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Abstract: Flood risk assessments predict the potential consequences of flooding, leading to more
effective risk management and strengthening resilience. However, adequate assessments rely on
large quantities of high-quality input data. Developing regions lack reliable data or funds to acquire
them. Therefore, this research has developed a flexible, low-cost methodology for mapping flood
hazard, vulnerability and risk. A generic methodology was developed and customized for freely
available data with global coverage, enabling risk assessment worldwide. The default workflow can
be enriched with region-specific information when available. The practical application is assured by a
modular toolbox developed on GDAL and PCRASTER. This toolbox was tested for the catchment of
the river Moustiques, Haiti, for which several flood hazard maps were developed. Then, the toolbox
was used to create social, economic and physical vulnerability maps. These were combined with
the hazard maps to create the three corresponding flood risk maps. After creating these with the
default data, more detailed information, gathered during field work, was added to verify the results
of the basic workflow. These first tests of the developed toolbox show promising results. The toolbox
allows policy makers in developing countries to perform reliable flood risk assessments and generate
the necessary maps.
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1. Introduction

Globally, natural hazards result in a loss of 42 million lives annually, while the average economic
loss amounts to USD 293 billion [1]. Flooding is not only the hazard with the highest impact on lives
and livelihood [2], but it is also the most complex one to model and thus prepare for, due to the large
amount of possible drivers, including extreme precipitation, dam breaks, tsunamis and storm surges [3].
Moreover, flood risk has shown a large increase in the past decades as a result of population growth,
urbanization and poor land use practices in flood prone areas [4]. Climate change and socio-economic
development will further modify the frequency, intensity and regularity of floods and other hazards,
especially in already vulnerable regions [3].

As material and human losses caused by flood events continue to increase year by year, so does
the importance of an adequate estimation of these losses. Flood risk assessments predict the potential
consequences of flooding and indicate the high-risk areas [5]. The approach focuses on minimizing
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these consequences and the corresponding costs rather than minimizing the flood event itself. The
importance of this shift in focus, was emphasized by the United Nations Secretary-General António
Guterres on the International Day for Disaster Risk Reduction 2017, where he stated, “The challenge is
to move from managing disasters themselves to managing disaster risk,” [6]. Flood risk assessments
lead to more effective risk management and strengthen the resilience of a community [3]. Therefore,
several countries and regions have adapted this methodology into region-specific flood risk assessment
tools. Examples of such tools are HAZUS M-H Flood model in the United States [7], HISS-SSM in the
Netherlands [8], FLEMO in Germany [9] and LATIS in Flanders, Belgium [5]. These models, which
are all designed for assessment in developed regions, are characterized by their dependence on large
quantities of high-quality input data [9,10]. While over the past years, many researchers have worked
on computing accurate local flood risk models, with promising results, data scarcity remains a hurdle
for the development of global models as well as for flood risk assessment in developing countries,
which lack the funds to acquire reliable and detailed input data [3].

In data-poor regions, mapping flood risk requires innovative and customized approaches. Remote
sensing data is an important information source in many of these cases. In Cambodia, multi-temporal
remote sensing data was used as only input for a flood assessment [11]. In another study, a rice
crop damage map was created for a floodplain in Cambodia by combining remote sensing data with
a Digital Elevation Model (DEM) and land use data of the region [12]. In the Kashmir Valley in
India, the assessment of the flood risk was done solely based on satellite imagery [13]. For study
areas in Haiti, flood maps were developed based on a single historic flood event or derived from
intensity-duration-frequency (IDF) curves, as more historic data was inexistent [14,15]. Although
these studies have valuable results for their respective study areas, the implementation of these
methodologies on a wider scale is hindered by the individuality of the approaches.

Therefore, this research has developed a flexible, low-cost methodology for mapping flood
hazard, vulnerability and risk in data-poor regions. As the risk mapping is based on freely
available input data with global coverage, the methodology is applicable worldwide. A modular
framework for the risk calculations was developed, which allows the default workflow to be extended
and enriched with optional modules that make use of region-specific, detailed information when
available. The practical application is designed as a modular toolbox developed on GDAL and
PCRASTER. Hence, the framework and toolbox provide a generic set of algorithms and spatiotemporal
calculations for mapping flood hazard, vulnerability and risk that can be enhanced to account for local
specificities. A user-interface allows access to the toolbox and modification of the algorithms without
any programming experience.

2. Materials and Methods

2.1. Definitions

The United Nations Office of Disaster Risk Reduction (UNDRR) defines risk as the combination
of the probability of a hazardous event and its negative consequences which result from interactions
between natural or man-made hazard(s), vulnerability, exposure and capacity [16]. Capacity is
described as the combination of all the strengths, attributes and resources available within the system
to manage and reduce disaster risks and strengthen resilience. While incorporating capacity can offer
valuable and interesting insights, quantifying this correctly requires a large amount of location-specific
input data. As this is contradictory with the research aim, the proposed method leaves aside capacity
and follows the conventional notation of risk: Risk = Hazard × Vulnerability. As such, three main
modules were defined in the workflow: Hazard, vulnerability and risk.

Hazard is a broad term, that is described as a process, phenomenon or human activity that may
cause loss of life, injury or other health impacts, property damage, social and economic disruption or
environmental degradation [16]. In this research, the hazard module is limited to flooding as a single
event. The probability of flooding in the study area is determined through statistical analysis [5]. The
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resulting flood hazard maps are calculated for specific return periods, expected periods of time in
which a particular water level and discharge may occur, depicting the corresponding water extents
and flood heights.

Vulnerability is defined by the UNDRR as a set of conditions and processes resulting from physical,
social and economic factors, which increase the susceptibility of a community to the impact of the
hazard [16]. This research takes into account three types of vulnerability caused by flooding: Social,
physical and economic vulnerability. Social vulnerability is defined by the number of people vulnerable
to a potential flood; physical vulnerability is determined by the potential material damages; and
economic vulnerability comprises the potential economic damages.

In this research, risk is calculated by combining the vulnerability maps with the flood hazard
data for different return periods. Social risk is defined as the potential number of casualties due to
flooding each year. The risk level for material damages is described in physical risk, while economic
risk determines the risk level for economic damages. Both are initially calculated in USD/m2/year and
then classified in five risk levels.

2.2. Methodology Workflow

The total workflow is visualized in Figure 1 and can be divided in three large modules. The hazard
and vulnerability modules run independently from one another, while the risk module depends on
input data from the first two.
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2.2.1. Hazard Module

Flood hazard is mapped in terms of flood heights and extent using the modelling framework
proposed by Roo and Jetten at the Univerity of Twente: openLISEM [17,18]. openLISEM is a publicly
available spatial hydrological model that can simulate runoff, sediment dynamics and shallow floods.
Only the components modelling rainfall-runoff and hydrodynamic flows were used for calculating
flood hazard.
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The spatially distributed rainfall runoff model generates runoff for a specific rainfall event based
on the physical processes of interception, infiltration and surface storage. The size of each gridcell
is first corrected for slope, assuming rain is vertical. Interception is calculated for different types of
vegetation based on canopy openness and Leaf Area Index [19,20]. Then, the Micro Depression Storage
(MDS) equation proposed by Kamphorst et al. is used to estimate the fraction of water that is stored in
micro depressions at the surface and the fraction that contributes to runoff based on surface roughness
(RR) [21]. This empirical equation was determined through the analysis of 221 digital elevation models
of various types of micro relief. Infiltration is calculated for each cell with the infiltration method from
Green & Ampt, mostly sensitivity to initial soil moisture and hydraulic conductivity [22]. Within the
soil, vertical and lateral flows are calculated with Darcy’s law according to local pressure gradients
determined at any moment using the Farrell & Larson Soil Water Retention Curve [23].

The hydrodynamics of surface flow are modelled using the community and momentum
conservation equations for shallow water equations. These equations are solved with the open
source numerical procedure of FullSWOF2D based on the following principles: (i) Cell boundary fluxes
are estimated using step-wise linear approximations, (ii) water heights for each cell are reconstructed
based on total incoming and outgoing fluxes, and (iii) fluxes are determined based on the linear
reconstruction of water heights, velocities and bed elevations from the cells that touch the cell
boundary [24].

The water flow is divided in three domains: overland flow (according to the DEM), channel flow
(following the river network), and flooding. In this case study, the 1D kinematic wave equation was
used for overland flow and channel flow, together with Manning’s equation for flow velocity. The
one-dimensional kinematic wave equation is applied along a local drainage direction network which
links all cells of the catchment together, according to the direction of one of the 8 adjacent cells in a
rectangular grid. The channel, defined by with, depth and side angle, is assumed in the middle of the
cell and overland flow is considered perpendicular to it. Channel overflow is converted instantly into
flooding water, that can flow back into the channel when the capacity allows it. Overland flow that
reaches a flooded cell is added to the flood heights and affects velocity. More detail about the equations,
assumptions and numerical solutions used in openLISEM can be found in the documentation of the
software [25].

The equations describing the processes described above are parameterized with
spatially-distributed parameters associated with land cover, soil, relief and channel characteristics. The
required maps are listed in Table 1. The workflow of pre-processing and modelling steps is represented
in Figure 2.

The chosen grid resolution depends on the available computing capacity (all maps are loaded
in memory while the software is running) and on expectations for reasonable calculation time. In
data-poor contexts, reasonable assumptions make it possible to generate the many input parameter
maps based on soil texture, land cover classes and the digital terrain model alone. This can be done with
predefined lookup tables based on the literature and automatized with an algorithm in PCRaster [26].
Parameters were derived from GlobCover land cover classes (300 m × 300 m) using a compilation of
parameters based on various experimental studies as proposed by Liu & De Smedt (2004) [21] for the
17 IGBP vegetation type classes [22]. For soil types, soil mapping units described in the FAO-UNESCO
Soil Map of the World were first converted into likely USDA texture classes based on the fraction of fine,
medium and coarse material. Hydrological parameters associated with USDA texture classes were
then taken from Saxton et Rawls (2006) [23]. Elevation data is available globally at 30 m horizontal
resolution (SRTM) but this is generally insufficient to describe accurately the morphology of the river
network. Therefore, it is helpful to make use of more detailed information on hydrography, channel
shape, depth and width, bed roughness, and location of outlets. Vector data of river networks is
available in datasets such as HydroSHEDS or Openstreetmap or can be digitalized based on remote
sensing and satellite images. River channels are rasterized and variables of length, width and depth
are associated to each pixel. With limited knowledge about the geometry of the channel, width and
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depth are interpolated based on the distance to the outlet. Available information on roads and possible
barriers can also be integrated into the model.

Table 1. Parameter maps used in the hydrological model openLISEM.

Data Derived Parameter Map Symbol/Unit

Rainfall series Rainfall depth (mm h−1)

DEM

Local Drain Direction (LLD)

Outlet

Gradient S (mm−1)

Catchment delineation (optional)

Soil texture

Hydraulic conductivity Ksat (mm h−1)

Average suction at wetting front Ψ (cm)

Porosity θs

Initial moisture θi

Land use/Land cover

Surface random roughness RR (cm)

Cover fraction Cover (-)

Manning’s roughness coefficient n (-)

Leaf area index of the plant cover in a gridcell LAI (m2/m2)

Crop height (m)

Channel

LDD channel

Channel width (m)

Channel depth (m)

Side angle (-)

Gradient (-)
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The notion of risk should combine a spectrum of different types of events, mild frequent ones as
well as rare extreme ones. Therefore, hazard must be known for a number of return periods. This
statistical component is derived from rainfall Intensity-Duration-Frequency curves. These curves
are calculated by meteorological services across the world based on historical rainfall records and
geostatistical methods. For each frequency of occurrence, or return period, all the most likely storms
are plotted according to their duration and intensity. Typically, IDF curves illustrate that the shortest
and least frequent storms have higher intensities. For the US and the Caribbean, IDF curves are made
available online by the National Oceanic and Atmospheric Administration NOAA [24]. Alternatively,
they can be computed based on rainfall intensity time series derived from microwave and radar data
provided by satellites such as TRMM & GPM (NASA) or the GSMaP project (JAXA). Adjustments
and cross-validation with local measurements are however necessary to be able to take short rainfall
events into account. Accuracy of short events will be of particular importance for small catchments
(and higher regions within a catchment).

The openLISEM model simulates flow and flood areas based on a specific rainfall event however,
rather than IDF curves. In order to associate a probability to each flood hazard map, composite storms
are designed as to generate the highest possible runoff concentration for a certain probability of rain.
The critical storm duration is well approximated by the concentration time, which is different for each
point of a catchment. For upstream locations, short storm durations will be critical while, locations
downstream, associated with larger catchments, will have longer critical storm durations. To make
sure all critical floods are simulated everywhere on a catchment, all these various durations should be
evaluated. As a simplification to such an expensive approach, “composite” design storms are proposed
by Berlamont (1999) [27], who combines all critical storm durations into one single event. They are
determined by setting out the rainfall volumes from the IDF-relationship symmetrically around the
centre of the storm, starting from the shortest storm duration till the longest ∆tmax. The maximum
duration ∆tmax is chosen equal to the concentration time at the outlet.

The results of openLISEM and the proposed flood mapping strategy were verified against a similar
analysis carried out for Papua New Guinea [26] which was validated using existing flood hazard maps
for that region.

2.2.2. Vulnerability Module

Three types of vulnerability are mapped: social, physical and economic vulnerability. Figure 3
visualises the module default workflow, as well as the optional data that can be added.

In the default workflow, social vulnerability is defined by the population density, which is the
only indispensable input data for this module. The default data in the workflow is the freely available
WorldPop data. WorldPop distributes census population data based on land cover information, such
as location of settlements, roads and rivers [27], resulting in maps with a 100 m × 100 m resolution.
However, when more detailed population distribution data is available this default data can be replaced
with it. Furthermore, when age or health information is available, the workflow can be extended,
adding a dependency ratio to the module. This factor is then multiplied with the number of people in
an area to calculate the potential vulnerability of the area. The dependency ratio is defined as:

DR =
Y + S + LTS

W
(1)

In this equation, DR stands for Dependency Ratio, Y represents the number of children younger
than 15, S the number of seniors older than 64, LTS the number of working people (aged 15–64) with a
long-term sickness and W the number of people at a working age (15–64). A large number of senior
citizens, children and sick people will result into a factor higher than 1 that will be multiplied with the
total number of inhabitants. On the other hand, a small amount of seniors, children and workers with
a long-term sickness will result in a factor lower than 1. In the final step, five vulnerability classes are
defined, and the social vulnerability map is generated.
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Figure 3. Workflow of the vulnerability module for social vulnerability (top), physical vulnerability
(middle) and economic vulnerability (bottom), as followed in the developed toolbox.

Physical vulnerability only takes into account material damages to buildings and roads, while
economic vulnerability also takes into account the economic damages to farmlands. Both physical
and economic vulnerabilities are expressed in USD/m2 and are based on freely available land cover
data, combined with more detailed information on buildings, crops and roads. The default global land
cover map used is GlobCover from ESA and has a spatial resolution of 300 m × 300 m [28]. In a first
step, this data is supplemented with detailed building and road data, available from OpenStreetMap.
Combining these default datasets, creates the land cover map that is used as input for the economic
and physical vulnerability calculations. However, it is also possible to add extra land cover data if
available. In the next step, the land cover data are linked to a list with replacement values. These
values represent the cost to rebuild an element at risk in case of complete destruction. The default
replacement values were gathered from literature and reports. The crop costs were derived from
data from the Food and Agricultural Organization of the United Nations (FAOSTAT) [29], Road cost
was based on the unit cost data from the Roads Cost Knowledge System (ROCKS) developed by the
World Bank’s Transport Unit [28]. Both crop and road costs were calculated per country. Building
replacement costs, on the other hand, were averaged per region in the world, based on reports from
real estate consultancy businesses such as Turner & Townsend and Compass International, Inc. [29,30].
It is also possible to add location-specific replacement values if available. Combining these values with
the land cover map, and assigning each value to one of the five vulnerability classes, leads to the two
vulnerability maps.
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2.2.3. Risk Module

The vulnerability and flood hazard maps generated in the previous modules form the main
input data for the risk calculations. Figure 4 shows how the risk module combines both the resulting
risk maps.Water 2019, 11, x FOR PEER REVIEW 8 of 19 
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The physical and economic vulnerability maps are combined with the flood hazard maps using
depth-damage functions, which are gathered from literature and are added as default tables in the tool.
Table 2 gives an overview of the default depth-damage functions available and their application scale
and area.
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Table 2. Overview of default depth-damage functions available in the tool.

Depth-Damage
Function Developed by Developing

Method Application Scale Application Area

HAZUS Model

Federal Insurance
Administration (FIA) & US
Army Corps of Engineers

(USACE)

Expert judgment Local State
Regional USA

Rhine Atlas Model
International Commission

for the Protection of the
Rhine (ICRP)

Empirical
information Catchment Rhine

Area/Germany

LATIS Flemish Environment
Agency (FEA) Expert judgment Regional National Flanders/Belgium

Damage scanner
Model

Rijkswaterstaat Water,
Verkeer en Leefomgeving Expert judgment Regional National The Netherlands

Joint Research
Centre Model

Directorate General Joint
Research Centre (DG JRC)

Average of all
assessed damage

functions
Continent Worldwide

Multi-Colored
Manal Model

Flood Hazard Research
Centre (FHRC) Middlesex

University
Expert judgment Local Regional UK

FLEMO German Research Centre
for Geosciences

Empirical
information

Local Regional
National Germany

Japan Dutta et al. [31] Expert judgment Local Regional
National

Japan/tropical
island states

Dependent on the location, scale and land cover of the study area, a different depth-damage
function can be chosen. It is also possible to add another, more specific, function for a specific case
study. The result is a series of potential damage maps, each corresponding to a potential flood event
with a specific return period. These maps are combined using the formula [32]:

R =
n∑

i=1

1
i
(Di −Di−1) (2)

In this expression, R is the risk, Di is the damage corresponding to the return period i and n is the
highest return period. With this formula, risk is expressed as a composed summation of the damages of
a flood that statistically occurs once a year and the extra damage of floods with higher return periods,
that does not happen when a flood with a lower chance of occurring is passing by. Depending on the
number of flood hazard maps, this formula can be adapted by interpolating between the available
return periods. The result is a physical and economic risk map showing the risk in USD/m2/year. In a
final step, these risk damages are classified into five categories, resulting in a qualitative risk map.

To calculate the social risk, a depth-mortality function is used that defines the relation between
hazard and vulnerability. As there is only flood height information available in the flood hazard maps,
the number of casualties is expressed with following depth-mortality function [33]:

N = exp(1.16d− 7.3) × P (3)

In this expression, N is the number of casualties, d is the water height and P is the potential
vulnerable population per pixel, as calculated in the vulnerability module. The number of casualties
becomes a proxy for potential social damage; the resulting damage maps are combined in an identical
manner as physical and economic risk, using Formula (2). The final result is a social risk map that
visualizes the number of casualties, divided in five risk classes.
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2.3. Toolbox

The flood risk mapping toolbox is a set of modules written in Python 3.6 relying on PCRaster
4.2 [26], GDAL, GeoPandas, Rasterio and Shapely as main libraries (Figure 5). In order to improve
processing performance while using high resolution and/or wide extend maps, the toolbox takes
advantage of the parallel computing module from PCRaster.
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The toolbox user interface (UI) is a set of input files in csv format describing the project meta data,
information data folders, look up tables and files. The advanced syntax of these input files allows
describing the workflow commands and complex functional relationships in a flexible manner.

The toolbox contains a built-in ‘default’ workflow, which consists of basic modules to create
flood hazard, vulnerability and risk maps using open source and globally available data. Several
depth-damage functions, each applicable for a specific geographic region, are available in the toolbox,
Furthermore, the toolbox contains default replacement values that the user can apply when no
location-specific socio-economic data is available.

While this default input is provided for users with a limited mapping knowledge, as listed in
Table 3, the tool allows a mapping expert to customize the input files and workflow commands to
better match each particular study case and particular methodology. The tool also enables splitting the
main workflow to process separately either vulnerability or risk maps. Furthermore, the input can be
customized to different locations and scales without any modification in the source code.
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Table 3. Overview of the input data for the three modules.

Data Type Mandatory Source Used for Default Methodology

HAZARD MODULE

Digital Terrain Model (DTM) Y SRTM DEM (30 × 30 m resolution)

Landcover data Y Globcover (300 × 300 m resolution)

Soil texture data Y FAO-UNESCO Digital Soil Map of the World (vector)

Precipitation data Y
IDF curves (national weather agencies, NOAA) or
rainfall intensity time series derived from TRMM &
GPM (NASA) or GSMaP (JAXA).

Channels/river network N OpenStreetMap (vector)

VULNERABILITY MODULE

Population density data Y WorldPop (100 × 100 m resolution)

Landcover data
Y Globcover (300 × 300 m resolution)

Y OpenStreetMap (vector)

Replacement values

Y Crops-FAOSTAT [34]

Y Buildings-Turner & Townsend [29] and Compass
International Inc. [30]

Y Roads-ROCKS [28]

RISK MODULE

Flood hazard maps Y Created in hazard module

Vulnerability maps Y Created in vulnerability module

Depth-damage functions Y see Table 2

Depth-mortality function Y Vrisou van Eck et al. [33]

2.4. Study Area

The developed toolbox was tested for the catchment of the river Moustiques, situated in the
northwest of the island state Haiti. The catchment has 40,000 inhabitants and a total area of 222 km2 [35].
The 46 km long river is one of the only almost permanent waterways in this region characterized by an
overall extremely dry climate. It rises from the mountain range Massif de Terre Neuve at a height of
697 m and flows into the Baie de Moustiques, a bay at the sea canal Canal de la Tortue between the
mainland and the island Île de la Tortue. The hurricane season that runs from August through October
is characterized by torrential rains and flash floods, leading up to 1200 mm measured precipitation
per year [36]. Moreover, the Haitian government classified the plain of the Moustiques as vulnerable
to exceptional hazards, such as cyclones, storms and hurricanes that produce as much as 600 mm
precipitation in 24 h [37].

The study area lacks a hydro-meteorological gauging network; therefore, no reliable information
regarding gauged rainfall nor flood discharges could be identified. Historical flood events were not
documented and they remain only in the mind of the residents.

3. Results

In a first step, hazard, vulnerability and risk maps were derived following the basic algorithm:
using the default, freely available input data only. In a subsequent step, more detailed information
on the study area, gathered during a field mission, was introduced to improve the input data. This
step enabled testing some of the optional modules, by providing extra in-depth information, but also
testing alternative algorithms in the toolbox. Moreover, the results of the basic workflow were verified
with this new set of more detailed vulnerability and risk maps.
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3.1. Results Default Modules

Using the hazard workflow, three flood hazard maps were created. The first has a return period of
2 years, the second one of 10 years and the last one has a 50-year return period. The default input data
was complemented with an Intensity Duration Frequency (IDF) curve of West Puerto Rico (NOAA), as
there was no IDF curve available for Haiti. However, the curve was compared to Cuban and Bahamian
studies and was proven to be consistent for the Caribbean area. Three composite storms, presented in
Figure 6, were designed based on the IDF curve to produce the flood hazard maps, shown in Figure 7.
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Figure 7. Flood hazard maps for three return periods of the catchment of the river Moustiques, Haiti,
as created by the toolbox.

Due to the scale of the maps, they seem to show little to no difference. Therefore, a numerical
comparison was made and depicted in Table 4. Here, it becomes clear that the 50-year return period
has 2.16 percent more affected area than the 2-year return period and 1.07 percent more flooded area
than the 10-year return period. Furthermore, especially the higher flood levels (more than 5 m) occur
more often during a 50-year-flood. The limited vertical accuracy of SRTM is at the basis of the apparent
poor sensitivity.
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Table 4. Flooded area and numerical comparison for the three return periods in the catchment of the
river Moustiques, Haiti.

FLOOD
HEIGHT

(m)

R = 2 YEARS R = 10 YEARS R = 50 YEARS

Affected
Area (m2)

% of Total
Area

Affected
Area (m2)

% of Total
Area

Affected
Area (m2)

% of Total
Area

0.01–1.00 16,324,500 7.38 16,796,500 7.59 17,346,000 7.84
1.01–2.00 4,797,500 2.17 4,887,000 2.21 4,694,000 2.12
2.01–5.00 6,347,000 2.87 7,397,500 3.34 8,114,000 3.67

5.01–10.00 1,364,000 0.62 1,928,500 0.87 2,974,000 1.34
10.01–20.00 111,000 0.05 346,500 0.16 590,000 0.27
20.01–30.00 0 0.00 12,000 0.00 15,500 0.00

TOTAL 28,944,000 13.08 31,368,000 14.17 33,733,500 15.24

In the vulnerability module, three maps were created representing the social, economic and
physical vulnerability of the catchment. Figure 8 shows these maps with the vulnerability classified
in five vulnerability levels. Table 5 lists the exact vulnerability values linked to each level. These
class values were chosen in order to create a clear visual result that highlights the high-risk areas in
the catchment. The exact class values are based on the average population density and replacement
values of the elements taken into account in the study area. Specific numerical information on the
vulnerabilities is listed in Table 6. As the data from WorldPop aggregates the population data over
the country surface, the population density is never zero. Therefore, the entire catchment appears
vulnerable to social risk. The economic vulnerability is widespread as well, as more than 56 percent
of the area is economically vulnerable. However, most of this vulnerable area only has a very low
vulnerability level. These are mostly farmlands. The physical vulnerability looks much more limited
in extend, as it takes into account land cover elements, namely buildings and roads which require a
stronger zoom in the map to actually appreciate them in full.Water 2019, 11, x FOR PEER REVIEW 13 of 19 
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Haiti, as created by the toolbox.

Table 5. Minimum and maximum values of vulnerability levels for social, economic and physical
vulnerability in the catchment of the river Moustiques, Haiti.

Vulnerability
Level

Social (People/ha) Economic (USD/m2) Physical (USD/m2)

Min Value Max Value Min Value Max Value Min Value Max Value

Very low 0.01 0.50 0.01 0.50 0.01 0.50
Low 0.51 1.00 0.51 2.00 0.51 2.00

Medium 1.01 1.50 2.01 3.50 2.01 3.50
High 1.51 2.00 3.51 5.00 3.51 5.00

Very high 2.01 >2.01 5.01 >5.01 5.01 >5.01
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Table 6. Vulnerable area and numerical information on social, economic and physical vulnerability in
the catchment of the river Moustiques, Haiti.

Vulnerability
Level

Social Economic Physical

Vulnerable
Area (m2)

% of Total
Area

Vulnerable
Area (m2)

% of Total
Area

Vulnerable
Area (m2)

% of Total
Area

Very low 36,482,500 16.48 109,837,000 49.63 1,878,000 0.85
Low 51,328,500 23.19 3,938,500 1.78 1,452,000 0.66

Medium 44,797,500 20.24 3,431,500 1.55 1,490,000 0.67
High 47,055,500 21.26 2,228,000 1.01 1,419,500 0.64

Very high 41,652,500 18.82 4,954,500 2.24 1,439,000 0.65
TOTAL 221,316,500 100.00 124,389,500 56.20 7,678,500 3.47

The last module combines the created flood and vulnerability maps into three risk maps depicting
the yearly social, economic and physical risk. These maps are presented in Figure 9, while the
case-study-specific risk level values are presented in Table 7. The numerical information is summarized
in Table 8. The social risk map clearly shows a higher risk upstream the river. This is due to the
higher population density, and thus the higher social vulnerability in that area. 15.88 percent of the
population, which is disseminated within 13.13 percent of the catchment area, is yearly at risk due
to flooding. Economically, the elements in 14.22 percent of the catchment area are at risk, which is
more than 25 percent of all vulnerable elements. The physical risk is limited to 0.81 percent of the total
catchment area, but this is still more than 23 percent of the total physical vulnerable elements.Water 2019, 11, x FOR PEER REVIEW 14 of 19 
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created by the toolbox.

Table 7. Minimum and maximum values of risk levels for social, economic and physical risk in the
catchment of the river Moustiques, Haiti.

Risk Level
Social (People/ha) Economic (USD/m2) Physical (USD/m2)

Min Value Max Value Min Value Max Value Min Value Max Value

Very low 0.01 0.25 0.01 0.10 0.01 0.10
Low 0.26 1.00 0.11 0.20 0.11 0.20

Medium 1.01 2.50 0.21 0.50 0.21 0.50
High 2.51 5.00 0.51 1.00 0.51 1.00

Very high 5.01 >5.01 1.01 >1.01 1.01 >1.01
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Table 8. Area at risk area and numerical information on social, economic and physical risk in the
catchment of the river Moustiques, Haiti.

Risk Level

Social Economic Physical

Area at Risk
(m2)

% of Total
Area

Area at Risk
(m2)

% of Total
Area

Area at Risk
(m2)

% of Total
Area

Very low 19,541,500 8.83 21,199,500 9.58 333,000 0.15
Low 7,136,000 3.22 9,033,000 4.08 345,500 0.16

Medium 1,055,500 0.48 437,000 0.20 371,500 0.17
High 972,500 0.44 424,000 0.19 354,000 0.16

Very high 348,000 0.16 388,000 0.18 398,500 0.18
TOTAL 29,053,500 13.13 31,481,500 14.22 1,802,500 0.81

3.2. Comparison with Results Obtained with Optional Data

In order to verify the results of the toolbox, the default risk maps were compared to the results of
the workflow using more detailed input data. In order to calculate the social risk, detailed population
information, on building level, was acquired. This data was gathered during fieldwork in 2018 [38].
The results of both scenarios are shown in Figure 10. While only 172,000 m2, or 0.42 percent of the total
plain area, is classified as at risk using the detailed population data, the default workflow classifies
11,056,000 m2 or 27.22 percent of the total area as at risk.Water 2019, 11, x FOR PEER REVIEW 15 of 19 
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Figure 10. Comparison of the social risk map that was created using detailed input data and the
optional modules (left) and the social risk map created using the default modules of the toolbox (right)
for the plain of the catchment of the river Moustiques, Haiti.

Even more interesting is comparing the number of people vulnerable and at yearly risk in the two
scenarios. 1846 people live in the plain according to the detailed population data. The WoldPop data,
on the other hand, estimates the total number of inhabitants at 3143, an overestimation of more than
70 percent. When comparing the number of people at risk, however, the default data classifies barely
half of the people as calculated with the detailed data as at risk, as 939 people are at risk according to
the default method, while 1798 inhabitants are at risk using the detailed data.

The economic risk was calculated for the default data as well as for optional modules, including
more detailed data on the farmlands, the crop types that are cultivated and the corresponding
replacement values. This detailed information was only available for the plain of the catchment, so
this was the only area taken into account in this comparison. Both resulting risk maps are shown in
Figure 11.
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Figure 11. Comparison of the economic risk map that was created using detailed input data and the
optional modules (left) and the economic risk map created using the default modules of the toolbox
(right) for the plain of the catchment of the river Moustiques, Haiti.

Visually, it is clear that the risk computed with the default data is overestimated compared to the
risk computed with more detailed data in the center of the plain. This is confirmed by the numerical
analysis in Table 9. The default workflow calculates 12.6 percent more risk in the plain than the detailed
information. The overestimation is mainly located in the low risk level.

Table 9. Area at risk and numerical information on the economic risk calculated by the optional
modules using detailed input and the toolbox using the default modules and default input data for the
plain of the catchment of the river Moustiques, Haiti.

Risk Level (m)
Detailed Default

Area at Risk (m2) % of Total Area Area at Risk (m2) % of Total Area

Very low 3,305,000 8.14 2,835,500 6.98
Low 3,258,000 8.02 4,464,000 10.99

Medium 242,000 0.60 203,000 0.50
High 85,500 0.21 214,500 0.53

Very high 104,000 0.26 160,500 0.40
TOTAL 6,994,500 17.22 7,877,500 19.40

The physical risk was not included in this comparison, as there was no alternative input data
available with a higher level of detail for buildings or roads than the default OpenStreetMap data.

4. Discussion

The generated flood hazard maps show the large impact of flooding on the study area. Even
the 2-year flood affects 13.08 percent of the total catchment area. The extent of the floods with return
periods of 10 and 50 years are only slightly larger than this 2-year flood extent. This can be attributed to
the regions topography. As the plain of the river is low-lying and flat, this area will inundate completely
whenever a flood occurs, independent from the return period of this flood. Therefore, it is most likely
that a computed 1-year flood would have an extent only slightly smaller than the one of the 2-year
flood. However, no flood map was generated for a return period of one year, as the 30 × 30 SRTM
DEM was too coarse to see any difference from the 2-year flood map. When there are funds available
for the acquisition of detailed data, the toolbox user should focus on acquiring a high-resolution DTM.

A detailed validation of the flood hazard maps for the study area is not feasible due to lack of
adequate measurements. Nevertheless, expert judgement indicates that the simulated floods were
realistic enough for the purposes of the risk mapping, as the same methodology showed adequate and
validated results in Papua New Guinea [26].

Figures 8 and 9 present the resulting social, economic and physical vulnerability and risk maps
for the catchment. These maps are an important visual tool for decision makers to comprehend the
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distribution of vulnerability and risk in the area. Both results were classified in five levels. The class
values were determined to create an optimal visual result based on the average population density in
the study area for social vulnerability and risk, and on the location-specific replacement values for
economic and physical vulnerability and risk. In other case studies, the user can choose the number
of vulnerability and risk classes, that will then be calculated by the toolbox based on the population
density and replacement values of that specific location, in order to generate a clear visual result.

The social vulnerability and risk were based on WorldPop data as input data. As Worldpop
distributes the population numbers using land use data, the population density is nowhere equal
to zero. However, this study area is a predominantly rural region, with most inhabitants living
concentrated in small villages. Although the total population number for the catchment is correct using
WorldPop data, the distribution overestimates the population in the rural areas and underestimates
it in the villages. This explains the large overestimation of the number of people living in the plain.
Moreover, due to the even distribution of the inhabitants, there is a large error in the social risk map
of the plain, as the area at risk using the default WorldPop data is 64 times larger than the area at
risk using the detailed population data. When evaluating the number of people at risk, however, the
WorldPop data underestimates this drastically, as only 939 inhabitants are situated in the area at risk,
while the detailed data leads to 1798 people at risk. This is due to the fact that almost all inhabitants
live in the villages, which are located in the flood zone. Therefore, 97.40 percent of all inhabitants
of the plain are classified as at risk. The WorldPop data, on the other hand, distributes the number
of people evenly across the plain, and as such, more people are situated outside the floodzone, as
only 29.88 percent of the total population in the plain is at risk using the default methodology. The
WorldPop shows thus clear shortcomings in this rural area. Moreover, WorldPop is not available for
every country in the world. This is a major disadvantage of WorldPop as default data in the toolbox, as
global coverage is an important condition for the input data.

The validation of the economic risk was done using more detailed farmland input data. This data
replaced the GlobCover default data with a resolution of only 300 m × 300 m. For buildings and roads,
OpenStreetMap was used as this is the most detailed information available for this study area. When
comparing the results, the detailed crop data leads to a lower risk, specifically 2.18 percent less than
the default data. As this is a rural area, the crop data has a significant effect on the result. However,
as the damage cost of agricultural lands is substantially lower than the cost of roads and buildings,
this effect is only visible within the lower risk levels. While the GlobCover data does lead to a small
overestimation, mainly due to its low resolution and lack of detail, this overestimation remains limited
and the result remains a valuable overview of the risk and its distribution within the area.

The default input data for physical vulnerability and risk is building and road information from
OpenStreetMap. The building data shows the building footprints and the road data shows the axes of
all roads. This data is the most detailed available and, therefore, no validation could be made with
other input.

5. Conclusions

The developed methodology and toolbox allow experts in developing countries and data poor
regions to perform reliable flood risk assessments and generate the necessary hazard, vulnerability
and risk maps. The generic workflow is a robust and customizable algorithm that can be applied to
any study area; it can be based on ‘default data’, which is freely available from different sources, but it
can also be enriched with data surveyed within the study area. However, complete global coverage
remains one of the most difficult conditions for the default input data. Although all data used is
available in most parts of the world, it is impossible to ensure that the toolbox will provide results for
every study area worldwide. The exact restrictions in geographic distribution are being mapped and
listed and will be added to the toolbox manual.

The first case study for the catchment of the river Moustiques shows promising results. Despite
the lack of historical hydro-meteorological data, the use of a physically-based distributed flood model
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using open remote sensing data gives a scientific base to flood mapping in this data-poor region.
With no perspective on ever acquiring on-site hydrological data, the flood model should however be
validated in the future using aerial photos of flood areas or local reporting on disasters when they
become available. Also, the WorldPop data has proven to be inaccurate for rural areas. More test cases
should be carried out in urban and semi-urban areas to determine the accuracy of WorldPop data in
these regions. Furthermore, due to the lack of WorldPop data for some countries, another methodology
to link population numbers based on census data and building locations from OpenStreetMap is
developed and tested to replace the WorldPop data as input.

The economic risk map based on default data shows a good representation of the risk, although it
depicts a small overestimation compared to the risk map based on detailed data. This is caused by the
large presence of farmlands, that cover the lion part of the catchment. Furthermore, the resolution of
GlobCover data is too coarse for a small study area as the catchment of the river Moustiques. Therefore,
additional test cases will be chosen based on their land use distribution and their scale. As such, the
impact and the accuracy of GlobCover data will be further examined.

In a next step, the toolbox shall be tested further on case studies in other countries, developed
as well as developing, to validate the available replacement values, depth-damage functions and
depth-mortality functions. Finally, additional natural hazards will be incorporated in the mapping
methodology to develop a multi-hazard risk assessment tool, applicable worldwide that provides clear
and practical risk maps. After this validation and testing phase, the toolbox will be made publicly and
open source available.
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