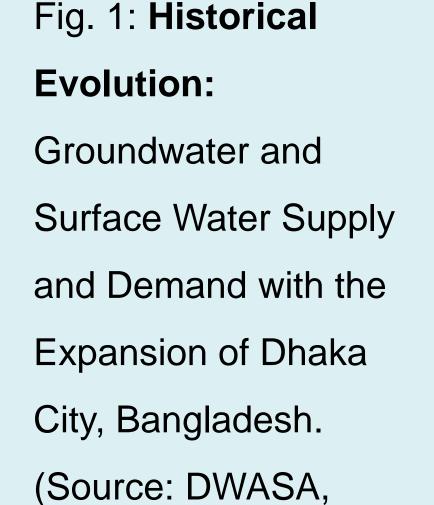
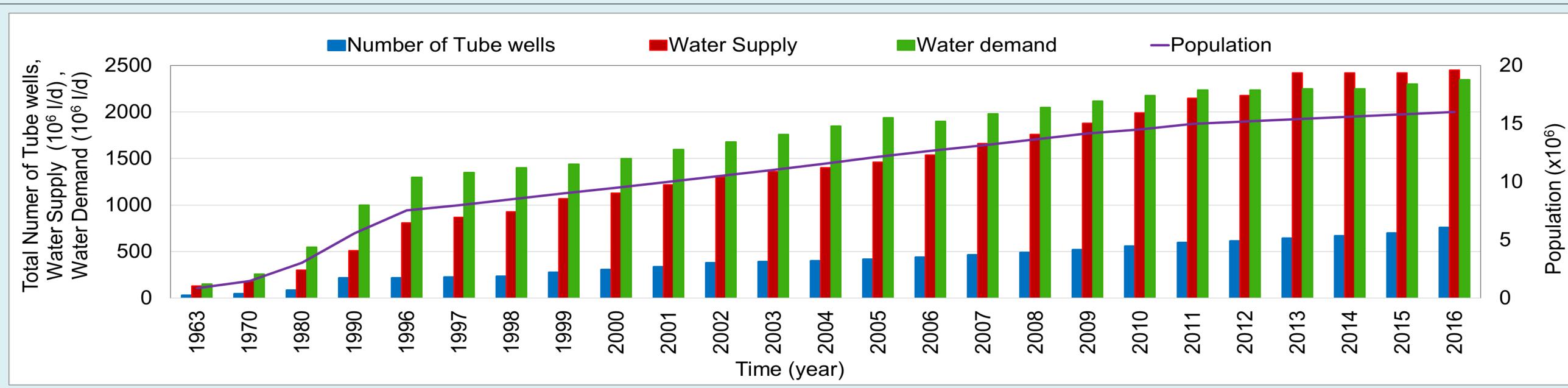


# Hydrochemical Characteristics of Multilayer Dupi Tila Aquifer System Beneath Dhaka Mega City, Bangladesh




Mazeda Islam<sup>1, 2</sup>, Marc Van Camp<sup>1</sup>, Thomas Hermans<sup>1</sup>, Md. Mizanur Rahman Sarker<sup>1, 2</sup>, Md. Abdul Quaiyum Bhuiyan<sup>3</sup>, Nasir Ahmed<sup>3</sup>, Md. Masud Karim<sup>3</sup> and Kristine Walraevens<sup>1</sup>


> <sup>1</sup>Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University, Belgium <sup>2</sup>Department of Geological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh <sup>3</sup>Bangladesh Atomic Energy Commission, Dhaka, Bangladesh

#### 1. Introduction

Around 20 million people are living in Dhaka with a growing rate of 4.2 percent per year. Major part of the water supply is depending on groundwater from the Plio-Pleistocene fluviodeltaic sands of the Dupi Tila Formation. Massive abstraction from the aquifer by water-wells has been causing a significant aquifer dewatering and huge drop in groundwater level up to 89 m PWD (Public Works Department) datum beneath the part of the city. The resulting depression cone is thought to prompt recharge from rivers and surrounding area.



2016)



|                                                | 1                                                                                | 2                                     | 3                                                                                                                                               | 4                                                               | 5                                                                          | 6                                                                          | 7         | 8                                                                                                                                    | 9                                                               | 10                                                          | 11                                                                                                |
|------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1953                                           | 1959                                                                             | 1963                                  | 1971                                                                                                                                            | 1971 -1985                                                      | 1990                                                                       | 1996                                                                       | 2000      | 2010                                                                                                                                 | 2013                                                            | 2015                                                        | 2016                                                                                              |
| Growth expansion and development of Dhaka city | -First<br>master plan<br>-Water<br>demand for<br>0.58 x10 <sup>6</sup><br>people | Establish<br>ment of<br>Dhaka<br>WASA | Independence<br>of Bangladesh:<br>-2 x10 <sup>6</sup><br>population<br>-47 deep tube<br>wells (DTWs)<br>-50 x10 <sup>6</sup> m <sup>3</sup> /yr | DTWs installed in Upper Dupi Tila aquifer (UDA) near the rivers | -216 DTWs<br>in UDA<br>-510 x10 <sup>6</sup> l/d<br>->5 times<br>than 1970 | -2nd master<br>plan<br>-1st plan for<br>10 x10 <sup>6</sup><br>inhabitants | -308 DTws | Water supplied 1990 x10 <sup>6</sup> l/d -Water demand 2180 x10 <sup>6</sup> l/d -560 DTWs - 4 surface water treatment plants(SWTP). | Supply capacity 2250 x10 <sup>6</sup> /I/d -644 DTWs and 4 SWTP | Supply capacity 2420 x10 <sup>6</sup> l/d -DTWs 702 4 SWTP. | -16 x10 <sup>6</sup> population - Supply capacity 2450 x10 <sup>6</sup> l/d -760 DTWs and 4 SWTP. |

Fig. 2: Study area with water sample location

Fig. 5: Piezometric map of UDA for a. 1985 b. 2017

Fig. 6: Piezometric map of MDA for a. 2005 b. 2017

Fig. 10: As vs depth plot

Fig. 9: Cross plots of a. EC vs TDS b-e. HCO<sub>3</sub> vs major cations f. Cl vs NO<sub>3</sub>

Fig. 11: Plot of  $\delta^{18}$ O vs  $\delta^{2}$ H.

Fig. 4: Long term hydrograph a. Mirpur b. Gulshan c.Sutrapur d. Sabujbagh

observation well and cross section line map.

## 2. Aim of the Study

The present work investigates groundwater chemistry in the multilayer Dupi Tila aquifer using hydrochemical data, stable isotopes along with physico-chemical parameters.

## 3. Hydrostratigraphy: Aquifer System

- Upper Dupi Tila Aquifer (UDA): Upper part mainly composed of fine sand to medium sand and lower part medium sand to coarse sand occasionally with gravel. Average bottom depth is 142.5.
- Middle Dupi Tila Aquifer (MDA): Mainly composed of medium sand to coarse sand with gravel. Average bottom depth 254.5 m.
- Lower Dupi Tila Aquifer (LDA): Predominantly composed of fine sand to medium sand . Avg. bottom depth is 385 m.

### 4. Hydrograph

### Mirpur Area (UDA): Fig. 4a

- Seasonal fluctuation and no falling trend up to 1985 Lowest Groundwater level (GWL): - 65.06 m PWD (2010),
- Sharp decline rate: 5.4 m/year (2000-2005).
- Relatively stable after 2010-2016
- Recovery GWL 2017 to 60.84 m PWD (5 m rise).

### Gulshan Area(UDA): Fig. 4b

- ✓ Lowest GWL: 72 m PWD (2018)
- ✓ Highest decline rate: 4.1 m/year (2000-2005).

### Sutrapur Area (UDA): Fig. 4c

- Due to proximity of Buriganga river ,GWL was very much different.
- Lowest GWL: -14.2 m PWD (2010)
- Relatively stable from 2000 to 2010 in UDA.

# Sabujbagh Area (UDA): Fig. 4d

- ✓ Lowest GWL: -62.8 m PWD (2009)
- ✓ Maximum decline rate: 2.8 m/year (2000-2005)

# 5. Piezometric Maps

# **UDA**

- **□ 1985** (Fig. 5a)
- Depression in South central part down to -10 m PWD
- Most of the area : -1 m PWD
- **2017** (Fig. 5b)
- Lowest GWL (depression cone) down to 80 m PWD
- Peripheral part: -50 m PWD
- pattern.
- MDA **2005** (Fig. 6a) Shape and extent of depression showed sporadic Lowest GWL in southeast side down to -36.82 m PWD **2017** (Fig. 6b) Lowest GWL (depression cone) down to -65 m PWD Peripheral part: -35 m PWD 10th International Groundwater Quality Conference (GQ2019) Poster Session 2 (S02b + S04 + S06) 9-12 September, Liège (Belgium)

### 6. Hydrochemical Characteristics Relative abundance of the ions $Ca^{2+} > Na^{+} > Mg^{2+} > K^{+} > Fe^{2+} > NH_{4}^{+} > Mn^{2+}$ and

Fig. 3: Hydrostratigraphic cross section

Fig. 7: Water type map

Fig.8: Piper Diagram (1944)

Fig. 12:Plot Cl<sup>-</sup> vs  $\delta^2$ H

- $HCO_3^- > Cl^- > SO_4^{2-} > NO_3^- > PO_4^{3-} > NO_2^-$ Low mineralization water (EC: 161-835 (µS/cm – 25°C), TDS:
- 119-550 (mg/l) and neutral pH (pH: 7.11-7.81). Waters are mostly CaHCO<sub>3</sub> (86%) and 17% NaHCO<sub>3</sub> types
- (Fig. 7) localized in two zones due to infiltration of rain water or anthropogenic pollution. Dominant control of aluminosilicates weathering on the

hydrogeochemical evolution of groundwater is confirmed by

- CaHCO<sub>3</sub> and NaHCO<sub>3</sub> types water and cross plots (Fig. 7, 8 & 9). Major alkaline and alkaline earth cations released from aluminosilicates weathering. > HCO<sub>3</sub>- is formed from CO<sub>2</sub> involved in aluminosilicate
- weathering. The increase in major cations is accompanied by a parallel increase of bicarbonate (Fig. 9). Reactions (i-v) illustrate the weathering processes which can
- release Ca<sup>2+</sup> and HCO<sub>3</sub><sup>-</sup> to groundwater.  $2CaAl_2Si_2O_8 + 4CO_2 + 6H_2O = 2Al_2Si_2O_5(OH)_4 + 2Ca^{2+} + 4HCO_3^{-.....(i)}$
- Anorthite  $CaMg(Si_2O_6) + 4CO_2 + 6H_2O = Ca^{2+} + Mg^{2+} + 4HCO_3^{-} + 2H_4SiO_4$ Pyroxene
- $Ca_2Mg_5Si_8O_{22}(OH)_2 + 14CO_2 + 22H_2O = 2Ca^{2+} + 5Mg^{2+} + 14HCO_3^{-} +$ Amphibole
- 8H<sub>4</sub>SiO<sub>4.....(iii)</sub>  $CaCO_3 + CO_2 + H_2O = Ca^{2+} + 2HCO_3^{-....(iv)}$
- Calcite  $CaMg(CO_3)_2 + 2CO_2 + 2H_2O = Ca^{2+} + Mg^{2+} + 4HCO_3^{-....(v)}$
- Dolomite > The average concentration (11 μg/l) of arsenic is low in all the water samples (Fig. 10) except two shallow water samples in UDA (161.88 and 383 µg/l at 14.63 and 42.67m depth respectively) in same location.
- Very few water samples exceed guideline of WHO, 2008.

## 7. Stable Isotopes

- LDA water falls on and to some extent below the LMWL and GMWL (Craig, 1961): recharge from rainwater. MDA and UDA: rainfall and/or flood water (Fig. 11).
- More depleted in river waters indicating that the river waters are composed of rainfall in the upstream catchment.
- ☐ Enriched isotopic composition and mean d-excess of LDA is 8.87‰ indicating evaporation has occurred before infiltration
  - $\Box$  Cl<sup>-</sup> vs  $\delta^2$ H plot indicates no good relationship between the origin of GW other than river (Fig. 12).

## 8. Conclusion

- Huge GWL depletion in both UDA and MDA aquifers and highest depression is observed in central part of the city.
- Mainly CaHCO<sub>3</sub> type water with low mineralization.
- Aluminosilicates weathering as the primary process controlling groundwater chemistry.
- Groundwater supply may not be sustainable for long persisting period in Dhaka city because of massive decline of GWL.

# References

Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703 DWASA (Dhaka Water Supply and Sewerage Authority) Annual Report (2015-2016), DWASA, Dhaka, Bangladesh Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans Am Geophys Union 25(6):914-928

WHO, 2008. Guidelines for Drinking-Water Quality (Electronic Resource): Incorporating 1st and 2nd Addenda, Volume 1, Recommendations, 3rd edition. WHO Library Cataloguing-in-Publication Data 668 p.

This project has received fund from Islamic Development Bank (IDB). Special thanks to Ms. Jill Van Reybrouck, Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University. Dhaka Water Supply and Sewrage Authority, Bangladesh Atomic Energy Commission (BAEC), Bangladesh Water Development Board (BWDB) and Geological Survey of Bangladesh (GSB), Bangladesh are also acknowledged for providing necessary data.