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ABSTRACT: A series of imidazolium-based palladate pre-catalysts has been synthesized and the catalytic activity of these air- and 

moisture-stable complexes evaluated as a function of the nature of the imidazolium counterion. These pre-catalysts can be convert-

ed under catalytic conditions to Pd-NHC species capable of enabling the Buchwald-Hartwig aryl amination and the -arylation of 

ketones. Both reactions can be carried out efficiently under very mild operating conditions. The effectiveness of the protocol was 

tested on functionality-laden substrates. 

INTRODUCTION  

The formation of carbon-heteroatom bonds is central to mo-

lecular assembly in its many incarnations.1–3 In particular 

carbon-nitrogen bonds can be found in a plethora of molecules 

ranging from pharmaceutical agents, natural products to agro-

chemicals.4–8 The Buchwald-Hartwig aryl amination reaction 

has become one of the most important cross-coupling reac-

tions practiced in modern chemistry to achieve C-N bond 

formation. This protocol has led to a large variety of C-N 

containing molecules enabling a plethora of applications.9–18 

Due to its importance, various catalytic systems have been 

devised to the specific end of generating C-N bonds selective-

ly. 

The Buchwald-Hartwig reaction is principally mediated by 

palladium catalysts and operated through rapid and straight-

forward activation of well-defined complexes, leading to the 

putative Pd0L species.19-21 Our interest in this area has focused 

mainly on the use of N-heterocyclic carbenes (NHCs) as sup-

porting ligands.22,23 The difference in electronic and steric 

properties of NHCs compared to the traditionally used tertiary 

phosphine ligands has generated new possibilities and im-

proved reaction conditions in catalysis.24 The family of 

[Pd(NHC)(3-R-allyl)Cl] pre-catalysts has shown high catalyt-

ic activity in numerous  cross-coupling reactions such as in 

carbon-carbon,28,29 carbon-nitrogen13,18,25-30 and carbon-

sulfur31, 32 bond formations as well as in the arylation of the 

ketones33. A main advantage of these pre-catalysts is their use 

at very low loadings under very mild reaction conditions and 

in environmentally friendly solvents.34,35 

The efficacy of the bond-forming reaction is most often the 

focus of reports dealing with the Buchwald-Hartwig reaction 

and little attention is paid to the steps required to generate the 

pre-catalyst itself. In our search for increasingly user-friendly 

and greener catalytic systems, we recently reported on the use 

of a palladate pre-catalyst, [IPr·H][Pd(3-cin)Cl2]
36 (IPr = 

N,N’-bis-[2,6-(di-iso-propyl)phenyl]imidazol-2-ylidene;37 cin 

= cinnamyl), that displays, in the Suzuki-Miyaura reaction, 

very high activity, a broad functional group tolerance while 

making use of a mild inorganic base and a green solvent.38 

Another important advantage of such systems is that they can 

be synthesized on gram-scale under solvent free conditions 

and without the need for any workup. Considering the im-

portance of the C-N bond forming reaction and related -

arylation of ketone, we wished to explore whether the easily-

prepared palladate pre-catalysts could display high efficacy in 

these two important reactions (Scheme 1). 

Scheme 1. Palladate complexes as pre-catalysts in cross-

coupling reactions. 

 

RESULTS AND DISCUSSIONS 

A number of [NHC·H][Pd(3-R-allyl)Cl2] complexes were 

synthesized using the solvent-free method consisting of  grind-

ing the NHC salt with [Pd(3-cin)(-Cl]2.
38 In this manner, a 

number of palladates were obtained quantitatively in microan-



 

alytical purity (Scheme 2). The synthetic methodology was 

shown to be general, as variations of both NHC and allyl moi-

eties are possible. 

This new series of palladates was first tested in the Buch-

wald-Hartwig arylamination reaction involving 4-

chloroanisole and 4-fluoroaniline. Early results revealed that 

complexes bearing [IPr*·H]+ [N,N’-1,3-bis[2,6-

bis(diphenylmethyl)-4-methyl phenyl)imidazolium] as counter 

cation (pre-ligand) lead to the best conversion. Furthermore 

the cinnamyl derivative [IPr*·H][Pd(3-cin)Cl2] (1) was de-

termined to be the optimum pre-catalyst (ESI, Table S1). 

Previous reports have shown that IndtBu-based Pd-NHC com-

plexes exhibited higher activity than their allyl and cinnamyl 

counterparts.39 Interestingly, under our conditions, this has 

been shown not to be the case as evidenced by the lower activ-

ity of the [IPr*·H][Pd(3-IndtBu)Cl2] (only 56% conversion 

compared to 99% conversion when using 1). 

Next, the conditions for pre-catalyst activation were investi-

gated (ESI, Tables S2-S4). As expected, the activation tem-

perature plays a more significant role than the operating tem-

perature. 60 °C appears to be the ideal activation temperature 

as increasing the temperature further results in a decrease in 

conversion (see ESI for details). 

Scheme 2. Imidazolium palladates used in this study. 

 

We then focused on optimizing the reaction using green 

solvents.40,41 In this context, cyclopentylmethyl ether (CPME) 

was chosen for its numerous advantages over other commonly 

employed ether solvents such as THF, diethyl ether or 1,4-

dioxane. Indeed, in addition to its stability under acidic and 

basic conditions, CPME does not lead to formation of perox-

ides, thereby decreasing risks associated with this reaction.42 

In addition, the low miscibility of CPME with water allows 

efficient purification/separation and its use is therefore very 

attractive for large-scale industrial reactions.42 

Scheme 3. Aryl amination of primary and secondary amines 

with aryl chloridesa. 

 

The scope of the newly established catalytic system was 

next explored using a variation of primary amines with aryl 

chlorides (Scheme 3, 4a-o). It was possible to couple sub-

strates with substituents at para, meta or ortho positions with-

out loss of reactivity (Scheme 3). The use of sterically hin-

dered anilines such as 2-tolylaniline (4g), 2-isopropylaniline 

(4h and 4i), 2,6-diisopropylaniline (entry 4n) and 2,6-

diethylaniline (4o) resulted in excellent isolated yields.43 As all 

reactions proceed in high yield, the product purification was 
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achieved by using a simple filtration through silica to remove 

impurities and catalyst residues. The use of flash column 

chromatography proved unnecessary. A series of secondary 

amines (aliphatic and aromatic) was also successfully coupled 

using this methodology (Scheme 3, 5a-i). 

As proof of the robustness of the procedure and of the cata-

lysts, three compounds were scaled to 5.5 mmol (≥ 1g) (4a, 5a 

and 5e). In all cases, no loss of reactivity was observed. Sev-

en-membered ring, azepane (5g and 5h) as well as four-

membered ring pyrrolidine (5f) were coupled successfully in 

excellent yields. 

We then turned our attention to more complex structures, 

and targeted a motif present in anti-cancer agents.44 The spe-

cific architecture of N-ethylindolylphenylpropenone was se-

lected as it brings multiple challenges in the form of numerous 

functional groups (2 heteroatoms and an alkene moiety), that 

have the ability to inhibit catalysts (Scheme 4). 12,25,45-47 Both 

primary and secondary amines were coupled successfully, 

leading to the formation of 7a-c in good isolated yields, after 

flash column chromatography. The involvement of more com-

plex and functionalized substrates showcases the potential use 

of this simple methodology and of these simple catalysts to 

enable the generation of complex molecules using a late-

functionalisation strategy. This greener approach generates 

molecular diversity in a very rapid and efficient manner. 

Scheme 4. Aryl amination of more elaborated substratesa. 

 

The coupling of enolizable ketones and aryl chlorides finds 

its importance in the synthesis of natural products and synthet-

ic intermediates found in pharmaceuticals. First reported by 

Hartwig,48 Buchwald49 and Miura,50 the α-arylation of ketones 

is now a powerful and widely used tool in synthetic chemistry. 

Since the arylation of ketones and aryl amination reactions 

proceed through closely related mechanisms, we studied our 

palladate catalytic strategy in the -arylation of a range of 

ketones (Scheme 5). Conveniently by changing the base from 

KOtBu to NaOtBu, the optimized conditions were established 

for the present ketone functionalization protocol (See support-

ing information). The reaction was carried out in air with no 

need for dry solvent using low catalyst loading (0.2 mol% Pd). 

Propiophenone was successfully coupled with neutral (10a), 

electron-donating (10b) and electron-withdrawing (10c) aryl 

chlorides, in high isolated yields. Sterically hindered aryl 

chlorides were successfully coupled with the more challenging 

α-tetralone (10e) and acetophenone (10g and 10h). 

Scheme 5. Scope of the ketone arylation reactiona. 

 

CONCLUSIONS 

A range of palladate pre-catalysts was synthesized follow-

ing a facile and environmentally-friendly synthetic protocol. 

The pre-catalysts were tested in the aryl amination and the -

arylation ketone reactions. A highly efficient protocol was 

established for both reactions using low catalyst loading and a 

green solvent (CPME). Highly functionalized and biologically 

relevant substrates have been coupled using the aryl amination 

reaction protocol highlighting the compatibility of the present 

protocol with late-stage functionalization synthetic strategies. 

Ongoing studies aimed at expanding the role of these palla-

dates in related reactions are currently being examined in our 

laboratories. 

EXPERIMENTAL SECTION 

General procedure for the synthesis of [NHC·H][Pd(ƞ3-R-

allyl)Cl2] complexes: In air, the NHC·HCl and [Pd(ƞ3-R-allyl)(μ-

Cl)]2 were added to a mortar. The two solids were mixed and 

grinded using a pestle for 5 min. A crystalline solid was ob-

tained. 

 

[IHept·H][Pd(ƞ3-cin)Cl2]: Following the general procedure from 

IHept·HCl (50.0 mg, 0.08 mmol) and [Pd(ƞ3-cin)(μ-Cl)]2 (20.0 

mg, 0.04 mmol), the product was obtained as a yellow powder in 

96% yield (67.0 mg).1H NMR (400 MHz, CDCl3): δ (ppm) = 

8.51 (s, 2H, CHImid), 7.95 (s, 1H, CNCHN), 7.60 (t, J = 7.8 Hz, 2H, 

CHAr), 7.49 (d, J = 9.1 Hz, 2H, CHAr(cin)), 7.27-7.25 (m, 4H, 

CHAr), 7.21-7.19 (m, 3H, CHAr(cin)), 5.68 (br. s, 1H, CH(cin)), 4.47 

(br. s, 1H, CH2(cin)), 3.88 (d, J = 6.0 Hz, 1H, CH2(cin)), 2.94 (d, J = 

11.6 Hz, 1H, CH(cin)), 2.08 (m, 4H, CH(IHept)), 1.65-1.49 (m, 16H, 

CH2(IPent)), 1.34-1.25 (m, 4H, CH2(IHept)), 1.11-0.95 (m, 12H, 

CH2(IHept)), 0.89-0.81 (m, 24H, CH3(IHept)).13C {1H} NMR (100 

MHz, CDCl3): δ (ppm) = 143.1 (CAr), 134.2 (CHNCN), 132.0 

(CHAr + CAr), 129.3 (CHimid), 128.6 (CHcin), 128.0 (CHcin), 125.3 

(CHAr), 105.1 (CHcin), 68.9 (CHcin), 58.1 (CH2(cin)), 40.5 

(CH(IHept)), 39.5 (CH2(IHept)), 38.3 (CH2(IHept)), 21.4 (CH2(IHept)), 

21.0 (CH2(IHept)), 14.5 (CH3(IHept)), 14.2 (CH3(IHept)). Anal. Calcd. 
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for C52H78Cl2N2Pd C 68.75, H 8.65, N 3.08. Found: C 68.75, H 

9.03, N 2.96. 

 

[INon·H][Pd(ƞ3-cin)Cl2]: Following the general procedure from 

INon·HCl (50.0 mg, 0.06 mmol) and [Pd(ƞ3-cin)(μ-Cl)]2 

(17.0mg, 0.03 mmol), the product was obtained as a yellow 

powder in 99% yield (70.0 mg).1H NMR (400 MHz, CDCl3): δ 

(ppm) = 8.45 (s, 2H, CHImid), 7.94 (s, 1H, CNCHN), 7.61 (t, J = 7.8 

Hz, 2H, CHAr), 7.47 (d, J = 7.6 Hz, 2H, CHAr(cin)), 7.27 (d, J = 7.9 

Hz, 4H, CHAr), 7.20 (d, J = 7.2 Hz, 3H, CHAr(cin)), 5.65 (br. s, 1H, 

CH(cin)), 4.46 (br. s, 1H, CH(cin)), 3.84 (br. s, 1H, CH(cin)), 2.88 

(br. s, 1H, CH(cin)), 2.03 (m, 4H, CH(INon)), 1.67-1.52 (m, 16H, 

CH2(INon)), 1.28 (m, 20H, CH2(INon)), 1.10-0.91 (m, 12H, 

CH2(INon)), 0.87 (t, J = 7.1 Hz, 12H, CH3(INon)), 0.79 (t, J =7.3 Hz, 

12H, CH3(INon)).13C {1H} NMR (100 MHz, CDCl3): δ (ppm) = 

143.1 (CAr), 134.3 (CHNCN), 132.2 (CHAr), 132.0 (CAr), 129.1 

(CHimid), 128.6 (CHcin), 128.0 (CHcin), 125.4 (CHAr), 105.2 

(CHcin), 68.9 (CHcin), 58.0 (CH2(cin)), 40.7 (CHcin), 37.0 

(CH2(INon)), 35.6 (CH2(INon)), 30.2 (CH2(INon)), 30.0 (CH2(INon)), 

23.1 (CH2(INon)), 22.8 (CH2(INon)), 14.1 (CH3(INon)), 13.9 

(CH3(INon)). Anal. Calcd. for C60H94Cl2N2Pd C 70.60, H 9.28, N 

2.74. Found: C 70.42, H 9.48, N 2.81. 

 

[Pr*OMe·H][Pd(ƞ3-cin)Cl2]: Following the general procedure 

from IPr*OMe·HCl (50.0 mg, 0.05 mmol) and [Pd(ƞ3-cin)(μ-Cl)]2 

(13.0 mg, 0.02 mmol), the product was obtained as a yellow 

powder in 99% yield (63.0 mg).1H NMR (400 MHz, CDCl3): δ 

(ppm) = 12.29 (s, 1H, CNCHN), 7.34-7.08 (m, 35H, CHAr), 6.79 

(d, J = 7.2 Hz, 10H, CHAr), 6.46 (s, 4H, CHAr), 5.80-5.60 (br. m, 

1H, CH(cin)), 5.45 (s, 4H, CH(IPr*OMe)), 5.23 (s, 2H, CHImid), 3.85 

(br. s, 1H, CH(cin)), 3.76 (br. s, 1H, CH(cin)), 3.51 (s, 6H, 

CH3(IPr*OMe)), 2.87 (br. s, 1H, CH(cin)).13C {1H} NMR (100 MHz, 

CDCl3): δ (ppm) = 160.5 (CAr), 143.2 (CHNCN), 143.0 (CAr), 

142.7 (CAr), 142.2 (CAr), 130.4 (CHAr), 129.3 (CHAr), 128.6 

(CHAr), 128.6 (CHAr), 128.2 (CHAr), 127.0 (CHAr), 126.9 (CHAr), 

125.8 (CH), 123.1 (CHimid), 115.7 (CHAr), 105.7 (CHcin), 69.0 

(CHcin), 55.2 (OCH3(IPr*OMe)), 51.5 (CH(IPr*OMe)). Anal. Calcd. for 

C78H66Cl2N2O2Pd C 75.51, H 5.36, N 2.26. Found: C 75.33, H 

5.64, N 2.32. 

 

[IPentCl·H][Pd(ƞ3-cin)Cl2]: Following the general procedure 

from IPentCl·HCl (50.0 mg, 0.08 mmol) and [Pd(ƞ3-cin)(μ-Cl)]2 

(21.0 mg, 0.04 mmol), the product was obtained as a yellow 

powder in 99% yield (71.0 mg).1H NMR (400 MHz, CDCl3): δ 

(ppm) = 12.41 (s, 1H, CNCHN), 7.60 (t, J = 7.7 Hz, 2H, CHAr), 

7.48 (d, J = 7.3 Hz, 2H, CHAr(cin)), 7.29 (d, J = 7.7 Hz, 4H), 7.24-

7.23 (m, 3H, CHAr(cin)), 5.74 (br. s, 1H, CH(cin)), 4.56 (br. s, 1H, 

CH2(cin)), 3.92 (br. s, 1H, CH2(cin)), 2.97 (br. s, 1H, CH(cin)), 1.96-

1.95 (m, 4H, CH(IPentCl)), 1.86-1.78 (m, 8H, CH2(IPentCl)), 1.69-

1.63 (m, 8H, CH2(IPentCl)), 0.89-0.84 (m, 24H, CH3(IPentCl)).13C 

{1H} NMR (100 MHz, CDCl3): δ (ppm) = 143.4 (CAr), 142.8 

(CClimid), 137.3 (CHNCN), 132.2 (CHAr), 129.6 (CHAr), 128.1 

(CHAr), 126.1 (CHAr), 121.1 (CAr), 105.9 (CHcin), 81.9 (CHcin), 

59.2 (CH2(cin)), 43.4 (CH(IPentCl)), 29.3 (CH2(IPentCl)), 27.2 

(CH2(IPentCl)), 12.4 (CH3(IPentCl)), 11.9 (CH3(IPentCl)). Anal. Calcd. 

for C44H60Cl4N2Pd C 61.08, H 6.99, N 3.24. Found: C 60.90, H 

6.78, N 3.14. 

 

[IPr*·H][Pd(ƞ3-crotyl)Cl2]: Following the general procedure 

from IPr*·HCl (50.0 mg, 0.05 mmol) and [Pd(ƞ3-crotyl)(μ-Cl)]2 

(10.3 mg, 0.03 mmol), the product was obtained as a yellow 

powder in 99% yield (60.0 mg).1H NMR (400 MHz, CDCl3): δ 

(ppm) = 11.60 (s, 1H, CNCHN), 7.30-7.27 (m, 16H, CHAr), 7.16-

7.10 (m, 16H, CHAr), 6.79-6.77 (m, 12H, CHAr), 5.43 (s, 6HIPr*,), 

5.04 (br.s. 1H, CHcrotyl), 3.71 (m, 2H, CH2(crotyl)), 2.56 (br. s, 1H, 

CHcrotyl), 2.14 (s, 6H, CH3(IPr*)), 1.29 (d, J = 5.6 Hz, 3H, 

CH3(crotyl)).13C {1H} NMR (100 MHz, CDCl3): δ (ppm) = 142.6 

(CAr), 142.2 (CHNCN), 141.4 (CAr), 141.0 (CAr), 130.9 (CAr), 

130.3 (CHAr), 129.2 (CHAr), 128.6 (CHAr), 128.5 (CHAr), 126.9 

(CHAr), 126.7 (CHAr), 110.3 (CHimid), 79.6 (CHcrotyl), 57.3.0 

(CHcrotyl), 51.1 (CH2(crotyl)), 21.8 (CH3(IPr*)), 18.1 (CH3(crotyl)). 

Anal. Calcd. for C73H64Cl2N2Pd. C 76.47, H 5.63, N 2.44. 

Found: C 76.23, H 5.49, N 2.42.  

 

[IPr*·H][Pd(ƞ3-2-Me-allyl)Cl2]: Following the general proce-

dure from IPr*·HCl (50.0 mg, 0.05 mmol) and [Pd(ƞ3-2-Me-

allyl)(μ-Cl)]2 (10.3 mg, 0.03 mmol), the product was obtained as 

a yellow powder in 99% yield (61.0 mg).1H NMR (400 MHz, 

CDCl3): δ (ppm) = 11.89 (s, 1H, CNCHN), 7.29-7.03 (m, 32H, 

CHAr), 6.77-6.76 (m, 8H, CHAr), 6.71 (s, 4H, CHAr), 5.44 (s, 4H, 

CH(IPr*)), 5.37 (s, 2H, CHImid), 3.85 (br. s, 2H, CH2(allyl)), 2.81 (br. 

s, 1H, CHallyl), 2.53 (br. s, 1H, CHallyl), 2.16 (s, 6H, CH3(IPr*)), 

2.08 (br. s, 3H, CH3(allyl)).13C {1H} NMR (100 MHz, CDCl3): δ 

(ppm) = 142.9 (CAr), 142.3 (CNCN), 141.9 (CAr), 141.1 (CAr), 

140.7 (CAr), 131.1 (CHAr), 130.5 (CHAr), 129.4 (CHAr), 128.7 

(CHAr), 128.2 (CHAr), 126.9 (CHAr), 126.8 (CHAr), 123.3 

(CHimid), 105.9 (CHallyl), 60.5 (CHallyl), 59.5 (CHallyl), 51.3 

(CH(IPr*)), 22.0 (CH3(IPr*)), 14.3 (CH3(allyl)). Anal. Calcd. for 

C73H64Cl2N2Pd 2CH2Cl2 C 67.49 H 5.59 N 2.14 Found: C 67.88 

H 5.30 N 2.47. 

 

[IPr*·H][Pd(IndtBu)Cl2]: Following the general procedure from 

IPr*·HCl (50.0 mg, 0.05 mmol) and [Pd(IndtBu)(μ-Cl)]2 (16.3 

mg, 0.03 mmol), the product was obtained as a brown powder in 

99% yield (67.0 mg).1H NMR (400 MHz, CDCl3): δ (ppm) = 

12.02 (s, 1H,CNCHN), 7.26-7.09 (m, 34H, CHAr), 6.91-6.75 (m, 

15H, 10 CHAr + 5 CHInd), 5.53 (m, 1H, CHInd), 5.42 (s, 2H, 

CHImid), 5.38 (s, 4, CH(IPr*)) 2.16 (s, 6H, CH3(IPr*)), 1.39-1.27 (m, 

9H, CH3(Ind)).13C {1H} NMR (100 MHz, CDCl3): δ (ppm) = 

142.0 (CAr), 142.3 (CHNCN), 142.1 (CAr), 141.1 (CAr), 140.6 

(CAr), 131.1 (CHAr), 130.4 (CHAr), 129.4 (CHAr), 128.6 (CHAr), 

127.6 (CHInd), 127.3 (CHInd), 126.9 (CHAr), 126.8 (CHAr), 125.4 

(CHInd), 123.2 (CHimid), 120.2 (CHInd), 118.8 (CHInd), 118.7 

(CHInd), 107.6 (CHInd), 73.4 (CHInd), 51.2 (CH2), 34.3 (CH(Ind)), 

29.0 (CH3(Ind)), 28.8 (CH3(Ind)), 22.0 (CH3(IPr*)). Anal. Calcd. for 

C82H72Cl2N2Pd C 77.99 H 5.75 N 2.22 Found: C 77.86 H 5.60 N 

2.42. 

 

General procedure for the Buchwald-Hartwig reactions: A vial 

was charged with [IPr*·H][Pd(ƞ3-cin)Cl2] (1.2 mg, 0.2 mol%), 

KOtBu (62 mg, 0.55 mmol), CPME (1 mL) and a magnetic stir 

bar and sealed with a screw cap. The mixture was stirred at 60 

°C for 1 h. The vial was removed from the heating block and the 

corresponding solution of aniline and aryl chloride in CPME (1 

mL) was added. The reaction was stirred (910 rpm) for 2 h at 80 

°C. After this time, the crude mixture was purified by filtration 

through silica gel and the product isolated by removal of vola-

tiles under reduced pressure.  

 

General procedure for the -arylation of ketones: A vial was 

charged with [IPr*·H][Pd(ƞ3-cin)Cl2] (1.2 mg, 0.2 mol%), 

NaOtBu (53 mg, 0.55 mmol), CPME (1 mL) and a magnetic stir 

bar and sealed with a screw cap. The mixture was left stirring at 

60 °C for 1 h. The vial was removed from the heating block and 

the corresponding solution of aryl ketone and aryl chloride in 

CPME (1 mL) was added. The reaction was stirred (910 rpm) for 

2 h at 80 °C. Volatiles were removed under reduced pressure and 

the crude product was purified using flash chromatography (5:95 

ethyl acetate/petroleum ether). 
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