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Summary

• Galls induced by plant-parasitic nematodes involve a hyperactivation of the plant mitotic and 

endocycle machinery for their profit. Dedifferentiation of host root cells includes drastic cellular and 

molecular readjustments. In such background, potential DNA damage in the genome of gall cells is 

eminent. 

• We questioned if DNA damage checkpoints activation followed by DNA repair occurred, or was 

eventually circumvented, in nematode-induced galls. 

• Galls display transcriptional activation of the DNA damage checkpoint kinase WEE1, correlated with 

its protein localization in the nuclei. The promoter of the stress marker gene SMR7 was evaluated under 

the WEE1-knockout background. Drugs inducing DNA damage and a marker for DNA repair, PARP1 

were used to understand mechanisms that might cope with DNA damage in galls. 

• Our functional study revealed that gall cells lacking WEE1 conceivably entered mitosis prematurely 

disturbing the cell cycle despite the loss of genome integrity. The disrupted nuclei phenotype in giant 

cells hinted to the accumulation of mitotic defects. As well, WEE1-knockout in Arabidopsis and 

downregulation in tomato repressed infection and reproduction of root-knot nematodes. Together with 

data on DNA damaging drugs, we suggest a conserved function for WEE1 controlling a G1/S cell cycle 

arrest in response to replication defect in galls.

Keywords: Arabidopsis thaliana, cell cycle, checkpoint control, galls, root-knot nematode, Solanum 

lycopersicum, WEE1 kinase
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Introduction

The integrity of the plant genome is continuously threatened by external stresses such as 

pathogen attack capable to induce replication errors leading to DNA damage. Plant-parasitic root-knot 

nematodes (RKN; Meloidogyne spp.) are economically devastating endoparasites (Shukla et 

al., 2017) that disturb the plant cell cycle, triggering hyperproliferation and 

tumorigenesis creating feeding sites, named galls (de Almeida Engler et al., 1999, 2012, 2015). These 

nematode-induced feeding sites (NFS) enclose around 7 giant-feeding cells (GCs) surrounded by 

asymmetrically dividing neighboring cells (NCs). Their development is characterized by a mitotic 

phase illustrating defective spindles and absence or aborted phragmoplast in GCs with aborted 

cytokinesis, followed by an endocycle phase resulting in enlarged highly invaginated nuclei (de Almeida 

Engler et al., 2004; Antonino de Souza Junior et al., 2017). Early host cell cycle hyperactivation in NFS 

is distinguished by the expression of core cell cycle genes like CDKs and CYCs (de Almeida Engler et 

al., 1999). As well, inhibitors as KRPs and DEL1 play a part restraining the cell cycle most likely 

to regulate gall growth and development to an assured level (de Almeida Engler et al., 2012; Vieira et 

al., 2012, 2013, 2014). Likewise, the switch from mitotic to endoreduplication cycles was shown 

to involve CCS52 genes during gall expansion (de Almeida Engler et al. 2012). Alongside, all data 

evidence the compelling involvement of the cell cycle for gall genesis and development. Seen the cell 

cycle hyperactivation, it is to be expected that gall development might not only account for mitotic 

defects, but as well for the induction of DNA damage and loss of genome integrity. Upon DNA A
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damage plant or animal cells activate checkpoint control pathways (Hu et al., 2016). These 

pathways introduce a delay in cell cycle progression while DNA repair enzymes restore DNA 

anomalies, including base pair mismatches, abnormal bases, stalled replication forks, single-stranded 

DNA breaks (SSBs), and double-stranded DNA breaks (DSBs) (Friedberg et al., 2006). Thus, the cells 

have enough time to repair its damaged DNA before advancing to the next cell cycle phase. Previous 

reports have shown that bacteria, fungi and oomycetes pathogens induce double strand breaks (DSBs) in 

host plants (Song and Bent, 2014). Alternatively, microbes contribute to tumorigenesis by directly 

inducing DNA damage, potentially inactivating checkpoint controls, or manipulating repair 

processes (Weitzman & Weitzman, 2014).

One particular gene involved in DNA damage checkpoint control is WEE1, encoding 

for a protein kinase that was first described in fission yeast as a rate-restriction step for the G2-to-M 

transition through the inhibition of activity of cell cycle rate-limiting factors, cyclin-dependent kinases 

(CDKs) (Russell and Nurse, 1987; De Schutter et al., 2007). The Arabidopsis WEE1 kinase 

gene appears to be non-essential for plant growth but is essential when plants experience problems 

during the replication phase, such as induced by the replication blocking agent hydroxyurea 

(HU). Whereas wild-type plants delay their S phase in the presence of HU, WEE1 deficient plants fail to 

do so, eventually resulting in a permanent cell cycle arrest, likely due to accumulation of replication 

defects (Cools et al., 2011). Within the root meristem, WEE1 transcript levels cannot be detected in the 

absence of DNA damage, but its expression is quickly and strongly induced upon DNA stress in 

an ATM (ataxia telangiectasia mutated) or ATR (ATM and Rad3-related) dependent manner (De 

Schutter et al., 2007). ATM and ATR are main regulators of the DNA damage response (DDR) and both 

sense DNA damage and induce the coordinated expression of DNA repair and cell cycle arresting 

genes. ATM is recruited and activated in reply to ionizing radiation, radiomimetic agents, and agents 

which trigger double-strand DNA breaks (Garcia et al., 2003). Conversely, ATR is activated by a 

broader range of genotoxic stimuli resulting in single-strand DNA breaks and stalled replication 

forks (Culligan et al., 2004). The plant-specific transcription factor SOG1 is also a central regulator of 

the DDR pathway and its activation is required for responses to DNA damage, including transcriptional 

responses, cell-cycle arrest and death of stem cells (Yoshiyama et al., 2013).

Herein we highlight that the hyperactivation of the cell cycle used to generate a nematode-induced gall 

in plant host roots might cause eminent DNA damage in the genome. If yes, during stress caused 

by nematode infection we question if host cells will arrest or induce the cell cycle, or else if the 

endocycle is activated or cell death is induced. Instead, nematodes might inhibit checkpoint activation A
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for a successful interaction as seen reported for other microbes (Song and Bent, 

2014; Weitzman & Weitzman, 2014).Along these lines, this topic was never addressed before during 

plant-nematode interactions and very few data is found in the literature for other plant pathogens. We 

demonstrate that the Arabidopsis WEE1 gene is transcribed in response to nematode attack, suggesting 

that infection goes along with DNA damage checkpoint activation in NFS. Functional analysis and 

treatments that induce either DNA damage or DNA replication stress suggested the timely involvement 

of WEE1 kinase on cell cycle arrest. As well, WEE1-knockout in Arabidopsis and downregulation in 

tomato resulted in less developed galls consequently repressing infection and reproduction by root-knot 

nematodes. Furthermore, drugs inducing DNA damage and a marker for DNA 

repair, PARP1, were employed here to understand mechanisms that might cope with DNA damage 

in Arabidopsis galls.

 

Material and Methods

Arabidopsis in vitro growth conditions and nematode infections

Approximately 50 seeds of Arabidopsis thaliana Col-0 (hereafter referred as wild-type) 

and WEE1 knockout line (wee1-1; De Schutter et al., 2007) were surface-sterilized (Vieira et al., 

2013). Seeds were germinated in MS medium, and for the wee1-1 line containing 50mg/L sulfadiazine. 

Seedlings were grown vertically allowing roots to stay at the surface under a 16/8 h 

(light/dark) photoperiod at 21°C/18°C. Each seedling was then infected with 100 surface-

sterilized (Coelho et al., 2017) and freshly hatched Meloidogyne incognita juveniles and galls of 

infected roots were harvested for several tests as described below.

 

Tomato growth conditions and infection

Cherry tomato (Solanum lycopersicum Mill. cv West Virginia106-Wva106) wild-

type plants, two WEE1 antisense lines (WEE1AS): Wee1 L8.3 AS and Wee1 L73.10 

AS(Pro35S:Slwee1AS), transgenic lines (Gonzalez et al., 2007; Mathieu-Rivet et al., 2010) were 

grown in a growth chamber under a thermoperiod of 25°C/20°C and a photoperiod of 14/10 h 

(light/dark). For nematodes inoculation, around 1000 freshly hatched second stage juveniles (J2s) 

of Meloidogyne incognita were inoculated for each 14 day-old seedlings. Infected tomato seedlings were 

kept at 25°C with a 16-h photoperiod for 40 days to allow nematodes to complete their life cycle. At 40 

days after inoculation (DAI), galls and egg mass numbers were counted and scored.
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Histochemic  of Arabidopsis galls

Plants harboring WEE1:GUS, SMR7:GUS, and PARP1:GUS in wild-type (Col-0) or in the wee-

1 background were nematode infected and galls were collected at different time points 

after inoculation (3, 5, 7, 14, 21, 30 DAI). The wee1-1 and SMR7:GUS lines have 

been previously described by De Schutter et al., (2007) and Yi et al. (2014)respectively. To generate 

the SMR7:GUS line in wee1-1 background, wee1-1 and SMR7:GUS lines were crossed and selected on 

both kanamycin (35 μg/ml) and sulfadiazine (7.5 μg/ml). GUS assays were performed according to de 

Almeida Engler et al., (1999). Galls were harvested and embedded in Technovit 7100 (Heraeus Kulzer) 

as described by the manufacturer, sectioned (3 µm) and analyzed by dark-field microscopy optics by an 

Axiocam camera (Zeiss).

 

mRNA in situ hybridization assays on Arabidopsis galls

Dissected galls of Arabidopsis wild-type (Col-0) at 7, 14 and 30 DAI were collected, fixed in 2% 

glutaraldehyde, paraffin embedded and sectioned (10µm). All in situ hybridization steps have been 

performed essentially as described by de Almeida Engler et al., (2009). Gene specific sense and antisense 

probes of WEE1 were generated and hybridized with gall sections. Sections were developed, stained with 

0.05% toluidine blue and analyzed by dark-field optics.

 

Morphological analysis, nuclei staining and giant cells measurements in Arabidopsis and tomato 

galls

For morphological observation Arabidopsis thaliana wee1-1 and wild-type (Col-0) and Solanum 

lycopersicum WEE1AS,  and wild-type (SR1) uninfected roots and galls were collected. For Arabidopsis, 

galls of wee1-1 (1, 3, 5, 7, 14 and 21 DAI) and wild-type (3, 7, 14 and 21 DAI) were dissected at 

different time points. In transgenic tomatoes, morphological analysis was performed 

in the two WEE1 antisense lines: Wee1 L8.3 AS and Wee1 L73.10 AS, and the wild-type line as a 

control at 7, 14 and 30 DAI. Having in the WEE1 antisense lines similar gall phenotypes we then 

further focused on the Wee1 L73.10 AS (named WEE1AS). Galls of wee1-1, WEE1AS treated as described 

by de Almeida Engler et al., (2012) and then embedded in Technovit 7100 (Heraeus Kulzer) as 

described by the manufacturer. Embedded gall tissues were sectioned (3 µm), stained in 0.05% toluidine 

blue and imaged with a digital camera (Axiocam, Zeiss).

For nuclei observations sections of all transgenic lines (wee1-1, WEE1AS) and wild-type controls studied 

here, and Arabidopsis treated with DNA damage inducing drugs (bleomycin or hydroxyurea) were stained A
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with 1μg/mL 4',6-diamidino-2-phenylindole (DAPI). Slides were analyzed by epifluorescence 

microscopy. Giant cells measurements were performed in two of the biggest GCs per gall using the 

Axioplan software (Zeiss). A minimum of 30 GCs were recorded per line and evaluated by analysis of 

variance, using the SPSS software (version 10, Chicago, IL).

 

Morphological analysis and volume measurements of giant cells nuclei

For nuclear structure and morphology observation thick gall slices were cleared and stained with 6-

diamidino-2-phenylindole (DAPI) essentially as described by Antonino de Souza Junior et 

al., (2017). Galls were mounted in 90% glycerol and imaged using a Zeiss LSM 880 confocal 

microscope. Dye excitation was performed with a diode 405nm laser and fluorescence was gathered 

between 431 and 532 nm. Z-stacks were generated from approximately 60 images with a 1 μm optical 

slice thickness and used to generate maximum brightness projections. For volumetric measurements of 

GC individual nuclei of wild-type and wee1-1 from image stacks of DAPI-stained galls were analyzed 

with the plugin Volumest (http://lepo.it.da.ut.ee/~markkom/volumest/) from the public domain ImageJ 

software. Analysis was performed precisely as described by Antonino de Souza Junior, et al. (2017).

 

In vivo local n Arabidopsis galls

In vivo observations of nematode infected roots of the 35S:GFP-WEE1 line was performed by confocal 

microscopy (Zeiss LSM 510 META). Galls at different time points after inoculation (3, 6 and 7 DAI) 

were analyzed. Dye excitation was carried out with a 543nm HeNe laser and emission light was 

captured with a long pass 560 emission filter. Z-stacks were produced using 1 µm thick optical sections 

and images are represented as maximum brightness projections.

 

Flow cytometry analyses of Arabidopsis and tomato galls

Transgenic and wild-type Arabidopsis (wee1-1 and wild-type) and tomato (WEE1AS and wild-

type) uninfected roots and galls were analyzed for their ploidy levels by flow cytometry. Galls and roots 

21 DAI were harvested in water and immediately prepared for flow cytometry precisely as described by 

Vieira et al., (2013). Nuclei were then stained with 20µg/mL propidium iodide (Sigma). After samples 

were examined the mean values of repetitions of independent experiments were calculated, and the 

fraction of nuclei with ploidy levels from 2C to 64C for Arabidopsis and 2C to 128C for tomato was 

expressed as the percentage of the total number of nuclei measured.
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Bleomycin and hydroxyurea treatments on Arabidopsis galls

To test whether WEE1 plays a role in the G1/S or G2/M checkpoints, drug treatment inducing DNA 

damage, hydroxyurea and bleomycin were performed, and compared to non-treated nematode infected 

seedlings. Thus, wild-type wee-1-1 were germinated on MS medium and transferred 7 DAI to the same 

medium supplemented with 5 mM hydroxyurea (HU) or 0,3 µg/mL bleomycin (BL) and incubated 14 

days at room temperature. As controls, nematodes were incubated with similar concentrations of HU 

and BL and tested for infectivity as described by de Almeida Engler et al., (1999, 2004). Control 

experiments were performed using the same medium in the absence of inhibitors. Morphological 

analysis was performed as described above and subsequent sections were stained with 6-diamidino-2-

phenylindole (DAPI) for nuclear observation. To test if the promoter of the DNA repair 

gene PARP1 and the stress marker SMR7:GUS and SMR7:GUS in wee1-1 were induced in developing 

galls (7, 14 and 21 DAI) M. incognita infected roots GUS lines were treated with 5mM HU and 

0.3 µg/mL BL for 24 h.

 

Nematode infection tests on Arabidopsis

Arabidopsis seedlings were germinated and grown in soil precisely as described by de 

Almeida Engler et al. (2016). Three-week-old wild-type (Col-0) seedlings and wee1-1were inoculated 

each with approximately 200 stage 2 juveniles (J2) of M. incognita. Data shown for each line represent 

means ± SD of 20 seedlings analyzed during two independent biological repetitions. Six weeks after 

inoculation the numbers of galls and egg masses per plant were recorded.

 

Statistical Analysis

All quantitative data of Arabidopsis and tomato such as galls and egg mass number, giant 

cell area and nuclei volume were statistically analyzed by Analysis of Variance (ANOVA) and Tukey´s 

test, or Student’s t-test (the significance level was set at 0.05).

 

Results

WEE1 promoter activity and transcript accumulation were detected in young galls of Arabidopsis

The analysis of promoter activity and transcript localization of WEE1 are shown in Figure 1. Promoter 

activity of WEE1 was not observed in uninfected root but was already observed in foring GCs (3 

DAI) and became stronger during the mitotic phase of gall development (5-7 DAI). WEE1 expression 

was detected in GCs as well as in NCs, but was weaker and patchy at 14 DAI and nearly absent 21 and A
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30 DAI (Fig. 1a). To determine if promoter activity reflected accurately the endogenous transcript 

localization, in situ mRNA localization was performed in gall sections using a WEE1 antisense probe 

(Fig. 1b). WEE1 transcripts were present in GCs as well as in NCs at 7 DAI, decreased at 14 DAI and 

expression was virtually absent in mature galls 21 DAI, but still present in proliferating gall xylem. 

Control hybridization with the sense probe gave no hybridization signal. Accordingly, the in 

situ transcript localization observed (Fig. 1b) was consistent with the promoter activity assessed by GUS 

assays (Fig. 1a).

 

WEE1 was nuclear localized in vivo in Arabidopsis galls

Using a translational fusion between GFP and WEE1 (GFP-WEE1) under control of 

the WEE1 promoter, the subcellular localization of WEE1 was studied in nematode infected root cells 

of Arabidopsis, showing its exclusive localization in the plant cell nucleus (Fig. 2). WEE1 was 

observed very early (3 DAI), and was essentially present in the feeding sites compared to other root sites 

(Fig. 2a, b). A patchy pattern of GFP-fluorescent nuclei was seen, suggesting that not all gall cells 

expressed WEE1 (Fig. 2c). Young galls (6 and 7 DAI) showed strong nuclear fluorescence of the GFP-

WEE1 fusion protein (Fig. 2c and d) corroborating with results on promoter activity and mRNA in 

situ localization.

 

The lack of WEE1 in Arabidopsis leaded to increased mitotic activity in galls

Evaluation of RKN-induced gall development in the absence of WEE1 showed that nematodes 

can infect the wee1-1 mutant line and induce a feeding site (Fig. 3a). In wee1-1 galls, high mitotic 

activity was observed as evidenced by the apparent increased nuclei number in GC and ectopic 

proliferation of NCs (Fig. 3a). Often larger vacuoles and cell wall stubs (obvious in gall images of 7 and 

14 DAI; Fig. 3a) were visible in developing GCs. These cell wall fragments illustrate that 

despite the replication problems mitotic activity continues in GCs resulting in aberrant 

mitosis. Disordered and asymmetrically dividing cells surrounding young GCs (3 and 5 DAI) were more 

evident in the wee1-1 mutant line, compared to the wild-type (Fig. 3b), and feeding cells were 

apparently smaller indicating a hindrance in gall development (Fig. 3a). Cell walls in GCs presented 

invaginations and regions showing thinner cells walls indicating the presence of plasmodesmata (14 

DAI, Fig. 3a) as normally seen in wild-type galls (Rodiuc et al., 2014). In mature galls (21 DAI) layers 

of elongated cells morphologically like xylem cells and xylem vessels were evident surrounding GCs.
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WEE1 knockout induced an altered nuclear morphology and volume in giant cells

To verify if WEE1 knockout affected nuclear morphology in GCs, DAPI stained thick gall sections were 

visualized by confocal microscopy to have a three-dimensional (3D) microscopic view. During mitotic 

divisions in GCs (7 DAI) of wee1-1 small elongated nuclei could be seen, and 

this phenotype became more evident in maturing galls (14 DAI) when nuclei were elongated 

and apparently interconnected (Fig. 4a). Although convoluted, nuclei shape in wild-type GCs was 

almost always amoeboid like (Fig. 4b) and not elongated as seen in wee1-1 (Fig. 4a). Not surprisingly, 

volumetric measurements at 14 DAI revealed larger nuclei volumes in GCs of the wee1-1 line compared 

to the wild-type (Fig. 4c). This result, together with observed cell division phenotypes, suggests that 

cumulative mitotic defects might have occurred in wee1-1galls upon the impairment 

of checkpoint activation.

 

Flow cytometric analysis revealed mitotic stimulation in galls

Nuclear ploidy levels of wee1-1 control wild-type galls (21 DAI) and gall-less roots were 

measured by flow cytometry (Fig. 5). Analyses revealed that the DNA ploidy levels in roots of wee1-

1 decreased compared to wild-type. In roots the 2C ploidy level increased in the wee1-1 mutant 

line increased but the 4C to 16C levels slightly decreased compared to the wild-type (Fig. 5a; S1a). 

In wee1-1 galls, 2C DNA content increased most likely derived from the ectopic NC division (Fig. 5b; 

S5b) and decreased ploidy levels were seen at 4C to 16C. Subtle increase in 32C and 64C in GCs might 

be derived from the elongated nuclei in the wee1-1 line.

 

SMR7:GUS activity was high upon WEE1 knockout

The siamese-related cyclin-dependent kinase inhibitor gene SMR7 reacts strongly to genotoxic stress 

response in a likely ROS-dependent manner (Yi et al., 2014). To find out if SMR7 promoter was 

activated in galls in response to stress, we performed GUS assay using the line harboring 

the SMR7:GUS transcriptional reporter construct in the wee1-1 background (no checkpoint control 

activation) and in the wild-type during gall development (7, 14 and 21 DAI) (Fig. 6 ). These tests 

revealed a strong induction of the SMR7 promoter in galls in the transgenic line under the wee1-

1 background compared to the wild-type (Fig. 6a). In contrast, in the wild-type 

background a weak SMR7 promoter activity was seen in young mitotic galls (7 

DAI), in maturing endoreduplicating GCs (14 DAI), ultimately disappearing overall in full-grown 

feeding sites undergoing the lowest cell cycle activity (21 DAI) (Fig. 6b).A
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Effect of DNA damage caused by drugs in wee1-1 galls and wild-type

In order to interfere with the cell cycle checkpoint (G2/M and G1/S), we introduced two drugs in media 

containing infected plants and observed WEE1:GUS activity, gall morphology, nuclei 

distribution, GCs area and ultimately performed infection tests. To induce the replication arrest 

checkpoint at G1/S phase of the cell cycle hydroxyurea (HU) was used as an inhibitor of the 

ribonucleotide reductase, in this way inhibiting DNA replication. Previous work has shown that plants 

treated with HU show reduced deoxynucleotide triphosphate (dNTP) levels, as a result affecting 

replication fork progression causing replication stress (Wang & Liu, 2006; Saban & Bujak, 2009). To 

activate checkpoint control at G2 phase we used the drug bleomycin (BL), inducing DSBs in plant cell 

DNA. Bleomycin acts by inhibiting the incorporation of thymidine into DNA strands producing reactive 

oxygen species that directly damage the DNA and RNA causing DNA cleavage (Takimoto & 

Calvo, 2008). Both BL and HU have been used at a dose that had mild, but perceptible, effects on gall 

development. As well, pre-treatments of juvenile nematodes with drugs compared to non-treated showed 

that they infected Arabidopsis roots normally. Thus, upon drug treatments nematodes did not lose their 

infectivity competence seemly due to their strong cuticle (de Almeida Engler et al., 1999, 2004).

Effect of drug treatments on WEE1 promoter activity and on gall morphology

Expression patterns of WEE1:GUS NFS 10 DAI showed in non-treated galls a basal level 

of WEE1 expression in all young GCs that significantly increased upon HU treatment (7, 14, 21 

DAI in Fig. 7a and Fig. S2). However, this pattern was weak or patchy for GCs treated with BL (Fig. 

7a). Morphological analysis of non-treatedWEE1-deficient plants confirmed high mitotic activity in 

galls (Fig. 3a, 7b) which was visibly increased upon BL treatment showing ectopic proliferation of NCs 

(Fig. 7b, 8b) and enlarged GCs (Fig. 9a). Interestingly, HU treatment in the wee1-1 line led to the 

appearance of cell wall stubs in GCs, and feeding-cells were larger than in wild-type galls (Fig. 

7b). In wild-type, BL and HU treated galls displayed GCs containing numerous cell wall 

fragments with some GCs apparently dividing (Fig. 7c).

Nuclei structure in giant cells in the presence and absence of WEE1 and upon drug treatments

Galls from the same group of sections used for morphological analysis (Fig. S3) and thick 

gall sections were DAPI stained to visualize nuclei (Fig. 8). Interestingly a fraction of non-treated wee1-

1 (-WEE1) galls presented visibly smaller nuclei and the other part were apparently connected and 

elongated, likely as a result of accumulation of mitotic errors (Fig. 4, 8a, Video S1). In contrast, larger 

nuclei and the increased mitotic activity in BL and HU treated galls was striking (Fig. 8b, c, Video  S2, A
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S3). Wild-type (+WEE1) galls BL or HU treated also showed enlarged nuclei compared to the non-

treated (Fig. 8 d, e, f, Videos S4, S5, S6) with seemly unstructured nuclei seen during BL 

treatments (Fig. 8e, Video  S6). As well, reduced GC area for BL treatments was seen compared to non-

treated (Fig. 9a). These phenotypes suggest a link to a premature mitotic entry of gall cells and the 

observed inhibition on gall induction and egg mass production by nematodes (Fig. 9b, c). As well, wild-

type HU and BL treated galls will most likely trigger a delay in WEE1 driven checkpoint activation 

(Cools et al., 2011) resulting in GCs harboring cell wall stubs (Fig. 7c). These results suggest higher 

mitotic activity in GCs substantiating similarly seen in wee1-1 galls.

Giant surface area was altered in WEE1-deficient galls and upon drug treatments

WEE1-deficient galls were more mitotic but showed decreased GC surface area (Fig. 9a). Curiously, as 

mentioned above BL and HU treatments of galls in the WEE1-defficient GCs showed a larger surface 

compared to non-treated (Fig. 9a). This possibly contributed with the intriguingly observed increased 

reproduction in drug treated WEE1-deficient galls (Fig. 9c). Moreover, more galls were induced in 

the wee1-1 line BL or HU-treated (Fig. 9b). 

 

PARP1pro:GUS activity was high in galls and in response to stress inducing drugs

To investigate if the DNA repair process or signaling pathways sensing alterations in genome integrity 

occurs in galls, the PARP1 [poly(ADP-ribose) polymerase 2] gene promoter activity 

was analyzed. The PARP1:GUS reporter line was infected with nematodes and GUS 

assays revealed strong expression of PARP1 in galls at different developmental time points (Fig. 

10a). Promoter activity was high in GC and in NCs at 7 DAI. From 14 DAI until 21 

DAI, the PARP1:GUS expression was variable among GCs and interestingly stronger close to the 

nematode head ( Fig. 1 0a). Considering the strong expression of PARP1:GUS in galls during long 

incubations (16 h), we also performed shorter tests (3 h) (Fig. 10b) during drug-induced 

stress treatments to better perceive GUS expression. Non-treated galls under short incubations (3 

h) showed weak PARP1expression, whereas PARP1 promoter activity was slightly stronger upon BL 

treatment, but increased significantly upon HU treatment (Fig. 10b). These observations 

suggest that DNA damage might be followed by repair, but galls were more reactive to single-strands 

breaks.

 

The lack of WEE1 in tomato plants delayed gall development and decreased nematode 

reproductionA
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To evaluate the effect of WEE1 downregulation in an important crop host we investigated its role during 

nematode infection in tomato plants of two lines expressing WEE1AS. Galls of 7, 14 and 30 DAI from 

the transgenic line WEE1AS were collected, analyzed for their morphology and compared to wild-

type (Fig. 11 and Fig. S4). Although nematodes succeeded to infect roots of WEE1AS transgenic lines, 

galls were apparently smaller and a delay or an arrest in nematode maturation was visible (Fig. 11a to be 

compared with Fig. 11b, c). To some extent more NC divisions were seen upon WEE1 downregulation 

(Fig. 11b) compared to the wild-type (Fig. 11a) as observed in Arabidopsis galls (Fig. 3a). DAPI stained 

nuclei, of gall sections coming from the same batch used for morphological 

analysis, revealed that nuclei of WEE1AS were apparently smaller than in wild-type mature galls (30 

DAI), even when endoreduplication has taken place (Fig. 11). As well, a large number of intensely 

stained nuclei (7 and 14 DAI) was seen surrounding WEE1AS GCs (Fig. 12b compared to Fig. 12a).

 

l and flow cytometry measurements and infection tests in tomato WEE1AS line 

Measurements in tomato GC showed that their surface was smaller upon WEE1 downregulation 

compared to wild-type (Fig. 13a). This data can be correlated with the low reproduction ratios in both 

transgenic lines where small numbers of egg masses were recorded (Fig. 13b). Flow cytometry 

measurements revealed slightly decreased ploidy levels in the WEE1AS line gall-less roots and 

galls as visualized during DAPI staining (Fig S5).

 

Discussion

In response to DNA damage, eukaryotic cells activate elaborate cellular networks, collectively 

termed, the DNA damage response (DDR). The DDR pathway senses DNA breaks arresting the cell 

cycle and repairing DNA lesions, being crucial for maintenance of the genomic integrity and plant 

survival. The Arabidopsis WEE1 gene is activated by DNA damage or by DNA-replication arrest and is 

a downstream target gene of the ATR-ATM signaling cascades (de Schutter et al., 2007; Cools et 

al., 2011).WEE1 has been identified as an important target of the DNA replication (G1/S) and DNA 

damage (S/G2) checkpoints and is considered the main regulator of the S-phase checkpoint in plants 

(Cools et al., 2011). So far, it is unknown if checkpoint control activation occurs in galls upon nematode 

infection. We show here that the Arabidopsis WEE1 gene is transcriptionally activated and nuclear 

localized in galls as well in response to treatments that induce either DNA damage or DNA replication 

stress. We further demonstrate that AtWEE1 knockout as well as SlWEE1 (from tomato) knockdown 

inhibits gall development consequently significantly decreasing nematode reproduction.A
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WEE1 expression and protein localization suggest the activation of a checkpoint control 

in Arabidopsis galls

Based on results of WEE1 promoter activity, mRNA and protein localization in galls we reasoned that 

the WEE1 kinase may be involved in checkpoint control induction throughout the gall 

including GCs and their neighboring cells (NCs) during the nematode infection process in host-

plants. Early gall expression of WEE1 suggests that DNA damage or a lag in completing DNA 

synthesis might be occurring. At this stage nuclei are intensely and synchronously dividing and often 

chromosome segregation during mitotic events often appears disturbed (de Almeida Engler et al., 

2004), therefore most likely more prone to DNA damage. Thus, during the mitotic phase of gall 

development potential damage during replication may occur especially in 

GCs activating checkpoint at G1/S, seen by the chronological WEE1 expression. The replication 

checkpoint will relieve DNA replication stress by stabilizing replication forks, inhibiting origin firing 

and reducing the replication speed (Cools et 

al., 2011). Herein, WEE1 expression in gall nuclei might cause an accumulation of phosphorylated 

inactive CDKs slowing down mitosis and limiting excessive and uncontrolled mitotic activity. In 

addition, WEE1 accumulation in the polyploid GC nuclei could be related to DNA stress caused by the 

presence of the nematode. Studies of mechanisms leading to endoreduplication in human keratinocytes 

have shown that DNA damage may lead to polyploidy. Thus, a damage differentiation response 

(DDR) might to a certain level contribute to limit nuclei and cell proliferation in galls, subsequently 

causing a polyploidy rise in GCs. Indeed, it is believed that plants and animals profit of 

endoreduplication to enable tissue growth upon DNA damage (Adachi et al., 2011).

 

The absence of WEE1 in galls provoke ectopic mitotic activity

 Although plants lacking a functional WEE1 are indistinguishable from wild-type (De Schutter et al., 

2007), RKN-induced galls showed obvious mitotic division phenotypes. This 

was illustrated by the induced nuclei number, presence of wall stubs and occasional presence 

of complete cell walls in GCs suggestive of stimulated cytokinesis. Induced cell division 

was also evident in NCs and xylem tissue, suggesting that lack of WEE1 in galls brought cells into a 

resilient mitotic state. Consistently, WEE1 expression has been observed in dividing tissues of 

Arabidopsis seedlings (De Schutter et al., 2007) and in tobacco BY2 cells treated with 

dexamethasone (Siciliano et al., 2019). The reduced GCs size and elongated and apparently A
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interconnected nuclear morphology in maturing GCs in the WEE1-deficient line indicated the inability 

to slow down or arrest mitosis. These perceived mitotic defects did not lead to cell death, as observed in 

root meristems (Cools et al., 2011). Data on flow cytometry confirmed a shift of gall cells into a mitotic 

state, even when ploidy levels in GCs were not clearly changing most likely due to their disturbed nuclei 

phenotype. Anomalies in the detection of DNA damage upon WEE1 deficiency, most 

likely prevented checkpoint control activation in galls which progressed into an unrestrained 

mitotic state leading to the elongated nuclear shape. As well, occurrence of cumulative ratios of 

replication errors in GC nuclei lacking wee1 might inhibit DNA repair and cause replication stress as 

observed in cancer tissues (Halazonetis et al., 2008; Zeman et al., 2014). Finally, a lack 

of checkpoint control activation in wee1-1 galls allowed nuclei to further divide despite DNA damage, 

thus likely promoting genomic instability and delaying the endocycle. Thus, gall cells lacking 

WEE1 conceivably entered mitosis prematurely disturbing the cell cycle despite the loss of genome 

integrity. Furthermore, strong and long-term induction of the SMR7 promoter in the absence of WEE1, 

suggests that WEE1 induces checkpoint control in order to avoid catastrophic defects during the 

hyperactivation of the mitotic and endocycle in GCs. The lack of WEE1 might result in continued 

division in the presence of replication damage, which eventually might cause DSBs and hence induction 

of SMR7. Three SIAMESE/SIAMESE-RELATED (SIM/SMR) cyclin-dependent kinase inhibitors were 

reported strongly reacting to genotoxicity, of which SMR5 and SMR7 were confirmed to be checkpoint 

regulators (Yoshiyama et al., 2013; Yi et al., 2014). These SMRs are strongly induced by treatment of 

DSBs inducing agents and are identified as part of a signaling cascade inducing cell cycle checkpoint in 

response to ROS-induced DNA damage (Wei et al., 1998; Morin et al, 2011; Yi et al., 2014). In 

addition, upregulation of the SMR7 promoter suggests genotoxicity stress upon nematode infection.  

 

WEE1-deficient galls show hypersensitivity to DNA replication stress caused by hydroxyurea

Although WEE1-deficient plants present normal development, they are hypersensitive to DNA-damage 

caused by HU (De Schutter et al., 2007). Therefore, treatments of nematode-infected roots impeding 

DNA replication (HU) or causing DNA double strand breaks (BL) on the wild-type (+WEE1) and in 

WEE1-deficient line (-WEE1) helped us to understand the relevance of the WEE1 kinase in 

galls. The WEE1 expression in galls strongly responded to inhibition of replication forks caused by HU 

and less to double strand DNA breaks caused by BL. In fact, HU treatment mimics what happens in 

WEE1-deficient line causing replication defects accounting for the observed gall phenotype. Galls 

silenced for the replication stress checkpoint activators WEE1 are HU hypersensitive indicating that HU-A
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induced replication stress prevails in galls as occurring in uninfected roots (De Schutter et al., 

2007). These results suggest that the WEE1-induced checkpoint control activation in galls seems more 

associated to the G1/S phase. Moreover, a remarkable enhanced mitotic activity in galls (more nuclei 

in GCs and more NCs) in the wee1-1 mutant line under stress conditions caused by BL and 

HU treatment was perceived. Interestingly enhanced susceptibility was observed in galls induced in 

the wee1-1 line treated with BL or HU when checkpoint control is not active but repair normally is not 

inhibited (Cools et al., 2011). This data suggests that even when DNA is damaged in gall cells, with no 

checkpoint activation (-WEE1), GCs can develop suggesting that nematodes profit of this 

status to efficiently induce feeding sites. Thus, besides that NFS might have unique mechanisms 

adapting their growth strategy a lack of regulation of the cell cycle upon WEE1-knockout might affect 

the host immune system leading to high vulnerability of nematode 

attack. The increased GC surface seen in WEE1-deficient galls treated with HU possibly contributed 

with this enhanced susceptibility observed by the increased gall and egg mass numbers. As 

well, although the wee1-1 line is sensitive to replication inhibiting chemicals, the mitotic index in the 

root meristem does not decrease upon HU treatment (De Schutter et al., 2007). Interestingly Cools et 

al. (2011) reported that wee1-1 and wild-type plants behave similarly in the absence of DNA damage 

stress, but upon HU treatment 251 genes were differentially regulated. The absence of 

a functional WEE1 in Arabidopsis showed a significant induction of distinct histone genes which in this 

context could facilitate cell cycle progression during gall development seen during our HU 

treatment. During HU treatment, high WEE1 expression in galls is most likely associated with 

replication stress in an ATR-dependent manner. Thus, WEE1-deficient galls may fail to activate a 

checkpoint control arrest and progress through the cell cycle with a not fully replicated genome into 

mitosis. As well, no checkpoint control activation added to the BL induced DSBs enhanced mitotic 

activity, most likely contributed to the observed increased nematode reproduction. In contrast, gall 

induction and reproduction (egg mass number) in the wild-type was low during both treatments 

suggesting the checkpoint activation by HU during G1/S or by BL during G2/M phases. This 

would delay the cell cycle to gain time for repairing the DNA damage in galls. As for galls, root 

meristems are sensitive to replication-inhibiting chemicals, showing a clear growth inhibition 

phenotype. WEE1 transcript levels are high after HU treatment showing that replication 

inhibition may activate the WEE1 gene in galls as for non-infected seedlings (De Schutter et al., 

2007). During bleomycin treatment on wild type galls the WEE1 protein will possibly prevent nuclei to 

enter mitosis via the inhibition of complexes involved in the G2-to-M transition. Upon the incidence of A
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DNA stress caused by HU or BL, WEE1 expression might be maintained, arresting cells in the G1-phase 

or G2-phase respectively until DNA synthesis takes place or repair is completed.

Expression of the DNA integrity marker PARP1 in galls suggests the induction of a DNA repair 

process activation in galls

Overall, our data support that nematodes may cause DNA damage during infection. In galls, 

high promoter activity in galls of the PARP1 [poly(ADP-ribose) polymerase 2], a gene involved in the 

maintenance of DNA integrity during replication and the DNA repair process, has been 

observed (Lindahl et al., 1995; de Murcia and de Murcia, 1994; Garcia et al., 2003). PARP1 expression 

throughout gall development is symptomatic of PARP1 function as an excision repair protein during the 

mitotic and endocycle phases going on in GCs. DNA repair might take place avoiding accumulation of 

GC nuclei with compromised genome impeding the proper feeding cell development. Expression 

in NCs suggest that these intensely dividing cells might sense DNA damage and activate the repair 

machinery giving cells the sufficient time to repair the damaged DNA before progressing into 

mitosis. As well, PARP1 expression is under control of ATM/ATR thus suggesting their activation upon 

the hyper-activated mitotic activity in galls, when DNA damage occurs. ATM and ATR kinases not only 

activate DNA repair but also cell cycle checkpoint control driven by WEE1. As observed in plant cells, 

the nuclear PARP1 protein might bind to damaged DNA of gall cells and catalyze repair needed to 

ensure nuclear division. Higher PARP1expression in cells close to the nematode head suggests 

that nematode secreted proteins might cause DNA damage. Furthermore, we observed 

high PARP1:GUS (Babiychuk et al., 1998) activity in galls treated with BL and HU, known to induce 

the two Arabidopsis PARP genes in uninfected roots (Doucet-Chabeaud et al., 2001; Chen et al., 

2003). Higher PARP1 expression was seen upon HU and less upon BL treatment, similarly to 

what we observed for WEE1. Less PARP1 expression during BL treatment might be due 

to the inhibition of DNA-repair signaling or that nematode parasitism induces less double strand 

breaks. Our data suggest that the higher WEE1 expression upon stress induced by HU in galls could be 

linked to checkpoint control activation followed by an induced DNA repair process marked 

by PARP1 expression.

 

Tomato WEE1 downregulated line inhibited gall formation and nematode reproduction

Since the CDK inhibitory kinase WEE1 is involved in endoreduplication in tomato fruits (Gonzalez et 

al., 2007), it is most likely that WEE1 has also a putative function at the DNA integrity checkpoints in A
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tomato. Indeed, SlWEE1 phosphorylates the mitotic CDK/CYCB complex, driving cells into the 

endocycle, thus contributing to cell enlargement and consequently to fruits of larger size (Gonzalez et 

al., 2007). Besides keeping cells in a non-dividing state, SlWEE1 most likely operates during G1-to-S 

phase of the endocycle preventing a premature entry into the S phase of the following cycle (Gonzalez et 

al., 2004; 2007). Nuclear DNA amplification according to the endoreduplication process may protect the 

genome from DNA-damaging conditions or prevent incorrect chromosome segregation during mitosis 

(Gonzalez et al., 2007). As well upon damage, cell expansion induced by endoeduplication may 

compensate a decrease of cell number to keep tissue growth. Therefore, the function of SlWEE1 in the 

control of cell size and endoreduplication goes along with a putative function at the DNA integrity 

checkpoints. DNA amplification may require a sustained WEE1 activity to manage DNA damage 

potentially occurring during the intense DNA replication. Hence, we aimed at investigating the effects 

of a downregulation of SlWEE1 in nematode-induced tomato-galls. Similar to what occurs in tomato 

fruits, the downregulation of SlWEE1 in galls repressed the endocycle, and thus mitosis was induced, 

resulting in small galls alike decreased fruit size, both as results of decreased cell size. As in tomato 

fruits, the CDK/CYC Histone H1 kinase activity most likely increases upon WEE1 deficiency in galls.

 

DNA damage in hosts can be caused by nematodes and other pathogens

Living organisms encounter many types of DNA damage, therefore have evolved multiple mechanisms 

to maintain their genomic integrity. The present study hints that RKN induce DNA damage in plant 

hosts which might lead to chromosomal aberrations as formerly described by Starr (1993). This 

observation matches with the intricate nuclei morphology typically observed in GCs, even when the 

DNA repair machinery seems to be activated in galls (Antonino de Souza Junior et al., 2017). It is also 

recognized that microbial plant pathogens with diverse life styles, like hemibiotrophic bacterial species, 

oomycetes and necrotrophic fungi can induce DNA damage in the host plant genomes (Song and Bent, 

2014). Interestingly, reduced levels of DNA DSBs may be observed during incompatible interactions 

when compared with compatible. Some pathogens are even able to use strategies to inactivate the DDR 

and circumvent the DNA damage checkpoints (Guerra et al., 2011). So far, not much is known if 

pathogen-induced stress and DNA damage have preferential sites, but candidate compounds 

are effectors, toxins, or other molecules as reported for bacteria (Guerra et al., 2011). In addition, a link 

of DDR and the plant immune system like activation by salicylic acid (SA) and prevention of DNA 

repair in the host seem to occur, and similar links have been described for animal and human 
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pathogens (Song and Bent, 2014; Menendez et al., 2011; Gasser et al., 2005;). Thus, it will be 

interesting to address these questions during future studies.

Concluding remarks

Summing up, our data substantiate the hypothesis that the WEE1 kinase is involved in DNA damage 

and more notably in DNA replication checkpoint in galls induced by RKN. We here propose that stress 

caused by DNA damage threatens NFS formation, and hence that WEE1 activation 

helps the optimal NFS development during the coordinated events taking place in its hyperactivated cell 

cycle. Repair pathways in galls will most likely recognize to a certain level and restore a range of DNA 

anomalies, like mismatches, abnormal bases, stalled replication forks, single-stranded DNA nicks, and 

double-stranded DNA breaks (DSBs) (Friedberg et al., 2006; Weitzman & Weitzman, 2014). Thus, 

nematodes seem not to circumvent checkpoint controls and manipulate the host DNA damage pathways 

as seen for some human microbes (Weitzman & Weitzman, 2014). As for uninfected roots, in 

galls the CDKA;1/CYCB complex might be the major target for inhibition by the activated checkpoint 

control through WEE1 kinase activity. In figure 14 we illustrate the involvement of WEE1 in 

the potential DNA damage occurring in nematode-induced galls and upon drug induced ectopic stress. It 

is possible that nematode derived effectors, toxins, or other molecules are be required for induction 

of DNA damage, and upcoming research will pinpoint if DNA damage is targeted to preferential 

sites. Thus, investigation of nematode factors or induced plant factors related to infection associated 

DNA damage may help us to envision nematode-induced disease management strategies that can 

protect the host against these plant pathogens.
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Legends

Fig. 1 Expression profile of WEE1 varied during Meloidogyne incognita-induced gall development in 

Arabidopsis. (a) Dark-field micrographs illustrate WEE1pro:GUS staining (red) at different time points 

of gall development (3, 5, 7, 14, 21 and 30 DAI). (b) mRNA in situ localization of WEE1 in galls 7, 14 

and 21 DAI. Gall sections were hybridized with 35S-labeled antisense RNA probes. The hybridization 

signal is visible as white dots in dark-field optics. Giant cells are delineated with punctuated white lines. 

Days after inoculation, DAI; asterisk, giant cell; n, nematode. Bars, 50µm.
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 Fig. 2 WEE1 is nuclear localized in Meloidogyne incognita-induced Arabidopsis galls. Three-

dimensional (3D) confocal microscopic projections of GFP-WEE1 protein fusion (green)for in 

vivo visualization in whole galls. (a, b, c) Nematode-infected roots 3 and 5 DAI showing nuclear 

localization of GFP-WEE1 within two young feeding sites (FS1 and FS2). (d, e) Feeding sites 6 and 7 

DAI showing more intense fluorescence of GFP-WEE1 in giant cells nuclei. Days after inoculation, 

DAI; FS1, feeding site 1; FS2, feeding site 2; Asterisk, giant cells; n, nematode. Bars = 100µm (a, b, c) 

and 50µm (d, e).

Fig 3. Morphological analysis of Meloidogyne incognita-induced galls in the wee1-1 line of Arabidopsis 

showed induced mitotic activity compared to the wild-type. Bright-field images of longitudinal gall 

sections toluidine blue stained of (a) wee1-1 galls 1, 3, 5, 7, 14 and 21 DAI and for (b) wild-type (Col-0) 

galls 3, 7, 14, 21 DAI. Black arrows point to cell wall stubs, red arrow to cell wall thickenings 

containing invaginations in giant cells, and white arrow points to multiple grouped nuclei (nu) of 

a wee1-1 giant cell containing large number of nuclei. Ectopic neighboring cell and xylem division and 

relatively small giant cells are visible in wee1-1 mature galls 21 DAI (a) compared to (b) wild-type. 

Days after inoculation, DAI; asterisk, giant cell; n, nematode; NCs, neighboring cells. Bars = 50µm.

 

Fig. 4 Altered nuclear morphology and volume is seen upon WEE1 knockout in Meloidogyne incognita-

induced giant cells. Images illustrate 3D confocal projections of serial optical sections of thick gall 

slices stained with 4,6-diamidino-2-phenylindole (DAPI). (a) Galls in the wee1-1 line 14 days after 

inoculation (DAI). Elongated nuclei apparently connected are observed in giant cells (orange arrows) 

suggesting accumulation of mitotic defects upon inhibition of the cell cycle checkpoint control 

activation in wee1-1 galls. (b) Wild-type galls 14 DAI. Most nuclei are amoeboid shaped in wild-type 

giant cells. n, nematode; NCs, neighboring cells. Bars = 50 µm. (c) Nuclear volume of giant cells 14 

DAI. The distribution is shown by the vertical box plots. The lines within the boxes indicate the median 

of nuclei volumes and the upper and lower box edge indicate variation of 25 to 75%. The bars show the 

largest/smaller values of average volumes that fall within a distance of 1.5 times IQR (interquartile 

range) from the upper and lower hinges, and the dots are the values that fall outside the IQR (outliers). 

The statistical difference is marked with asterisks (P<0.001) based on Student’s t-test analysis.
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Fig. 5 Flow cytometry examination of wild-type and wee1-1 in Meloidogyne incognita-induced galls in 

Arabidopsis reveals a shift of root and gall cells into a mitotic state. (a)Percentage of nuclei with various 

ploidy levels in uninfected roots (2C to 16C) in wild-type plants compared with wee1-1. (b) Percentage 

of ploidy levels in galls 21 DAI (2C to 64C) in wild-type compared with wee1-1. Ploidy levels were 

statistically compared using Student’s t-test, with * meaning P ≤0.05, ** P≤0.01 and n.s. not 

significative. Both uninfected roots and galls presented higher 2C ploidy levels suggesting increased 

mitotic activity upon lack of WEE1. 

 

Fig. 6 Promoter activity of the (a) SMR7:GUS in the wee1-1 knockout background 

and (b) SMR7:GUS in the wild-type of Meloidogyne incognita-induced galls. Dark-field images 

illustrate GUS staining in red in galls at 7, 14 and 21 days after inoculation (DAI). Note higher promoter 

activity in the transgenic line under the wee1-1 background suggesting that lack of checkpoint control 

due the absence of WEE1 will induce a stress induced SMR7 promoter in developing galls. Days after 

inoculation, DAI; asterisk, giant cell; n, nematode. Bars = 50µm.

 

Fig. 7 Expression patterns of Meloidogyne incognita-induced galls in Arabidopsis WEE1pro:GUS line, 

and gall morphology of wee1-1 line and wild-type (WT) Arabidopsis non-treated (NT), and bleomycin 

(+BL) or hydroxyurea (+HU) treatments. (a) Dark-field images illustrate GUS staining in red in galls 

10). (b) Bright-field images of longitudinally sectioned galls 21 DAI stained with toluidine blue in 

the wee1-1 knockout line NT, and BL and HU treated. (c) Bright-field images of longitudinally 

sectioned galls 21 DAI stained with toluidine blue in the WT NT, and BL and HU treated. Black arrows 

show wall stubs present in giant cells after BL and HU treatment. DAI, days after inoculation; asterisk, 

giant cell; n, nematode; NC, Neighboring cells. Bars = 50µm.

 

Fig. 8 3D projections of giant cell nuclear structure revealed changes in WEE1 knockout and wild-type 

Meloidogyne incognita-induced galls in Arabidopsis (a, d) non-treated and (b,c,e,f) treated with the 

stress inducing drugs bleomycin (BL) or hydroxyurea (HU). All images are the result of projections of 

serial optical sections of galls 21 days after inoculation stained with 4,6-Diamidino-2-phenylindole 

(DAPI). Elongated nuclei were observed in the wee1-1 knockout line and these became apparently 

unstructured and enlarged upon drug treatment. Bars = 50 µm.
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Fig. 9 Meloidogyne incognita-induced giant cell area measurements and infection tests in the wee1-

1 knockout line and wild-type Arabidopsis non-treated (NT) and treated with stress inducing drugs 

bleomycin (BL) or hydroxyurea (HU). (a) Giant cell area measurements in galls non-treated and treated 

with BL or HU, and (b) gall and (c) egg mass number. Curiously BL and HU treatments of the wee1-

1 knockout line resulted in increased number of galls and egg masses. Analysis of variance (ANOVA) 

were done to compare treatments in the same line (WT or wee1-1), using Tukey test to compare means 

(P<0.05). To compare different lines in the same drug treatment we used pairwise comparisons using 

Student’s t-test (P<0.05). Different capital letters mean statistical difference (ANOVA) between WT 

treatments, and small letters means difference in wee-1 line treatments. * means P≤0.05 and *** 

P≤0.001

 

Fig. 10 Expression profile of PARP1 in Meloidogyne incognita-induced galls in Arabidopsis non-treated 

and treated with the stress inducing drugs bleomycin (BL) and hydroxyurea (HU). Dark-field 

micrographs illustrate GUS in red. (a) PARP1:GUS staining (16 h of incubation with substrate) at 

different time points of gall development (7, 14 and 21 DAI). (b) PARP1:GUS staining (3h of 

incubation) in untreated galls 10 DAI and after stress inducing BL and HU treatments. Note that HU 

significantly induces PARP1 promoter activity in galls. Note that giant cells close to the nematode head 

show higher GUS activity. Days after inoculation, DAI; asterisk, giant cell; n, nematode. Bars = 50µm.

 

Fig. 11 Morphological analysis of Meloidogyne incognita-induced galls in wild-type (WT) 

and WEE1AS lines of tomato (Solanum lycopersicum). Giant cells in (a) wild-type are visibly larger 

compared to the (b) WEE1AS line and nematodes are delayed in their development. Days after 

inoculation, DAI; asterisk, giant cell; n, nematode. Bars = 100 µm.

 

Fig. 12 Nuclei in Meloidogyne incognita-induced tomato galls of (a) wild-type (WT) 

and (b) WEE1AS line. Fluorescent nuclei are 4,6-diamidino-2-phenylindole (DAPI) stained in galls 7, 14, 

30 DAI. Note multiple small nuclei in giant cells seen in the WEE1AS line compared to wild-type. Days 

after inoculation, DAI; asterisk, giant cells; n, nematode; G, gall. Numbers after ‘G’ or ‘n’ is for 

differentiate galls or nematodes, respectively, in a same image. Bars = 100µm.
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Fig. 13 Meloidogyne incognita-induced tomato giant cell area (a) and nematode infection tests (b) of 

the WEE1AS line in tomato plants compared to wild-type (WT). Giant cells were significantly smaller as 

well as the number of egg-masses decreased in nematode infected roots of WEE1AS transgenic lines. 

Pairwise comparisons were made using Student’s t-test with * meaning P≤0.05 and ** P≤0.01.

 

Fig. 14 An overview for the WEE1 kinase function in galls induced by root-knot nematodes 

(Meloidogyne incognita) is presented. (a) In normal conditions (wild-type galls), nematode infection in 

the plant host will likely induce single strands breaks (SSBs) and to less extend double strand breaks 

(DSBs) (low SMR7 promoter activity) leading to WEE1 expression. This implies checkpoint control 

activation in galls, resulting on cell cycle delay/arrest most likely during G1/S phase. Successively, 

DNA is restored once DNA repair pathway is recruited (PARP1 promoter activity). Then, cell cycle 

progresses in galls leading to susceptibility of the plant host. (b) Nematode infection in the model host 

Arabidopsis on the absence of WEE1 (-WEE1) will lead to DNA damage marked by the hyper-

activation of the stress marker SMR7 promoter. No WEE1 induced checkpoint control activation, cell 

cycle progresses in galls inducing premature entry in mitosis resulting in cumulative mitotic defects. The 

observed phenotype will result in decreased giant cells and gall size 

and consequently negatively affecting nematode susceptibility. (c) Upon induced DNA damage in wild-

type galls, SSBs caused by hydroxyurea (HU) and DSBs caused by bleomycin (BL) 

activates WEE1 expression most likely inducing a replication arrest checkpoint at G1/S 

(high WEE1 expression) and to a less extend G2/M (low WEE1 expression). This will lead to a 

delay/arrest in the cell cycle followed by the activation of DNA repair marked by PARP1 expression, 

finally inhibiting mitotic activity in galls and leading to a significant decrease in nematode 

susceptibility. (d) Similar drug treatments in wee1-1 galls induced DNA damage in galls 

causing SSBs triggered by HU and DSBs caused by BL. The absence of 

WEE1 likely prevented checkpoint control activation in galls resulting in premature mitosis, which upon 

ectopic stress caused by both drugs (HU and BL) surprisingly promoted increased nematode 

susceptibility.

 

Supporting Information

Fig. S1 Histograms illustrating flow cytometry analysis of Arabidopsis wee1-1 Meloidogyne incognita-

induced galls and uninfected roots. A
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Fig. S2 Detailed expression profile of WEE1 in Meloidogyne incognita-induced galls treated with 

hydroxyurea. 

 

Fig. S3. Nuclei in A. thaliana wee1-1 knockout and wild-type Meloidogyne incognita-induced galls. 

 

Fig. S4 Morphological analysis of Meloidogyne incognita-induced galls in the WEE1AS tomato line. 

Fig. S5 Flow Cytometry analysis in tomato root and Meloidogyne incognita-induced galls in wild-type 

and WEE1AS lines. 

 

 

Video S1 3D confocal projections of serial optical sections of a 21-d-old gall induced by M. incognita in 

Arabidopsis wee1-1 roots.

 

Video S2 3D confocal projections of serial optical sections of a 21-d-old gall induced by M. incognita in 

Arabidopsis wee1-1 roots treated with bleomycin.

 

Video S3 3D confocal projections of serial optical sections of a 21-d-old gall induced by M. incognita in 

Arabidopsis wee1-1 roots treated with hydroxyurea.

 

Video S4 3D confocal projections of serial optical sections of a 21-d-old gall induced by M. incognita in 

Arabidopsis wild-type roots.

 

Video S5 3D confocal projections of serial optical sections of a 21-d-old gall induced by M. incognita in 

Arabidopsis wild-type roots treated with bleomycin.

 

Video S6 3D confocal projections of serial optical sections of a 21-d-old gall induced by M. incognita in 

Arabidopsis wild-type roots treated with hydroxyurea.
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