be

g_wang@foxmail.com

Educations

• 2011-2013: MSc. in Navigation, Guidance and Control, Mechanical

Engineering College, Shijiazhuang, China.

• 2007-2011: BSc. in Communication Engineering, Dalian Maritime Uni-

versity, Dalian, China.

Employment

• 2015-present: Full-time researcher at the Research Unit Knowledge-Based

Systems, Department of Data Analysis and Mathematical Modelling,

Ghent University, Ghent, Belgium.

Research interests

Image processing; Computer vision; Machine learning

Languages

• Chinese: Native speaker

• English: Fluent

237

https://orcid.org/0000-0002-1916-6110
gang.wang@ugent.be
g_wang@foxmail.com

Programming languages

MATLAB; Python; Keras; TensorFlow; C/C++

Awards during the doctoral research

• 2016: First Prize of the IDS2016 Competition on Image Denoising at

the Second International Conference on Intelligent Decision Science held

in Dubai, United Arabic Emirates.

• 2017: Best Student Paper Award Nomination at the Tenth Conference

of the European Society for Fuzzy Logic and Technology held in Warsaw,

Poland.

• 2019: Best Student Paper Nomination at the 31st Benelux Conference

on Artificial Intelligence held in Brussels, Belgium.

Scientific outputs during the doctoral research

Publications in international journals

• Wang, G., Lopez-Molina, C., Vidal-Diez de Ulzurrun, G., and De

Baets, B. (2019f). Noise-robust line detection using normalized and

adaptive second-order anisotropic Gaussian kernels. Signal Processing,

160:252-262

• Wang, G. and De Baets, B. (2019a). Contour detection based on

anisotropic edge strength and hierarchical superpixel contrast. Signal,

Image and Video Processing, 13(8):1657-1665

• Wang, G., Lopez-Molina, C., and De Baets, B. (2019e). Multiscale

edge detection using first-order derivative of anisotropic Gaussian kernels.

Journal of Mathematical Imaging and Vision, 61(8):1096–1111

• Wang, G., Lopez-Molina, C., and De Baets, B. (2020). Automated blob

detection using iterative Laplacian of Gaussian filtering and unilateral

second-order Gaussian kernels. Digital Signal Processing, 96:102592

• Wang, G. and De Baets, B. (2019b). Superpixel segmentation based

on anisotropic edge strength. Journal of Imaging, 5(6):57

• Wang, G., Van Stappen, G., and De Baets, B. (2019b). Automated

Artemia length measurement using U-shaped fully convolutional net-

works and second-order anisotropic Gaussian kernels. Computers and

Electronics in Agriculture, Accepted

238

• Wang, G., Lopez-Molina, C., and De Baets, B. (2019d). High-ISO long-

exposure image denoising based on quantitative blob characterization.

IEEE Transactions on Image Processing, Under revision

• Wang, G., Van Stappen, G., and De Baets, B. (2019a). Automated

detection and counting of Artemia using U-shaped fully convolutional

networks and deep convolutional networks. Expert Systems with Appli-

cations, Under review

Conference proceedings

• Wang, G., Lopez-Molina, C., and De Baets, B. (2017). Blob recon-

struction using unilateral second order Gaussian kernels with application

to high-ISO long-exposure image denoising. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), pages 4817-4825

• Wang, G. and De Baets, B. (2017). Edge detection based on the fusion

of multiscale anisotropic edge strength measurements. In Proceedings of

the Conference of the European Society for Fuzzy Logic and Technology

(EUSFLAT), volume 3, pages 530-536

• Wang, G., Lopez-Molina, C., and De Baets, B. (2016). Blob noise

reduction using unilateral second order Gaussian kernels and the non-

local means algorithm. In Proceedings of the International Conference

on Intelligent Decision Science (IDS)

• Wang, G. and De Baets, B. (2019). Automated Artemia detection and

length measurement using deep convolutional networks. In Proceedings

of the Benelux Conference on Artificial Intelligence (BNAIC)

239

	Acknowledgements
	Summary
	Nederlandstalige samenvatting
	List of acronyms
	List of symbols
	Introduction and preliminaries
	Introduction
	A general overview
	Scope of the thesis

	Preliminaries
	Several fundamental concepts in image processing
	About a digital image
	Spatial filtering and convolutional kernels
	Gaussian kernel and scale-space representation

	Several typical image analysis tasks
	Image denoising
	Low-level feature extraction
	Image segmentation and superpixel segmentation
	Object classification and object detection

	Several fundamental concepts in deep learning
	Supervised learning
	Artificial neural networks
	Deep convolutional neural networks

	Exploration of Gaussian-based kernels for image analysis
	First-order derivative of anisotropic Gaussian kernel with its applications
	Motivation
	Related work
	Normalized scale-space representation and its derivative
	The non-normalized first-order derivative of an-isotropic Gaussian kernel
	Graph-based superpixel segmentation

	Normalized first-order derivative of anisotropic Gaussian kernel
	Modelling the scaled edges
	Normalization in scale-space
	Alleviation of the anisotropy stretch effect
	Discrete filter bank
	Compensated anisotropic edge strength

	Application to contour detection
	Hierarchical superpixel maps
	Hierarchical superpixel contrast maps
	Contour strength map
	Binarization
	Experimental validation

	Application to superpixel segmentation
	Superpixel segmentation incorporating anisotropic edge strength
	Experimental validation

	Conclusions

	Second-order anisotropic Gaussian kernel with application to line detection
	Motivation
	Related work
	Normalized and adaptive second-order anisotropic Gaussian kernel
	Modelling a line segment
	Rebuilding the conventional second-order anisotropic Gaussian kernel
	Scale-invariant normalization
	Adaptive anisotropy factor
	Discrete kernels
	Postprocessing on lineness map

	Experimental validation
	Application to fungus detection
	Other applications

	Conclusions

	Unilateral second-order Gaussian kernel with application to image denoising
	Motivation
	Related work
	Real-world image denoising
	Blob detection

	The unilateral second-order Gaussian kernel
	Modelling a blob structure
	Scale-invariant normalized second-order Gaussian kernel
	The unilateral second-order Gaussian kernel
	Topographical measurement of blob characteristics

	High-ISO long-exposure image denoising
	Spatially modelling blob noise
	Denoising methods incorporating blob reduction

	Experimental validation
	Experiments on removing synthetic blobs and noise
	Experiments on removing real noise

	Conclusions

	Iterative Laplacian-of-Gaussian filtering with application to blob detection
	Motivation
	Related work
	Method for detecting overlapping blobs
	Reducing the degree of overlap by iterative Laplacian of Gaussian filtering
	Non-blob structure suppression using unilateral second-order Gaussian kernels

	Experimental validation
	Evaluation on an example image
	Evaluation of robustness to noise
	Evaluation on fluorescence microscopy cell images
	Evaluation on nanoparticle images

	Conclusions

	Exploration of deep convolutional networks for image analysis
	Automated Artemia detection and counting
	Motivation
	Preliminaries on convolutional neural networks
	Deep convolutional neural networks
	U-shaped fully convolutional networks

	Automated Artemia detection and counting method
	The Artemia detection and counting dataset
	The marker proposal network
	The target classifier

	Experiments and results
	Training procedure
	The watershed-based method for comparison
	Performance evaluation

	Conclusions

	Automated Artemia length measurement
	Motivation
	Materials and methods
	The Artemia length measurement dataset
	Automated Artemia length measurement using U-shaped fully convolutional networks
	A method using mathematical morphology and polynomial curve fitting

	Experiments and results
	Comparison between two models trained by different types of label maps
	Length measurement evaluation

	Conclusions

	Epilogue
	Conclusions and future work
	Conclusions
	Potential research directions
	Texture suppression using superpixels for contour detection
	Line detection based on image segmentation and line thinning
	Noise-aware and content-aware image denoising
	Extensions of the automated Artemia analysis methods
	Transfer use of the developed Artemia image analysis methods
	Open-source software and image material

	Appendices
	Appendix
	Proof of Eq. (3.13)
	Proof of Eq. (3.15)
	Proof of Eq. (4.11)
	Proof of Eq. (5.9)

	Bibliography
	Curriculum Vitae

