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Abstract 

This paper discusses a method to calculate the efficiency of a planetary gearbox with 2 degrees of 
freedom. Standard measurement procedures in which the efficiency is measured as function of the load 
torque and input speed become infeasible due to the many possible input output configurations. To 
solve this, a method is proposed that combines the theory of virtual power and a limited set of 
measurements. The theory of virtual power is used to link the considered power flow in the device with 
an expression to calculate the efficiency of the planetary gear in terms of the efficiency of the power 
path between sun & carrier and carrier & ring. The efficiency of the aforementioned power paths is 
shown to depend only on the torque applied to these paths which means that speed dependent losses 
such as churning losses are negligible. Measurements of the efficiency as function of the torque applied 
to the sun for a varying speed ratio between ring and carrier are added to validate the approach. 

1. Introduction 

Due to increasing energy prices, the efficiency of drive trains and their individual components has 
gained a lot of interest. By optimizing the drive train as a whole, large savings on the long term are 
possible. This is called the Extend Product Approach (EPA).  However, to apply EPA, knowledge of the 
energy efficiency of all drive train components over a wide range of operating points is vital. 

For electrical components, measurement procedures and models are available to provide this important 
data as function of the operating point. In contrast to the latter, the provided efficiency of mechanical 
components is often restricted to a single operating point. In the last 5 years, a lot of effort has been 
spent in setting up measurement guidelines for mechanical gearboxes. The efficiency is measured and 
afterwards visualized as function of input speed and output torque [1], [2]. An important remark is that 
this method was developed for single input single output devices in which a unique power path can be 
defined. If another shaft is added, the method still holds, but the number of measurements to obtain an 
accurate description of the efficiency becomes unacceptably high. Moreover, visualizing efficiency or 
power losses on a 2D map is no longer possible. An example of such a gearbox is a 2 Degrees Of 
Freedom (DOF) planetary gearbox which is for instance used in hybrid electrical vehicles [3], wind 
turbines [4], aerospace [5], etc. Their main advantages are high efficiency, compactness and 
axisymmetric arrangement.  

A lot of effort has already been spent to model the efficiency of the planetary gearbox. Pennestri has 
summarized all the work concerning efficiency evaluation in an interesting review [6]. The paper shows 
that the efficiency of a planetary gearbox, given a specific operating point, is determined based on the 
power flow (related to the operating point) and a fix efficiency value for the power path between sun & 
carrier and carrier & ring, denoted by path 1 and path 2 in Fig. 1, respectively. Moreover, it is shown 
that, although there are a lot of different mathematical expressions to calculate the efficiency, the 
different approaches are numerically equivalent. A completely novel approach to calculate the 
efficiency, based on virtual power, is introduced by Chen [7]–[9]. This approach has also been validated 
in [10] but rather on a limited dataset.  

In this paper, the work of Chen [8] is used to derive equations to estimate the overall efficiency based 
on the power flows and efficiency values for the different/individual power paths. The individual 
efficiency values for the considered power paths are determined for 3 levels of accuracy: as function of 
load torque and input speed, purely depending on the load torque and finally they are assumed to be 
constant (identical to the approach in [8]). The calculated planetary gear efficiency, based on the 
different formulations of the efficiency of the power paths, is then compared with the measurements to 
determine what level of accuracy is required.  

http://www.eedt.ugent.be/
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This paper is structured as follows. In section 2, the equations to calculate the efficiency of the planetary 
gear are considered after which in section 3 the measurement setup is introduced. The results of the 
efficiency maps of power path 1 and 2 are shared in section 4 while in section 5 the impact of the 
different efficiency formulations of the power paths on the total gear train efficiency is discussed. Finally 
in section 6 the conclusions of the research are formulated. 

2. Theoretical model 

The considered planetary gear consists of a sun, carrier with planets and a ring, organized as in Fig. 1. 

The main parameters of the planetary gear can be found in Table 1. 

 

Figure 1: Principle scheme of the planetary gear. 

 

Table 1: Number of teeth of the elements. 

Number of teeth of the sun 𝑁𝑠 54 

Number of teeth of the planets 𝑁𝑝 26 

Number of teeth of the ring 𝑁𝑟 108 

Maximum torque at the sun 𝑇𝑠,𝑚𝑎𝑥 45 Nm 

Maximum torque at the carrier 𝑇𝑐,𝑚𝑎𝑥 137 Nm 

Maximum torque at the ring 𝑇𝑟,𝑚𝑎𝑥 90 Nm 

 

As described in [8], it is possible to derive the efficiency of the 2-DOF planetary gearbox as function of 

the power flow (𝑃𝑠, 𝑃𝑐 , 𝑃𝑟), speed ratio between carrier and sun (
𝜔𝑐

𝜔𝑠
) and 2 efficiency values that describe 

the efficiency of power path 1 and 2 (𝜂1, 𝜂2). Deriving the equations for the considered planetary gear 

is straightforward based on the content of [8] as all the equations of a similar planetary gear are derived 

in that paper. Hence, only the definition of parameter 𝐶2 (see (6)) is different compared to the original 

paper which is due to the slightly different configuration of the planetary gear. 

Table 2, gives an overview of all the possible equations to calculate the efficiency. The first step in 

selecting the correct equation is to determine the power flow. Based on the power flow, it is possible to 
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select a row in Table 2. If, for example, the power flows from the sun (𝑃𝑠 < 0) to the carrier (𝑃𝑐 > 0) and 

ring (𝑃𝑟 > 0), row 3 is selected. The second step is to select the correct subcase (A or B). The conditions 

for these subcases are given in Table 3 and depend on the speed ratio between carrier and sun. For 

more information concerning the derivation of the subcases and separate efficiency equations, the 

reader is referred to [8]. 

Table 2: Equations to calculate the efficiency as function of the power flow and a given subcase. 

 Subcase A Subcase B 

𝑃𝑠 > 0, 𝑃𝑐 > 0 and 𝑃𝑟 < 0 
𝜂 =

1 − 𝐴

1 − 𝐴 + 𝐴𝐶2
 𝜂 =

1

1 − 𝐴𝐶2
 

𝑃𝑠 > 0, 𝑃𝑐 < 0 and 𝑃𝑟 > 0 
𝜂 =

−𝐶1 + 𝐴𝐶1 + 𝐶2 − 𝐴𝐶1𝐶2
−𝐶1 + 𝐴𝐶1 + 𝐶2

 𝜂 =
𝐶1 − 𝐶2 + 𝐴𝐶2 − 𝐴𝐶1𝐶2

𝐶1 − 𝐶2 + 𝐴𝐶2
 

𝑃𝑠 < 0, 𝑃𝑐 > 0 and 𝑃𝑟 > 0 
𝜂 =

1

1 − 𝐴𝐶1
 𝜂 =

1 − 𝐴

1 − 𝐴 + 𝐴𝐶1
 

𝑃𝑠 > 0, 𝑃𝑐 < 0 and 𝑃𝑟 < 0 𝜂 = 1 − 𝐴𝐶1 𝜂 =
−1 + 𝐴 − 𝐴𝐶1

−1 + 𝐴
 

𝑃𝑠 < 0, 𝑃𝑐 > 0 and 𝑃𝑟 < 0 
𝜂 =

𝐶1 − 𝐴𝐶1 − 𝐶2
𝐶1 − 𝐶2 − 𝐴𝐶1 + 𝐴𝐶1𝐶2

 𝜂 =
−𝐶1 − 𝐴𝐶1 + 𝐶2

−𝐶1 + 𝐶2 − 𝐴𝐶2 + 𝐴𝐶1𝐶2
 

𝑃𝑠 < 0, 𝑃𝑐 < 0 and 𝑃𝑟 > 0 
𝜂 =

−1 + 𝐴 − 𝐴𝐶2
−1 + 𝐴

 
𝜂 = 1 − 𝐴𝐶2 

 

In which: 

𝐴 = 𝜆1 + 𝜆2 − 𝜆1𝜆2 (1) 
𝜆1 = 1 − 𝜂1(𝑇𝑠, 𝜔𝑝) (2) 

𝜆2 = 1 − 𝜂2(𝑇𝑟 , 𝜔𝑝) (3) 

𝑘 =
𝜔𝑐

𝜔𝑠

 (4) 

𝐶1 = 1 − 𝑘 (5) 

𝐶2 =
(𝑘 − 1)𝑁𝑠

(𝑘 − 1)𝑁𝑠 + 𝑘𝑁𝑟
 (6) 

 

Table 3: Conditions of the subcases. 

 Subcase A Subcase B 

𝑃𝑠 > 0, 𝑃𝑐 > 0 and 𝑃𝑟 < 0 𝑘 < 0 else 

𝑃𝑠 > 0, 𝑃𝑐 < 0 and 𝑃𝑟 > 0 
𝑁𝑠

𝑁𝑟 + 𝑁𝑠
< 𝑘 < 1 else 

𝑃𝑠 < 0, 𝑃𝑐 > 0 and 𝑃𝑟 > 0 else 0 < 𝑘 <
𝑁𝑠

𝑁𝑟 + 𝑁𝑠
 

𝑃𝑠 > 0, 𝑃𝑐 < 0 and 𝑃𝑟 < 0 0 < 𝑘 <
𝑁𝑠

𝑁𝑟 + 𝑁𝑠
 else 
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𝑃𝑠 < 0, 𝑃𝑐 > 0 and 𝑃𝑟 < 0 𝑘 > 1 else 

𝑃𝑠 < 0, 𝑃𝑐 < 0 and 𝑃𝑟 > 0 else 𝑘 < 0 

 

 

3. Measurement setup 

The measurement setup consists of a planetary gear, a belt, 3 torque sensors and 3 electrical machines 

to load the shafts of the planetary gear. The purpose of the belt is to transmit torque from the ring to the 

load machine (and vise-versa). The torque sensors are used to measure the mechanical power going 

through each shaft. Each shaft can be fixed to go from a 2-DOF system to a 1-DOF system. These 

fixing mechanisms are used to block the sun and ring in 2 separate measurements in order to set up 

the 1-DOF efficiency maps of power path 1 and 2. Note that the efficiency map for the power path from 

carrier to ring includes the efficiency of the belt. The planetary gear system as such is thus the 

combination of the planetary gear component and the belt. During all measurements, the temperature 

has been controlled at 32±1°C. This is of high importance due to the impact of temperature on the 

viscosity of the oil and thus the efficiency of the gearbox [11]. 

 

Figure 2: measurement setup 

a) Measurement accuracy 

The accuracy of the measured efficiency depends on the accuracy of the torque sensors and the 

AD conversion of the signals. The used torque sensors are equipped with strain gauges and have 

a contactless signal transmission from rotor to stator. The details in terms of range and accuracy of 

the 3 torque sensors that are used can be found in Table 4.  

Table 4: Accuracy of the torque sensors. 

Range Accuracy Absolute fault Location 

50Nm 0.2% full scale ±0.1Nm Sun 
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100Nm 0.1% full scale ±0.1Nm Ring 

200Nm 0.1% full scale ±0.2Nm Carrier 

 

The accuracy of the AD conversion is 0.11% full scale. The range goes from 0 to 5V for the torque 

sensors with a range of 50 and 100Nm. For the torque sensor with a range of 200Nm, the output 

range is 0 to 10V.  

To demonstrate how the Absolute Fault (AF) on an efficiency measurement can be calculated, an 

example is presented for when the ring is blocked. In this case, power flows from carrier to sun. 

The torque at the sun 𝑇𝑠 equals 26Nm, at the carrier 𝑇𝑐 a torque of 80Nm is applied, the speed of 

the sun 𝜔𝑠 equals 792rpm and the speed of the carrier 𝜔𝑐 is equal to 264rpm. The efficiency of this 

path can be calculated as: 

𝜂 =
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

=
𝑇𝑠𝜔𝑠

𝑇𝑐𝜔𝑐

=
𝑇𝑠𝜔𝑐

𝑁𝑠 +𝑁𝑟
𝑁𝑠

𝑇𝑐𝜔𝑐

=
𝑇𝑠(𝑁𝑠 + 𝑁𝑟)

𝑇𝑐𝑁𝑠
= 97.5% 

 

(8) 

 

The total uncertainty of this measurement depends on the uncertainty of the torque sensor and the 

uncertainty of the AD conversion (output of the torque sensor is an analogue signal). The accuracy 

of the speed measurement has no impact on measured efficiency as can be seen in (8). The total 

Relative Fault (RF) and AF are calculated using the following equations: 

𝑅𝐹(𝑡𝑜𝑡) = √𝑅𝐹(𝑇𝑠)
2 + 𝑅𝐹(𝑇𝑐)

2 = √(
𝐴𝐹(𝑇𝑠)

|𝑇𝑠|
)

2

+ (
𝐴𝐹(𝑇𝑐)

|𝑇𝑐|
)

2

 (9) 

𝐴𝐹(𝑡𝑜𝑡) = 𝑅𝐹(𝑡𝑜𝑡)𝜂 (10) 

 

According to Table 4, the AF on the torque sensor of the sun is ±0.1Nm and of the carrier ±0.2Nm. 

The AF due to the AD converter of the torque sensor of the sun is 5V×11%=±5.5mV which 

translates to ±0.0275Nm. The same can be done for the torque sensor mounted at the carrier which 

results in an AF of ±0.22mNm. Based on (9) it is now possible to calculate the total relative fault 

𝑅𝐹(𝑡𝑜𝑡): 

𝑅𝐹(𝑡𝑜𝑡) = √(
0.1 + 0.055

26
)
2

+ (
0.2 + 0.22

80
)
2

= 0.79% (11) 

 

which yields an AF of: 

𝐴𝐹(𝑡𝑜𝑡) =
0.79

100
×
97.5

100
= 0.77% (12) 

 

4. Measurement of 1-DOF efficiency map 

 
In the following sections the results of the 1-DOF measurements of the 2 power paths are 

discussed. Note that only a limited dataset is presented in the paper. Hence, the variation of the 

efficiency with the speed of the planets is discussed based on 4 measurements. However, the real 

measured dataset covers the efficiency for 18 different speed values, each for 31 torque values. 

 

a) Path 1 (sun to carrier) 
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As mentioned in (2), the efficiency 𝜂1 is a function of torque and speed. The efficiency 𝜂1 is related 

to  the power path between the sun and carrier (see Fig. 1) and is written as function of the torque 

applied to the sun 𝑇𝑠 and the speed of the planets 𝜔𝑝. As, in normal operation, the power could split 

towards the ring, the ring is blocked which reduces the 2-DOF planetary gear to a 1-DOF system. 

Hence, the only power path which remains goes from the sun to the carrier (and vise-versa). Under 

the assumption that the direction of the power of the 1-DOF contacts has no impact on the 

efficiency, it does not matter which element (sun or planets) is chosen as input or output to measure 

the efficiency map. As the torque on the planets cannot be measured, the measurable quantity for 

the planets is speed. Therefore, the efficiency 𝜂1 can be measured as function of the torque on the 

sun 𝑇𝑠 (output property) and the speed of the planets 𝜔𝑝 (input property). 

 

Fig. 3 shows the efficiency as function of the torque applied to the sun for varying speed of the 

planets. As can be seen in the graph, the efficiency is fairly constant in a wide range of torque 

values. This can support the assumption of taking a constant value for 𝜂1. However, at low torque, 

as expected, the efficiency drops. Furthermore, the dependency with the speed is very low and only 

noticeable at low torque. 

Figure 3: Efficiency of the path going from sun to carrier 𝛈𝟏 as function of the torque 

applied to the sun 𝐓𝐬 for varying speed of the planets 𝛚𝐩. Blue: 𝛚𝐩 = 𝟓𝟎𝟎rpm, red: 𝛚𝐩 =

𝟏𝟎𝟎𝟎rpm, green: 𝛚𝐩 = 𝟏𝟓𝟎𝟎rpm, black: 𝛚𝐩 = 𝟐𝟎𝟎𝟎rpm.  

Based on the measured data (the complete dataset) it is possible to fit a surface (see Fig. 4). This 
theoretical expression is equal to: 

𝜂1 = (𝑎1 + 𝑏1𝜔𝑝)𝑇𝑠
(𝑐1𝜔𝑝+𝑑1) + 𝑒1 (13) 
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With 𝑎1 = −7.558 × 10−5, 𝑏1 = −0.134, 𝑐1 = −5.326 × 10−5, 𝑑1 = −0.7706 and 𝑒1 = 0.9836. Note 
that this is an empirical formula which tends to be a good fit for most of the operating range. For 
extremely low torque values, (13) becomes useless as the efficiency goes to infinity. The 
advantage, however, is that, based on (13), it is easy to investigate the impact of reducing 𝜂1(𝑇𝑠, 𝜔𝑝) 

to 𝜂1(𝑇𝑠). 

 

Figure 4: Fitted efficiency of power path 1 as function of the speed of the planets and 
torque applied to the sun 

 

b) Path 2 (carrier to sun) 

A similar methodology has been applied to measure the efficiency map of the second power path. 

Now the sun is fixed, allowing a unique power flow from carrier to ring. Fig. 5 shows the results as 

function of torque applied to the ring for varying speed of the planets. Again, the efficiency is rather 

constant and almost independent of the speed of the planets. Note that the efficiency is 1 to 2% 

lower compared to the power path from sun to carrier. One of the reasons for this lower efficiency 

is that the efficiency of power path 2 is the combination of the efficiency of the planetary gear and 

the belt. 
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Figure 5: Efficiency of the path going from carrier to ring 𝛈𝟐 as function of the torque 

applied to the ring 𝐓𝐫 for varying speed of the planets 𝛚𝐩. Blue: 𝛚𝐩 = 𝟓𝟎𝟎rpm, red: 𝛚𝐩 =

𝟏𝟎𝟎𝟎rpm, green: 𝛚𝐩 = 𝟏𝟓𝟎𝟎rpm, black: 𝛚𝐩 = 𝟐𝟎𝟎𝟎rpm.  

Based on the measured data it is again possible to fit a surface (see Fig. 6). This theoretical 
expression is equal to: 

𝜂2 = (𝑎2 + 𝑏2𝜔𝑝)𝑇𝑠
(𝑐2𝜔𝑝+𝑑2) + 𝑒2 (14) 

 

With 𝑎2 = −14.2 × 10−5, 𝑏2 = −0.5826, 𝑐2 = −2.337 × 10−14, 𝑑2 = −0.901 and 𝑒2 = 0.9791. 
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Figure 6: Fitted efficiency of power path 2 as function of the speed of the planets and 
torque applied to the ring. 

5. Case study 

Based on the equations written down in Table 1, (13) and (14), it is possible to calculate the efficiency 

for all possible operating points. Fig. 7 shows the measured efficiency values of the planetary gear as 

function of varying speed ratio (ratio of carrier speed and ring speed) and stator torque. The ring speed 

was chosen constant at 200rpm. Note that as all 3 shafts are rotating, speed cannot be excluded 

anymore from the equation to calculate the efficiency. Therefore, in contrast with the earlier explanation 

on the measurement accuracy, accuracy of the speed measurement does have an effect.  

The results presented in Fig. 7 will be used as reference to benchmark the 3 cases: efficiency depending 

on both the load torque and input speed (case 1), efficiency as function of the load torque (case 2) and 

fixed efficiency (case 3). For case 1, (13) and (14) are used to calculate the efficiency of power path 1 

and 2, denoted by 𝜂1 and 𝜂2, respectively. For case 2, (13) and (14) are again used but at a fixed speed 

of the planets. This speed is arbitrarily chosen at 500rpm. For case 3, a fixed efficiency is chosen equal 

to 97% and 96% for 𝜂1 and 𝜂2, respectively. This decision is taken purely on the average efficiency in 

the operating range starting from 20Nm until the maximum torque. 
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Figure 7: Measured efficiency of the planetary gearset as function of varying speed ratio 𝝉 =
𝝎𝒄

𝝎𝒓
 

and stator torque 𝑻𝒔. 

Fig. 8 provides a comparison between the cases and the actual measured efficiency. The results show 
that the model is clearly capable of estimating the efficiency of the planetary gear, certainly for higher 
torque values. 

Comparing the outcome based on case 1 and 2 shows that the results are almost identical. This means 
that there is no added value in measuring a complete efficiency map to resemble power path 1 and 2 
as the variation of the efficiency with the speed is just too insignificant. However, there is a significant 
added value at low torque between case 2 (𝜂1,2 vary as function of 𝑇𝑠,𝑟) and case 3 (𝜂1,2 = constant). At 

higher torque, 𝜂1 and 𝜂2 become fairly constant (see Fig. 4 and 6), which explains why the differences 
between case 2 and 3 diminish for higher torque. 

Based on this analysis it is possible to conclude that the efficiency of a planetary gearbox can be 
estimate based on 2 measurements which take into account the efficiency of power path 1 and 2 as 
function of the load torque. For case 2, a complete efficiency map has been set up and is presented as 
Fig. 9. It’s clear by comparing Fig. 7 and 9 that there is a close match between measurement and model 
results. The average mismatch (complete operating range) between estimation and measurement is 
1.7%. If torque values below 10Nm are excluded, the average difference is below 1% which is close to 
the error bands of the measurements. 
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Figure 8: Efficiency of the planetary gear for varying torque applied to the sun. (a) For a speed 
ratio of 0. (b) For a speed ratio of 1. (c) For a speed ratio of 2. Blue: measurement, red: case 1, 
green: case 2, black: case 3. 

6. Conclusion 

In this paper a method is described to estimate the efficiency of a 2-DOF planetary gearbox over a wide 

range of operating points. The model combines the theory of virtual power with a limited set of 

measurements. These measurements are conducted to calculate the efficiency of 2 power paths: 

between sun & carrier and carrier & ring. It is shown that these efficiency terms merely depend on the 

load torque. The required measurement time is thus limited as the variation with speed does not have 

to be taken into account. The results show the good match between measured efficiency of the 

planetary gearbox and the estimated value. Average difference between both is 1.7% if the complete 

operating range is considered. This drops to less than 1% is torque values below 10Nm are excluded. 
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Figure 9: Simulated efficiency of the planetary gearset for varying speed ratio 𝝉 =
𝝎𝒄

𝝎𝒓
 and stator 

torque 𝑻𝒔. 
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