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ABSTRACT 

The present paper deals with the finite element (FE) analysis of the bond slip between concrete 

and carbon fiber reinforced polymer (CFRP) strips in a single bond shear test under static loads 

and in a double bond shear test under blast loading. A plastic damage material model and an elastic 

material model are used to model the concrete prism and the unidirectional CFRP strip, 

respectively. The bond interface between concrete and CFRP strip is simulated using a cohesive 

bond model. For the static loads, the numerical model is validated with experimental tests available 

in the literature. The debonding failure mode, the delamination loads and the strain distribution 

along the CFRP strip are predicted. The numerical results show a good agreement with the 

experimental data using the cohesive bond model. For the blast loads, the validated cohesive bond 

model is used. A parametric study with respect to the width and the length of the CFRP is 

conducted. Moreover, the reflected pressure and impulse are varied to highlight the effect of the 

propagation of the blast wave in the debonding process under blast loads. 
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1. INTRODUCTION 

1.1. An overview of the previous studies 

Difficulties and challenges to model the bond between carbon fiber reinforced polymer (CFRP) 

strips and concrete under blast loads are reported in literature. The bond strength is significantly 

affected by CFRP width, strength, thickness, adhesive properties, concrete strength, surface 

preparation and quality of the workmanship. All these parameters are subject to some variability. 

Muszynski et al. [1] measured a bond strength between fiber reinforced polymer (FRP) and 

concrete equal to 2.8 MPa when they tested two concrete structures retrofitted with composite 

materials subjected to 830 kg of TNT at a stand-off distance of 14.5 m. Mutalib et al. [2] compared 

different bonding strengths for numerical analyses of FRP-composite-strengthened reinforced 

concrete (RC) walls with or without additional anchors to examine the structural response under 

blast loads. They found that FRP strengthening increases the RC wall blast resistance capacity and 

the bond strength plays a significant role in maintaining the composite action between FRP and 

concrete. These previous studies show that some progress has been made to study the interface 

behaviour between concrete and CFRP strip under blast loads. However, the prediction of an 

accurate bond slip model under blast loads is still subject to improvement due the complexity of 

the problem. In this paper, a FE model is developed for blast analysis using nonlinear finite element 

(FE) software LS-DYNA. Numerical analysis is performed using cohesive elements to model the 

bond between CFRP strips and concrete. The numerical results are validated with previously 

conducted experiments under static loads and the validated FE model is applied to blast loads. 

Further experimental validation of the model by means of double bond shear tests under blast loads 

is work under progress [3]. 

 

1.2. Methodology of the research 

This paper is divided into two parts. The first part deals with the FE analysis of bond slip between 

the concrete and the CFRP strip in a single bond shear test under static loads. The numerical model 

is validated based on experimental test results available from the literature [4]. The debonding 

failure mode, the delamination loads and the strain distribution along the CFRP strip are predicted 

and validated with the experimental results. In the second part, after the validation of the model 

under the static loads, the FE model is tested under blast loads and a parametric study is conducted 

with respect to the width and the length of the CFRP strip. Moreover, the debonding process under 

blast loads is discussed and the parameters that affect the bond strength under blast loads are 

highlighted.  
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2. BOND SLIP EVALUATION BETWEEN CFRP AND CONRETE 

UNDER STATIC LOADS 

2.1. Experimental setup 

Experimental tests of single lap bond shear tests have been performed by Mazzotti et al. [4]. Eight 

prisms strengthened with a CFRP strip are tested with varying width (bf) and bond length (L) of 

the CFRP strip. Two strip widths (bf =50mm and 80mm) and four bond lengths (L= 50mm, 

100mm, 200mm, 400mm) are used. The concrete prisms are fixed with a steel frame to prevent 

vertical and horizontal displacement as shown in Figure 1. For more details on the experimental 

setup see reference [4]. 

 

Figure 1. Experimental setup [4] 

2.2. Finite elements modelling 

2.2.1. Material models  

A numerical analysis is conducted using FE modelling. The concrete and the CFRP strip are 

modelled using constant stress solid elements. A plastic damage model is used to model the 

concrete. This material model is a three invariant model that uses three shear failure surfaces and 

includes damage [5]. An elastic material model is used to model the unidirectional CFRP strip. 

The material properties of the concrete, the CFRP strips and the adhesive are shown in Table 1. 

 

 

 

 

 



PROTECT 2019: 7th International Colloquium on Performance, Protection and Strengthening of Structures Under 

Extreme Loading and Events, Whistler, BC, Canada, September 16-17, 2019 

Table1. Static material properties of the concrete, CFRP strips and epoxy 

Material Young’s modulus 

(MPa) 

Compressive strength 

(MPa) 

Tensile strength 

 (MPa) 

Thickness  

(mm) 

Width  

(mm) 

Concrete 30700 52.6 3.8 - - 

CFRP 

strips 

195200 - 2800 1.2 50 

80 

Epoxy 12840 30.2 70 1.5 50 

80 

 

2.2.2. Modelling of the interface using cohesive elements  

Previous experimental shear tests between the CFRP strip and the concrete  under static loads have 

shown that usually debonding occurs at the adhesive-concrete interface with a thin layer of 

concrete  remaining attached to the FRP [4,6,7]. Moreover, they concluded that the main 

parameters that affect the bond strength in a bond shear test are the concrete strength, the bond 

length, the FRP to concrete width ratio, the stiffness of the FRP and the adhesive as well as the 

strength of the adhesive. All these aspects are considered to model the interface between the 

concrete and the CFRP strip using cohesive elements. The behaviour of these cohesive elements 

can be based on the local bond slip model proposed by Obaidat et al. [8] based on the following 

formula: 

τmax = 1.46Ga
0.165fct

1.033
                                                                                                          (1a) 

k0 = 0.16
Ga

ta
+ 0.47                                                                                                                    (1b) 

Gcr = 0.52fct
0.26Ga

−0.23
                                                                                                              (1c) 

Where τmax is the maximum shear strength at the interface, Ga is the shear modulus of the 

adhesive, fct is the tensile strength of the concrete, K0 is the initial bond stiffness, ta is the thickness 

of the adhesive and Gcr is the fracture energy. Figure 2 shows the numerical bond interface between 

concrete and CFRP strips using cohesive elements including the properties of the concrete and the 

adhesive. 

 

Figure 2. (a) real case of a bonded CFRP plate to concrete; (b) numerical modelling of the bonded CFRP plate to 

concrete using cohesive elements 
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The cohesive model defines surfaces of separation and describes their interaction by defining a 

bilinear traction displacement softening law [9]. The advantage of using this cohesive model is 

that the damage of the interface is considered as a mix mode of two different modes; mode I 

(tensile), mode II (shear) as shown in Figure 3.  

 

Figure 3. Mixed mode traction-separation law [9] 

Where T and S are the tensile and the shear stresses of the concrete for mode I and mode II and δ0 

and δF are the initial relative displacement and ultimate relative displacement at failure.  A 3D 

finite element model of a pull-out test using cohesive elements to model the interface between the 

concrete and the CFRP strip is shown in Figure 4. 

 

Figure 4. FE model of the pullout test 

2.3. Validation of the FE model  

During the experimental tests, a load cell is used to measure the applied force until the debonding 

of the CFRP strips. A comparison between the experimental data of the delamination loads and 

the numerical results for different bond lengths are shown in Table 2. The delamination loads 

found by the numerical model are in close agreement with the experimental data. 
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Table 2. Comparison between the experimental and numerical delamination loads 

Specimens Exp data Pu(kN) Num data Pu(kN) Ratio (Num/Exp) 

 

bf= 50mm 

L=50mm 14.0 16.4 1.17 

L=100mm 22.3 23.8 1.06 

L=200mm 19.8 24.2 1.22 

L=400mm 23.0 25.4 1.10 

 

bf = 80mm 

L=50mm 22.0 25.2 1.14 

L=100mm 30.5 29.5 0.96 

L=200mm 33.0 33.2 1.01 

L=400mm 37.0 38.2 1.03 

 

Moreover, the distribution of the longitudinal strain along the bonded length are predicted by the 

FE model and compared to the experimental data as shown in Figure 5. Increasing the bonded 

length of the CFRP strips makes the debonding process less brittle and the distribution of strain 

along the bonded area uniform until the debonding. Also, a plateau of strain is observed when the 

bonded length exceeds the effective bonded length. These results are also reported in other studies 

[6,10,11]. 

 

Figure 5. Evolution of the strain in the CFRP strip (bf= 50mm) for different bond lengths at the 

delamination stage 

 

2.4. Debonding process under static loads 

The debonding of the CFRP strip starts from the fixed end to the free end of the CFRP strip in a 

brittle and sudden manner. Increasing the load at the fixed end of the CFRP strip generates a high 

concentration of shear stress at the interface between the CFRP strip and the concrete. 

Figure 6 shows the debonding process at different time stage using the cohesive elements for the 

concrete prism with a bond length L= 400mm and a width bf= 50mm. Where the damage evolution 

index (Dei) is shown at different level of loading. Three damage levels are considered: low damage 

(0.33 < Dei ≤ 0.67); moderate damage (0.67 < Dei ≤ 1.3); heavy damage (1.3 < Dei ≤2). 
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Figure 6. Evolution of the damage at the interface during the debonding process (bf= 50mm; L= 400mm) 

. 

3. NUMERICAL INVESTIGATIONS UNDER BLAST LOADING  

3.1. Finite element model of double bond shear test under blast loads 

After the validation of the FE modes under static loads, the FE models is tested under blast loads 

using the same contact to model the interface between the CFRP strip and the concrete (see section 

2.2.2). To consider the effect of the propagation of the blast wave at the interface between the 

CFRP strip and concrete, the CFRP strips are modelled using solid elements to include the out of 

plane stresses. A uniform distribution of the reflected pressure is assumed on the steel plate fixed 

at the centre of the concrete prism as shown in Figure 7. 

 

Figure 7. FE model of a double bond shear test under blast loads 

 



PROTECT 2019: 7th International Colloquium on Performance, Protection and Strengthening of Structures Under 

Extreme Loading and Events, Whistler, BC, Canada, September 16-17, 2019 

3.2. Parametric study  

A parametric study is conducted with respect to the width and the length of the CFRP strips with 

increasing reflected pressure and impulse to reach the debonding. The delamination load is 

predicted by the FE model and compared to the static loads. For increasing width and length of the 

CFRP strip, the delamination loads increase under blast loads. Moreover, increasing the bond 

length of the CFRP strip adds stiffness to the retrofitted specimens to better resist to the blast loads 

due to the increase of the active zone that resist to the dynamic stresses caused by the displacement 

of the concrete prism. A dynamic increase factor is observed between the delamination loads under 

static loads and dynamic loads as shown in Table 3. 

 

Table 3. Numerical prediction of the delamination loads with different width and length of the CFRP strips 

FE models Static data 

Pu (kN) 

Reflected pressure 

Pr (MPa) 

Reflected impulse 

Ir (Pa.s) 

Blast data Pu 

(kN) 

Ratio 

(blast/static) 

bf= 15mm L= 50mm 5.5 10.0 2000 5.9 1.07 

L= 100mm 6.5 13.8 2250 6.7 1.04 

L= 200mm 6.9 13.8 3500 7.4 1.06 

bf= 50mm L= 50mm 16.4 13.8 4500 21.9 1.33 

L= 100mm 23.8 23.8 6250 26.6 1.11 

L= 200mm 24.2 50.0 8750 25.3 1.04 

 

3.3. Debonding process under blast loads 

Under static loads, bond slip tests between concrete and CFRP strip are mainly governed by mode 

II (in plane shear). However, for blast loads the two different modes should be included as the 

propagation of the blast wave within the concrete causes out of plane stresses at the interface 

between the concrete and the CFRP strip. When the energy released by the explosion exceeds the 

fracture energy at the interface, debonding occurs [12].  Due the blast response, the concrete prisms 

are moving and vibrating, creating dynamic stresses at the interface between concrete and CFRP 

strips [13]. 
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4. CONCLUSIONS 

This paper is divided into two parts. The first part deals with a numerical investigation of the bond 

behaviour between concrete and CFRP strip under static loads. The numerical model is compared 

with experimental tests conducted by Mazzotti et al. [4]. The debonding failure mode and 

delamination loads are predicted using cohesive elements to model the interface. The FE model 

based on Obaidat et al. approach [8], which considers both the concrete and the adhesive 

properties, is in good agreement with experimental results in terms of ultimate loads and failure 

mode. 

Under blast loading, increasing the width and the length of the CFRP strips increases the 

delamination loads. The debonding between CFRP strip and concrete occurs due a combined 

effect. Mainly, concentration of the shear and normal stresses caused by (1) the propagation of the 

blast wave within the concrete and (2) the displacement of the concrete prism. As such, fracture 

energy under mixed mode (normal and shear stresses) is governing. Despite the more complex 

interface stresses under blast loads, a dynamic increase factor is observed. 
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