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SUMMARY 

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer that results from 

malignant transformation of precursor T-cells. Several gain-of-function and loss-of-function mutations 

in oncogenes and tumor suppressor genes have been described, cooperating to fully transform normal 

developing T-cells into lymphoblasts. Gene expression profiling of T-ALL patients revealed several 

driver oncogenes, demarcating distinct molecular subgroups. One of these drivers is ’T-cell leukemia 

homeobox 1’ (TLX1), which defines a molecular T-ALL subgroup, characterized by a specific gene 

expression pattern and a T-cell developmental arrest at the early cortical stage. Although this subgroup 

is characterized by a favorable prognosis, still a large fraction of the T-ALL patients relapse and current 

therapies are associated with acute and long-term toxicities. Hence, genetic alterations in T-ALL should 

be further investigated to develop more effective and less toxic therapies. Therefore, the network 

downstream of TLX1 has already been studied extensively in terms of protein-coding genes, however, 

the downstream long non-coding RNA (lncRNA) network, remained thus far unexplored. In this PhD 

research, I revealed TLX subgroup specific and more specifically, TLX1 regulated lncRNAs. 

To identify these specific lncRNAs, I performed polyA[+] and total RNA-seq of TLX1 positive ALL-SIL 

lymphoblasts upon TLX1 knockdown and a large primary T-ALL cohort. By further integrating ATAC-

seq, H3K4me1, H3K4me3, H3K27ac and TLX1 ChIP-seq of ALL-SIL lymphoblasts, I identified known as 

well as novel TLX1 regulated and super-enhancer associated lncRNAs. I extended the T-ALL cohort with 

lncRNA expression data of a progenitor T-cell subset to determine possibly oncogenic lncRNAs. Since 

lncRNAs may serve as excellent therapeutic targets owing to their tissue specific expression and low 

abundance, these potentially oncogenic lncRNAs require further functional characterization to validate 

if these can serve as new therapeutic targets in T-ALL. Since I generated a comprehensive and unique 

dataset in the T-ALL field that contains extensive unexplored information, I wrote a data descriptor to 

share the data with the research community, ensuring re-usability of the dataset. 

Although these bulk sequencing experiments provide comprehensive information about TLX subgroup 

specific and TLX1 regulated lncRNAs, average expression profiles are generated, which can mask subtle 

differences among cells. To unravel this heterogeneity, single cell RNA-seq devices were developed. I 

first developed a single cell total RNA-seq protocol enabling to capture polyadenylated as well as non-

polyadenylated transcripts, since virtually all methods at that time only sequenced polyadenylated 

transcripts, ignoring the vast non-polyadenylated part of the transcriptome. Using my method, more 

genes can be identified compared to classic single cell polyA[+] RNA-seq methods. Furthermore, I 

showed that my method can detect circular RNAs, which lack a polyA tail, and novel genes and 

recapitulate the expected biological signal after perturbation. Since my protocol works on Fluidigm’s 

C1 and flow cytometry sorted cells, it is widely applicable. However, the throughput of these two 

devices is still relatively low compared to the latest developed single cell RNA-seq devices that can 

capture thousands to tens of thousands of cells. Several studies compared these devices with respect 

to data quality and the ability to distinguish cellular subpopulations, however none of these 

comparative studies investigated the heterogeneity of the cellular transcriptional response upon 

chemical perturbation. Therefore, I compared the C1 (Fluidigm), ddSeq (Bio-Rad, Illumina) and 

Chromium (10x Genomics) in terms of data quality and their ability to detect differentially expressed 

genes and putative transcriptional heterogeneity. I revealed that despite the lower number of 

differentially expressed genes in single cell RNA-seq experiments compared to bulk RNA-seq 

experiments, the biological signal can be detected by gene set enrichment analysis for all single cell 

devices. Furthermore, I showed that single cell RNA-seq analyses enable to reveal heterogeneity in the 
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response on nutlin-3 treatment and to identify potentially late-responders or resistant cells, which are 

hidden in bulk RNA-seq experiments and require further in depth investigation. 

In conclusion, I identified a set of TLX1 regulated and TLX subgroup specific lncRNAs, of which some 

are potentially oncogenic, marking them as highly interesting targets for further in depth 

characterization. Furthermore, I developed a single cell total RNA-seq protocol that for the first time 

combines strandedness and effective removal of ribosomal cDNA and enables the detection of both 

polyadenylated and non-polyadenylated transcripts, including lncRNAs, circRNAs and novel genes. 

Finally, I performed an in depth evaluation of the C1, ddSeq and Chromium single cell devices and 

showed that detection of the most abundant genes in single cell experiments is sufficient to faithfully 

detect biological signal through genes set enrichment analysis and may help to identify potentially late-

responders or resistant cells upon compound treatment. 
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SAMENVATTING 

T-cel acute lymfoblastische leukemie (T-ALL) is een agressieve bloedkanker die ontstaat door een 

maligne transformatie van voorloper T-cellen. Er zijn reeds verschillende gain-of-function en loss-of-

function mutaties in oncogenen en tumor suppressor genen beschreven, die samenwerken om zich 

normaal ontwikkelende T-cellen te transformeren tot lymfoblasten. Genexpressie profilering van T-

ALL patiënten onthulde verschillende driver oncogenen die moleculaire subgroepen aflijnen. Een van 

deze driver genen is ’T-cell leukemia homeobox 1’ (TLX1), die een moleculaire subgroep afbakent met 

een specifiek genexpressie patroon en een arrest vertoont in het vroege corticale stadium van de T-

cel ontwikkeling. Hoewel deze subgroep gekenmerkt wordt door een relatief goede prognose, 

hervallen nog steeds veel T-ALL patiënten en leiden de huidige therapieën tot acute en lange termijn 

toxiciteit. Het is daarom belangrijk om de genetische defecten in T-ALL verder te onderzoeken, om zo 

effectievere en minder toxische therapieën te kunnen ontwikkelen. Hoewel het eiwit-coderende 

netwerk downstream van TLX1 reeds uitgebreid onderzocht werd, bleef het geassocieerde lange niet-

coderende RNA (lncRNA) netwerk tot nu toe grotendeels onbestudeerd. Daarom heb ik in de context 

van mijn PhD onderzoek gedaan naar TLX subgroep geassocieerde lncRNAs en meer specifiek naar 

TLX1 gereguleerde lncRNAs. 

Om deze lncRNAs te identificeren heb ik polyA[+] en total RNA-seq uitgevoerd op TLX1 positieve ALL-

SIL lymfoblasten na knockdown van TLX1 en op een grote T-ALL patiënten cohorte. Na integratie van 

ATAC-seq en H3K4me1, H3K4me3, H3K27ac en TLX1 ChIP-seq data, gegenereerd op ALL-SIL 

lymfoblasten, heb ik gekende en nieuwe TLX1 gereguleerde en super-enhancer geassocieerde lncRNAs 

geïdentificeerd. Vervolgens heb ik deze primaire T-ALL dataset uitgebreid met lncRNA expressie data 

van een voorloper T-cel subset, waardoor ik potentieel oncogene lncRNAs kon identificeren. Aangezien 

lncRNAs als excellente therapeutische targets kunnen dienen door hun hoge weefsel-specificiteit en 

lage expressie, zouden de potentieel oncogene lncRNAs verder functioneel onderzocht moeten 

worden, om na te gaan of deze effectief gebruikt kunnen worden als nieuwe therapeutische targets in 

T-ALL. Aangezien ik een uitgebreide en unieke dataset in het T-ALL onderzoeksveld heb gegenereerd, 

die informatie bevat die nog niet onderzocht werd, heb ik een data descriptor geschreven om zo de 

data te delen met de onderzoekswereld, zodat deze hergebruikt kan worden. 

Hoewel deze ‘bulk’ experimenten uitgebreide informatie bevatten over TLX-subgroep specifieke en 

TLX1 gereguleerde lncRNAs, werden er gemiddelde expressie profielen gegenereerd, wat kleine 

verschillen tussen cellen kan maskeren. Om deze heterogeniteit te ontrafelen, werden toestellen voor 

single cell RNA-seq  ontwikkeld. Ik heb eerst een single cell total RNA-seq protocol ontwikkeld dat 

zowel gepolyadenyleerde als niet-gepolyadenyleerde transcripten kan detecteren, aangezien zo goed 

als al de bestaande methoden tot dan toe enkel gepolyadenyleerde transcripten sequeneerden, 

waarbij het niet-gepolyadenyleerde deel van het transcriptoom dus niet opgepikt werd. Met de 

methode ontwikkeld tijdens mijn PhD kunnen meer genen gedetecteerd worden in vergelijking met 

de klassieke single cell polyA[+] RNA-seq methodes. Daarenboven toonde ik aan dat deze nieuwe 

methode nieuwe genen en circulaire RNAs (circRNAs), die geen polyA staart hebben, kan detecteren 

en het verwachte biologische signaal na perturbatie kan oppikken. Aangezien mijn methode op C1 

(Fluidigm) en flow-cytometrie gesorteerde cellen werkt, is de methode wijd toepasbaar. Een nadeel is 

dat de throughput van deze twee toestellen relatief laag is in vergelijking met de laatst ontwikkelde 

single cell RNA-seq methodes, die meer dan tienduizend cellen kunnen isoleren. In verschillende 

studies werden de kwaliteit van de data en het vermogen van deze methoden om cel subpopulaties te 

onderscheiden vergeleken, terwijl geen enkele van deze vergelijkende studies de heterogeniteit van 

de transcriptionele respons op een chemische perturbatie heeft bestudeerd. Daarom heb ik de C1 

(Fluidigm), ddSeq (Bio-Rad, Illumina) en Chromium (10x Genomics) vergeleken met betrekking tot de 
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datakwaliteit en hun vermogen om differentieel geëxpresseerde genen en transcriptionele 

heterogeniteit te detecteren. Ik heb aangetoond dat ondanks dat er minder differentieel 

geëxpesseerde genen gedetecteerd worden in single cell RNA-seq experimenten in vergelijking met 

bulk experimenten, het biologisch signaal toch gedetecteerd kan worden met zogenaamde gene set 

enrichment analyse voor de drie single cell methodes. Ik heb ook aangetoond dat single cell RNA-seq 

analyses de heterogeniteit in respons op nultin-3 behandeling kunnen onthullen en cellen kunnen 

detecteren die resistent zijn of vertraagd reageren op de therapie, wat niet mogelijk is met bulk RNA-

seq en verder onderzoek vraagt.  

Samenvattend heb ik een set van TLX1 gereguleerde en TLX-subgroep specifieke lncRNAs 

geïdentificeerd, waarvan sommige mogelijks oncogeen zijn, waardoor ze interessante targets vormen 

voor verdere functionele karakterisatie. Daarnaast ontwikkelde ik ook een single cell total RNA-seq 

protocol dat voor het eerst de informatie van de DNA streng behoudt en zorgt voor een effectieve 

verwijdering van het ribosomaal cDNA en de detectie toelaat van zowel gepolyadenyleerde als niet-

gepolyadenyleerde transcripten, zoals lncRNAs en circRNAs, en nieuwe genen. Ten slotte heb ik een 

gedetailleerde evaluatie van de C1, ddSeq en Chromium single cell toestellen uitgevoerd en 

aangetoond dat de detectie van de meest abundante genen in single cell experimenten voldoende is 

om het biologisch signaal op te pikken door middel van gene set enrichment analyse, wat kan bijdragen 

tot de detectie van cellen die resistent zijn of vertraagd reageren op therapie. 
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1.1. T-cell acute lymphoblastic leukemia 

1.1.1. Leukemia 

Leukemia is a broad term for blood and bone marrow cancers and is the most common cancer in 

children younger than 15 years (1). Leukemia can be subdivided in lymphoblastic and myeloid leukemia 

depending on the type of blood cells that is transformed. In addition, leukemias are further subdivided 

in an acute form, which develops rapidly and results in the accumulation of immature blood cells in 

the bone marrow, and a chronic form that develops slowly and leads to an accumulation of more 

mature blood cells. Based on this distinction, leukemias can be subdivided in four major categories: 

acute lymphoblastic leukemia (ALL), chronic lymphoblastic leukemia (CLL), acute myeloid leukemia 

(AML) and chronic myeloid leukemia (CML) (2, 3). CLL, AML and CML most frequently occur in adults, 

while ALL is mostly diagnosed in children (3). ALL accounts for 80 % of all leukemia cases in children, 

with a peak incidence between two and five years and is the most frequent cause of death from cancer 

before the age of 20 (1, 4, 5). ALL can be further subdivided in T-cell acute lymphoblastic leukemia (T-

ALL) and B-cell acute lymphoblastic leukemia (B-ALL) with a malignant transformation of T-cell and B-

cell progenitors, respectively. T-ALL, studied in this PhD thesis, accounts for 10% - 15% of pediatric and 

25% of adult ALL cases and is characterized by an arrest during T-cell development (6, 7). 

1.1.2. T-cell development 

T-lymphocytes are immune cells with an important role in the adaptive immune response to protect 

the body from infections. Normal T-cell development is a strictly regulated and hierarchical process in 

which hematopoietic progenitor cells develop to mature T-cells and involves several steps of 

proliferation, maturation, differentiation and selection (Figure 1). First, the hematopoietic progenitor 

cells migrate from the bone marrow to the thymus via the bloodstream (8). These early T-cell 

progenitor (ETP) cells start to proliferate and express the stem cell marker cluster of differentiation 34 

(CD34) (9, 10). Since the CD4 and CD8 receptors are not expressed on the membrane of these cells, 

this stage is called the double negative (DN) stage. The DN stage comprises four consecutive 

development stages with different expression patterns of CD44 and CD25 (11). During the DN stage, 

cells proliferate and T-cell specification is acquired via high NOTCH1 expression levels (12). The latter 

evokes a definitive block in the development into the B-cell lineage and induces initiation of T-cell 

development, but is however not sufficient for final T-cell commitment as natural killer (NK) cells can 

still develop from these cells (12, 13). To achieve full T-cell commitment, GATA3 expression is required 

to initiate the gene expression program required for T-cell development (14). At this point, the 

expression levels of NOTCH1 will determine if a cell further develops into the αβ or γδ lineage. Only a 

small subset of these cells will undergo rearrangements of the γδ chains under influence of high 

NOTCH1 levels, while the majority of the cells will develop into the αβ lineage, which requires a drop 

in NOTCH1 expression (15). Completion of the T-cell commitment is marked with CD1a expression (16). 

To further develop into a mature T-cell, CD4 is expressed during the immature single positive (ISP) 

stage of human T-cell development, in absence of CD3 expression, which is strongly expressed in 

mature single positive T-cells (17, 18). Next, T-cell receptor (TCR) genes need to be rearranged to 

obtain functional TCRs that can detect antigens presented by the major histocompatibility complex 

(MHC). First, a pre-TCR is generated and lymphocytes that fail to generate a functional pre-TCR 

undergo apoptosis (β-selection). Next, the lymphocytes express CD4 and CD8 (double positive cells, 

DP) and the α-chain is rearranged, generating the TCRαβ (8, 10, 12, 19). Only cells with TCRs that 

interact with intermediate avidity to the MHCs survive (positive selection). Furthermore, cells that 

interact too strongly with self-antigens are eliminated by apoptosis (negative selection), preventing 

auto-immunity. Finally, cells further differentiate into the single positive mature stage, expressing 
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either CD4 or CD8 (single positive cells, SP) (8, 10, 12, 19). Hereafter, naïve T-cells migrate to the 

bloodstream and peripheral immune organs to perform their function. T-cells are activated by the 

presentation of foreign antigens by the MHC. After activation, CD8 positive T-cells further differentiate 

into cytotoxic T-cells that detect and kill infected cells, while CD4 positive cells can differentiate in T-

helper cells that stimulate other cells of the immune system. Finally, regulatory T-cells suppress the 

activity of other lymphocytes to tightly control the immune response (19). Since T-cell differentiation 

is a highly regulated process including several proliferation, differentiation and selection steps, in 

which different transcription factors and signal pathways are involved, deregulation of these processes 

can lead to the development of T-ALL (10, 20). 

1.1.3. Symptoms, diagnosis and prognosis of T-ALL 

The symptoms displayed by T-ALL patients are non-specific and result from a decrease in normal 

hematopoiesis due to an increase of lymphoblasts in the bone marrow. This leads to bleedings and 

bruises due to a reduction in platelet counts, anemia due to a reduction in red blood cells and infections 

due to neutropenia (4). T-ALL patients often have a large tumor burden and present with mediastinal 

thymic masses, very high circulating blast cell counts, and infiltration of the central nervous system, 

resulting in headaches and nausea, at the time of diagnosis (21, 22). Genetic factors, such as Down and 

Bloom syndrome, are associated with an increased risk for T-ALL development, however, most patients 

have no inherent factors (4, 23, 24). The current diagnosis is based on cell morphology, 

immunophenotype and genetics of peripheral blood and bone marrow and a lumbar puncture to 

Figure 1: T-cell development in the thymus. Development of hematopoietic progenitors to naïve T-cells in the thymus. 
Mature CD4+ TCRαβ, CD8+ TCRαβ and TCRγδ T-cells migrate to the blood and secondary lymphoid organs. DN: double 
negative; ISP: immature single positive; DP: double positive; TCR: T-cell receptor; ISP: immature single positive. Figure 
adapted from (8) and (38). 
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determine potential leukemic infiltration in the CNS is carried out as well. It is for instance possible to 

distinguish ALL from AML based on cell morphology, while flow cytometry is warranted to distinguish 

T-ALL from B-ALL (25). The prognosis is mainly determined by clinical and genetic features at diagnosis 

and by early response to the treatment (4). It is known that children between one and nine years old 

have the best prognosis, while the prognosis gets worse with increasing age for adults. Children 

younger than 12 months generally have a bad prognosis. Furthermore, high leukocyte counts also 

result in a more poor outcome (5). Currently, the survival rate of pediatric T-ALL cases is close to 90 %, 

however, adult cases still have a poor prognosis (26, 27). Furthermore, current standard therapies give 

short-term and long-term side-effects and still up to 20 % of the pediatric and 40 % of the adult T-ALL 

patients relapse, warranting for a more profound insight into the molecular basis of T-ALL, to enable 

the development of innovative and more effective targeted therapeutic strategies (5, 28). 

1.1.4. Common genetic alterations in T-ALL 

T-ALL is a multistep oncogenic process in which genetic aberrations accumulate over time, resulting in 

a differentiation arrest during T-cell development and consequently proliferation of immature T-cells. 

The emergence of next generation sequencing (NGS) technologies has expanded our knowledge on 

the molecular basis of T-ALL (29–35). Recent studies have shown that on average 10-20 protein-coding 

alterations are detected in a T-ALL cell, which are assumed to cooperate to fully transform thymocytes 

into lymphoblasts (29, 31, 33, 36). These genetic alterations affect several biological processes, 

including cell cycle, self-renewal capacity, TCR signaling, and activation of tyrosine kinases during 

thymocyte development (37, 38). The cell cycle is a tightly controlled process that comprises several 

checkpoints to maintain genomic integrity and defects in these checkpoints can result in apoptosis or 

tumor formation. The most common genetic defect in T-ALL is an inactivation of the CDKN2A locus 

that occurs in up to 90 % of the T-ALL patients. CDKN2A encodes both the p14/ARF and p16 proteins 

involved in pRB1 phosphorylation and TP53 activation, hindering cell cycle entry and TP53 controlled 

cell cycle inhibition and apoptosis (37, 39, 40). CDKN2A is mostly inactivated due to a deletion of the 

9p21 locus, in which CDKN2B/p15 is often co-deleted (37, 40, 41). However, CDKN2A/B inactivation 

may also result from cryptic deletions, inactivating mutations or promoter hypermethylation (37, 40, 

42–45). Acquiring self-renewal capacity is one of the hallmarks of cancer and is in T-ALL often acquired 

through a constitutive activation of NOTCH1, a key factor in T-cell development (46). Upon activation, 

NOTCH1 is cleaved and intracellular NOTCH1 (ICN1) is translocated to the nucleus to activate target 

genes (37, 47). A rare translocation (t(7;9)(q34;q34)) activates NOTCH1 by juxtaposing NOTCH1 to TCRβ 

regulatory sequences, but is only found in < 1 % of the T-ALL patients (48). Most frequently, NOTCH1 

is activated by activating mutations in the heterodimerization domain, the PEST domain or both, 

resulting in an increased stability of ICN or ligand independent activation of the NOTCH1 receptor (46). 

These activating mutations result in a constitutive active NOTCH1, increasing the transcription of target 

genes that are involved in several functions, including self-renewal capacity and the regulation of cell 

cycle, cell growth and cell survival. NOTCH1 regulates the cell cycle through direct upregulation of 

Cyclin D3, CDK4 and CDK6, which contributes to the deregulation of G1/S cell cycle progression and 

proliferation in T-ALL cells (49). G1/S transition is further promoted by NOTCH1 through upregulation 

of the cell cycle regulator SKP2 that negatively regulates the CDK inhibitor p27/KIP (50). Identification 

of NOTCH1 direct target genes revealed that many target genes, including c-MYC, IL7R and IGF1R, are 

involved in the regulation of cell growth (51–53). NOTCH1 also promotes cell survival via activation of 

the NF-kB pathway via several mechanisms, including binding on NF-kB2 and RELB and inducing their 

transcription and by directly increasing the activity of the IKK complex (54, 55). Besides NOTCH1 

mutations, inactivating mutations or deletions in the FBXW7 tumor suppressor gene also result in an 

increased NOTCH1 protein stability as FBXW7 normally degrades NOTCH1 (56). Activating NOTCH1 
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mutations are detected in more than 60 % of the T-ALL cases, marking NOTCH1 as a potential 

important therapeutic target (57–59). Gamma secretase inhibitors (GSI) inhibit the proteolytic 

cleavage of NOTCH1 and consequently the constitutive activation of NOTCH1 target genes. 

Unfortunately, this therapy suffers from gastro-intestinal toxicity and low efficiency (57). However, 

recently it has been shown that specifically targeting the PSEN1  gamma secretase results in high anti-

leukemic activity and avoids gastro-intestinal toxicity, providing optimism for further clinical testing  

(60). PHF6 is another gene that is frequently mutated in T-ALL. Inactivating mutations or deletions in 

PHF6 are identified in 16 % and 38 % of the pediatric and adult T-ALL patients, respectively, and are 

associated with TLX1 and TLX3 overexpression (31, 32, 35). Moreover, it has recently been suggested 

that PHF6 mutations increase the self-renewal capacity of hematopoietic stem cells (HSC), however 

this requires further investigation (61–64). During T-ALL development, several genes involved in TCR 

signaling are mutated or targeted for chromosomal rearrangement. For instance, LCK is a tyrosine 

kinase that is highly expressed during T-cell development and can be ectopically expressed in T-ALL 

due to the t(1;7)(p34;q34), placing LCK in the neighborhood of TCRβ (65). Also other genes involved in 

TCR signaling, such as RAS and PTEN, are frequently mutated in T-ALL, resulting in proliferation and 

survival of immature thymocytes (40, 66, 67). Besides LCK, also other tyrosine kinases are often 

activated in T-ALL. The ABL1 tyrosine kinase is typically fused with BCR by the Philadelphia 

translocation t(9;22) (q34;q11) in chronic myeloid leukemia and B-cell acute lymphoblastic leukemia 

(68, 69). In contrast, while this fusion is rare in T-ALL, ABL1 is activated in 6 % of the cases by a NUP214-

ABL1 fusion, resulting in a constitutive active ABL1, and consequently in proliferation and survival (70). 

Other tyrosine kinases, such as JAK2 and FLT3, can also be activated resulting in consecutive tyrosine 

kinase activity and proliferation of T-cells (71, 72).  

1.1.5. Molecular subgroups in T-ALL 

T-ALL patients can be subdivided in molecular subgroups based on the overexpression of specific 

transcription factors (73). These transcription factors are typically activated by four mechanisms: (a) 

chromosomal translocations involving promoters or enhancers of TCR genes, (b) chromosomal 

rearrangements with other regulatory sequences, (c) duplications / amplifications and (d) mutations 

or small insertions generating novel regulatory sequences acting as enhancers (36). The subgroups 

each have a specific gene expression profile and are characterized by a fixed differentiation arrest 

during T-cell development (Figure 2). Using microarray expression analysis, Ferrando et al. showed 

that T-cell leukemia homeobox 1 (TLX1,HOX11), TAL-R and LYL1 positive T-ALLs have specific gene 

expression patterns with a differentiation arrest in the early cortical, late cortical and pro-T-cell stage, 

respectively (6). Clustering analysis revealed a fourth group, the TLX3 subgroup, that has a similar 

expression profile as TLX1, but lacks TLX1 expression (6). As TLX1 and TLX3 have a similar gene 

expression signature and induce T-ALL in a similar way, TLX1+ and TLX3+ patients are often grouped as 

one subgroup (74). Another study used FISH with probes for TCRβ to identify new translocation 

partners of TCRβ, known to be often involved in translocations in T-ALL. This revealed HOXA as a new 

translocation partner of TCRβ, placing genes of the HOXA cluster in the vicinity of TCRβ regulatory 

elements and defining a new homogenous subgroup with an arrest in pre-T-cell stage (75). These four 

subgroups are described below with a focus on the TLX1/TLX3 subgroup as this subgroup is 

investigated in more depth in this PhD thesis. 

1.1.5.1. TAL-R 

The TAL-R subgroup is predominantly characterized by TAL1 or LMO2 expression. TAL1 is a basic helix-

loop-helix (bHLH) protein and is often ectopically expressed due to juxtaposition to regulatory 

elements of TCRα/δ or TCRβ by t(1;14)(p32;q11) and t(1;7)(p32;q35), respectively. Later, also a 1p35 
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deletion, placing TAL1 under control of the STIL promoter, had been identified (37, 76). Furthermore, 

TAL1 can also be overexpressed by a noncoding mutation upstream of the TAL locus, creating a super-

enhancer with a new MYB binding site, activating TAL1 expression (77). GATA3 and RUNX1 form a core 

regulatory circuit with TAL1 by binding and positively regulating its own and each other’s gene 

expression and contributing to the development of TAL1 positive T-ALL (78). For its function, TAL1 

binds to the LMO family, forming a transcriptional complex that inhibits E2A function. E2A is required 

for the proper expression of CD4 and CD5 genes during the early stages of T-cell development and 

inhibition of E2A consequently results in a differentiation arrest (79). LMO2 can also be ectopically 

expressed by translocations (t(11;14)(p13;q11) and t(7;11)(q35;p13)) to the TCRα/δ or TCRβ locus or 

by a deletion (del(11)(p12p13)) resulting in the loss of a negative regulatory element of LMO2, thus 

activating the proximal LMO2 promoter (80–83).   

1.1.5.2. HOXA 

The HOXA subgroup is characterized by overexpression of members of the HOXA cluster, typically due 

to an inversion on chromosome 7, a PICALM-MLL10 rearrangement, MLL fusions or SET-NUP214 

fusions (37, 84). The inversion (inv(7)(p15q35)) juxtaposes the HOXA cluster to the TCRβ enhancer, 

thereby activating HOXA genes (in particular HOX10 and HOX11). In contrast, the PICALM-MLL10 

(t(10;11)(p13;q14)) translocation results in the recruitment of hDOT1L, a H3K79 methyl transferase 

that methylates and activates genes of the HOXA cluster (37, 84–87). Likewise, MLL-MLLT1/ENL and 

MLL-MLLT10/AF10 fusions also recruit hDOT1L resulting in consecutive methylation and activation of 

HOXA genes. The SET-NUP214 fusion results from a deletion (del(9)(q34.11q34.13)) and acts as a 

transcriptional co-factor to activate HOXA genes (37, 88, 89). As hDOT1L is often involved in the 

activation of HOXA genes, it may be an interesting therapeutic target for this subgroup (37). 

1.1.5.3. Immature subgroup 

The immature subgroup is characterized by a high expression of LMO2, LYL1, stem cell marker CD34, 

BCL2 and a frequent expression of the myeloid markers CD13 and CD33. This subgroup has a 

differentiation arrest in the early T-cell development (90, 91). Driver genomic rearrangements have 

not been identified and this subgroup has in general a bad prognosis (6, 37). This can partially be 

explained by the high expression of BCL2, as BCL2 is an anti-apoptotic protein which can prevent that 

Figure 2: schematic overview of molecular T-ALL subgroups in relation to their T-cell development stage. T-ALL can be 
subdivided in four subgroups, immature, TAL-R, HOXA and TLX (TLX1/TLX3), each with a specific gene expression signature 
and an arrest at a specific stage of the T-cell development. DN: double negative; DP: double positive; SP: single positive; CD: 
cluster of differentiation; TCR: T-cell receptor; ISP: immature single positive. Figure adapted from (6, 448, 449). 
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drug-induced damage results in cell death. This enables treated cells to survive, which may explain the 

resistance to chemotherapeutic agents for this subgroup (6, 92). A part of the immature T-ALL patients 

display a molecular signature corresponding to a T-cell development differentiation arrest at the ETP 

stage, reflecting cells migrating from the bone marrow to the thymus. This subgroup is characterized 

by a lack of CD1a and CD8 expression, a weak expression of CD5 and expression of one or more myeloid 

and/or stem-cell markers (CD117, CD34, HLA-DR, CD13, CD33, CD11b and/or CD65). This class also has 

a higher expression of CD34, LYL1, LMO1 and ERG and is characterized by more copy number 

alterations compared to the other subgroups (29). Whole genome sequencing revealed alterations in 

epigenetic regulators (e.g. DNMT3A, IDH2), signaling factors (e.g. RAS, FLT3) and genes involved in 

hematopoietic development (e.g. GATA, RUNX1). Of interest, 48 % of the ETP-ALL cases have 

alterations in genes encoding components of the polycomb repressive complex (PRC2), such as SUZ12 

and EZH2, disrupting PRC2 mediated gene silencing. Of note, CDKN2A/B mutations are less frequently 

identified in this subgroup (29, 31). This ETP subgroup was initially characterized by a poor outcome, 

however, recent research suggests that intensified therapies can overcome this poor outcome (29, 38, 

93).  

1.1.5.4. TLX1/TLX3 

T-cell leukemia homeobox 1 (TLX1, HOX11) is a homeobox gene that is essential for nervous system 

and spleen development, as it has been shown that Hox11-/- mice show asplenia (94–96). TLX1 is not 

expressed in developing thymocytes, whereas ectopic expression of TLX1 in lymphoblasts, caused by 

TLX1 juxtaposition to the regulatory elements of TCRβ or TCRα/δ as a consequence of the 

t(7;10)(q35;24) and t(10;14)(q24;q11) chromosomal translocations, respectively, disrupts T-cell 

differentiation and initially leads to a drastic decrease in the absolute number of thymocytes. This 

indicates that TLX1 overexpression affects T-cell differentiation, proliferation and survival (97–99). 

TLX1 is a driver in T-ALL development and is ectopically expressed in 5-10 % of pediatric and 30 % of 

adult T-ALL patients (73, 95, 100). Besides chromosomal translocations, ectopic TLX1 expression can 

also be caused by other genetic defects, such as subtle mutations in cis regulatory elements, 

deregulation of trans-factors that regulate TLX1 expression and methylation status of the promoter 

(95). For the latter, it has been shown that demethylation of the proximal promoter of TLX1 results in 

TLX1 expression and that this promoter demethylation is detected in TLX1 positive patients with and 

without translocations (101). Furthermore, TLX1 overexpression defines a molecular subgroup with a 

gene expression profile that is indicative for leukemic arrest at the early cortical stage of T-cell 

development with corresponding expression of CD1a, CD4 and CD8 surface marker proteins (99, 102). 

This arrest results from the ETS mediated recruitment of TLX1 to the TCRα enhanceosome, reducing 

its activity and consequently blocking correct TCR-Jα rearrangements (Figure 3). Moreover, increased 

levels the repressive H3K27me3 mark across the TCRα locus in TLX positive leukemia indicate that 

these non-rearranged TCRα segments are epigenetically silenced (103, 104). TLX1 positive T-ALL 

patients are generally associated with a favorable prognosis and have a longer overall survival as 

compared with the other subgroups. This can be partially explained by the lack of expression of BLC2 

and related anti-apoptotic proteins, since most anti-neoplastic drugs act through the apoptosis 

machinery and their activity is consequently inhibited by these anti-apoptotic proteins. Thus, 

upregulation of these anti-apoptotic proteins can results in resistance, while the lack of expression 

provides a better treatment response (6, 73). In mice, it has been shown that TLX1-driven leukemia is 

characterized by a long latency (> 25 weeks), showing that TLX1 overexpression is not sufficient for T-

cell transformation and that cooperating genetic alterations are required to fully transform T-cells to 

leukemia cells (105, 106). Therefore, secondary mutations and/or deletions in NOTCH1, WT1, PHF6, 

PTEN, PTPN2 and BCL11B and NUP214-ABL1 rearrangements have a high frequency in TLX1 positive T-
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ALL, enabling further malignant T-cell transformation and providing a TLX1 subgroup specific gene 

expression pattern with genetic alterations rarely found in other subgroups (35, 70, 107–109). 

Although activating NOTCH1 mutations are identified in all subgroups, these mutations are more 

frequently detected in TLX1, TLX3, LMO1/2 positive patients and are a prerequisite to further evolve 

towards full malignant transformation (31, 98, 105, 110, 111). Of interest, it has been shown that TLX1 

downregulates NOTCH1 and key NOTCH1 target genes (e.g. NOTCH3 and IL7R), and that there is an 

overlap of NOTCH1, ETS, RUNX1 and TLX1 binding on these NOTCH1 target genes (98, 112, 113). This 

unique antagonism between two oncogenes might explain the very high incidence of activating 

NOTCH1 mutations in TLX1 driven T-ALL, as well as the very long latency of T-ALL development in a 

TLX1 driven leukemia mouse model (98). Therefore, targeting NOTCH1 in TLX1 positive T-ALL may be 

beneficial and it has been shown that using GSIs reduces cell growth in TLX1 positive T-ALL although 

the effect is only transient, hinting to combination therapies (106).  

Overexpression of TLX1 in immature thymocytes and short interfering RNAs (siRNA) mediated TLX1 

knockdown in TLX1+ ALL-SIL lymphoblasts revealed that TLX1 represses several tumor suppressor 

genes, including PTPN2 and BCL11B (98, 107). PTPN2 is often deleted in TLX1 positive T-ALL and is 

highly expressed in the early cortical stage of T-cell development and consequently most sensitive to 

Figure 3: development of TLX1 driven T-ALL. TLX1 is ectopically expressed due to the t(7;10)(q35;q24) or t(10;14)(q24;q11) 
translocation. Next, TLX1 is recruited by ETS and RUNX to the TCRα enhanceosome, reducing its activity and consequently 
blocking correct TCR-Jα rearrangements and T-cell differentiation. Secondary mutations cooperate to fully transform 
immature T-cells in leukemia cells. TCR: T-cell receptor; DN: double positive; DP: double positive. 
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loss at that stage (35, 70, 107–109). BCL11B controls early T-cell progenitor differentiation in the 

thymus, and is often deleted or mutated in TLX1 positive T-ALL (105). Durinck et al. have demonstrated 

that there is an overlap in the binding of TLX1, RUNX and ETS in the promoters of these TLX1 repressed 

genes. Furthermore, siRNA mediated knockdown of these three genes showed a common 

transcriptional expression pattern (98). Recently, it has been shown in mice that the latency of T-ALL 

development by TLX1 can be shortened by combining TLX1 expression with the NUP214-ABL1 

rearrangement, which is most frequently detected in TLX1 positive T-ALL (70, 114). This combination 

results in the upregulation of amongst others genes of the JAK-STAT pathway, including STAT5. ChIP-

seq of STAT5 revealed that STAT5 binding overlaps with TLX1 binding sites throughout the genome and 

that these binding sites are especially enriched at poised enhancers. Binding of STAT5 and TLX1 can 

open and activate these enhancers resulting in expression of their target genes. Furthermore, STAT5 

and TLX1 bind on the MYC enhancer to activate MYC and subsequently reinforce the expression of 

STAT5 and TLX1 target genes, showing that MYC and STAT5 upregulation contribute to the faster 

development of TLX1 positive T-ALL (115). In addition to these secondary genetic alterations, de 

Keersmaecker et al. showed in TLX1 positive mice a high rate of aneuploidy indicating that TLX1 has an 

influence on the mitotic machinery (105, 108). Indeed, some of the direct TLX1 targets, such as CHEK1, 

a known regulator of the mitotic spindle checkpoint, are downregulated in TLX1 positive T-ALL, 

resulting in the loss of mitotic checkpoint control and chromosomal missegregation (105). 

Furthermore, TLX1 has been shown to be involved in G2 to M transition via interaction with the PP2A 

phosphatase (116). Together, this shows that the development of TLX1 positive T-ALL is a multi-step 

process in which multiple genetic alterations are required. 

TLX3 is another homeobox gene that is highly similar to TLX1 and is also not expressed in developing 

thymocytes. Its expression mostly results from the t(5;14)(q35;q32) translocation, juxtaposing TLX3 to 

the distal region of BCL11B. In addition, translocations of TLX3 to CDK6 (t(5;7)(q35;q21)), which is 

highly expressed during T-cell differentiation and in T-ALL, and to TCRα/δ (t(5;14)(q32;q11)) have been 

described (117–119). While TLX1 expression is more prevalent in adults, TLX3 is expressed in 25 % of 

the pediatric and 5 % of the adult patients and has a more variable prognosis as compared to TLX1 

patients (83, 100, 105, 120). Furthermore, TLX3 patients have a more heterogeneous differentiation 

arrest, where some cases have an arrest in the immature stage, while others have an arrest in the 

more mature intermediate αβ/γδ stage, allowing further development into the αβ and γδ lineage 

(Figure 2) (120–122). TLX1 and TLX3 share a common gene expression pattern, and 75 % of the regions 

bound by TLX1 are also bound by TLX3. Furthermore, RUNX1 is a key regulator of TLX1/TLX3 regulatory 

programs as 50 % of the promoters bound by RUNX1 are also bound by TLX1 and TLX3 (119). As TLX1 

and TLX3 have similar gene expression signatures, a broad overlap between the regulated genes and 

induce T-ALL in a similar way, TLX1 and TLX3 patients are mostly grouped in one subgroup. 

Furthermore, TLX1 and TLX3 positive leukemias have genetic alterations that are rarely found in other 

T-ALLs such as mutations in BLC11B, PTPN2 and WT1 and the NUP214-ABL1 fusion (38, 109, 114, 119).  

1.1.6. T-ALL treatment 

The main treatment regimen still applied nowadays for pediatric T-ALL patients is chemotherapy, 

consisting of three phases: the induction, consolidation and maintenance phase, and typically takes 

two to three years (Figure 4). During the induction phase, one aims to eliminate more than 99 % of the 

initial leukemic cells to obtain remission and restore normal hematopoiesis. During this phase, 

asparaginase, vincristine and a glucocorticoid (prednisone or dexamethasone) are given to the patient, 

in combination with a fourth drug such as anthracycline for high-risk cases. Remission is mostly reached 

after four to six weeks of treatment in up to 99 % of the pediatric patients. Despite high remission 

rates, relapse mostly occurs without further treatment, since resistant cells may be selected and 
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promote further growth. Therefore, an intensive combination chemotherapy is given during the 

consolidation phase, which typically takes six to eight months. The most commonly used treatment is 

a combination of asparaginase, vincristine and dexamethasone with or without the addition of 

anthracyclines, mercaptopurine and methotrexate. Finally, the maintenance phase typically takes 18 

to 30 months, with 6’mercaptopurine or thioguanine given daily and methotrexate weekly, often in 

combination with vincristine and glucocorticoids. In addition, intrathecal chemotherapy is often 

provided to kill leukemia cells that might be present in the brain and spinal cord. Some patients get 

radiation therapy, however the role of radiation therapy is currently under debate, as this gives 

adverse side-effects such as secondary central nervous system (CNS) tumors (5, 7, 123). Unfortunately, 

up to 20 % of the children relapse and require more aggressive chemotherapy. Nelarabine, a drug 

licensed for relapsed T-ALL, gives promising results and is the frontline therapy in combination with 

other chemotherapeutic drugs (124, 125). In addition, allogenic hematopoietic cell transplantation is 

often provided to these relapsed patients, while this is only given to 5 – 10 % of the children during 

primary therapy. Since some mutations are frequently detected in relapsed leukemia and promote 

resistance, it is important to determine these mutations. CREBBP mutations are for instance frequently 

identified in relapsed patients and linked to resistance to glucocorticoids (5, 7, 123).  

Although the treatment responses are good in pediatric T-ALL, prognosis is much worse for adults. For 

adolescents and young adults, it has been shown that good results are obtained using pediatric-intense 

strategies, however, older adults do not tolerate these intensive therapies equally well. These adults 
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Figure 4: chemotherapeutics used for T-ALL treatment interfere with different stages of DNA and protein synthesis. 
Chemotherapeutics are highlighted in red. Adapted from (451). 
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should receive multi-agent chemotherapy based on the pediatric protocols. However, asparaginase is 

mostly omitted during the induction phase, since this significantly reduces early death and levels of 

anthracyclines are decreased as this results in extreme bone marrow toxicity. Furthermore, adults 

often benefit from hematopoietic stem cell transplantation. No consensus exists about the optimal 

strategy and targeted therapies are an interesting option for these patients (126, 127). Since up to 20 

% of the pediatric and 50 % of the adult patients still relapse and current therapies are associated with 

severe short- and long-term side effects such as osteonecrosis, cardiac dysfunction and CNS toxic 

effects, targeted therapies are warranted (5, 7, 123, 128). One interesting pathway to target in T-ALL 

is the NOTCH1 pathway, with very recently promising results for PSEN1 gamma secretase inhibition as 

described in section 1.1.2. Since monotherapy often results in resistance, also targeted therapies need 

to be combined to circumvent this resistance (60). The NUP214-ABL fusion, which is most frequently 

detected in TLX1/TLX3 positive T-ALL, is another target that has promising results using tyrosine kinase 

inhibitors (129, 130). Despite promising results of chimeric antigen receptor T-cell (CAR-T) therapy for 

B-cell malignancies, CAR-T therapy for T-ALL remains challenging, as most antigens are shared between 

leukemic and normal T-cells (131, 132). CD7 is a possible target since this antigen is highly expressed 

in T-ALL, however, absent in a subpopulation (9 %) of normal T-cells. Furthermore, it has been shown 

that CD7 knockout has almost no effect on normal T-cell development and T-cell effector function, 

making it a good target for CAR-T therapy. It has been shown that this therapy has anti-tumor effects 

in vitro and patient derived xenograft (PDX) mouse models, however, this requires further validation 

(132, 133). Although several potential interesting targets have been identified, recent research has 

shown that alterations in the non-coding part of the genome also contribute to cancer development 

and that targeting these non-coding RNAs (ncRNAs) can be beneficial, as demonstrated for SAMMSON 

in melanoma (134). Since the ncRNA part, and more specifically the long non-coding RNA (lncRNA) 

part, in T-ALL remained largely unexplored, I investigated the lncRNAome of TLX positive T-ALL in this 

PhD thesis.  
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1.2. Long non-coding RNAs 

The central dogma of molecular biology states that deoxyribonucleic acid (DNA) is transcribed into 

ribonucleic acid (RNA), which is subsequently translated in proteins (135). Therefore, researchers have 

investigated the role of protein-coding genes extensively for years, while RNA has just been seen as a 

mediator molecule between DNA and functional proteins. However, advances in NGS technologies 

enabled to investigate whole genomes and transcriptomes in a cost efficient and high-throughput 

manner and revealed that 75 % of the genome is transcribed, while only 3 % is translated into proteins. 

The genomic regions that are not translated into proteins were previously considered as ‘junk DNA’, 

however, a large fraction of these regions is transcribed in ncRNA and this was considered as 

‘transcriptional noise’ (136–139). In recent years, researchers have started to study this vast 

unexplored part of the human genome and obtained evidence for 1000s of ncRNA, for which crucial 

biological functions in normal state and diseases are being annotated with increasing speed (139). 

1.2.1. Shedding light on the dark matter of the genome 

Recent advances in NGS technologies revealed that the fraction of ncRNAs in the genome is much 

higher as compared to protein-coding genes. These ncRNAs can be subdivided in small (<200 

nucleotides (nt) and lncRNAs (>200 nt) based on their length (140). Up to 85 % of the small ncRNAs 

belong to microRNAs (miRNAs), transfer RNAs (tRNA), small nuclear RNAs (snRNA) and small nucleolar 

RNAs (snoRNAs), all described to be involved in cancer development (137). MiRNAs are typically 21 

nucleotides long and contribute to the regulatory control of about 30 % of the protein-coding genes 

through binding on their 3’UTR and hindering their function by degradation of the target messenger 

RNA (mRNA) or inhibiting translation (141, 142). Since these miRNAs are important for the regulation 

of gene activity, multiple miRNAs have been described to have deregulated expression during cancer 

development. MIR-19b expression is for instance induced in T-ALL by a translocation placing MIR-19b 

in the neighborhood of regulatory elements of TCRα/δ (143). tRNAs are involved in transporting amino 

acids to the ribosomes and changes in tRNA expression can alter protein expression and consequently 

be involved in the development of diseases. For breast cancer, it has been demonstrated that 

upregulation of specific tRNAs promotes metastasis, since the upregulation of these tRNAs enhances 

the translation of genes involved in metastasis (144). SnRNAs are involved in splicing by processing of 

pre-mRNAs and upregulation of snRNA U1 revealed that this snRNA regulates genes that are important 

in cancer development (145). SnoRNAs are encoded intronic regions located within genes and are 

involved in the regulation of splicing, ribosomal RNA (rRNA) biogenesis and regulation of chromatin 

structure. Altered expression of these snoRNAs can also play a role in cancer development as shown 

for SNORD78 in lung cancer (140, 146). SNORD78 is upregulated in lung cancer and known to be 

involved in proliferation and invasion via epithelial-mesenchymal-transition. Furthermore, SNORD78 

is also upregulated in cancer stem-like cells and is important for the self-renewal capacity in these cells, 

highlighting the importance of SNORD78 in cancer development (147). According to their function, 

tRNAs and miRNAs are mostly located in the cytosol while snoRNAs and snRNAs are detected both in 

the nucleus and cytosol (137, 140). In contrast to these small ncRNAs, lncRNAs are arbitrary defined 

by transcripts longer than 200 nt that lack an open reading frame (ORF) (< 100 amino acids) (139, 148). 
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1.2.2. Characteristics of long non-coding RNAs 

The first identified functional lncRNA, H19, was already described in 1990, as an abundant hepatic 

fetal-specific RNA that is not associated with the translation machinery. While initially an apparent 

outlier, recent work increasingly shows that many lncRNAs exert critical functions in normal 

development and diseases (149, 150). LncRNAs are defined by a lack of open reading frame (ORF) (< 

100 amino acids) and are longer than 200 nt. LncRNAs are transcribed by Polymerase II, have like 

protein-coding genes a 5’cap, form complex secondary structures and more than 25 % are spliced (139, 

148, 151, 152). In contrast to protein-coding mRNAs, lncRNAs are often located in the nucleus, are less 

conserved, display higher tissue-specific expression patterns and are in general less abundantly 

expressed (139, 148, 151, 153). Furthermore, it has been shown that lncRNAs are less stable as 

compared to protein-coding mRNAs, which is especially the case for nuclear and mono-exonic lncRNAs 

(154). Initially, microarrays were used for the detection of lncRNA expression levels, thus allowing only 

assessment of known lncRNAs, for which a probe was designed (155, 156). More recently, RNA 

sequencing (RNA-seq) became the gold standard, allowing the detection of lncRNAs in an unbiased 

manner (157). However, classic polyA[+] RNA-seq captures transcripts based on their polyA tail, 

whereby a large fraction of the lncRNAs remains undetected as some lack a polyA tail (~40 %) (158, 

159). Therefore, total RNA-seq protocols are more appropriate for lncRNA research, as these enable 

to capture both polyadenylated and non-polyadenylated transcripts (139, 148). NEAT1 is such a non-

polyadenylated lncRNA whose expression is elevated in several cancer types, including colorectal 

cancer and esophageal squamous cell carcinoma, and is associated with metastases and poor overall 

survival (152, 160). Moreover, NEAT1 expression can be used as a diagnostic biomarker for colorectal 

cancer (152). Currently, 56,946 lncRNA genes and 127,802 transcripts have been described (Lncipedia, 

June 28th 2019) and this number will further increase over the next years (161). LncRNAs can be 

subdivided in five categories based on their position relative to protein-coding genes: (a) sense 

lncRNAs overlap with one or more exons at the same strand, (b) antisense lncRNAs overlap with one 

or more exons on the complementary strand, (c) bidirectional expressed lncRNAs for which the lncRNA 

and protein-coding gene are located on the opposite strand with their transcription start site (TSS) on 

less than 1 kb from each other, (d) intronic lncRNAs that are located in an intron and (e) intergenic 

lncRNAs (lincRNA) located between two genes (Figure 5) (162). 

In 2010, a new class of lncRNAs, the enhancer RNAs (eRNA), were described for the first time. These 

eRNAs are typically 20-2000 nt long and transcribed from active enhancer regions that are 

characterized by open chromatin and high levels of H3K4me1 and H3K27ac (163, 164). These 

enhancers are often bound by RNA polymerase II (RNAPII) resulting in bidirectional transcription of 

eRNAs from these enhancers (164). However, single cell cap analysis gene expression sequencing 

(CAGE-seq) analysis has revealed that eRNAs are mostly unidirectionally transcribed, as some are 

transcribed from the sense strand, while others from the antisense strand (165). These eRNAs are 

Figure 5: categories of lncRNAs. LncRNAs can be subdivided in five subgroups based on their location relative to nearby 
protein-coding genes. lncRNA: long non-coding RNA; mRNA: messenger RNA. Figure adapted from (162). 
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expressed at lower levels than standard lncRNAs, rapidly degraded by exosomes, predominantly non-

polyadenylated, and are mostly non-spliced (164, 166, 167). eRNAs have been shown to be involved in 

transcription regulation via several mechanisms (164). eRNAs can alter gene expression by modifying 

chromatin structure or by acting as a scaffold for transcription factors. eRNAs can for instance serve as 

a decoy for NELF, which is normally involved in RNAPII pausing, promoting RNAPII elongation (168, 

169). Furthermore, these eRNAs can be involved in looping, bringing enhancers and promoters in each 

other neighborhood and promoting the expression of the target gene (170, 171). This has for instance 

been shown for ARIEL, which is required for growth and survival in T-ALL. ARIEL is an eRNA that is 

significantly higher expressed in the TAL-R T-ALL subgroup compared to the other subgroups and is 

transcribed from the ARID5B enhancer. Furthermore, ARIEL  is a direct target of TAL1 and activates the 

TAL-R induced program by activating ARID5B expression via enhancer-promoter interactions (172). 

Currently, only a few eRNAs have been functionally investigated, hinting to new studies to functionally 

characterize more eRNAs (171). Besides these eRNAs, yet another subtype of lncRNAs, the circular 

RNAs (circRNAs), have recently been identified as functional RNA molecules, previously thought to be 

the result of erroneous splicing (173). These circRNAs are not detected using the classic polyA[+] 

protocols as circRNAs lack a polyA tail (174). CircRNAs are generated by backsplicing whereby a 5’ splice 

site donor and 3’ splice site acceptor are ligated, by lariat formation (circularization of an intron) or 

through exon skipping (175). These circRNAs can consequently contain exons, introns or both, show 

evolutionary conservation, are expressed at low levels and are tissue-specific (174, 176–178). Notably, 

up to 20 % of all genes have been shown to produce circRNAs (174, 178). CircRNAs can regulate 

transcription of other genes via positive regulation of RNA polymerase II or via sponging miRNAs from 

their target through binding of the miRNA on their miRNA binding sites and post-transcriptional via 

interfering with splicing (140). Like classic lncRNAs, several circRNAs have been shown to have 

important roles in cancer. For instance, circRNA PVT1 inhibits apoptosis and induces cell proliferation 

in lung cancer by sponging miRNA-497, which normally suppresses the anti-apoptotic protein BCL2 

(179). 

1.2.3. Mechanisms of action of long non-coding RNAs 

As mentioned above, recent work has revealed a broad potential functionality for lncRNAs, including 

the regulation of chromatin structure, transcriptional regulation, post-transcriptional regulation and 

regulation of protein synthesis. Typically, lncRNAs carry out their function as guide, decoy or scaffold 

for binding partners (Figure 6). LncRNAs often influence the transcription of genes through epigenetic 

control (e.g. modifying chromatin structure). Chromatin is organized in nucleosomes that consist of 

DNA wrapped around histones. These histones contain two copies of the H3, H4, H2A and H2B 

proteins, which can be subject to histone modifications at their N-terminal tails extruding from the 

nucleosome core, instructing the formation of euchromatin (low nucleosomal density) and 

heterochromatin (high nucleosomal density) regions (180, 181). The latter is mainly marked by 

heterochromatin, H3K9 methylation, H3K27me3 and H4K20me3 and associated with repression of 

gene expression, while active genes are characterized by H3K4me3 on their promoter and high levels 

of H3K36me3 and H3K79me3 in the gene body (181, 182). LncRNAs can alter chromatin structure by 

binding and recruiting chromatin modifying complexes to target loci in order to activate or repress the 

expression of target genes. Up to 24 % of the lincRNAs interact with the chromatin modifying complex 

PRC2, which alters chromatin structure by trimethylating H3K27 and thereby repressing the expression 

of target genes (183). HOTAIR is such a lncRNA that binds PRC2. HOTAIR is located in the HOXC locus 

and promotes metastases in amongst others colorectal, gastric and breast cancer. Binding of HOTAIR 

with PRC2 and consecutive recruitment to target loci results in a genome-wide increase of the 

H3K27me3 repressive chromatin mark, including the HOXD locus, promoting invasiveness (184–187). 
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LncRNAs, such as ANRIL also regulate chromatin structure, however by serving as a scaffold for PRC1 

and PRC2, resulting in recruitment to and inhibition of the INK4b/ARF/INK4a locus (188). Besides 

inhibiting gene expression, lncRNAs can also activate genes by binding and recruiting chromatin 

modifying complexes that activate gene expression (189, 190). This is the case for HOTTIP, a lncRNA 

that drives HOXA expression. HOTTIP is placed in the neighborhood of its target genes by chromosomal 

looping and drives H3K4 trimethylation and gene expression of the HOXA locus by binding and 

recruiting WDR5 and the MLL4 methyl transferase complex (191, 192). Besides binding with chromatin 

modifying complexes, lncRNAs can also bind transcription factors and inhibit their function. This is the 

case for PANDA, which is transcribed antisense to CDKN1A and is induced upon DNA damage. PANDA 

inhibits the expression of pro-apoptotic proteins by binding transcription factor NF-YA and prohibiting 

this transcription factor to bind and activate the pro-apoptotic genes (193). GAS5 is another lncRNA 

that inhibits the expression of target genes. GAS5 inhibits the function of the glucocorticoid receptor 

by binding with its DNA binding domain. Consequently, GAS5 competes with the receptor ligands to 

bind and consequently inhibits its anti-apoptotic effect (194). Finally, lncRNAs can also serve as miRNA 

sponges (competitive endogenous RNA), sequestering miRNAs from their targets. HULC is such a 

lncRNA that is upregulated in hepatocellular carcinoma and binds with miRNA-372, prohibiting to 

perform its function. Moreover, downregulation of miRNA-372 has been shown to be linked with poor 

prognosis in hepatocellular carcinoma, showing the importance of HULC for the prediction of prognosis 

in hepatocellular carcinoma (195).  

Figure 6: lncRNA mechanisms of action. LncRNAs can act as decoy that hinder binding of DNA-binding proteins with DNA, as 
scaffolds that bring proteins into a complex or as guides to recruit proteins to the DNA. Figure adapted from (450). 
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After transcription at a given locus is finished, transcripts are spliced and further processed to increase 

the complexity of gene expression and generate a higher protein diversity. Several lncRNAs have been 

described to interfere with these processes. One of the most known cancer related lncRNAs, MALAT1, 

is known to regulate alternative splicing by binding pre-mRNA splicing factors. Depletion of MALAT1 

results in an altered distribution of splicing factors, leading to mis-localisation and altered alternative 

splicing of several endogenous pre-mRNAs. Furthermore, higher levels of dephosphorylated splicing 

factors are identified, which influences tracking of the splicing factors to TSSs. This shows that MALAT1 

can influence alternative splicing by interacting with a specific set of splicing factors (196). LncRNAs 

can also inhibit translation, which has been shown for lincRNA-p21, which is unstable when bound with 

HuR. Decreased HuR levels stabilize lincRNA-p21 and this enables association with its target genes, 

repressing their translation (197). Finally, lncRNAs can also inhibit signal transduction by hiding 

phosphorylation sites. NKILA binds NFkB/IkB, masking its phosphorylation sites. Decreased levels of 

NKILA results in phosphorylation and activation of target genes and is associated with cancer 

metastasis (198).  

LncRNAs can regulate neighboring genes (cis) or genes on a distance (> 1mB) or on other chromosomes 

(trans) (139). Of interest, the lncRNA transcript itself is not always necessary. Sometimes, only the act 

of transcription itself has an influence, while the production of the transcript is not required for the 

function. This is for instance the case for Lockd in mice, which regulates the effect of CDKN1B/p27. By 

deleting the Lockd locus, CDKN1A/p21 transcription is considerably reduced, while producing a shorter 

Lockd transcript by insertion of a polyadenylation signal has no effect on CDKN1A expression (199). 

Another example is Airn that is involved in silencing of imprinted gene clusters, including Igf2r. The 

authors have shown that the transcriptional product is not required for silencing, but that conversely 

the act of transcription is needed as Airn transcription interferes with binding of RNAPII on the Igf2r 

promoter. This demonstrates that Igf2r silencing depends on transcriptional interference by Airn (200). 

Despite the fact that lncRNAs have been investigated intensively over the last years, characterizing 

their function remains challenging (150). The guilt-by-association approach can be used to predict their 

functions based on correlations with the expression of protein-coding genes. Subsequently, these 

correlations can be used for gene set enrichment analysis (GSEA) to predict possible functions of the 

lncRNAs, however, wet lab validation is still required (201–203). Further research will be needed to 

elucidate the function of the lncRNAs that are currently reported in literature, but not yet functionally 

characterized. 

1.2.4. Long non-coding RNAs in cancer development 

Cancer is one of the leading causes of death in the developed countries and is a heterogeneous group 

of diseases arising through malignant transformation of various cell types. Typically, this process 

proceeds stepwise through accumulation and selection of several genetic cooperative alterations 

towards a fully transformed cell. Besides DNA copy number variations, base pair variants, small 

insertions and deletions and changes in epigenetic modifications, also modifications in non-coding 

regions can contribute to the development of cancer. This underscores the need to further investigate 

the noncoding part of the genome as current studies mostly focused on the protein-coding part (36, 

77, 204). As lncRNA expression is more cell type and cancer-type specific compared to protein-coding 

genes, lncRNAs can be used to discern cancer (sub)types (155, 205). A large scale study investigating 

lncRNAs in 5860 tumors of 13 cancer types revealed that 13 % of the lncRNAs contained gain or losses 

that occur in at least 25 % of the samples of a specific cancer type (205). Furthermore, the authors 

revealed that base pair variants are often located in lncRNAs or their regulatory elements altering their 
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expression. Base pair variants can for instance create a miRNA binding site, which reduces the lncRNA 

activity after binding of the miRNA and can contribute to tumorigenesis (204, 206). Low expression of 

NBAT-1, a lncRNA correlated with poor survival in neuroblastoma, is often obtained by promoter 

hypermethylation or a base pair variant (207). Furthermore, a base pair variant in a regulatory element 

can also alter the expression of the cancer associated lncRNA, as shown for PCAT1. A base pair variant 

in its enhancer increases the binding of specific transcription factors upregulating PCAT1 expression 

and consequently promoting prostate cell proliferation and tumor growth (204, 208).  

In 2000, Hanahan and Weinberg proposed six hallmarks that a cell should acquire to become a cancer 

cell (Figure 7) (209, 210). First, a cell should sustain proliferative signaling allowing to maintain growth 

in the absence of external stimuli. The growth of normal cells is tightly regulated, while cancer cells 

have accumulated genetic defects through which this growth control is lost. PCAT1 is overexpressed 

in several cancer types and was first discovered by transcriptome analysis of prostate cancer and 

shown to be involved in maintaining proliferative signal. This has been demonstrated by PCAT1 

knockdown, where after genes involved in cell cycle and mitosis were downregulated, suggesting that 

these genes are highly active in PCAT1 overexpressing tumors (209, 211). In addition, PCAT1 

upregulates cMYC protein levels, further enhancing cell proliferation and transformation. PCAT1 

stabilizes cMYC protein post-transcriptionally by inhibiting miR-34a, which normally targets and 

degrades cMYC, resulting in cell proliferation (212). Second, a cancer cell should evade the activity of 

growth suppressors that negatively regulate cell proliferation. Tumor suppressor genes, such as p15, 

p53, RB1 and PTEN normally reduce cell growth by inducing cell cycle arrest, senescence or apoptosis 

and their expression is often deregulated in cancer cells. ANRIL represses transcription of the tumor 

suppressor gene p15, which is involved in cell cycle regulation, by recruiting SUZ12, a PRC2 component, 

to the p15 locus. This results in H3K27me3 and silencing of p15, leading to a loss of cell cycle control 

(188, 209). Third, a cancer cell should acquire unlimited replicative potential as a normal cell can only 

undergo a limited number of cell cycles due to telomere shortening that results in cellular senescence 

or apoptosis. 90 % of the cancer cells circumvent this by activation of the telomerase enzyme that add 

new telomeric repeats at the end of the chromosomes. TERRA is a lncRNA that is transcribed from the 

telomeres and that negatively regulates telomerase by binding to this enzyme due to sequence 

complementary and therefore competes with the telomeric DNA. In cancer, low TERRA levels are often 

observed due to hypermethylation of the telomeres, resulting in low TERRA expression and an increase 

in telomeric lengthening, providing unlimited replicative potential to the cancer cell (209, 213–215). 

Fourth, cancer cells should be able to invade in other tissues and to form metastasis, since most 

patients die due to these distant metastases. MALAT1 is one of the most abundant lncRNAs and is 

significantly associated with metastasis and survival in several cancer types, including non-small-cell 

lung carcinoma (NSCLC), epithelial ovarian cancer and osteosarcoma, elucidating that MALAT1 can be 

used as prognostic marker in these cancer types (209, 216–218). MALAT1 positively regulates invasion 

and metastasis by promoting cell motility through transcriptional and post-transcriptional regulation 

of motility-related genes (219). Furthermore, MALAT1 can also promote metastasis by binding and 

recruiting SUZ12 of the PRC2 complex to E-cadherin, a cell adhesion molecule, resulting in 

downregulation of E-cadherin and consequently in less cell adhesion, promoting invasion (220). Fifth, 

cancer cells should induce angiogenesis in order to secure nutrients and oxygen supply to enable 

further growth. A natural antisense transcript, αHIF, complementary to the 3’UTR of HIFα, negatively 

regulates HIFα, which is a key regulator of angiogenesis. αHIF can bind on the 3’UTR of HIFα and 

degrade its mRNA disrupting the strict regulation of angiogenesis (209, 221, 222). Finally, a cancer cell 

must be resistant to cell death. PCGEM1 is highly expressed in prostate cancer and this high expression 

results in a decrease of apoptosis after doxorubicin treatment. This can be explained by a decrease in 

TP53 stability upon PCGEM1 overexpression and consequently a downregulation of p21, resulting in a 
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androgen dependent inhibition of apoptosis upon doxorubicin treatment (209, 223). Later, two 

hallmarks were added: reprogramming of energy metabolism and evading immune destruction (224). 

To maintain the rapid growth of cancer cells, these cells should reprogram their metabolism. Cancer 

cells have for example a higher glucose uptake and several lncRNAs are involved in this process. Lnc-

IGFBP4-1 is significantly higher expressed in lung cancer tissues as compared to normal lung tissue and 

is associated with metastasis. Overexpression of lnc-IGFBP4-1 results in an increase of Adenosine 

triphosphate (ATP) production and a decrease in the expression of enzymes involved in glucose 

homeostasis, resulting in increased glucose uptake (225). Cancer cells should also evade the immune 

system. Lnc-EGFR is upregulated in regulatory T-cells (Treg) cells in hepatocellular carcinoma and is 

involved in this evading by inducing differentiation and inhibition of cytotoxic activity in Treg cells in 

hepatocellular carcinoma, stimulating tumor growth (226). To acquire these hallmarks, a cell should 

accumulate several genetic alterations. Since cells have several mechanism to maintain genome 

integrity, genetic alterations in components of the genomic maintenance machinery should be 

acquired to allow the accumulation of multiple genetic alterations required for the acquisition of the 

hallmarks (224). GUARDIN is a lncRNA with a key role in the maintenance of genomic integrity by 

serving as a scaffold for BRCA1 and BARD1, which is required for BRCA1 stabilization, and consequently 

promotes BRCA1 mediated DNA repair required for DNA integrity (227). 

1.2.4.1. Long non-coding RNAs in T-ALL 

Over the last years, several lncRNAs involved in T-ALL development have been described. The first 

lncRNA studies in T-ALL investigated the effect of NOTCH1 on lncRNAs. Trimarchi et al. have shown 

that LUNAR-1 is a NOTCH1 regulated lncRNA that is overexpressed in T-ALL patients harboring a 

NOTCH1 mutation and is downregulated upon NOTCH1 inhibition. HiC and chromosome conformation 

capture (3C) sequencing revealed an interaction between the promoter of LUNAR1 and an IGF1R 

Figure 7: lncRNAs associated with the hallmarks of cancer. LncRNAs have been shown to involved in cancer development 
and maintenance and are associated with the hallmarks of cancer. Figure adapted from (224). 
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enhancer. Binding of NOTCH1 on this IGF1R enhancer activates LUNAR1, which subsequently recruits 

factors such as mediator and RNAPII to obtain full activation of the IGF1R promoter. Furthermore, 

downregulation of LUNAR1 results in downregulation of IGF1R and reduced cell growth, indicating that 

LUNAR1 promotes IGF signaling through IGF1R regulation and is consequently required for T-ALL 

growth (228). The host lab revealed an additional set of lncRNAs, including LUNAR1, regulated by 

NOTCH1. Most of these NOTCH1 regulated lncRNAs are bound by ICN1, but also by MED1 and BRD4 

and occupied with H3K27ac, hinting to potential enhancer activity of these loci (156). In contrast to 

these lncRNAs that are regulated by NOTCH1, NALT1 is located 400 bp upstream of NOTCH1 and acts 

as a cis-regulatory activator of NOTCH1. NALT1 is higher expressed in T-ALL patients compared to 

normal controls and inhibition resulted in reduced T-ALL growth (229). LncRNAs can also be used to 

discriminate the molecular subgroups in T-ALL. To explore this, the host lab performed microarray 

transcriptome profiling with probes covering all protein-coding genes and 13,000 lncRNAs on 64 T-ALL 

patients (15 immature, 17 TLX1/3, 25 TAL-R, and 7 HOXA), revealing a subset of specific lncRNAs for 

each subgroup. Some lncRNAs were not expressed in the normal thymocytes implying that these may 

be oncogenic lncRNAs, whereas other lncRNAs were higher expressed in thymocytes compared to T-

ALL patients, hinting to a putative tumor suppressor role of these lncRNAs (155). A specific study 

focusing on TAL1 positive T-ALL revealed 57 lncRNAs that are bound by and downregulated after 

knockdown of TAL1. Furthermore, most of these lncRNAs were also downregulated upon knockdown 

of TAL1 regulatory partners (RUNX1, GATA3 and MYB), indicating that TAL1 regulates these lncRNAs 

with its cofactors. The authors revealed two lncRNAs that are regulated by TAL1 and associated with 

superenhancers in TAL1 positive leukemia, but not in the thymus, implying that these might have 

oncogenic activity. In addition, one of these lncRNAs is expressed in hematopoietic stem cells and early 

progenitors, but absent in more mature stages, showing  that this lncRNA is downregulated during T-

cell development and that aberrant expression of this lncRNAs can contribute to T-ALL development 

(230). In this PhD research, I revealed lncRNAs regulated by TLX1 and specific to the TLX subgroup of 

T-ALL patients (Paper 1 & 2). 

1.2.5. Long non-coding RNAs: new opportunities for specific cancer treatments 

LncRNAs are excellent therapeutic targets as these are often expressed in a cell-type specific manner, 

implying that targeting them could lead to less toxic side-effects on normal cells. In addition, lncRNAs 

have a lower expression, indicating that lower doses of drug may be sufficient, which will cause less 

toxicity (150). This has been shown for the SAMMSON lncRNA, which has melanoma specific 

expression and is expressed in more than 90 % of the primary and metastatic skin cutaneous 

melanomas, while only marginally in normal melanocytes. Furthermore, SAMMSON is induced in the 

transit from an immortalized to a fully transformed cell stage, making it a putative biomarker for 

malignant melanoma. Furthermore, knockdown of SAMMSON reduces cell growth and activates the 

mitochondrial apoptosis pathway, highlighting that SAMMSON may be an interesting therapeutic 

target. In addition, the authors showed in a xenograft experiment that BRAF resistant patients still 

require SAMMSON expression and that the combination of BRAF inhibition and SAMMSON knockdown 

results in increased apoptosis. Since SAMMSON is expressed in more than 90 % of the melanomas and 

barely in melanocytes and other cancer types, SAMMSON is an ideal therapeutic target that will be 

specific and cause less off-target effects (231). 

Oncogenic lncRNAs can be downregulated using siRNA, antisense oligonucleotides (ASO), ribozymes, 

clustered regularly interspaced short palindromic repeats interference (CRISPRi) or small molecules 

(232). SiRNAs are double stranded RNA molecules of 21-23 nt and have a 3’ dinucleotide overhang. 

SiRNAs are incorporated in the RNA-induced silencing complex (RISC) and bind with their target to 

degrade it (153). These siRNAs can be used to target lncRNAs, however, secondary structures can 

https://nl.wikipedia.org/wiki/Palindroom


Introduction 

21 
 

prohibit binding of the siRNA to the lncRNA. Furthermore, most lncRNAs are located in the nucleus, 

while the RNA interference (RNAi) machinery is mainly located in the cytoplasm, making lncNRAs less 

accessible to siRNAs (150). In contrast, ASOs use RNAseH, which is active in the nucleus, to degrade 

the lncRNA. ASOs are single stranded DNA molecules that bind RNA with a complementary sequence. 

This hetero DNA-RNA duplex is subsequently recognized and degraded in the nucleus by RNAseH. ASOs 

can also be designed to bind on 3’ or 5’ splice junctions to alter splicing and isoform production (150, 

232–234). Furthermore, modified ASOs that do not activate RNASeH can also be used to prevent 

secondary structure formation or to cause steric hindrance, inhibiting RNA-protein binding (232). To 

increase their efficiency and decrease their off-target effects and degradation, several modifications 

can be applied. The 2’ sugar position is often modified with 2’-O-Me or 2’-O-(2-methoxyethyl) 

modifications. However, not all 2’ sugar position may be modified as this inhibits RNAseH activity, thus 

ASOs must contain a normal central section flanked by 2’ modified regions. This provides a higher 

binding affinity and reduces nuclease degradation and immunogenicity (150, 233, 235, 236). Locked 

nucleic acid (LNA) modifications can also be used at the flanking regions, improving RNA binding 

affinity, reducing immunogenicity and promoting binding with proteins such as albumin resulting in 

decreased renal clearance. These LNA modifications contain a phosphothioester binding providing 

resistance to enzymes and the 2’ and 4’ position of the ribose are bound (‘locked’) with a methylene 

bridge (233, 236–239). Currently, several ASOs and siRNAs for miRNAs and mRNAs are in clinical trials, 

while pre-clinical tests for lncRNAs are more challenging due to the low conservation (150, 235). 

Ribozymes are self-cleaving, 30 nt long RNA molecules that bind complementary sequences and cleave 

the flanking regions. These ribozymes are highly sequence specific and are sensitive to single 

nucleotide mismatches (mutant vs normal), resulting in minimal off-target effects (150, 153, 240). 

Finally, also the CRISPR technology can be used to target lncRNAs. Although this approach is well-

established for protein-coding genes, a single cut in a non-coding gene does often not generate a 

knockout. However, two guide RNAs can be used for lncRNAs to generate a large deletion of the lncRNA 

(241). This may be hindered by the fact that lncRNAs often overlap with enhancer regions or protein-

coding genes whereby the effect can be due to a deletion in the enhancer or protein-coding gene or 

due to deletion of the lncRNA (242). To circumvent this, CRISPRi can be used. Therefore, a guide RNA 

guides the inactive death Cas9 (dCas9) linked to a repressor to the promoter of the lncRNAs, repressing 

the lncRNA (243, 244). As it is known that lncRNAs can also act by binding with proteins, their function 

can also be inhibited using small molecules that interfere with this binding (232).  

One of the main challenges of RNA therapeutics is the efficient delivery to the target. Therefore, RNA 

therapeutics should cope with several intra- and extracellular barriers such as extravasation from the 

bloodstream to the target tissue, penetration through cell membranes and escape from endosomes 

and the immune system. First, RNA therapeutics have to migrate through the endothelial pores, which 

are very tight. Since delivery of free RNA to the target tissue is challenging, carriers can be used. The 

advantage of a carrier is that the RNA is protected from enzymes and that tissue specificity can be 

improved by for instance attaching a specific antibody to the carrier (235). Viral vectors have the 

advantage that these are highly effective, although have a high immunogenicity, while non-viral 

vectors, such as lipid-based and polymeric vectors are mostly less effective, but have a lower 

immunogenicity and can be produced at high-throughput and lower costs (150). Next, RNA 

therapeutics need to pass the cell membrane, which is difficult as membranes repulse the negative 

loaded RNA therapeutics (150). To facilitate the uptake, carriers are often positively loaded and cell 

penetration peptides can also improve internalization (150, 245). After internalization, cells must 

escape from endosomes before these fuse with lysosomes, which can be facilitated by the use of 

endosomolytic agents (150, 246). Finally, RNA therapeutics must also circumvent immune activation 

and enzymatic degradation. To reduce enzymatic degradation and immunogenicity, chemical 
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modifications can be applied as described above (150, 235, 238, 247, 248). The first RNA therapeutics 

showed poor performance due to the aforementioned limitations, but several second generation RNA 

therapeutic are now in clinical phases, with promising results (235). Besides therapeutic targets, 

lncRNAs can also serve as excellent biomarkers since the expression of several lncRNAs has been 

associated with disease severity and progression. For HULC it has been shown that its expression is 

significantly higher in hepatocellular carcinoma compared to the normal liver tissue and that its 

expression levels are associated with the tumor grade, marking HULC as a high potential biomarker 

(249). Of interest, PCA3 is the first FDA-approved lncRNA biomarker for prostate cancer as PCA3 is 

expressed in 95 % of all prostate cancer cells and expression levels in the urine are predictive for a 

positive biopsy (250). 
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1.3. Single cell omics 

1.3.1. Limitations of bulk RNA sequencing are circumvented by single cell RNA sequencing 

In 1977, Sanger et al. developed the first widely used DNA sequencing method that has been used 

extensively for the following 30 years. This method enabled to sequence the genomes of several 

species, including the first human genome in 2003 (251, 252). In 2005, second generation or NGS 

technologies, such as 454 and Illumina (former Solexa) sequencing, were developed, allowing to 

investigate whole genomes in a cost efficient and high-throughput manner (252, 253). In addition, 

these innovative approaches enable to sequence multiple samples in parallel and generate high 

coverage data, and are therefore currently widely used. One limitation of these NGS methods is that 

relatively short stretches of DNA (36-400 bp) are sequenced (i.e. reads) (2,4). Therefore, third 

generation sequencing technologies, such as PacBio’s single-molecule real-time sequencing and 

Nanopore sequencing, emerged in 2011 to perform long read (up to 100 kb) sequencing, enabling the 

detection of genomic variants and repeats at high resolution (252, 254, 255). Since the cost of 

massively parallel sequencing dropped over recent years, the genome sequences of several species 

are now publicly available. These sequencing efforts contributed to the current knowledge of 

molecular mechanisms involved in normal development and diseases. These second and third 

generation sequencing methods allow not only to retrieve sequences from entire genomes, but can 

also be used to unravel the cellular transcriptome, referred to as RNA-seq. Transcriptome profiling by 

means of RNA-seq offers multiple advantages over the former use of microarrays: (1) a higher 

sensitivity for low abundance genes, (2) gene expression can be investigated without the need of 

probes and prior knowledge enabling to detect novel genes, (3) it is based on sequencing instead of 

hybridization (with inherent higher specificity) and (4) alternative splice forms and other structural 

features can be detected (253, 256–258). Originally, transcriptome analysis was conducted at the 

average level of a (heterogeneous) cell population (‘bulk RNA-seq’), and consequently masked subtle 

differences among cells. While it is clear that tissues are composed of different cell types, more recent 

research has shown that the transcriptomes of closely related cells can also show remarkable 

heterogeneity, which cannot be detected at the population level. Furthermore, some genes can be low 

abundant in one subpopulation, while highly expressed in a second subpopulation, resulting in a 

moderate average expression of the gene by performing bulk RNA-sequencing and consequently 

hiding this heterogeneity (Figure 8). This molecular heterogeneity can be partially explained by 

amongst others differences in cell cycle stages across populations as well as the phenomenon of 

transcriptional bursting (259). Transcriptional bursts are short intervals of transcription followed by a 

period of transcriptional silence resulting in gene specific temporal expression patterns that differ 

among cells (260–262). Fluorescence in situ hybridization (FISH) experiments have shown that the 

expression between similar cells can differ by a 1000 fold (263, 264). As bulk RNA-seq methods 

generate average expression profiles, subpopulations and rare cell types cannot be detected (253, 256, 

265–268). The landscaping of transcriptional heterogeneity is important in various fields, such as 

cancer (267, 269), embryonic development (270–272), and immune response (273), whereby single 

cell analysis methods are warranted. The development of adequate single cell RNA-seq methods was 

challenging as a mammalian cell typically contains 10-20 pg of RNA and previously developed RNA-seq 

methods required thousands to millions of cells as input to generate high quality data (253, 256). Over 

the last years, new bulk RNA-seq kits were developed lowering the required number of cells as input. 

Nevertheless, low input reduces the reverse transcription efficiency of low abundant genes resulting 

in a biased detection towards highly expressed genes and requires incorporation of pre-amplification 
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to obtain sufficient amounts of amplified cDNA to sequence, causing amplification bias (274, 275). 

Although these low input methods allow the detection of thousands of transcripts, a substantial level 

of technical noise is generated and hides subtle biological differences between samples. Therefore, 

further improvements were made to enable transcriptome sequencing of a single cell by lowering the 

reaction volumes and enhancing the efficiency of the required enzymes (275).  

In the first single cell experiments, only a limited number of genes could be investigated in a few cells, 

whereas bulk sequencing experiments enabled to investigate thousands of genes, but required 

thousands to millions of cells as input, resulting in average profiles. Recently, these two fields merged 

together due to improvements in molecular methods and analyses allowing to perform high-

throughput molecular analyses at the single cell level (Figure 9) (276). This encouraged researchers in 

2016 to start a large scale international collaboration (Human Cell Atlas) to sequence all cell types in 

the human body at the single cell level to generate a reference map. This will allow to link molecular 

profiles with cellular locations throughout the body and provide deeper insights in cell development, 

cell-cell interactions and pathways in healthy tissues. As diseases emerge as a consequence of rewired 

homeostasis, this initiative is expected to gain deeper insights in the molecular basis of various disease 

types, facilitating the development of new treatments (277, 278). This atlas will be an unseen source 

of information to understand normal development as well as diseases. 

 

 

 

 

Figure 8: bulk RNA sequencing masks cellular heterogeneity. By performing bulk RNA sequencing, average gene expression 
profiles are generated, whereby every cell seems to have an equal expression of gene A, B and C. In contrast single cell RNA 
sequencing reveals that the expression of these genes differs among cells. 
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1.3.2. From one up to thousands of single cells  

In the first single cell experiments, only a few transcripts in a limited number of cells could be 

investigated using FISH (279, 280). To increase the number of genes and cells that could be investigated 

in a single experiment, single cell reverse transcription quantitative polymerase chain reaction (RT-

qPCR) emerged. Since a single cell only contains 10-20 pg of RNA, this method comprises a poly(dT) 

pre-amplification step of the polyadenylated transcripts to obtain detectable numbers of molecules 

(281). The hands-on time and costs for these experiments could be reduced by automated devices 

such as Fluidigm’s Biomark HD system. This considerably improved the throughput, although still only 

a fraction of all genes in a cell, which are selected upfront based on scientific hypotheses, can be 

investigated. To get a more global view of a cell’s transcriptome, microarray and sequencing-based 

methods emerged (276, 281). Using existing or custom made microarrays, which contain probes for 

genes of interest for a specific application, thousands of genes could be investigated in parallel. Since 

this was still limited to sets of known genes and the sensitivity and throughput were low, single cell 

RNA-seq methods were developed enabling the study of a cellular transcriptome in an unbiased way, 

allowing to detect both known and novel genes (282). In 2009, Tang et al. published the first single cell 

RNA-seq protocol in which cells were picked manually and transcripts reverse transcribed using a 

poly(dT) primer with an anchor sequence (Figure 10). Next, the cDNA was polyadenylated and a second 

poly(dT) primer was used to synthesize the second strand (283). As this protocol is labor intensive and 

consequently only possible for a limited number of cells, other methods rapidly emerged during the 

last decade (Table 1). In 2011, methods using early multiplexing (using a cell specific barcode to 

discriminate individual cells) were introduced enabling to pool cells at an early stage and increasing 

the throughput (Figure 10). Consequently, cells can be further processed in a single tube and be 

treated as a single sample reducing the hands-on time and costs (276). The single cell tagged reverse  

Figure 9: convergence of bulk next generation sequencing technologies and single cell methods. Single cell experiments 
evolved from a few cells and genes to many cells and genes per experiment. FISH: fluorescence in situ hybridization; PCR: 
polymerase chain reaction. Figure adapted from (276). 
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transcription sequencing (STRT-seq) and single cell RNA barcoding and sequencing (SCRB-seq) methods 

use this early multiplexing by adding cell specific barcodes at the step of RT. Consequently, a lot more 

cells can be processed as cells can already be pooled in a single tube following cDNA synthesis (284, 

285). These methods use the template switching mechanism that adds non-templated nucleotides to 

the 3’ end of the first cDNA strand, used by the second primer for second strand synthesis and thereby 

eliminating the need to add a polyA tail after RT (284–286). While the STRT-seq method gives some 5’ 

end bias and the SCRB-seq method 3’ end bias, the SMART-seq method generates read coverage across 

the whole transcript. This whole transcript body coverage expands the spectrum of applications 

beyond gene expression profiling as this method can be used for the detection of fusion transcripts, 

single nucleotide variants (SNV), gene copy number analysis and alternative splicing events. A 

drawback of this method is the lack of an early cell barcoding step, whereby cell pooling is only possible 

at a later stage compared to methods with early barcoding, making the method more labor intensive 

(274, 287, 288). However, this issue can be solved by using automated liquid handling devices (289). 

The aforementioned methods are all based on a polymerase chain reaction (PCR) based amplification 

step to obtain sufficient cDNA to sequence, which also leads to a considerable amplification bias. Cell 

expression by linear amplification and sequencing (CEL-seq) reduces this bias through cost and time 

efficient linear in vitro transcription (IVT) in a single cell experiment (Table 2). In brief, transcripts are 

captured using a poly(dT) primer containing a cell specific barcode and a T7 promoter. After cDNA 

synthesis, the cells are pooled and a single round of IVT is carried out on the pool of cells reducing 

reagents costs and enabling to analyze many cells in parallel. Finally, the samples are fragmented and 

the 3’ end of the transcripts are selected and converted to sequencing libraries. The sequencing 

coverage required for this type of libraries is low as only the 3’ ends are sequenced further reducing 

the costs (290). The throughput of the CEL-seq protocol was increased considerably by MARS-seq, in 

which cells are sorted in 384 well plates and processed automatically increasing the throughput and 

reproducibility (291, 292). To increase the sensitivity and accuracy and to reduce the noise, time and 

costs of single cell experiments, optimized versions of STRT-seq, SMART-seq and CEL-seq have 

consecutively been developed (293–295). In addition, unique molecular identifiers (UMI) were added 

to the primer sequence of the CEL-seq protocol to count the transcripts more precisely (294). In these 

first single cell experiments, cells were manually picked limiting the number of cells that could be 

processed in parallel. By automatically sorting cells in 96 or 384 well plates, the throughput increased, 

Figure 10: the number of single cells per experiment drastically increased the last decade. In the first experiments, cells 
were manually picked. The emergence of microfluidic devices enabled to isolate hundreds of cells in parallel and even 
thousands of cells by sample multiplexing. Droplet-based and nanowell technologies now enable to isolate tens of thousands 
of single cells in a single experiment. The devices used in this PhD thesis are highlighted in red. Figure adapted from (452). 
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but the experiments remained expensive due to the large reaction volumes in these wells. To 

accommodate this, microfluidic devices using microfluidic channels and pressure-controlled valves 

were developed, in which cells are captured and processed in nanoliter volume reaction chambers 

reducing the reagents costs (Figure 10, 11A, Table 1-2). These valves separate the reaction chambers, 

to which different reagents can be added sequentially (273, 296, 297). Of note, it has been shown that 

the sensitivity of single cell experiments in reduced reaction volumes increases compared to higher 

reaction volumes and that microfluidic methods such as Fluidigm’s C1 have a higher sensitivity 

compared to manual methods (294, 298). As these microfluidic devices are semi-automated, equal 

amounts of reagents, incubation times and mixing steps are obtained, reducing the technical variation 

due to human handling, which can be considerable in single cell experiments (273, 296). Another 

advantage of these microfluidic devices is that closed reaction chambers are used, reducing the risk of 

contamination. This contamination can be high in open bench-top experiments as the input of single 

cell RNA-seq experiments is low, whereby any contaminant molecule will be co-amplified (273). 

Several methods, including STRT-seq, SMART-seq and CEL-seq have been modified to work on plate 

sorted or microfluidic isolated single cells (294, 295, 299). Using these plate-based or microfluidic-

based methods, still only hundreds of single cells can be isolated and capture efficiencies are rather 

low, making these methods less suitable to detect rare cell types or to analyze clinical samples (300).  

In 2015, the first microfluidic method generating droplets enabled to isolate thousands of cells in a 

couple of minutes came to the market. In this type of experiments, cells are captured in oil 

encapsulated aqueous droplets that form pico- to nanoliter reaction chambers in which cell lysis and 

RT take place (Figure 10, 11B, Table 1-2) (301). Besides single cells, also beads are encapsulated in the 

droplets. The beads are coated with long oligonucleotides consisting of a universal primer that is 

identical for every bead, a cell specific barcode that links the transcripts to the cell of origin, a UMI that 

Figure 11: overview of valve-based microfluidic devices, droplet-based devices and nanowells to isolate single cells. (A) In 
valve-based microfluidic devices, such as the C1, single cells are captured in a specific chamber and cDNA synthesis and 
amplification occur in subsequent reaction chambers, separated by pressure controlled valves. (B) In droplet-based devices, 
single cells are isolated together with barcoded beads in aqueous droplets surrounded by an oil phase. Reagents for lysis and 
reverse transcription are also included in the droplets, whereas amplification occurs in tubes, after pooling of the cells. (C) In 
nanowells, cells and barcoded beads are isolated by gravity. After lysis, cells can be pooled. RT: reverse transcription, PCR: 
polymerase chain reaction. Figure adapted from (297). 
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is specific for each molecule, and a poly(dT) stretch to reverse transcribe polyadenylated transcripts. 

The number of cell specific barcodes determines the number of cells that can be captured as too few 

barcodes gives artificial doublets (279, 300, 302). As cell barcoding occurs during RT, the thousands of 

cells can already be pooled in one tube afterwards reducing the reagents needed and subsequently 

the costs of a single cell experiment. One disadvantage of the current droplet-based methods such as 

Drop-seq, InDrop and Chromium, is that the capture efficiencies of the transcripts are low, whereby 

only the most abundant genes are detected (279). In addition, the number of cells that are captured 

in a droplet together with a bead is low, with subsequent loss of many input cells. The cell capture 

efficiency can be improved by increasing the concentration of cells, although this will also result in 

higher doublet rates. Therefore, the concentration of loaded cells is a trade-off between the cell 

capture efficiency and the percentage of cell doublets (296). Due to the attractive features of droplet-

based single cell methods such as a high-throughput and low costs, several commercial and in-house 

made droplet-methods have been developed. Despite the similarity between the droplet-based 

methods, there are also some substantial differences. On the one hand, the material composing the 

beads has an impact on the capture efficiency. Drop-seq uses brittle resin while other droplet-based 

methods such as Chromium and InDrop use hydrogel beads resulting in a higher bead capture 

efficiency as these hydrogel beads are more flexible. Furthermore, this also has a positive effect on the 

mRNA capture efficiency as primers can be immobilized throughout the bead for hydrogel beads, 

whereas this can only occur on the surface for the resin beads. On the other hand, the time point when 

the RT step is carried out has also an effect on the mRNA capture efficiency. For some methods such 

as drop-seq, droplets are already broken and pooled in tubes before the RT, while for other methods 

such as Chromium and InDrop, the RT reaction is carried out in the droplets, which is more efficient as 

it has been shown that the yield is higher when reactions are performed in small volumes (273, 300, 

303). Despite the advantages of the droplet-based methods, expensive instrumentation is often 

required and visualization is not possible. Therefore, high-throughput methods using nanowell-based 

cell dispensing devices, such as the ICELL8, or nano- to picoliter wells, such as cyto-seq, micro-well and 

seq-well, have been recently developed. The first dispenses cells in a microchip, while for the latter 

cells are randomly distributed over the wells, enabling loading by gravity (Figure 10, 11C, Table 1-2). 

The ICELL8 contains preprinted oligonucleotides containing a cell specific barcode, UMI, poly(dT) and 

universal sequence, while these oligonucleotides are coated on beads and added to the wells for the 

nano- to picoliter wells. After lysis and RT, the samples can be pooled and subsequent steps can be 

carried out in a single tube. Advantages over the droplet-based method are that cells can be 

microscopically visualized and that these methods are more flexible as multiple protocols can be used 

for processing the cells after cell lysis (295, 304–307). In addition, the nano- to picoliter wells have the 

extra advantage that no expensive instrumentation is needed (307). 

1.3.3. What’s in a cell: from cell isolation to RNA sequencing 

In general, all single cell RNA-seq methods consist of the same six steps: single cell isolation, cell lysis, 

reverse transcription, amplification, library prep and sequencing. The protocols used for these six steps 

can differ between single cell RNA-sequencing methods and help to determine the method warranted 

for a specific research question. 
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Table 1: characteristics of the most commonly used microfluidic, droplet-based and nanowell devices. pA: polyA; ATAC: 
assay for transposase accessible chromatin followed by high throughput sequencing; CAGE-seq: cap analysis gene expression 
sequencing; HT: high throughput. 

  applications 

 
 

number 
of cells 

 

 
 

capture 
efficiency 

(%) 

 
microscopically 

visible? 

 
cell size 

dependent? 

 
 
reference 

m
ic

ro
fl

u
id

ic
 c

h
ip

s  
C1 

    
     pA[+] RNA seq 
     total RNA-seq 
     DNA-seq 
     ATAC-seq 
     CAGE-seq 
 

 
96 

800 (HT 
chip) 

 
6 

 
yes 

 
yes* 

 

 
(165, 

308–311) 

d
ro

p
le

t-
b

as
e

d
 

 
Chromium 

      
     pA[+] RNA-seq 
     DNA-seq 
     ATAC-seq 
 

  
 8 x 

10,000 

 
50 

 
no 

 
no 

 
(300, 
311) 

ddSeq      pA[+] RNA-seq 
     ATAC-seq 
 

4 x 300 3-5 no no (312) 

Drop-seq      pA[+] RNA-seq 
 

>1000 25 no no (300, 
302) 

inDrop      pA[+] RNA-seq 
 

>1000 20 no no (279, 
300) 

n
an

o
w

e
lls

 

 
Seq-Well 

     
     pA[+] RNA-seq 
 

  
>1000 

 
80 

 
yes 

 
no 

 
(305) 

Microwell-seq      pA[+] RNA-seq 
 

5000-
10,000 

10 yes no (306) 

Cyto-seq      pA[+] RNA-seq 
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1.3.3.1. Single cell isolation 

The first crucial step in a single cell experiment is the generation of a single cell suspension. Whereas 

this is relatively easy for blood cells or suspension cell lines, making a single cell suspension of adherent 

cells or tissues that are highly interconnected is more challenging. Selecting the appropriate enzymatic 

step to create a single cell suspension is important as this can have a substantial influence on the cell 

viability and cellular transcriptome (281). Once a single cell suspension is obtained, single cells can be 

isolated by using mouth pipetting, FACS sorting, microfluidic devices with pressure-controlled valves, 

droplet-based devices, nanowell-based cell dispensing or microwells as described in section 1.3.2. 

Although mouth pipetting is a very laborious and a low-throughput method, it has the advantage that 

cells of interest can be visually selected and cell loss is minimal compared to current microfluidic, 

nanowell-based cell dispensing and droplet-based methods, where only a small fraction of the cells  

*3 types of chips exist: small (5-10 µm), medium (10-17 µm), large (17-25 µm) 
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Table 2: characteristics of the top 15 cited single cell polyA[+] RNA-seq methods in Web of Science and four available 
single cell total RNA-seq methods. pA: polyA; rRNA: ribosomal RNA; UMI: unique molecular identifier; PCR: polymerase 
chain reaction; IVT: in vitro transcription. 
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are captured. In contrast, thousands of cells and even ten thousands of cells can be captured using 

these nanowell-based cell dispensing devices and droplet- and microwell-based methods, respectively, 

substantially increasing the throughput of single cell experiments (270, 281, 307, 323). An advantage 

of FACS sorting over the other described methods is that specific subpopulations can be isolated based 

on surface markers. In addition, forward and side scatter can be used to remove cell doublets and give  

information about granularity and cell fate on top of the cellular transcriptome profile. A disadvantage 

is that the reactions are carried out in microliter volumes, which increases the reagents costs (281). To 

reduce these reagent volumes and costs, microfluidic devices such as the C1 (Fluidigm) were 

developed, in which cells are captured in nanoliter capture sites, allowing automatization and 

parallelization, and decreasing the hands-on time and the technical variability due to reduced pipetting 

steps (273, 281, 296, 324). A disadvantage is the low-throughput and capture rate, the latter especially 

hampered with non-spherical cells. The C1 specifically requires to select a chip based on the size of the 

cells (small 5-10, medium 10-17, large 17-25 µm), making it impossible to capture heterogeneous cell 

populations consisting of different cell sizes. Despite the reduction in reagent volumes, the costs 

remain high owing to the instrumentation and chips needed for these experiments (281). To 

circumvent most of these limitations, droplet-based methods emerged in which cells are captured in 

aqueous droplets surrounded by an oil phase. This has the advantage that cells are captured 

independently of their cell size and fate and the throughput is much higher (up to tens of thousands 

of cells). A disadvantage compared to the aforementioned methods is that the cells cannot be 

microscopically visualized and only 3’ ends of transcripts are sequenced. To visualize cells, nanowell-

based cell dispensing methods such as the ICELL8 and microwell-based methods have been introduced 

in which also thousands of cells can be captured due to dispensing or gravity, and microscopically 

visualized (295, 305, 306, 304, 307). In addition, microwell-based methods have the extra advantage 

that no specific devices are needed, making these methods cheaper in general (295, 305, 306, 304). 

The method one should use depends on: (1) the number and abundance of the cells e.g. rare cell types 

require a large number of cells, (2) the type of starting material e.g. the use of primary tissue warrant 

a high cell capture efficiency and (3) the research question e.g. full length coverage sequencing 

methods are needed for mutation and splicing analyses (279, 288). 

1.3.3.2. Cell lysis 

In the second step, cells are lysed with a buffer to disrupt the cell membrane for efficient mRNA 

capture. The crude lysate should not contain inhibitors that interfere with the subsequent RT reaction 

(281, 287, 293). In this step, RNA spike-in molecules can be added as workflow controls. external RNA 

controls consortium (ERCC) spikes are commonly used and consist of a set of 92 synthetic RNA 

molecules that differ in length, GC content and concentration. These spikes are added in equal 

amounts to the cells during lysis, thus undergoing the same steps as the endogenous RNA molecules 

and can be used for absolute quantification of the number of molecules and for correcting technical 

noise (281). 

1.3.3.3. Reverse transcription 

RT is typically carried out using a poly(dT) primer that  binds to the end of polyadenylated transcripts 

and is used to initiate the RT reaction (281, 293, 325). A substantial part of the human transcriptome, 

including circRNAs, eRNAs, histone RNAs, and a sizable fraction of long lncRNAs, is not polyadenylated 

and therefore not quantified using these classic methods (326–328). Therefore, we and others 
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developed new methods using random primers, enabling to capture both polyadenylated and non-

polyadenylated transcripts (Paper 3, Table 2) (313, 315, 316). Second strand cDNA synthesis can be 

done using template switching or polyA tailing, the latter based on the addition of a polyA tail at the 

3’ end of the first strand cDNA, which can subsequently be bound by the second poly(dT) primer for 

second strand cDNA synthesis. This method results in reasonable 3’ end bias which is partially solved 

by the template switching mechanism. Here, the enzyme adds some non-templated extra nucleotides 

to the 3’ end of the first strand cDNA, which are bound by the second oligo for second strand cDNA 

synthesis (293, 323, 329). In single cell experiments, an average of only 10 % of the transcripts are 

transcribed into cDNA (281, 330). Several efforts have been done to increase the capture efficiency by 

changing the lysis buffers or enzymes (287, 294).  

1.3.3.4. Amplification 

Since a single cell only contains 10-20 pg of RNA, a pre-amplification step is needed by PCR or IVT as 

described in section 1.3.2. To reduce the amplification bias, the incorporation of UMIs is currently 

implemented in most used methods (Table 2) (279, 330–332). These UMIs can be used for absolute 

quantification of transcripts and to reduce the technical noise by up to 50 %. Therefore, methods 

without UMIs, such as SMART-seq, have inherently more amplification noise compared to UMI based 

methods (331).  

1.3.3.5. Library preparation 

To generate sequencing ready libraries, bulk RNA-seq library prep protocols were modified for use at 

the single cell level. For methods without early cell barcoding, such as SMART-seq, cell specific 

barcodes are added at this point enabling the pooling of cells in one tube for further processing. For 

single cell methods in which the cell already obtains a cell specific barcode introduced during the RT 

step, the library prep can be conducted in a single tube, reducing the costs and sample handling time 

(281, 325).  

1.3.3.6. Sequencing 

The sequencing depth determines to some extent the number of genes that are quantified per cell and 

depends on the chosen method, the cell type and the research question. By using 3’ end or 5’ end 

counting methods or full length coverage methods used for gene expression profiling, fewer reads are 

needed compared to full length coverage methods that will be used for splicing or mutation analysis. 

As the sequencing cost considerably contributes to the costs of a single cell experiment, single cell 

experiments are often a trade-off between the number of cells analyzed and sequencing depth as 

sequencing of many cells is expensive. For high-throughput experiments, typically 10,000 to 100,000 

reads per cell are generated, while for lower throughput experiments mostly on average 1 million reads 

are generated (332). To get a first view on your cell population, a high-throughput experiment with 

shallow sequencing can be performed. If the results seem useful, a more in-depth analysis on fewer 

cells can be performed in a new experiment to obtain a more complete view of single cell 

transcriptomes (333). The optimal sequencing depth depends on the research question. It has been 

shown that for the discrimination of different cell types shallow whole transcriptome sequencing 

(20,000 – 500,000 reads per cell) is sufficient, quantifying the top abundant genes. In contrast, studies 

that investigate low abundant genes, subtle differences in gene expression among cell states or 

transcriptional heterogeneity require deeper sequencing (279, 334, 335). To evaluate the ability of 
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single cell sequencing devices in terms of this transcriptional heterogeneity, I performed the same 

perturbation experiment on C1 (Fluidigm), ddSeq (Bio-Rad, Illumina) and Chromium (10X genomics) 

and evaluated these devices with a focus on the detection of differentially expressed genes (Paper 4). 

1.3.4. Analysis of (single cell) sequencing data 

Advances in next generation sequencing technologies and the reduction in costs over the years now 

enable to generate millions to billions of reads per sequencing run and unprecedented amounts of 

various types of sequencing sequencing data are generated everyday (257, 336). This enormous 

amount of sequencing data poses bio-informatics challenges in terms of data storage and the 

development of new computational tools to process these data. Typically, a sequencing analysis starts 

with the alignment of the data to a reference genome, which can take several days depending on the 

size of the data. Next, several tools are required for further downstream analyses that are 

computational intensive. The use of high performance computing (HPC) can considerably speed up 

these processes that require a lot of memory (336). Currently, multiple tools are integrated in 

bioinformatics pipelines, enabling automatization and processing of large datasets (337, 338). 

Furthermore, web-based user-friendly tools, such as Galaxy, also emerged to facilitate the analysis and 

interpretation of sequencing data by biologists without program skills. A drawback of these tools is 

that users do not know what the intermediate steps are and can only adapt some parameters (338). It 

should be noted that the bioinformatics time and storage infrastructure make up a considerable part 

of the current sequencing costs (337). This is a problem that is even more important in clinics, as huge 

data storage equipment is required to store raw data of patients properly, since these should be 

available for new analyses with improved algorithms during time (257). 

The bioinformatics challenges associated with the huge amounts of sequencing data are further 

extended with the development of single cell sequencing methods during the last decade. Analysis of 

these single cell sequencing data is computationally harder as often thousands of cells are investigated 

in parallel, increasing the amount of data generated and slowing down the pace of the analyses (339). 

Although new single cell sequencing methods are emerging rapidly, the number of data analysis 

pipelines is still limited and often specific for a single cell device (340). Currently, no gold standard 

exists for the analysis of single cell data, however, the first benchmarking studies comparing different 

tools are emerging (341–343). First, reads should be demultiplexed to assign reads to the appropriate 

cell. This is usually done using raw data analysis pipelines such as Cell Ranger and indrops. These 

pipelines also perform quality assessment, alignment and quantification of the reads (279, 344, 345). 

The quality of the cells is mostly determined based on the number of genes and reads per cell since 

too few genes or reads per cell may point to dying cells, while too many genes and reads may indicate 

cell doublets. A more reliable way to remove doublets is by using one of the recently developed tools 

such as DoubletFinder (346). To speed up the computational processes, genes that are only expressed 

in a few cells are typically removed (345, 347, 348). In the next step, ambient (extracellular) RNA that 

contributes to the noise in single cell experiments and disturbs downstream analyses, needs to be 

removed. To quantify and correct for the presence of ambient RNA, SoupX was recently developed 

(349).  

In contrast to bulk sequencing methods, single cell sequencing data are characterized by zero-inflated 

counts due to dropouts or transcriptional bursting. Several tools such as ZIFA, scImpute and drImpute 

have been developed to account for these dropouts (350–353). To further account for these dropouts, 

effective normalization is warranted. Spike-in normalization is possible based on the assumption that 

every cell gets an equal amount of ERCC spikes as these spikes are added during lysis and this should 

consequently result in the same number of spike-in reads per cell (354). However, their utility is still 
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under debate for several reasons. First, the capture rate of these synthetic RNA molecules deviates 

from endogenous RNA molecules as these ERCC spikes generally have shorter polyA tails (20-26 bp vs 

250 bp on average) and therefore likely less efficiently captured (333, 355, 356). Second, these 

synthetic RNA molecules are not bound by mRNA binding proteins and do not make secondary 

structures and are therefore more easily captured. Third, these ERCC spikes lack a 5’ cap, whereby the 

template switching mechanism is less efficient than for endogenous molecules (333, 335, 357). 

Therefore, ERCC spikes are not perfect for normalization and the use of endogenous reference genes 

provides an alternative way to normalize. However, these reference genes are not always expressed 

at similar levels in all subpopulations, further complicating the normalization of single cell data (358). 

As these normalization methods are still under debate, new normalization methods should be 

developed.  

After these steps, single cell sequencing data are typically used to identify new subpopulations and 

their markers (1), to perform trajectory analysis (2) or to perform differential gene expression analysis 

(3). First, dimensionality reduction algorithms such as principal compound analysis (PCA) and T-

distributed stochastic neighbor embedding (tSNE) are often used to identify subpopulations in a 

sample. These methods enable to visualize different clusters in the dataset. Based on differential gene 

expression analysis between the clusters, marker genes can be identified (345, 347). Large sequencing 

projects such as the Human Cell Atlas facilitate the determination of cell types in the clusters. Recently, 

tools have been developed to automatically annotate clusters (359). Second, trajectory analyses order 

cells along a trajectory to reconstruct differentiation processes. A recent study evaluated various 

trajectory tools and provided guidelines for specific applications (342). Third, performing differential 

gene expression analysis at the single cell level is interesting as this shows how each individual reacts 

on a specific treatment or perturbation or to identify marker genes that differ subpopulations. A 

comparison study has shown that methods for bulk differential gene expression analysis work equally 

well compared to single cell specific methods and that EdgeR is the best method for single cell 

differential gene expression analysis (343, 345). However, due to the increasing number of cells per 

experiment, run-time has to be taken into account for the decision of the method. Therefore, single 

cell specific methods such as MAST are sometime more appropriate (360). 

The last decade, plenty of tools have been developed, however, this field is still in its infancy and no 

gold standard exists yet. As the field is developing rapidly, the number of data analysis tools increases, 

but also the size of datasets keeps increasing, posing further computational challenges for the run-

times of the tools. scRNA-tools.org gives a nice overview of the currently existing single cell analysis 

tools and further comparative studies will help to decide which tools to use for a specific application. 

1.3.5. Single cell genomics, epigenomics and proteomics add extra layers of information 

To extend our understanding of the regulation of genes and cellular processes in single cells, genetic, 

epigenetic and proteomic data are required. Despite the rapid increase in the number of new single 

cell RNA-seq methods, the development of single cell DNA and epigenetic sequencing methods has 

been more challenging as a cell only contains two copies of the chromosomes in contrast to the 

thousands of copies of several mRNAs (361). Nevertheless, the equimolar nature of genes at the DNA 

level is beneficial as only a limited number of reads are needed to examine a single cell’s (epi)genome 

(297). Likewise, investigating protein expression at the single cell level has also been challenging due 

to heterogeneous expression, the difficulty to amplify proteins and the lack of powerful tools for 

proteomics (Figure 12) (324). 
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1.3.5.1. Single cell genomics 

Single cell DNA sequencing data provides insights in the heterogeneity of SNV and copy number 

variations (CNV) across cells. To obtain sufficient genomic coverage, whole genome amplification 

(WGA) methods such as PCR, multiple displacement amplification (MDA) or a combination of these 

two are required to amplify the DNA molecules (362–364). The PCR-based methods yield a uniform 

amplification, but sparse genomic coverage, while MDA-based methods generate a less uniform 

amplification, but better genomic coverage. Consequently, PCR-based methods are more suitable for 

CNV detection, whereas MDA methods are warranted for single nucleotide polymorphism (SNP) 

calling.  More recently, these two methods have been combined to obtain a uniform amplification and 

high coverage (363–366). After whole genome amplification, sequencing can be performed. Since the 

actual sequencing costs consume a considerable fraction of the costs of these experiments, using 

whole exome sequencing or targeted approaches, where only a panel of specific genes are enriched, 

can reduce the required number of sequencing reads per cell and consequently the costs (367). 

Recently, these targeted DNA sequencing approaches were combined with droplet-based methods, 

significantly increasing the throughput of single cell DNA-seq experiments from a hundred cells to 

thousands of cells (368). 

1.3.5.2. Single cell epigenomics 

The regulation of gene expression has been studied extensively by integrating measurements of DNA 

methylation, chromatin accessibility, histone post-translational modifications and 3D conformation. 

Investigating transcription factor binding on these regions can give further insights in how the 

regulatory regions impact the expression of target genes. In order to identify direct interactions 

between these regulatory regions and their targets, chromosome conformation capture methods can 

be used. Similar as to RNA-seq experiments, all these methods were originally developed and used in 

bulk cell populations, resulting in average signals and masking the regulatory heterogeneity. Studying 

these epigenetic layers at the single cell level can depict regulatory heterogeneity and can define 

Figure 12: single cell sequencing  methods. Single cell sequencing methods have been developed to investigate DNA, RNA, 
epigenetic marks and proteins of single cells. Currently, several methods combine some of these layers to obtain 
complementary information from the same single cell. Sc: single cell; meth: methylation; ChIP: chromatin immune 
precipitation; ATAC: assay for transposase accessible chromatin; CITE-seq: cellular indexing of transcriptome and epitope by 
sequencing; REAP: RNA expression and protein sequencing. Figure adapted from (353). 
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regulatory regions in new cell types. This contributes to a more complete view of the characteristics of 

cell populations as epigenetic and transcriptomic heterogeneity can differ and provide complementary 

information. Regulatory heterogeneity can for instance originate from regions that are poised, 

repressed or primed, while this will have no or little effect on gene expression and consequently will 

not give transcriptional heterogeneity. Thus, cells can show epigenetic heterogeneity with no or little 

effect on gene expression or the other way around, emphasizing the importance to add single cell 

epigenomic data as an extra layer of information (369–371).  

Single cell DNA methylation 

Single cell methylation sequencing was the first single cell epigenomic method developed (372). DNA 

methylation mostly occurs at CpG dinucleotides and is an epigenetic modification involved in silencing 

of gene expression (373). Methylation plays an important role in biological processes such as cell 

differentiation, genomic imprinting and cancer development (361, 372, 373). As a mammalian cell only 

contains two copies of DNA molecules, the biggest challenge for single cell methylation experiments is 

to retain these copies. Therefore, bulk methylation sequencing protocols were optimized with less 

purification steps to reduce possible loss of DNA (361). Most of the methods, such as single cell bisulfite 

sequencing, are low throughput methods that capture up to 48 % of the genome of a cell (374). 

Recently, new methods, such as single cell combinatorial indexing for methylation sequencing (sci-

MET) emerged, increasing the throughput up to thousands of cells, but simultaneously reducing the 

percentage of the genome that is captured to 1 - 5 %, underscoring the need for further improvement 

(375, 376). These single cell methylation methods can be used to separate subpopulations based on 

their methylation profile as regulatory elements with cell type specific activity can be identified (373, 

376). 

Single cell open chromatin mapping 

Identifying regions of open chromatin contributes to the detection of regulatory elements involved in 

control of gene expression (310). As regulatory regions are often cell type specific, chromatin states 

are more suitable to distinguish cell types compared to single cell RNA-seq (377). Moreover, changes 

in chromatin states can precede changes at the RNA level, whereby initial changes may not be 

noticeable by only performing single cell RNA-seq (377, 378). Current methods to measure chromatin 

states are based on the fact that open chromatin regions are more accessible to enzymes that can 

fragment these regions. Single cell DNAse-seq maps open chromatin regions by the use of DNAseI. 

Since barcodes can only be added, and cells consequently be pooled, during library prep, the protocol 

is labor intensive and only possible for a limited number of cells (373). In contrast, assay for 

transposase accessible chromatin followed by high-throughput sequencing (ATAC-seq) uses a Tn5 

transposase that fragments and adds adaptor sequences to accessible chromatin regions, enabling to 

pool cells after this step (310, 373). The method has been modified to perform ATAC-seq at the single 

cell level at relatively low throughput (<100 cells) using microfluidic chips or at higher throughput 

(>1000 cells) using combinatorial indexing in microtiter plate wells. The latter method distributes pools 

of cells in a plate where a first specific barcode is incorporated. Next, these cells are distributed in new 

pools in a new plate, where a second barcode is incorporated. By combining the first and second 

barcode, most of the cells obtain a unique combination, enabling to pool thousands of cells without 

the need to isolate cells physically (379). Despite the higher throughput of this method, the detection 

rate is lower compared to microfluidic devices as reactions are less efficient in these larger reaction 

volumes, which has also been shown for single cell RNA-seq (263, 294, 373). Using single cell ATAC-
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seq, only up to 10 % of the promoters are captured (380). Recently, protocols for commercial devices 

such as the ddSeq single cell isolator and Chromium have also been released.  

Single cell histone modification and protein-DNA interactions 

Bulk chromatin immunoprecipitation sequencing (ChIP-seq) identifies histone marks or binding of 

transcription factors and is often investigated as binding of transcription factors drives gene 

expression, and binding on inappropriate places can contribute to disease development (381). ChIP-

seq has the limitation that a lot of input is required and the success rate is mainly dependent on the 

quality of the antibody. Non-specific antibodies give off-target effects, of which the number increases 

using low input samples as a consequence of the lower amount of the target of the antibody available 

(381, 382). The single cell Drop-ChIP method circumvents this limitation by first labeling the chromatin 

of single cells in droplets followed by chromatin pooling. Therefore, the amount of the target of the 

antibody increases, thus decreasing off-target effects and noise. Despite the fact that the detection 

rate is only about 5 % due to low coverage and only a thousand promoters/enhancers can be identified, 

this is sufficient to separate different cell types. Currently, single cell ChIP-seq has only been performed 

for abundant histone marks and should be further optimized to be also applicable for transcription 

factors (382). Cleavage under targets and release using nuclease (CUT&RUN) is another antibody-

based method to detect transcription factor binding and circumvents several limitations of ChIP-seq. 

CUT&RUN uses transcription factor specific antibodies to tether MNAse that specifically cleaves the 

DNA at binding sites, reducing the background and consequently the sequencing costs, which are both 

high in ChIP-seq experiments. Another advantage of CUT&RUN compared to ChIP-seq is that the 

antibodies bind in an intact cell, providing information of binding in a cell’s natural state (381, 383, 

384). This protocol has been optimized to be able to perform CUT&RUN at the single cell level (384). 

One of the limitations of ChIP-seq and CUT&RUN remains that a specific antibody is required, which it 

not always available. Therefore, another approach to study protein-DNA interactions at the single cell 

level is the DNA adenine methyltransferase identification (DamID) method. By using single cell DamID, 

regions that interact with the nuclear lamina were identified. This is obtained by fusing Lamin B1 with 

a DAM that methylates all lamin B1 interacting loci. After fragmentation with an enzyme specific to 

DAM methylated sequences, these loci can be sequenced (385, 386). Bulk DamID protocols have been 

optimized to study other DNA-protein interactions and can potentially also be used at the single cell 

level (373, 386). 

Single cell chromatin maps 

In addition to the epigenetic changes described above, also chromosome conformation can contribute 

to the regulation of gene expression. To investigate chromosome structure, 3C sequencing has been 

introduced in 2002, which can capture interactions between known interacting regions (387, 388). 3C 

has the limitation that only interactions between regions that are in close proximity can be detected 

and that prior knowledge of the interacting regions is required (387). To circumvent this, several other 

conformation capture methods have been developed and are based on the 3C method. Circular 

chromosome conformation capture (4C) enables to detect longer distance interactions and genome-

wide interactions of a region of interest, while 3C carbon-copy (5C) can be used to map multiple known 

interacting pairs (388–390). Finally, HiC was developed enabling to investigate global genome-wide 

chromosome conformation by identifying direct contact points throughout the whole genome (388, 

391). Up to now, only efforts have been done to perform HiC sequencing at the single cell level, where 

up to 1,900,000 contact points per cell can be identified (392–394). The throughput of these first single 

cell HiC experiments was low, but has been drastically improved to thousands of cells by implementing 
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combinatorial indexing (395). These single cell HiC methods have demonstrated that the domain 

structure of chromosomes at the megabase scale is relatively stable amongst cells and conserved 

across cell types, while chromosome structure at larger scale (interdomain and trans-chromosomal) 

can considerably differ across cells (393, 394, 396). Moreover, it has been shown that the cell cycle is 

a major contributor to this variability, which is in concordance with the (de)condensation of 

chromosomes during the cell cycle and which is masked in bulk HiC experiments (397).  

1.3.5.3. Single cell proteomics 

As proteomics data form a bridge between genomic data and cellular functions, also single cell 

proteomic methods are warranted (324). The first methods described used fluorescent proteins and 

FACS analyses with fluorescent labeled antibodies to identify and quantify proteins at the single cell 

level. One of the main drawbacks of these methods is that only few proteins can be detected due to 

the limited number of visual markers. Mass cytometry circumvented this limitation by using isotopes 

conjugated to the antibodies, increasing the number of proteins that can be detected simultaneously 

(398–400). Single cell western blot devices, such as the Milo (ProteinSimple), have the advantage that 

molecular mass and antibody binding are combined, enabling the detection of isoforms; the limitation 

is that only few proteins can be studied per cell (399). To further increase the number of proteins, 

more recent methods benefit from single cell sequencing methods. Here, antibodies are linked to an 

antibody specific oligo whereby the protein signal is transformed into a nucleotide sequence that can 

be sequenced (324, 401). By combining an antibody specific and cell specific barcode, proteins can be 

investigated at the single cell level in a high-throughput manner (>10,000 cells). Moreover, by the 

incorporation of UMIs, absolute protein quantification became possible (324, 398). In contrast to the 

fluorescent-based methods that suffer from overlap of fluorescent labels, this method has 

theoretically unlimited multiplexing potential. Moreover, the sensitivity is higher as barcode 

sequences can be amplified at low levels (324). Given that a cell contains more than 20,000 proteins, 

detecting all proteins in a cell is not feasible, but also not required as most of the heterogeneity can 

be captured based on the combination of a subset of proteins (324).  

1.3.5.4. Integrative analysis of transcriptome, (epi)genome and proteome layers at the single cell level 

As the genotype-phenotype relation in a cell depends on several layers, new methods to investigate 

several layers in parallel in the same cell are required (373, 402). Investigating these layers in different 

cells of the same cell type gives some biases as cells can for instance be in a different cell cycle stage. 

To circumvent these differences between similar cells, methods sifting through these various layers 

within one cell have been developed over the recent years (401).  

To investigate the transcriptome and (epi)genome within one cell, gDNA and RNA need to be separated 

(Figure 13). The first method to separate gDNA and RNA is pre-amplification of the gDNA and RNA 

followed by dividing the sample for DNA and RNA sequencing. The second method physically separates 

the gDNA and RNA by the use of a membrane specific lysis buffer that only ruptures the cell membrane 

and maintains the nucleus. Next, the cytosol, containing most of the RNA molecules, and the nucleus, 

containing the gDNA, are separated for subsequent processing (401–403). The third method uses 

magnetic beads coated with oligo(dT) primers that only capture the RNA molecules, separating them 

from DNA (401, 402, 404). After separation, the RNA and gDNA fractions can be used to perform single 

cell RNA and gDNA and/or epigenome sequencing with a method of choice (373, 405). Combining 
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single cell genomics and transcriptomics data by for instance genome and transcriptome sequencing 

(G&T-seq) depicted a strong correlation between the copy number of a gene and the expression within 

one cell. Moreover, it has been shown that genes with low copy numbers have a noisier expression, 

indicating that CNVs contribute to the variability in gene expression between cells (401, 404, 406). 

Combining these two layers also more accurately predicts SNVs as the SNVs detected by genomic 

methods can be validated by RNA-seq if the allele carrying the SNV is expressed. The detection of SNVs 

is often used to study cell lineages and cancer development for which transcriptomic data of the same 

cells can provide additional information about the cell state of these cells (401). Besides genome 

analyses, also open chromatin or methylome sequencing can be conducted on the gDNA fraction after 

separation of gDNA and RNA, providing insight into the relation between the epigenome and 

transcriptome. Profiling the open chromatin and transcriptome in a single cell has shown that DNAse 

hypersensitivity sites of highly active genes are detected in most of the cells, whereas DNAse 

hypersensitivity sites of lower expressed genes are detected in less cells. Moreover, the DNAse 

hypersensitivity sites that are only detected in a few cells show more variation in the expression 

pattern of the associated genes. Thus, determining chromatin states and gene expression profiles in 

the same cells allows to link chromatin state with gene expression (407). Methylome and 

transcriptome sequencing data can obtain other, non-redundant information about the cell state. In 

addition, positive as well as negative correlations between the transcriptome and methylome data 

were identified underscoring the complex relation between the transcriptome and methylome, 

especially at distal regulatory regions (401, 408, 409). It has been shown for hypomethylated 

promoters that half of the genes show an expression pattern that is consistent across all cells, however 

the other half of genes are highly expressed in some cells while low in other cells. This is masked by 
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Figure 13: approaches for DNA or epigenetics sequencing and RNA sequencing of the same single cell. For the first two 
methods, the whole cell is lysed. Subsequently, the RNA is reverse transcribed, followed by pre-amplification of the DNA and 
cDNA for the first method. Next, the reaction is split in two for single cell DNA or epigenetics sequencing and RNA sequencing. 
For the second method, the DNA and RNA are physically separated by binding of the RNA to oligo(dT) coated magnetic beads. 
The third method only lyses the  plasma membrane where after cytoplasmic RNA and nuclei are separated. The DNA isolated 
after nuclear lysis can be used for single cell DNA or epigenetics sequencing. Sc: single cell. Figure adapted from (401). 
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bulk sequencing and depicts that other factors than methylation contribute to the regulation of gene 

expression (410).  

Besides the combination of single cell transcriptome and (epi)genome sequencing within one cell, also 

several epigenetic layers have been combined. By using single cell ATAC-seq or DNAse-seq, regions of 

open chromatin can be identified, while undetected regions are assumed to be closed. As these regions 

can also be regions of undetected open chromatin (false positives), an extra layer of information should 

be added to distinguish between closed chromatin regions and false positives. This can be done by 

combining the chromatin state with methylome sequencing within one cell for which several methods 

have been developed (373, 411). Also, cut and tag, a method that combines the detection of histone 

marks or transcription factors with accessible chromatin has been developed by combining specific 

antibodies and a hyperactive Tn5 transposase that integrates sequencing adaptors in the open 

chromatin. This method produces single cell ChIP signals with a low signal to noise ratio and maps the 

open chromatin of the same cells for thousands of single cells in parallel (412). To link protein 

expression with RNA expression, new methods that benefit from the antibodies linked to oligos as 

described in section 1.3.5.3, arose. These antibodies coupled to oligos allowed to develop methods 

that can simultaneously measure protein and RNA expression in single cells by sequencing the RNA 

and oligos in parallel. This can be done by cellular indexing of transcriptome and epitope by sequencing 

(CITE-seq) or RNA expression and protein sequencing (REAP-seq). In these methods, the antibody is 

coupled to an antibody specific barcode with a polyA tail. Subsequently, these polyA tailed barcodes 

are captured together with the endogenous polyadenylated transcripts by the oligo(dT) primer. After 

the addition of a cellular barcode, the transcripts and proteins of interest can be investigated at the 

single cell level. Both methods are compatible with commercially available systems (413, 414). As the 

correlation between mRNA and protein expression is sometimes low, the measurement of proteins 

and RNA transcripts in the same cell can give complementary information to better characterize 

subpopulations (414, 415). Remarkably, low abundant proteins are more easily to identify compared 

to low abundant mRNA molecules in these libraries as proteins have in general longer half-lives and 

have on average 1000-fold higher copy numbers per cell compared to the mRNA copy numbers (297, 

414, 415). 

Over the last years, the number of layers that can be analyzed simultaneously in one cell has further 

evolved. It is now possible to combine genetic, epigenetic and transcriptomic data from the same cells. 

scTRIO-seq combines CNV, methylome and transcriptome sequencing, while COOL-seq even combines 

four layers by integrating the chromatin state, methylome sequencing, CNVs and the ploidy of cells 

(403, 411). In addition, the capture efficiency is much higher compared to the current methods that 

only measure one epignomic layer, as the methyl and chromatin profile for up to 70 % of the RefSeq 

genes can be determined using COOL-seq (411). Furthermore, these multi-omics methods can in 

principle be combined with tens of surface markers by using FACS sorting to isolate single cells adding 

an additional layer of information (380). These methods will give better insights into the complexity of 

a single cell and will allow to determine relations between these different layers at the single cell level.  

1.3.6. Deciphering cancer: one cell at a time 

It has been known for decades that tumors comprise cellular and molecular heterogeneity and consist 

of a mixture of tumor cells and normal cells, including fibroblasts, lymphocytes and endothelial cells 

(416–420). Moreover, these cells interact with each other and with the tumor microenvironment, 

further complicating tumor development and maintenance (421). Therefore, taking one biopsy is not 
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representative for the whole tumor as different sites have other compositions of cells and do possibly 

not comprise all subclones of the tumor. Identification of these subclones is important as some of 

these clones may be able to develop drug resistance. Consequently, identification of these subclones 

can help to provide a better prediction of the prognosis and to develop better therapies by combining 

drugs against specific subclones (Figure 14) (416, 422, 423). This heterogeneity can be partially 

characterized by performing bulk sequencing of different time points and tumor regions (353, 362, 

418, 424–426). Nevertheless, rare cell types and intra-tumor heterogeneity within a sample remain 

masked using these bulk sequencing methods and this can only partially be solved by performing 

deconvolution based on known cell types (362, 418, 425, 426). To fully capture the heterogeneity 

within a tumor and to understand the development of cancer, single cancer cells have been 

investigated for many years using microscopy and fluorescent-based methods, including FISH. 

However, generating genome-wide mutation and transcriptome profiles of multiple individual cancer 

cells has only been possible the last decade (427). As several cancer mutations are known based on 

the bulk sequencing experiment, targeted sequencing approaches using gene panels are often used to 

reduce the costs of these single cell sequencing experiments (418, 428). Investigating mutations and 

CNVs over time in a tumor at single cell resolution allows to identify subclones and the order in which 

the mutations, CNVs and subclones emerge. Based on these data, phylogenetic trees can be 

constructed to unravel the clonal evolution of a tumor and to gain insights in the origin of the cancer 

(362, 429). This is illustrated for T-ALL, for which the type of progenitor cells in which the first mutations 

occur varies across patients and mutations occur at specific timepoints during development. 

Performing single cell DNA sequencing on multipotent and myeloid progenitor cells of T-ALL patients 

revealed oncogenic mutations in these progenitor cells that were also found at diagnosis in some 

patients, while these mutations were barely found in the progenitors of other patients. This indicates 

that mutations start to accumulate in the multipotent progenitor cells for some T-ALL patients, 

whereas only in the lymphoid lineage for other patients (430). This also highlights why autologous stem 

cell transplantation can lead to relapse as the bone marrow can still contain some progenitors that 

contain these oncogenic mutations if these are not eradicated before treatment (430, 431). Single cell 

DNA sequencing over time also revealed that the highly abundant NOTCH1 mutations only occur at a 

late stage of T-ALL development. Therefore, NOTCH1 mutations are probably not present in all clones, 

which has to be taken into account for the treatment of these patients (430). Currently, most cancer 

treatments suffer from resistance as the penetration of the drug in the tumor is not uniform and not 

all cells are sensitive to the therapy due to intra-tumor heterogeneity. The small number of tumor cells 

that remain present in the patient upon treatment are called minimal residual disease cells and can 

lead to clinical relapse (267, 432, 433). Identifying these subpopulations of cells that do not react on 
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the drug using single cell sequencing methods can help to develop new therapies that specifically 

target these cells to get complete remission (432).  

The importance of identifying these rare resistant subpopulations has been illustrated for melanoma, 

for which treatment with MAPK inhibitors results in distinct transcriptional subpopulations of which 

one subpopulation has stem-like properties and has been shown to be the driver for relapse. As this 

subpopulation is only present at 0.58 % of the cells before treatment, this subpopulation can only be 

detected using single cell sequencing methods. Targeting these resistant cells in combination with 

MAPK inhibition results in a longer median progression free survival underlying the importance to 

identify and attack these specific drug resistant subpopulation (267). In addition, treatment of 

melanoma with RAF/MEK inhibitors also leads to resistance in melanomas with a high expression of 

AXL. Bulk RNA-seq divides melanomas in AXL high and low tumors to predict if the tumor will react on 

the drug. However, by performing single cell RNA-seq of these tumors, it became visible that in AXL 

low tumors, also a subclone with high AXL expression can be present, hidden by bulk RNA-seq (434). 

Pre-existing drug resistant clones have also been identified for breast cancer based on CNV profiles 

before treatment, while transcriptional changes are only acquired upon treatment. Noticeably, this 

also depicts the need to combine multiple layers as the drug resistant clone could only be detected at 

the genome level prior to treatment, while not on the transcriptome level (435). Conversely, 

genetically similar cells can also consist of different transcriptional cell states that can result in drug 

resistance (401). The presence of drug resistant clones before treatment emphasizes the need to 

detect these clones prior treating the patients to predict whether the patient will respond and if other 

therapies should be considered to circumvent the resistance (353, 435, 436). Besides the tumor itself, 

Figure 14: the role of single cell RNA sequencing in cancer treatment. (A) Bulk RNA sequencing generates an average 
expression profile of the tumor, hiding possibly resistant subpopulations. Based on the average expression profile, the patient 
will receive a drug, potentially not targeting all clones. (B) By performing single cell RNA sequencing, the expression profile 
for each cell is obtained, enabling to characterize subpopulations and combine drugs to target all clones. scRNA-seq: single 
cell RNA-seq. Figure adapted from (423) 
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the immune cells and microenvironment can also contribute to drug resistance (437, 438). For 

instance, it is known that tumors containing exhausted T-cells, which is a state of T-cell dysfunction, 

are not responsive on immunotherapy by checkpoint inhibition (437, 439). However, the presence of 

a newly identified type of T-cells that precedes the exhausted T-cells (pre-exhausted T-cells) has been 

shown to have a better prognosis compared to the presence of exhausted T-cells in lung cancer 

patients. Therefore, single cell sequencing of the T-cell composition of cancer patients can contribute 

to the prediction of the prognosis and the decision whether or not to give immunotherapy to a patient 

(437, 439).  

To be able to identify these different subpopulations within a tumor using single cell sequencing 

methods, solid tumors require an invasive biopsy with low yields and enzymatic digestion. Therefore, 

analyzing circulating tumor cells (CTCs) is currently gaining interest as these cells are shed in the blood 

stream and can be isolated in a non-invasive way from blood, permitting to isolate them at several 

timepoints providing a better follow-up of disease progression and treatment (362, 363, 427). One 

drawback is that these CTCs are extremely rare in blood (1 in 106), requiring specialized isolation 

methods (353, 418, 440). More than halve of the mutations found in the primary and metastatic tumor 

can also be found in CTCs making them suitable for the analysis of several cancer types (427, 441). In 

addition, for colon cancer it has been shown that up to 85 % of the CTC specific mutations can also be 

identified in the primary tumor using ultradeep sequencing, depicting that the mutations found in CTCs 

are real (442). The importance of sequencing single CTCs has been depicted for several cancer types. 

First, sequencing profiles of CTCs can be used identify cancer subtypes. This has been illustrated for 

breast cancer, for which the CNV profiles of single CTCs can be used for the clinical classification of 

breast cancer patients (362, 443). Second, the therapy response can be predicted based on single cell 

CTCs’ sequencing profiles as illustrated for lung cancer and prostate cancer. For lung cancer, it has 

been shown that the CTCs’ CNV profiles can determine whether a patient will respond to 

chemotherapy or not while for prostate cancer mutations and splice variants in the androgen receptor 

are suggestive for resistance to anti-androgen therapies (362, 444–446). The response on these anti-

androgen therapies is heterogeneous, which is reflected in the CTCs’ profiles. These androgen receptor 

mutations and splice variants are only detected in CTCs of resistant prostate cancer patients, while not 

in primary localized prostate cancer patients, showing the value of identifying these mutations and 

splice variants in CTCs (446). Third, CTCs can also be used for treatment follow-up as shown for prostate 

cancer. Here, a new drug resistant clone can be identified during relapse, underscoring the need to 

identify this clone during treatment follow-up and consequently adapt the treatment (447).  

The number of single cell sequencing methods has drastically increased over the last years and has 

promising clinical applications for cancer patients as often too little material is available for bulk 

analyses and as these bulk analyses can hide cells of interest. Moreover, single cell sequencing 

methods can detect rare resistant cells and tumor heterogeneity resulting in a better prediction of 

treatment response. Furthermore, analyzing CTC is promising as this eliminates the need for invasive 

biopsies and enables a better follow-up of disease progression and treatment over time. As the costs 

of these single cell experiments and the sequencing cost are dropping over the last years, single cell 

sequencing analyses will probably be feasible in the near future for clinical application (420).  
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Research objectives 

Advances in NGS methods enabled to investigate whole genomes in a cost efficient and high-

throughput manner. These methods are now widely used and contribute to our knowledge of 

molecular mechanisms involved in normal development and disease. Besides whole genomes, these 

methods also enable to unravel complete transcriptomes (RNA sequencing, RNA-seq). The first RNA-

seq protocols only sequenced polyadenylated transcripts, whereby amongst others a large fraction of 

the long non-coding RNAs (lncRNAs) remained undetectable. Subsequently, total RNA-seq protocols 

were developed enabling to capture these non-polyadenylated as well as polyadenylated transcripts. 

In this thesis, I combined polyA[+] and total RNA-seq of a large T-ALL cohort and an in vitro TLX1 

knockdown cell model system to identify lncRNAs involved in the development of TLX1/3 positive T-

cell acute lymphoblastic leukemia (T-ALL) and more specifically lncRNAs regulated by TLX1 (Aim 1). As 

a bulk RNA-seq approach was followed, the average gene expression profile of cell populations was 

generated, possibly masking subtle differences among cells upon the perturbation. In contrast, single 

cell RNA-seq has the potential to detect, amongst others, transcriptional heterogeneity upon a 

perturbation. Therefore, I used a well-characterized cellular system upon chemical perturbation to 

develop a new single cell total RNA-seq protocol (Aim 2) and to evaluate three commercial single cell 

RNA-seq devices in terms of their ability to capture transcriptional heterogeneity and differentially 

expressed genes (Aim 3).  

 

Aim 1: deciphering the TLX1 regulated lncRNAome in T-ALL 

T-ALL is a highly aggressive haematological cancer associated with poor prognosis, however intensified 

therapeutic strategies have led to considerable improvements in patient survival in the past decade. 

Unfortunately, these treatments are associated with severe acute and long-term toxicities and a large 

fraction of the patients still relapse, underlying the need to better define the molecular basis of T-ALL. 

’T-cell leukemia homeobox 1’ (TLX1) is a major driver gene in T-ALL development, demarcating a 

molecular T-ALL subgroup with a specific gene expression profile for which downstream effects are 

already been thoroughly studied in terms of protein-coding genes. In my research project, I aimed to 

extend the TLX1 regulatory network in T-ALL towards lncRNAs, since it is now widely accepted that 

these lncRNAs can play an important role in the development of cancer and the role of lncRNAs in this 

disease remains largely unexplored. Therefore, I generated polyA[+] as well as total RNA-seq 

transcriptome data of ALL-SIL lymphoblasts upon TLX1 knockdown and integrated ATAC-seq, 

H3K4me1, H3K4me3, H3K27ac and TLX1 ChIP-seq data to identify TLX1 regulated lncRNAs. I extended 

this dataset with polyA[+] and total RNA-seq of a large primary T-ALL cohort and aimed to identify TLX 

subgroup specific and possibly oncogenic lncRNAs (Paper 1). As this is a comprehensive and unique 

dataset in the T-ALL field that contains extensive unexplored information, I aimed to make the data 

publicly available and wrote a data descriptor with a detailed description of the methods used, 

enabling re-use of the dataset by the broader research community (Paper 2). 

 

Aim 2: developing a single cell total RNA sequencing protocol 

In 2012, Fluidigm released the C1, the first commercially available single cell RNA-seq device. Since 

then, the number of single cell RNA-seq methods raised rapidly thereby increasing the throughput and 

decreasing the cost per single cell. However, most methods could only capture polyadenylated 

transcripts, leaving the non-polyadenylated part of the transcriptome, including a large fraction of the 

lncRNAs and all circular RNAs (circRNAs), undetectable. Therefore, I aimed to develop a protocol that 
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enables capture of both polyadenylated and non-polyadenylated transcripts using the C1 instrument. 

Since the Fluidigm C1 is restricted to the capture of only 96 cells, I also aimed to validate the single cell 

total RNA-seq protocol for FACS sorted single cells, increasing the throughput and utility of the 

developed method (Paper 3). 

 

Aim 3: evaluating transcriptional heterogeneity upon perturbation using three single cell RNA-seq 

devices 

During my PhD mandate, the number of single cell sequencing devices increased rapidly, and 

consequently the number of single cells that can be captured in a single experiment increased 

drastically from a few to tens of thousands of single cells. Since each device has its own specifications, 

several studies compared these devices in terms of data quality and their ability to detect cellular 

subpopulations. However, none of these comparative studies focused on the detection of 

transcriptional heterogeneity upon a chemical perturbation. Therefore, I aimed to evaluate the C1 

(Fluidigm), ddSeq (Bio-Rad, Illumina) and Chromium (10x Genomics) with respect to data quality, 

transcriptional heterogeneity and the ability to detect differential expressed genes (Paper 4). 
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T-cell acute lymphoblastic leukemia (T-ALL) is an 

aggressive hematological malignancy arising 

from uncontrolled proliferation and arrested 

differentiation of precursor T-cells. T-ALL is a 

genetically heterogeneous disease and can be 

subdivided into different molecular cytogenetic 

subgroups associated with specific gene 

expression signatures.1,2 The T-cell leukemia 

homeobox 1 (TLX1, HOX11) transcription factor 

is a key driver of the TLX subgroup in T-ALL with 

ectopic expression in developing thymocytes 

causing a maturation arrest at the early cortical 

stage of T-cell development. Aberrant TLX1 

expression occurs in 5–10 % of pediatric and 30 

% of adult T-ALL patients and predominantly 

results from t(7;10)(q34;q24) or 

t(10;14)(q24;q11) chromosomal translocations 

leading to juxtaposition of TLX1 to the T-cell 

receptor (TCR) δ or β promoter.3 The TLX1 gene 

regulatory network has been extensively studied 

in terms of co-factors and downstream protein-

coding gene targets.4 Given that the protein-

coding part of the genome only constitutes 

about 2 % while up to 70 % of the genome is 

transcribed (as non-coding ribonucleic acid 

(RNA)), a deeper exploration of the TLX1 driven 

non-coding transcriptome in T-ALL is warranted 

to support a more profound understanding of 

the molecular basis of this T-ALL subtype.5 Long 

non-coding RNAs (lncRNAs) recently emerged as 

crucial transcriptional regulators in normal 

development and cancer, including normal and 

malignant hematopoiesis.6,7 LncRNAs are 

arbitrarily defined as transcripts longer than 200 

nucleotides and are poorly evolutionary 

conserved in terms of sequence.8 Recently, our 

lab has identified a subset of lncRNAs that act in 

concert with NOTCH1 in both normal T-cell 

development and malignant T-cell 

transformation and a set of T-ALL subgroup-

specific lncRNAs using microarray data.9,10 In this 

study, we performed in vitro TLX1 knockdown in 

T-ALL cells as well as a deep exploration of the 

TLX subgroup-specific lncRNAome in primary T-

ALLs. For the former, we applied an integrative  

http://www.haematologica.org/content/103/12/e585.long#ref-1
http://www.haematologica.org/content/103/12/e585.long#ref-2
http://www.haematologica.org/content/103/12/e585.long#ref-3
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http://www.haematologica.org/content/103/12/e585.long#ref-7
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Figure 1: integrative TLX1 ChIP-seq and transcriptome analysis upon TLX1 knockdown in ALL-SIL lymphoblasts for 
identification of a robust set of TLX1 directly regulated lncRNAs and super-enhancer associated lncRNAs. (A) Volcano plot 
representation of differentially expressed lncRNAs upon TLX1 knockdown in ALL-SIL. Red (upregulated upon TLX1 knockdown) 
and blue (downregulated upon TLX1 knockdown) dots represent significantly differentially expressed lncRNAs detected with 
polyA+ RNA-seq (left panel) and total RNA-seq (right panel) (adjusted P-value <0.05). LncRNA names depicted in the plots are 
the top ten differentially regulated lncRNAs. Outliers with a -log10(padj) >30 are scaled to log10(padj)=30. (B) Motif 
enrichment analysis on the set of TLX1 bound regions with and without overlap of H3K27ac ChIP-seq peaks using MEME-ChIP 
suite identifies significant enrichment of the DNA binding motifs of the RUNX, PBX and MEIS family of transcription factors 
for both sets of peaks while the SP1 and TGIF1 families are only enriched in one set of peaks. (C) Hockey stick plot representing 
the normalized rank and cluster signal of clusters of H3K27ac ChIP-seq peaks at lncRNA transcripts. Red dots represent 
lncRNAs significantly associated with a super-enhancer (adjusted P-value <0.05). (D) IGV screen-shot of a super-enhancer 
associated lncRNA (NBAT1). PolyA+ and total RNA-seq tracks are depicted for control siRNA transfected samples. Bars 
represent the MACS2 peaks with FDR <0.05. RNA: ribonucleic acid. lncRNA: long non-coding RNA. 
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genomics approach combining quantitative data 

on the transcriptome and immunoprecipitated 

and open chromatin, using RNA-sequencing 

(RNA-seq), chromatin immunoprecipitation 

sequencing (ChIP-seq) and assay for transposase-

accessible chromatin sequencing (ATAC-seq), 

respectively. Using this approach, we identified 

known and novel lncRNAs and gained insight into 

the super-enhancer marked lncRNA genetic 

landscape in TLX driven T-ALL, amongst others. 

To elucidate the lncRNA repertoire under control 

of the TLX1 transcription factor, we performed 

transient TLX1 knockdown by electroporating 

two TLX1 targeting small interfering RNAs 

(siRNAs) in ALL-SIL lymphoblasts, displaying 

ectopic TLX1 expression as a result of a 

t(10;14)(q24;q11) translocation. From the 

resulting transcriptomes, both polyA+ and total 

RNA-seq libraries were generated in order to 

evaluate the expression changes of 

polyadenylated as well as non-polyadenylated 

lncRNA transcripts (Online Supplementary Figure 

S1A,B). By combining lncRNAs (biotype ‘lincRNA’ 

or ‘antisense’) detected with polyA+ (Figure 1A, 

left) and total RNA-seq (Figure 1A, right), more 

lncRNAs were significantly (adjusted P-value 

<0.05) downregulated (146 lncRNAs) than 

upregulated (80 lncRNAs) upon TLX1 knockdown  

(Online Supplementary Table S1). Up- or 

downregulation of nine of the top ten 

differentially TLX1-regulated lncRNAs detected 

by polyA+ and total RNA-seq could be validated 

by quantitative reverse transcription polymerase 

chain reaction (RT-qPCR) (Online Supplementary 

Figure S2). Of note, this significantly different 

ratio between up- and downregulated lncRNAs is 

contrary to the effect of TLX1 knockdown on 

protein-coding genes (mainly upregulated upon 

TLX1 knockdown) (Online Supplementary Figure 

S3A), in concordance with its previously 

described role as a transcriptional repressor.4 

Moreover, this opposite ratio remains intact 

upon integration of TLX1 ChIP-seq data (Online 

Supplementary Figure S3B). Using de novo motif 

analysis on transcriptionally active (H3K27Ac+) 

and inactive (H3K27Ac-) TLX1 bound regions, a 

significant enrichment for the RUNX, PBX and 

MEIS family of transcription factor motifs was 

observed for H3K27ac+ and H3K27ac- regions, as 

previously observed for TLX1-regulated protein-

coding genes.4 In contrast, some transcription 

factors such as SP1 and TGIF1 were only enriched 

in H3K27ac+ or H3K27ac- regions, suggesting 

that TLX1 activated genes can be 

transcriptionally regulated by different 

transcription factor families compared to TLX1 

repressed genes (Figure 1B). 

Among the 226 lncRNAs regulated by TLX1, 64 

lncRNAs display a TLX1 chromatin binding peak 

in their immediate vicinity (max. 5 kb) (Online 

Supplementary Table S1), as illustrated for 

lncRNA RP11-539L10.2 (Online Supplementary 

Figure S4A). For 80 of the 226 differentially 

regulated lncRNAs upon TLX1 knockdown, the 

expression was significantly correlated with at 

least one neighboring protein-coding gene 

(|rho|(Rs) >0.5, P-value <0.05) located within a 

100 kb window, irrespective of strand 

orientation (Online Supplementary Table S2). 

From the latter, 97.25 % are positively correlated 

with the expression of the differentially 

regulated lncRNAs, consistent with previous 

reports.11 

Interestingly, three of the identified TLX1-

regulated lncRNAs are in the vicinity (max 1 Mb) 

of a known differentially regulated T-ALL tumor 

suppressor gene4 (Online Supplementary Figure 

S4B,C; Online Supplementary Table S1 and S3). 

To assign a possible function to the top five TLX1 

up- and downregulated lncRNAs, a guilt-by-

association approach was followed as described 

in the Online Supplementary Methods section of 

this paper (Online Supplementary Figure S5 and 

S6). 

As it is known that some lncRNAs are located 

within super-enhancer regions, a hockey stick 

plot based on H3K27ac ChIP data for lncRNA loci 

was generated as described in Online 

Supplementary Methods (Figure 1C). Among the 

2781 super-enhancer associated lncRNAs, 115 

lncRNAs were significantly differentially 

expressed upon TLX1 knockdown with a  

http://www.haematologica.org/content/103/12/e585.long#F1
http://www.haematologica.org/content/103/12/e585.long#F1
http://www.haematologica.org/content/103/12/e585.long#ref-4
http://www.haematologica.org/content/103/12/e585.long#ref-4
http://www.haematologica.org/content/103/12/e585.long#F1
http://www.haematologica.org/content/103/12/e585.long#ref-11
http://www.haematologica.org/content/103/12/e585.long#ref-4
http://www.haematologica.org/content/103/12/e585.long#F1
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Figure 2
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Figure 2: Identification of a set of previously unannotated TLX1 regulated lncRNAs in ALL-SIL lymphoblasts. (A) Volcano plot 
representation of unannotated differentially expressed lncRNAs upon TLX1 knockdown in ALL-SIL. Red (upregulated upon 
TLX1 knockdown) and blue (downregulated upon TLX1 knockdown) dots represent significantly differentially expressed 
lncRNAs detected with polyA+ RNA-seq (left panel) and total RNA-seq (right panel) (adjusted P-value <0.05). Gene names 
depicted in the plots are the top ten unannotated differentially regulated lncRNAs. (B) IGV screen-shot of an unannotated 
differentially expressed, TLX1 bound lncRNA (MSTRG.6968). PolyA+ and total RNA-seq tracks are depicted for control siRNA 
transfected samples. Bars represent the MACS2 peaks with FDR <0.05. (C) Hockey stick plot representing the normalized rank 
and cluster signal of clusters of H3K27ac ChIP-seq peaks. Red dots represent unannotated lncRNAs significantly associated 
with a super-enhancer. (D) IGV screenshot of an unannotated super-enhancer associated lncRNA (MSTRG.37538). PolyA+ and 
total RNA-seq tracks are depicted for control siRNA transfected samples. Bars represent the MACS2 peaks with FDR <0.05. 
RNA: ribonucleic acid. lncRNA: long non-coding RNA. 
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significant enrichment (42 lncRNAs) of TLX1 

binding for these TLX1-regulated, super-

enhancer associated lncRNAs, as exemplified for 

lncRNA NBAT1 (Figure 1D; Online Supplementary 

Table S1). As super-enhancers are associated 

with regions of open chromatin, we also 

performed ATAC-seq and confirmed that 98.95 % 

of the super-enhancer regions overlap with 

regions of open chromatin. Moreover, we 

discovered that 66.4 % of the transcription start 

sites (TSSs) from highly expressed (top decile) 

genes had ATAC-seq peaks within +/− 5 kb 

(Online Supplementary Figure S7). To further 

explore the functional association of super-

enhancers and expressed lncRNAs, the genome-

wide transcriptional response of lncRNAs upon 

JQ1 treatment of ALL-SIL lymphoblasts was 

investigated, given that this bromodomain and 

extra-terminal motif (BET) inhibitor causes a 

decrease in the expression of super-enhancer 

associated genes (Online Supplementary Figure 

S8A).12 Among 115 super-enhancer associated, 

TLX1-regulated lncRNAs, 41 lncRNAs were 

differentially expressed upon JQ1 inhibition 

(Online Supplementary Table S1). Moreover, 26 

upregulated and 24 downregulated lncRNAs 

upon TLX1 knockdown were significantly 

overlapping with those lncRNAs downregulated 

upon JQ1 exposure (Online Supplementary 

Figure S8B). 

In addition to previously annotated genes, 2788 

lncRNAs that have not been previously 

annotated in Ensembl, Gencode, LNCipedia and 

RefSeq were also detected. Of these novel 

lncRNAs, 82 are differentially regulated upon 

TLX1 knockdown, of which 30 are directly bound 

by TLX1, as illustrated for MSTRG.6968 (Figure 

2A,B; Online Supplementary Table S4). Of note, 

MSTRG.37538 is a lncRNA marked with one of 

the strongest genome-wide super-enhancer sites 

of all identified unannotated lncRNAs (Figure 2C, 

D). 

In a complementary approach, TLX1 and TLX3 

(further denoted as TLX) driven lncRNAs were 

retrieved from a primary T-ALL patient cohort as 

TLX1 and TLX3 induce T-ALL in a similar way and 

are associated with a similar gene expression 

profile.13 By using polyA+ RNA-seq data of 60 T-

ALL patients (including 17 TLX positive cases) as 

well as total RNA-seq of 25 T-ALL patients 

(including 10 TLX positive cases) 442 known and 

158 novel TLX subgroup-specific lncRNAs were 

identified (Figure 3A; Online Supplementary 

Figure S9 and S10A; Online Supplementary Table 

S5 and S6). From these, 32 known and 14 novel 

lncRNAs overlapped significantly with the known 

and novel set of differentially expressed genes 

upon TLX1 knockdown, respectively (Figure 3B; 

Online Supplementary Figure S10B). Moreover, 

22 known and three novel TLX subgroup-specific 

lncRNAs are in the vicinity (max 1 Mb) of a known 

differentially regulated T-ALL tumor suppressor 

gene (Online Supplementary Table S5 and S6).4 

To identify possibly oncogenic TLX subtype-

specific lncRNAs, this new data was integrated 

with our previously generated polyA+ RNA-seq 

data of OP9-DL1 cultured T-cells,10 serving as 

reference material for lncRNA expression levels 

in untransformed T-cell progenitors. Therefore, 

lncRNAs that are significantly higher expressed in 

the TLX subgroup as compared to the other T-ALL 

subgroups of the primary T-ALL cohort (HOXA, 

immature, TAL) and significantly higher as 

compared to normal T-cells were selected. Those 

lncRNAs that were also differentially expressed 

among any of the other T-ALL subgroups and T-

cells were excluded. In total, 144 TLX-specific, 

potentially oncogenic lncRNAs were identified 

(Figure 3C), as illustrated for lncRNA RP11-

973H7.4 (Figure 3D, left), located in the 

immediate vicinity of the well-known T-ALL 

tumor suppressor gene PTPN2 (Figure 3D, right). 

In this study, we present the first comprehensive 

analysis of the lncRNA transcriptome of TLX1+ 

ALL-SIL lymphoblasts and TLX subtype primary T-

ALLs, uniquely integrating the polyadenylated 

and non-polyadenylated transcriptome and 

chromatin features. Our results reveal that TLX1 

directly regulates a set of known and novel 

lncRNAs of which some are marked by super-

enhancers. By integrating normal T-cell data and 

a primary T-ALL patient cohort, we also identified  

http://www.haematologica.org/content/103/12/e585.long#F1
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  Figure 3

-4.0 4.00.0

0.0

5.0

10.0

15.0

RP11-575F12.1

MIR4458HG

CTC-340A15.2

RP1-137K24.1

RP11-384P7.7

RP11-480D4.6

MYCNOS

RP11-196B3.3

TMEM26-AS1

STXBP5-AS1

-3.0 3.0 6.00.0

0.0

2.0

4.0

6.0

AC003088.1

RP11-973H7.4

RP11-204N11.1

RP1-137K24.1
RP5-1092A11.2

A

XXbac-BPG249D20.9

RP11-480D4.6
TMEM26-AS1

RP11-575F12.1

B

410 32 194

TLX TLX1 DIFF

C

-4.0 0.0 4.0 8.0

0

5

10

15

-l
o

g
1

0
(p

a
d

j.
)

RP11-321P16.1
RP11-284F21.9

RP11-434E6.4

RP11-973H7.4

0 1000 2000

T-cell

HOXA

immature

TAL

TLX

-l
o

g
1

0
(p

a
d

j.
)

-l
o

g
1

0
(p

a
d

j.
)

log2(fold change) log2(fold change)

log2(fold change)

D

normalized counts
159 kb

PTPN2

chr18p11.21

polyA+ RNA

total RNA

RP11-973H7.4

TLX1 

H3K4me3

H3K4me1

H3K27ac

ATAC-seq

0-1018

0-1018

0-44

0-30

0-22

0-24

0-121

CTD-309M3.1

padj= 0.0003752

RP11-434E6.4

RP11-1159O4.2

polyA+ RNA total RNA

Overlap of annotated TLX subgroup specific

and TLX1 regulated lncRNAs

Figure 3: identification of TLX specific, possibly oncogenic lncRNAs in a primary T-ALL cohort. (A) Volcano plot 
representation of lncRNAs that are significantly higher or lower in the TLX group as compared with T-ALL patients belonging 
to other T-ALL subtypes (TALR, immature, HOXA). Red (upregulated in TLX subtype T-ALLs versus other subtypes) and blue 
(downregulated in TLX subtype T-ALLs versus other subtypes) dots represent significantly differentially expressed lncRNAs 
detected with polyA+ RNA-seq (left) and total RNA-seq (right) (adjusted P-value <0.05). LncRNA names depicted in the plots 
are the top ten differentially regulated lncRNAs. (B) Venn diagram depicting the overlap between significant differentially 
expressed lncRNAs upon TLX1 knockdown and TLX subgroup specific lncRNAs (Fisher’s exact test, adjusted P-value =1.601e-
12). (C) Volcano plot representation of lncRNAs that are significantly higher expressed in the TLX group as compared with 
normal T-cell subsets. Gray and red dots represent significant differentially expressed lncRNAs (adjusted P-value <0.05). Red 
dots are TLX specific lncRNAs not differentially expressed between T-cells and other subgroups. LncRNA names depicted in 
the plots are the top five differentially regulated lncRNAs. (D) Boxplot and IGV screenshot for lncRNA RP11-973H7.4, that is 
significantly higher expressed in the TLX subgroup compared to the other subgroups and significantly higher expressed as in 
normal thymocytes. PolyA+ and total RNA-seq tracks are depicted for control siRNA transfected samples. Bars represent the 
MACS2 peaks with FDR <0.05. RNA: ribonucleic acid; IncRNA: long non-coding RNA. 
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144 putative TLX-specific oncogenic lncRNAs, 

which could be further tested for phenotypic 

effects upon knockdown and explored as new 

targets for RNA-based therapeutics. LncRNAs 

may serve as excellent therapeutic targets as 

these are often expressed in a cell-type-specific 

manner, offering potential advantages with 

respect to on-target toxicity as shown by our 

research group for lncRNA SAMMSON in 

melanoma.14 In conclusion, our study delineates 

a TLX subgroup and TLX1-specific lncRNA 

network including a subset of super-enhancer 

associated lncRNAs. Our work, together with 

that of others, strongly suggest an important role 

of lncRNAs in T-ALL and warrant further 

functional investigation.9,10,15 
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SUPPLEMENTARY METHODS 

Cell lines 

The TLX1 positive cell line ALL-SIL was obtained from the DSMZ cell line repository. Cells were 

maintained in RPMI-1640 medium (Life Technologies, 52400-025) supplemented with 20 % fetal 

bovine serum, 1 % of L-glutamine (Life Technologies, 15140-148) and 1 % penicillin/streptomycin (Life 

Technologies, 15160-047).  

siRNA mediated knockdown in ALL-SIL lymphoblasts 

The RNA isolated after TLX1 knockdown that has been used for microarray based gene expression 

profiling (Agilent SurePrint G3, 8x60k) in the previous study has been used in this study for RNA-seq.1 

In short, ALL-SIL cells were electroporated (250 V, 1000 μF) using a Genepulser Xcell device (Bio-Rad) 

with 400 nM of Silencer Select Negative Control 1 siRNA (Ambion, #AM4635) or siRNAs targeting TLX1 

(Silencer Select, Ambion, Carlsbad, CA, USA; #4392420, s6746 (siRNA1) and s6747 (siRNA2)). ALL-SIL 

cells were collected 24h post electroporation.  

Compound treatment  in ALL-SIL lymphoblasts 

ALL-SIL cells were seeded at a density of 1x106 cells/ml and treated with either DMSO or 1 μM of JQ1 

compound (BPS Bioscience, 27401). Cells were harvested 12h post treatment for RNA isolation.  

Clinical samples 

Bone marrow lymphoblasts from 60 pediatric and adult T-ALL patients (13 immature, 23 TALR, 17 

TLX1/TLX3 and 7 HOXA) were collected with informed consent according to the declaration of Helsinki 

from Saint-Louis Hospital (Paris, France) and the study was approved by the Institut Universitaire 

d’Hématologie Institutional Review Board. This primary T-ALL cohort has previously been investigated2 

and these RNA samples were used for RNA-seq in this study. 

RNA isolation 

Total RNA was isolated using the miRNeasy mini kit (Qiagen) with DNA digestion on-column. By means 

of spectrophotometry, RNA concentrations were measured (Nanodrop 1000, Thermo Scientific).  

PolyA+ RNA sequencing  

Polyadenylated transcripts of the TLX1  knockdown samples were sequenced using the TruSeq 

stranded mRNA sample preparation kit (Illumina). The libraries were quantified using the KAPA library 

quantification kit (Illumina) and samples were paired-end sequenced on the NextSeq 500 sequencer 

(Illumina) with a read length of 75 bp. The sequencing depth per sample is shown in Supplementary 

Figure 1A (left). PolyA+ RNA-seq of the 60 primary T-ALL samples was performed using 100 ng of RNA 

as input material by Biogazelle (Belgium) with the TruSeq stranded mRNA sample preparation kit 

(Illumina). The samples were quantified using the KAPA library quantification kit and paired-end 

sequenced on a NextSeq 500 sequencer with a read length of 75 bp. The sequencing depth per sample 

is shown in Supplementary Figure 9A (left). Dll1 data generated in the context of the paper of Durinck 

et al. were used as a reference dataset (GSE62006).3 

Total RNA sequencing 

Total RNA-seq of the knockdown samples and 25 primary T-ALL samples (5 immature, 5 TALR, 10 

TLX1/TLX3 and 5 HOXA) was performed using the TruSeq Stranded Total RNA (w/RiboZero Gold) 

sample prep kit (Illumina), involving depletion of ribosomal (rRNA) transcripts by Biogazelle (Belgium). 

Libraries were quantified using the Qubit 2.0 Fluorometer and paired-end sequenced on a NextSeq 
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500 sequencer (Illumina) with a read length of 75 bp. The sequencing depth per sample is shown in 

Supplementary Figure 1A (right), 9A (right). Total RNA-seq of the JQ1 treated ALL-SIL cells was 

performed using the TruSeq Stranded Total RNA sample prep kit (Illumina). The libraries were 

quantified using the KAPA library quantification kit and were single-end sequenced on a NextSeq 500 

sequencer with a read length of 75 bp and an average sequencing depth of 38 million reads per sample.  

Data processing RNA sequencing 

FastQC was used for quality control of fastq files (available online at 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and RSeQC4 was used for calculating 

read distribution over genomic features. All samples were aligned against GRCh38 with STAR_2.4.2a5 

using default settings and two pass methods as described in the STAR manual, using GENCODE v25 

primary annotation as a guide during the first pass and the combined splice junction database of all 

samples generated in the first pass as a guide in the second step. Genes were quantified on GENCODE 

v25 during alignment with STAR. LncRNAs were defined as genes with biotype “lincRNA” or “antisense” 

(GENCODE v25). StringTie-1.3.3b was used for transcript assembly and transcriptome gtf files were 

subsequently merged with StringTie merge setting6,7 to generate a transcriptome containing all 

detected transcripts over all samples. The merged file was subsequently used to quantify transcripts 

using HTSeq-0.6.1.8 Differential gene expression was performed in R based on a negative binomial 

distribution using DESeq2.9 Reported adjusted p-values were calculated using Wald statistic. IGV-

tools10 count was used on BAM files to generate a visualisation track for IGV.11  

(Tumor suppressor) genes in the neighborhood of lncRNAs 

BEDTools12 was used to identify genes within a certain range from a selected lncRNA. 

Protein-coding potential calculations 

PhyloCSF13 and the Coding-Potential Assessment Tool14 (CPAT, version 1.2.2) were used to identify 

putative protein-coding transcripts in the unannotated genes obtained by RNA-seq. PhyloCSF employs 

codon substitution frequencies in whole-genome multi-species alignments to distinguish between 

coding and non-coding loci. Multiple alignments of 45 vertebrate genomes with human (hg19) are 

obtained from the UCSC website (multiz46way) and processed using the PHAST package (version 1.3) 

to obtain the required input format for PhyloCSF. To validate our workflow and obtain the optimal 

threshold for the PhyloCSF score, we benchmarked PhyloCSF with transcripts annotated in RefSeq.15 

Alignments in the BED format of 5859 RefSeq lncRNAs and 6051 RefSeq mRNAs were obtained from 

the UCSC genome browser website to serve as negative and positive sets, respectively. After ROC 

analysis, an optimal threshold for the PhyloCSF score of 60.7876 was found. This corresponds to a 

sensitivity and specificity of 92.75 %. For CPAT, the transcript sequences were provided in the FASTA 

format. The hexamer frequency table and logit model provided with the algorithm were used. We used 

the published cutoff of 0.364 as a threshold for the CPAT output. Bed files were converted to hg19 

using LiftOver (UCSC). 

Guilt-by-association analysis 

Normalized counts were generated for the samples of the primary T-ALL cohort (polyA+, n=60). 

Spearman correlations were calculated for the top 5 TLX1 up and down regulated lncRNAs. The output 

was used as input for a GSEA pre-ranked analysis16 using the c5.bp.v6.0 (GO biological processes) gene 

set. Next, the output was used as input for the Cytoscape plugin ‘Enrichment map’ to create networks 

of enriched gene set clusters. Functional gene set clusters that are correlated (blue nodes) and anti-

correlated (red nodes) with the lncRNA of interest are depicted in these networks. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc


Results 

86 
 

Chromatin immunoprecipitation sequencing 

Our previously generated TLX1 and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) 

data generated in the context of the paper of Durinck et al. were used (GSE62144).1 H3K4me1 and 

H3K4me3 chromatin immunoprecipitation sequencing (ChIP-seq) were performed as previously 

described with minor changes.17 In brief, 1x107 cells were cross-linked with 1.1 % formaldehyde (Sigma-

Aldrich, F1635) at room temperature for 10 min and the cross-linking reaction was quenched with 

glycine (125 mM final concentration, Sigma-Aldrich, G-8790). Nuclei were isolated and chromatin was 

purified by chemical lysis. Next, the purified chromatin was fragmented to 200-300 bp fragments by 

sonication (Covaris, M220, Focused-ultrasonicator). Chromatin immunoprecipitation was performed 

by incubation of the chromatin fraction overnight with 20 μl of protein-A coated beads (Thermo-

Scientific, 53139) and 2 μg of H3K4me1 specific (Abcam, ab8895) or H3K4me3 specific (Abcam, ab8580) 

antibody. The next day, beads were washed to remove non-specific binding events and enriched 

chromatin fragments were eluted from the beads, followed by reverse cross-linking by incubation at 

65 °C overnight. DNA was subsequently purified by phenol/chloroform extraction, assisted by phase 

lock gel tubes (5Prime). DNA obtained from the ChIP-assays was adaptor-ligated, amplified and 

quantified using the KAPA library quantification kit. The libraries were single-end sequenced on a 

NextSeq 500 sequencer with a read length of 75 bp and an average sequencing depth of 35 million 

reads.  

Assay for transposase accessible chromatin sequencing 

Assay for transposase accessible chromatin sequencing (ATAC-seq) was performed as previously 

described with minor changes.18 In short, 50,000 cells were lysed and fragmented using Tn5 

transposase (Illumina). Next, the samples were purified using the MinElute kit (Qiagen). The 

transposased DNA fragments were amplified and purified using the PCR Cleanup kit (Qiagen). Samples 

were quantified using the KAPA library quantification kit and single-end sequenced on a NextSeq 500 

with a read length of 75 bp and an average sequencing read depth of 50 million reads. 

Data processing ChIP and ATAC sequencing 

All ChIP-seq files were aligned using STAR_2.4.2a5 with --outFilterMultimapNmax 1 to exclude 

multimapping reads and --alignIntronMax 1 to turn off splice awareness. Peak calling was subsequently 

performed with MACS219 using input samples as control. Peak calling for histone marks was performed 

using --broad setting. BEDTools12 was used to find overlaps between ChIP-seq tracks. All plots were 

generated in R using ggplot2. Any additional data manipulation was performed in R. IGV-tools10 count 

was used on BAM files to generate a visualisation track for IGV.11  

Visualization of distances between transcription start sites and closest ATAC-seq peaks 

Based on the distribution of gene expression values from polyA+ RNA-seq  performed on ALL-SIL 

lymphoblasts, we randomly selected 1000 genes belonging to the lowest decile, 1000 genes with 

expression levels between the 40 % and 60 % percentile and 1000 genes with expression values in the 

highest decile. Next, we retrieved the transcription start sites (TSSs) of those genes and built three 

Zipper plots showing the distribution of distances between the TSSs and the closest ATAC-seq peaks in 

a 5 kb window from the TSS.20  

Motif analysis 

MEME-ChIP21 was used to find centrally enriched TF motifs in ChIP-seq peaks. To prepare peak files for 

input, peaks were adjusted to 500 bp centered around the peak summit. 

SE calling 
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Super-enhancer analysis was performed using ROSE22,23 with H3K27ac alignment file and input as 

control, excluding TSSs (+-2500 bp). BEDTools12 was used to assign genes within 100 kb to the super-

enhancer regions. 

Statistical analyses 

Statistical significance (pAdj.<0.05) of differences between conditions was determined by Fischer exact 

test using R package.  
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SUPPLEMENTARY FIGURES 
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Supplementary Figure 1: qualitative and quantitative analysis of polyA+ and total RNA-seq data of ALL-SIL lymphoblasts 

with transient TLX1 knockdown. (A) Number of counts for each sample of polyA+ (left) and total (right) RNA-seq libraries. (B) 

Venn diagram depicting all genes (upper panel, Fisher exact test, p-value < 2.200e-16) and lncRNAs (lower panel, Fisher exact 

test, p-value < 2.200e-16) detected by polyA+ and/or total RNA-seq upon TLX1 knockdown in ALL-SIL cells.  
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Figure S2
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Supplementary Figure 2: RT-qPCR validation of the top 10 significantly differentially expressed genes. (A) Nine of the ten 

significantly differentially expressed lncRNAs detected by polyA+ could be validated by RT-qPCR on three replicates. No 

primers could be designed for lncRNA RP3-399L15.3. Barplots show a negative control siRNA and two independent TLX1 

targeting siRNAs. (B) Nine of the ten significantly differentially expressed lncRNAs detected by total RNA-seq could be 

validated by RT-qPCR. Only lncRNAs that are not in the top ten differentially expressed lncRNAs detected by polyA+ RNA-seq 

are shown. Barplots show a negative control siRNA and two independent TLX1 targeting siRNAs. Error bars show the standard 

error. p-value < 0.05 for all shown lncRNAs (t-test). 
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Supplementary Figure 3: TLX1 predominantly acts as an activator of lncRNA expression. (A) Barplot showing the total 

number of lncRNAs (left panel) and protein coding genes (right panel) differentially expressed upon TLX1 knockdown without 

considering direct TLX1 binding as defined by ChIP-seq analysis. (B) Adapted barplot from (A) by only considering direct TLX1 

binding events as defined by ChIP-seq analysis. 
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Supplementary Figure 4: TLX1 regulates lncRNAs in the vicinity (max. 1 Mb) of its well established T-ALL tumor suppressor 

genes.  (A) Example of polyA+ RNA-seq, total RNA-seq and TLX1 ChIP-seq signals at the RP11-539L10.2 locus. Boxplots show 

the effect of TLX1 knockdown on the expression of the lncRNA. (B) TLX1 regulated lncRNAs RP11-973H7.1 and RP11-973H7.4 

are located in the vicinity (max. 1 Mb) of PTPN2. (C) TLX1 regulated lncRNA LINC00649 is located in the vicinity (max. 1 Mb) 

of RUNX1. PolyA+ and total RNA-seq tracks are depicted for control siRNA transfected samples. Bars represent the MACS2 

peaks with FDR < 0.05. 
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Supplementary Figure 5: functional annotation of the top-5 annotated lncRNA candidates downregulated upon TLX1 

knockdown in ALL-SIL cells through guilt-by-association analysis. (A) RP3-399L15.3, (B) RP11-539L10.2, (C) RP11-284F21.10, 

(D) LINC01132. For RP11-18H21.1 no functional network could be built based on the primary patient cohort data since this 

lncRNA was not detected in this dataset. Red dots are positively enriched gene sets, blue dots are negatively enriched gene 

sets. 
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Supplementary Figure 6: functional annotation of the top-5 annotated lncRNA candidates upregulated upon TLX1 

knockdown in ALL-SIL cells through guilt-by-association analysis. (A) AC011893.3, (B) RP11-284N8.3, (C) RP11-43F13.3, (D) 
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Supplementary Figure 7: open chromatin profiling by means of ATAC-seq. Zipper plots showing distances between TSSs and 

closest ATAC-seq peaks of 1000 TSSs of (from left to right) low, mid and high level expressed genes. Only ATAC-seq peaks 

within +/- 5 kb from the TSS are displayed.  

 

Supplementary Figure 8: JQ1 treatment affects TLX1 regulated lncRNA expression. (A) Volcano plot showing significantly 

differentially expressed lncRNAs upon JQ1 inhibition in ALL-SIL cells. Red (upregulated upon JQ1 treatment) and blue 

(downregulated upon JQ1 treatment) dots represent significantly differentially expressed lncRNAs (adjusted P-value <0.05) 

detected with total RNA-seq. LncRNA names depicted in the plots are the top-10 differentially regulated lncRNAs. (B) Venn 

diagram depicting overlapping lncRNAs significantly downregulated upon JQ1 treatment of ALL-SIL cells with lncRNAs 

significantly upregulated (upper diagram, Fisher exact test, p-value < 2.200e-16) or downregulated (lower diagram, Fisher 

exact test, p-value < 2.200e-16) upon TLX1 knockdown. 
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Supplementary Figure 9: qualitative and quantitative analysis of polyA+ and total RNA-seq data of a primary T-ALL cohort. 

(A) Number of counts for each sample of polyA+ (left) and total (right) RNA-seq libraries. (B) Venn diagram depicting all genes 

(left panel, Fisher exact test, p-value < 2.200e-16) and lncRNAs (right panel, Fisher exact test, p-value < 2.200e-16) detected 

by polyA+ and/or total RNA-seq in a primary T-ALL cohort.  
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Volcano plot representation of unannotated differentially expressed lncRNAs in TLX subtype T-ALL patients versus those of 

other T-ALL subgroups. Red (higher in TLX subtype T-ALL versus other) and blue (lower in TLX subtype T-ALL versus other) 

dots represent significantly differentially expressed lncRNAs detected with polyA+ RNA-seq (left panel) and total RNA-seq 

(right panel) (adjusted P-value <0.05). Gene names depicted in the plots are the top 10 unannotated differentially regulated 

lncRNAs. (B) Venn diagram depicting the overlap between significant differentially expressed lncRNAs upon TLX1 knockdown 

and TLX subgroup specific lncRNAs (Fisher exact test, p-value = 0.002977). 
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ABSTRACT 

Most currently available transcriptome data of T-cell acute lymphoblastic leukemia (T-ALL) are based 

on polyA[+] RNA sequencing methods thus lacking non-polyadenylated transcripts. Here, we present 

the data of polyA[+] and total RNA sequencing in the context of in vitro TLX1 knockdown in ALL-SIL 

cells and a primary T-ALL cohort. We extended this dataset with ATAC sequencing and H3K4me1 and 

H3K4me3 ChIP sequencing data to map putative gene regulatory regions. In this data descriptor, we 

present a detailed report of how the data were generated and which bioinformatics analyses were 

performed. Through several technical validations, we showed that our sequencing data are of high 

quality and that our in vitro TLX1 knockdown was successful. We also validated the quality of the ATAC 

and ChIP sequencing data and showed that ATAC and H3K4me3 ChIP peaks are enriched at 

transcription start sites. We believe that this comprehensive set of sequencing data can be reused by 

others to further unravel the complex biology of T-ALL in general and TLX1 in particular. 

SUMMARY 

T-cell acute lymphoblastic leukemia (T-ALL) is a 

hematological cancer resulting from malignant 

transformation of normal precursor T-cells. T-ALL 

accounts for 15 % of the pediatric and 25 % of the 

adult ALL cases and can be subdivided into four 

molecular subgroups (TLX, HOXA, immature and 

TAL-R), each with a unique gene expression 

profile signature[1,2]. In addition, several other 

oncogenes (eg NOTCH1) and tumor suppressor 

genes (eg CDKN2A and PTEN), are involved in the 

multi-step process of leukemia formation across 

these subgroups[3,4]. Besides genetic 

alterations, also epigenetic mechanisms, such as 

deregulation of enhancers and histone 

modifications, are disturbed in T-ALL[5]. Several 

sequencing efforts, including whole genome, 

exome and transcriptome sequencing, have 

been performed to identify driver genes in T-ALL. 

The majority of these studies focused on the 

identification of mutations, fusion genes and 

transcriptional changes[6–8]. A major drawback 

of the current transcriptome studies is that 

polyA[+] RNA-seq only covers part of the 

transcriptome and provides no insights into the 

non-polyadenylated complement that includes 

biologically relevant transcripts such as circular 

RNAs (circRNAs) and long non-coding RNAs 

(lncRNAs)[9,10]. To resolve this issue, we 

generated polyA[+] as well as total RNA-seq data 

of 60 (17 TLX, 7 HOXA, 13 immature, 23 TAL-R) 

and 25 (10 TLX, 5 HOXA, 5 immature, 5 TAL-R) T-

ALL patients, respectively. In this dataset, we 

identified TLX subgroup specific and possibly 

oncogenic lncRNAs as reviewed by Verboom et 

al.[11]. As we focused on the TLX subgroup and 

more specifically on TLX1, we also generated 
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polyA[+] and total RNA-seq data of TLX1 

knockdown samples generated using two 

independent siRNAs in triplicate. In addition, we 

performed assay for transposase accessible 

chromatin sequencing (ATAC-seq) as well as 

H3K4me3 and H3Kme1 chromatin 

immunoprecipitation sequencing (ChIP-seq) and 

used the publicly available TLX1 ChIP data 

(GSE62264) to identify regions directly regulated 

by TLX1 in TLX1 positive ALL-SIL lymphoblasts. 

This is a unique dataset in the T-ALL field as it 

combines for the first time polyA[+] and total 

RNA-seq of an in vitro model system as well as a 

large primary T-ALL cohort. Moreover, this 

dataset was extended with ChIP-seq and ATAC-

seq to define gene regulatory regions. Here, we 

provide a detailed description of the methods 

and bioinformatics analyses used to generate the 

data to facilitate data-repurposing by other 

researchers. Moreover, we demonstrate that our 

data is of high quality. The T-ALL cohort has also 

been annotated according to their genetic 

subgroup. In our related publication, we used the 

dataset to identify TLX1 regulated lncRNAs and 

TLX subgroup specific lncRNAs[11]. Therefore, 

this dataset can be reused to characterize other 

subgroup specific or TLX1 regulated biotypes or 

Figure 1: quality assessment of polyA[+] and total RNA-seq data of the TLX1 knockdown and primary T-ALL cohort samples. 

(a) Average quality score per base position per sample generated by combining FastQC and MultiQC for the TLX1 knockdown 

samples (upper panel) and the primary T-ALL cohort (lower panel). Each line represents a sample. Scores greater than 30 

(green region) indicate a good quality. (b) Sequencing saturation plots showing the number of genes detected at a given 

sequencing depth. (c) Barplots showing the STAR alignment scores for the TLX1 knockdown samples (left panel) and the 

primary T-ALL cohort (right panel) generated with MultiQC. 
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to study other subgroups in the primary T-ALL 

cohort as this has only been done using 

microarray data[12]. Besides gene expression 

analysis, this RNA-seq dataset can also be used 
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Figure 2: validation of TLX1 knockdown in ALL-SIL lymphoblasts. (a) TLX1 is significantly downregulated in the TLX1 

knockdown samples. Tumor suppressor genes FAT1 (b) and PTPN2 (c), known to be repressed by TLX1, are upregulated upon 

TLX1 knockdown. (d) correlation plots for the replicates of siRNA 1. (d) Correlation plots for the three replicates of TLX1 

siRNA1 for polyA[+] (upper panel) and total RNA-seq (lower panel). Pearson correlation coefficients are shown. 
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to identify gene mutations and gene fusions[6]. 

Furthermore, integrating the ChIP-seq and ATAC-

seq data, together with GRO-seq data can be 

useful to study enhancer RNAs in TLX1 positive T-

ALL. In summary, this data descriptor provides 

detailed information about the methods used to 

generate and analyze ChIP-seq and ATAC-seq 

data in the TLX1 positive ALL-SIL cell line as well 

as transcriptome data through polyA[+] and total 

RNA-seq of a TLX1 knockdown in vitro model 

system and a primary T-ALL cohort. As this is a 

rich dataset including transcriptome as well as 

epigenome data, we believe that this dataset is 

of great value to the research community and 

will aid, amongst others, to further unravel the 

complex biology of T-ALL.  

 

DATA DESCRIPTION 

Validation of RNA sequencing data 

To validate the quality of our RNA-seq data, 

FastQC analyses were performed on the fastq 

files. The mean quality scores for the polyA[+] 

and total RNA-seq data of the TLX1 knockdown 

samples and the primary T-ALL cohort are shown 

in Figure 1a. These plots show the mean quality 

score across each base position per sample and 

indicate by a color scale if the quality is good 

(green), reasonable (orange) or bad (red). As the 

mean quality score per base position is located in 

the “good quality region” for each sample, we 

confirm that our sequencing data is of high 

quality. Of note, a small decrease in the quality 

towards the end of a read is typically observed, 

which is inherent to the Illumina sequencing by 

synthesis procedure [13]. As these samples have 

a high sequencing coverage, further increasing 

the number of reads would only give a small 

increase in the number of detectable genes (Fig. 

1b). A high percentage of the reads were 

uniquely mapped to the Hg38 human reference 

genome, confirming a good mapping quality 

(Supplementary Table 1-2, Fig. 1c). After 

mapping, we detected an average of 26,412 

genes over all samples.  

Validation of TLX1 knockdown in ALL-SIL 

lymphoblasts 

Knockdown of TLX1 has been validated as TLX1 is 

significantly lower expressed in the knockdown 

samples compared to the control samples in the 

three replicates of polyA[+] ( 66 %, 58 % and 65 

% knockdown) and total RNA-seq (56 %, 48 % and 

62 % knockdown) data (Fig. 2a). In addition, we 

could demonstrate that the well-known tumor 

suppressor genes FAT1 and PTPN2, shown to be 

repressed by TLX1 by microarray data[14], are 

significantly upregulated upon TLX1 knockdown 

according to polyA[+] and total RNA-seq data 

(Fig. 2 b-c). Furthermore, correlation analysis 

shows that the replicates are concordant, as 

shown for a representative example (Fig. 2d).  

Validation of ATAC sequencing data 

Before sequencing, we validated the quality of 

the ATAC-seq library by inspecting Fragment 

Analyzer profiles. As expected for ATAC-seq 

libraries, the profile first showed a high peak 

around 180 nt containing the nucleosomal free 

DNA fragments, followed by two peaks of 

fragments containing 1 or 2 nucleosomes, 

respectively (Fig. 3a). After sequencing, the 

quality of the raw sequencing data was validated 

by performing FastQC. The average base quality 

score fell in the “good quality region”, confirming 

that we generated high quality ATAC-seq data 

(Fig. 3b). Raw sequencing reads were aligned 

against the Hg38 human reference genome 

resulting in 81.5 million mapped reads. 76.27 % 

of the reads mapped uniquely to the human 

reference genome and were used for 

subsequent analyses (Fig. 3c, Supplementary 

Table 2). In addition, we also confirmed that 

there is an enrichment of ATAC peaks around 

transcription start sites, known to contain open 

chromatin (Fig. 3d). 

Validation of ChIP-seq data 

The quality of the raw sequencing data was 

determined using FastQC analyses and we could 

show that the average base quality score fell in 

the “good quality region” for each ChIP-seq 

sample (Fig. 4a). On average, 32.9 million reads 
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per sample were aligned to the Hg38 human 

reference genome. 69.79 %, 89.49 % and 89.85 

% of the reads were uniquely aligned to the Hg38 

human reference genome for the input, 

H3K4me1 and H3K4me3 sample, respectively 

(Fig. 4b, Supplementary Table 2). As H3K4me3 is 

a marker of promotor regions, we showed that 

H3K4me3 is enriched on the promotor of EEF2, 

one of the highest expressed genes in parental 

ALL-SIL lymphoblasts (Fig. 4c). 

In conclusion, this data descriptor shows that we 

have generated high quality RNA-seq, ChIP-seq 

and ATAC-seq data that can be reused by other 

users to further unravel the complex biology of 

T-ALL. 

 

METHODS 

Cell lines 

The TLX1 positive cell line ALL-SIL was obtained 

from the DSMZ cell line repository (ACC 511). 

Cells were maintained in RPMI-1640 medium 

(Life Technologies, 52400-025) supplemented 

with 20 % fetal bovine serum (PAN Biotech, P30-

3306), 1 % of L-glutamine (Life Technologies, 

15140-148) and 1 % penicillin/streptomycin (Life 

Technologies, 15160-047) at 37 °C in a 5 % CO2 

atmosphere. Short tandem repeat genotyping 

was used to validate cell line authenticity prior to 

performing the described experiments and 

mycoplasma testing is done on a monthly basis 

in our laboratory using the MycoAlert 

Mycoplasma Detection Kit (Lonza, T07-318), 

according to manufacturer’s instructions. 

siRNA mediated knockdown in ALL-SIL 

lymphoblasts 

The RNA isolated upon TLX1 knockdown that has 

been used for microarray based gene expression 

profiling in a previous study has been used in this 

study for RNA-seq[14]. In short, 400 nM of 

Silencer Select Negative Control 1 siRNA 

(Ambion, #AM4635) or siRNAs targeting TLX1 

(Ambion, Carlsbad, #4392420, s6746 (siRNA1) 

and s6747 (siRNA2)) was added to 8 million ALL-

SIL cells in a total volume of 400 µl. The samples 

were electroporated (250 V, 1000 μF) in 

electroporation cuvettes (Bio-Rad, 1652086) 
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Figure 3: quality assessment of ATAC-seq in ALL-SIL lymphoblasts. (a) Fragment analyzer profile showing a high nucleosome-

free peak followed by a mono-nucleosome and di-nucleosome peak. (b) Average quality score per base position generated by 

combining FastQC and MultiQC. Scores greater than 30 (green region) indicate a good quality. (c) Barplot showing the STAR 

alignment scores. (d) Enrichment of ATAC peaks around transcription start sites. 
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using a Genepulser Xcell device (Bio-Rad). ALL-SIL 

cells were collected 24h post electroporation.  

Clinical samples 

Bone marrow lymphoblast and blood samples 

from 50 pediatric and 10 adult (> 18 year) T-ALL 

patients (13 immature, 23 TAL-R, 17 TLX1/TLX3 

and 7 HOXA) were collected with informed 

consent according to the declaration of Helsinki 

from Saint-Louis Hospital (Paris, France) and the 

study was approved by the Institut Universitaire 

d’Hématologie Institutional Review Board and 

the Ghent University Hospital (approval number 

B670201627319). Subgroup annotation is given 

in Supplementary Table 1. White blood cells from 

the patients samples were isolated by Ficoll 

centrifugation and cryopreserved using standard 

procedures. After thawing, cells were spun down 

and RNA was extracted[15]. 

RNA isolation  

Total RNA was isolated using the miRNeasy mini 

kit (Qiagen, 217084) with DNA digestion on-

column according to the manufacturer’s 

instructions. By means of spectrophotometry, 

RNA concentrations were measured (Nanodrop 

1000, Thermo Scientific). RNA quality scores 

(RNA integrity number (RIN)) of the RNA of the 

cell line experiments were high (RIN: 9-10). The 

RIN score of the RNA of the primary samples 

were determined using a bioanalyzer and are 

shown in Supplementary Table 1. All bioanalyzer 

profiles suggest RNA of good quality. 

PolyA+ RNA sequencing 

Library prep of the polyA[+] transcripts of the 

TLX1 knockdown samples was performed using 

the TruSeq stranded mRNA sample preparation 

kit (Illumina, RS-122-2101) according to 

manufacturer’s instructions. The libraries were 

quantified using the KAPA library quantification 

kit (Roche, KK4854) and samples were paired-

end sequenced on the NextSeq 500 sequencer 

(Illumina) with a read length of 2 x 75 bp. 

PolyA[+] RNA-seq of the 60 primary T-ALL 

samples was performed using 100 ng of RNA as 

input material by Biogazelle (Belgium) with the 

TruSeq stranded mRNA sample preparation kit 

according to manufacturer’s instructions. The 
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Figure 4: quality assessment of H3K4me1 and H3K4me3 ChIP-seq in ALL-SIL lymphoblasts. (a) Average quality score per 

base position generated by combining FastQC and multiQC. Scores greater than 30 (green region) indicate a good quality. (b) 

Barplots showing the STAR alignment scores per sample. (c) IGV screenshot showing H3K4me3 peaks on the promotor of 

EEF2, one of the highest expressed genes in ALL-SIL lymphoblasts. PolyA[+] and total RNA-seq tracks are depicted for control 

siRNA transfected samples. H3K4me3 bar represent the MACS2 peak with FDR < 0.05. 
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samples were quantified using the KAPA library 

quantification kit and paired-end sequenced on 

a NextSeq 500 sequencer with a read length of 2 

x 75 bp. The number of uniquely mapped reads 

are shown in Supplementary Table 1-2. 

Total RNA sequencing 

Total RNA-seq of the TLX1 knockdown samples 

and 25 primary T-ALL samples (5 immature, 5 

TAL-R, 10 TLX1/TLX3 and 5 HOXA) was 

performed using the TruSeq Stranded Total RNA 

(w/RiboZero Gold) sample prep kit (Illumina, RS-

122-2301), involving depletion of ribosomal 

(rRNA) transcripts by Biogazelle according to 

manufacturer’s instructions. Libraries were 

quantified using the Qubit 2.0 Fluorometer 

(Thermo Fischer Scientific) and paired-end 

sequenced on a NextSeq 500 sequencer with a 

read length of 2 x 75 bp. The number of uniquely 

mapped reads are shown in Supplementary 

Supplementary 1-2. 

Data processing RNA sequencing 

FastQC v0.11.3 was used for quality control of 

fastq files (available online at 

http://www.bioinformatics.babraham.ac.uk/pro

jects/fastqc). All samples were aligned against 

the human reference genome (GRCh38) with 

STAR_2.4.2a[16] using default settings and two 

pass methods as described in the STAR manual. 

GENCODE v25 primary annotation was used as a 

guide during the first pass and the combined 

splice junction database of all samples generated 

in the first pass as a guide in the second step. 

Genes were quantified on GENCODE v25 during 

alignment with STAR. Raw data files have been 

deposited in the NCBI Gene Expression Omnibus 

(GEO) database. MultiQC v0.9 was used to 

aggregate the FastQC and STAR results of all 

samples. Sample IDs and subgroups are shown in 

Supplementary Table 1. TDF files were loaded in 

IGV v2.3.98 to visualize the data. 

Assay for transposase accessible chromatin 

sequencing 

Assay for transposase accessible chromatin 

sequencing (ATAC-seq) was performed as 

previously described with minor changes [17]. In 

short, 50,000 cells were lysed and fragmented 

using Tn5 transposase (Illumina, FC-121-1030). 

Next, the samples were purified using the 

MinElute kit (Qiagen, 28204). Ten µl 

transposased DNA fragments were amplified by 

adding 10 µl H2O, 2.5 µl of each forward 

(5’AATGATACGGCGACCACCGAGATCTACACTCGT

CGGCAGCGTCAGATGTG3’) and reverse 

(5’CAAGCAGAAGACGGCATACGAGATAAAATGGT

CTCGTGGGCTCGGAGATGT3’) primer (25 µM) 

and 25 µl NEBNext High-Fidelity 2x PCR master 

mix (Bioké, M0541) using the following PCR 

program: 5 min at 72 °C, 30 sec at 98 °C and 5 

cycles of 10 sec at 98 °C, 30 sec at 63 °C and 1 min 

at 72 °C. To reduce GC-content and size bias, 

qPCR was performed to determine the exact 

number of PCR cycles to prevent saturation. 5 µl 

DNA, 3 µl H2O, 1 µl of each forward and reverse 

primer (5 uM) and 10 µl SYBR green (Roche, 

4707516001) were used for qPCR (30 sec at 98 °C 

and 19 cycles of 10 sec at 98 °C, 30 sec at 63 °C 

and 1 min at 72 °C). The number of extra PCR 

cycles was calculated as the number of qPCR 

cycles that correspond to ¼ of the maximum 

fluorescent intensity. Ten extra PCR cycles were 

performed on the 45 µl transposed DNA 

fragments. Samples were purified using the PCR 

Cleanup kit (Qiagen, 28104). Sample quality was 

determined using Fragment Analyzer (Advanced 

Analytical) and samples were quantified using 

the KAPA library quantification kit. Samples were 

single-end sequenced on a NextSeq 500 with a 

read length of 75 bp and an average sequencing 

read depth of 81.5 million reads. 

Chromatin immunoprecipitation sequencing 

H3K4me1 and H3K4me3 chromatin 

immunoprecipitation sequencing (ChIP-seq) 

were performed as previously described with 

minor changes [18]. In brief, 1x107 cells were 

cross-linked with 1.1 % formaldehyde (Sigma-

Aldrich, F1635) at room temperature for 10 min 

and the cross-linking reaction was quenched 

with an access of glycine (125 mM final 

concentration, Sigma-Aldrich, G-8790). Nuclei 

were isolated and chromatin was purified by 

chemical lysis. Next, the purified chromatin was 

fragmented to 200-300 bp fragments by 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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sonication (Covaris, M220, Focused-

ultrasonicator). Chromatin immunoprecipitation 

was performed by incubation of the chromatin 

fraction overnight with 20 μl of protein-A coated 

beads (Thermo-Scientific, 53139) and 2 μg of 

H3K4me1 specific (Abcam, ab8895) or 2 µg of 

H3K4me3 specific (Abcam, ab8580) antibody. 

The next day, beads were washed to remove 

non-specific binding events and enriched 

chromatin fragments were eluted from the 

beads, followed by reverse cross-linking by 

incubation at 65 °C overnight. DNA was 

subsequently purified by phenol/chloroform 

extraction, assisted by phase lock gel tubes 

(5Prime, 733-2478). DNA obtained from the 

ChIP-assays was adaptor-ligated and amplified 

using the NEBNext multiplex oligo kit (New 

England BioLabs, E7335S) according to 

manufacturer’s instructions. Libraries were 

quantified using the KAPA library quantification 

kit. The input, H3K4me1 and H3K4me3 libraries 

were single-end sequenced on a NextSeq 500 

sequencer with a read length of 75 bp and an 

average sequencing depth of 32.9 million reads.  

Data processing ChIP-seq and ATAC-seq 

FastQC was used for quality control of fastq files. 

All ChIP-seq and ATAC-seq files were aligned 

against the human reference genome (GRCh38) 

using STAR_2.4.2a[16] with --

outFilterMultimapNmax 1 to exclude 

multimapping reads and --alignIntronMax 1 to 

turn off splice awareness. MultiQC was used to 

aggregate the FastQC and STAR results of all 

samples. Raw data files have been deposited in 

the NCBI Gene Expression Omnibus (GEO) 

database .  To detect enriched regions (ChIP-seq) 

and regions of open chromatin (ATAC-seq), peak 

calling has been performed with MACS2 

v2.1.20150731 using input samples as control for 

ChIP-seq [19]. Peak calling for histone marks was 

performed using --broad setting. Generated files 

show peak location, enrichment of the peak and 

score of the identified peaks. TDF and bed files 

were loaded in IGV v2.3.98 to visualize the data. 

ChIPseeker v1.16.1 was used to identify 

enrichment of ATAC-seq peaks around the 

transcription start sites [20]. 

 

USER NOTES 

The raw data and gene count tables of the 

polyA[+] and total RNA-seq data can be 

downloaded from the GEO database via 

accession numbers GSE110632 (polyA[+]) and 

GSE110635 (total) for the TLX1 knockdown 

samples and via GSE110633 (polyA[+]) and 

GSE110636 (total) for the primary T-ALL cohort. 

The sample IDs and subgroup annotation can be 

found in Supplementary Table 1. The raw data 

and peak tables of the ATAC-seq and ChIP-seq 

can also be downloaded from the GEO database 

via accession numbers GSE110631 (ATAC-seq) 

and GSE110630 (ChIP-seq). The analyses can be 

repeated using the specifications described in 

the method section starting from the raw 

sequencing data. By providing the raw 

sequencing data, users can also use their own 

pipeline to analyse the data. Other pipelines, 

such as the bcbio-nextgen pipeline 

(https://github.com/bcbio/bcbio-nextgen), can 

also be used to analyze the ChIP-seq and ATAC-

seq data. Matching TLX1 and H3K27ac ChIP-seq 

data in the ALL-SIL cell line, generated by Durinck 

et al., can be integrated with the datasets 

described in this paper and are available through 

GEO (GSE70734, GSE62264)[14]. Downstream 

differential analysis can be easily performed 

using the provided count tables and sample 

annotation (Supplementary Table 1-2) as input 

for Deseq2 [21] (as described by Verboom et al. 

[11]) or other packages as Limma [22] or EdgeR 

[23]. 

 

DATASETS 

1. polyA+ RNA-seq in ALL-SIL upon TLX1 

knockdown. Gene Expression Omnibus, 

http://identifiers.org/geo:GSE110632 

(2018). 

2. total RNA-seq in ALL-SIL upon TLX1 

knockdown. Gene Expression Omnibus, 

http://identifiers.org/geo:GSE110635 

(2018). 

https://github.com/bcbio/bcbio-nextgen
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3. polyA+ RNA-seq in a primary T-ALL 

cohort. Gene Expression Omnibus, 

http://identifiers.org/geo:GSE110633 

(2018). 

4. total RNA-seq in a primary T-ALL cohort. 

Gene Expression Omnibus, 

http://identifiers.org/geo:GSE110636 

(2018). 

5. ATAC-seq of ALL-SIL cells. Gene 

Expression Omnibus, 

http://identifiers.org/geo:GSE110630 

(2018). 

6. H3K4me1 CHIP-seq in ALL-SIL. Gene 

Expression Omnibus, 

http://identifiers.org/geo:GSE110631 

(2018). 
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Supplementary Table 1: sample information of the primary T-ALL cohort 

 
sample 

 
subgroup 

 
sequencing 

 
uniquely 

mapped (%) 

 
total reads 

 
RNA quality 
scores (RIN) 

 
GEO 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

79.27 51134041 9.6 GSM3004545 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

89.11 52131482 8.7 GSM3004546 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

89.9 50866673 9.6 GSM3004547 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

88.12 51643482 8.8 GSM3004548 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

89.85 52284445 8.6 GSM3004549 

primary T-ALL 
cohort 

HOXA polyA[+] RNA-
seq 

88.18 51255315 9.5 GSM3004550 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

90.34 52379578 8.7 GSM3004551 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

89.38 51693949 8.9 GSM3004552 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

90.32 51305639 7.1 GSM3004553 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

88.86 52038015 9.7 GSM3004554 

primary T-ALL 
cohort 

HOXA polyA[+] RNA-
seq 

88.35 51955313 7.1 GSM3004555 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

90.14 51681626 9.6 GSM3004556 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

88.27 50654317 8.6 GSM3004557 

primary T-ALL 
cohort 

HOXA polyA[+] RNA-
seq 

90.78 51352215 9.1 GSM3004558 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

88.82 52453197 7.5 GSM3004559 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

79.66 52174896 7.7 GSM3004560 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

87.36 51381227 8.7 GSM3004561 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

71.69 53058858 9.9 GSM3004562 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

87.75 51038574 9.4 GSM3004563 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

88.02 52502134 9.8 GSM3004564 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

90.28 51909933 9.7 GSM3004565 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

90.62 51911212 9.4 GSM3004566 

primary T-ALL 
cohort 

HOXA polyA[+] RNA-
seq 

87.4 59081633 9.2 GSM3004567 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

89.43 51919497 8.1 GSM3004568 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

84.16 51255849 9.2 GSM3004569 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

69.59 51305951 8.7 GSM3004570 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

76.36 51338014 8.9 GSM3004571 
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primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

83.74 51368719 7.8 GSM3004572 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

83.05 50643895 9.6 GSM3004573 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

73.78 51591573 9,00 GSM3004574 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

83.88 51475202 8.9 GSM3004575 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

81.29 51657232 9.1 GSM3004576 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

80.47 51916311 8.9 GSM3004577 

primary T-ALL 
cohort 

HOXA polyA[+] RNA-
seq 

81.92 52274790 8.9 GSM3004578 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

81.94 51773369 3.8 GSM3004579 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

80.82 51875328 9.4 GSM3004580 

primary T-ALL 
cohort 

HOXA polyA[+] RNA-
seq 

83.16 52264800 8.6 GSM3004581 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

85.51 52235267 8,00 GSM3004582 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

64.75 52826763 7.5 GSM3004583 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

78.01 51091717 8.1 GSM3004584 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

88.18 51199311 8.2 GSM3004585 

primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

84.61 51344603 9.4 GSM3004586 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

84.81 51362219 7.8 GSM3004587 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

85.7 51100095 1.7 GSM3004588 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

81.17 50899540 7.5 GSM3004589 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

77.04 52229414 NA GSM3004590 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

83.0 52319669 9.9 GSM3004591 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

80.41 51322739 6.2 GSM3004592 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

85.31 51531625 9.2 GSM3004593 

primary T-ALL 
cohort 

TAL polyA[+] RNA-
seq 

83.45 51764239 9.4 GSM3004594 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

86.55 50986744 8.3 GSM3004595 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

84.49 52010225 8.4 GSM3004596 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

87.03 52000045 8.9 GSM3004597 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

82.79 51774667 8,00 GSM3004598 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

87.26 51916137 8.6 GSM3004599 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

81.15 52018296 10,00 GSM3004600 

primary T-ALL 
cohort 

HOXA polyA[+] RNA-
seq 

77.87 60514863 10,00 GSM3004601 

primary T-ALL 
cohort 

TLX polyA[+] RNA-
seq 

88.0 51956038 9.4 GSM3004602 
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primary T-ALL 
cohort 

IMM polyA[+] RNA-
seq 

86.93 52084376 9.6 GSM3004603 

 

 

Supplementary Table 2: sample information of ALL-SIL lymphoblasts 
 
sample 

 
subgroup 

 
sequencing 

 
uniquely 

mapped (%) 

 
total reads 

 
GEO 

TLX1 knockdown siRNA 1 - repl 1 polyA[+] RNA-seq 93.8 124147993 GSM3004536 

TLX1 knockdown siRNA 2 - repl 1 polyA[+] RNA-seq 94.01 93035379 GSM3004537 

TLX1 knockdown scrambled siRNA - repl 1 polyA[+] RNA-seq 93.71 84583398 GSM3004538 

TLX1 knockdown siRNA 1 - repl 2 polyA[+] RNA-seq 94.25 119636318 GSM3004539 

TLX1 knockdown siRNA 2 - repl 2 polyA[+] RNA-seq 94.12 105500445 GSM3004540 

TLX1 knockdown scrambled siRNA - repl 2 polyA[+] RNA-seq 93.74 129759760 GSM3004541 

TLX1 knockdown siRNA 1 - repl 3 polyA[+] RNA-seq 93.55 121660448 GSM3004542 

TLX1 knockdown siRNA 2 - repl 3 polyA[+] RNA-seq 93.32 77081841 GSM3004543 

TLX1 knockdown scrambled siRNA - repl 3 polyA[+] RNA-seq 93.71 107915058 GSM3004544 

TLX1 knockdown scrambled siRNA - repl 3 total RNA-seq 88.05 49625332 GSM3004611 

TLX1 knockdown siRNA 1 - repl 2 total RNA-seq 88.48 49943664 GSM3004612 

TLX1 knockdown siRNA 2 - repl 2 total RNA-seq 88.77 56881159 GSM3004613 

TLX1 knockdown siRNA 2 - repl 3 total RNA-seq 88.4 51132644 GSM3004614 

TLX1 knockdown scrambled siRNA - repl 2 total RNA-seq 88.51 51878120 GSM3004615 

TLX1 knockdown siRNA 1 - repl 3 total RNA-seq 88.9 57781287 GSM3004616 

TLX1 knockdown siRNA 2 - repl 1 total RNA-seq 87.37 49905219 GSM3004617 

TLX1 knockdown siRNA 1 - repl 1 total RNA-seq 88.37 50441264 GSM3004618 

TLX1 knockdown scrambled siRNA - repl 1 total RNA-seq 78.93 52942076 GSM3004619 
ALL-SIL 
lymphoblasts - ATAC-seq 76.72 84064905 GSM3004532  
ALL-SIL 
lymphoblasts H3K4me1 ChIP-seq 89.49 41543910 GSM3004533 
ALL-SIL 
lymphoblasts input ChIP-seq 69.79 28590025 GSM3004534  
ALL-SIL 
lymphoblasts H3K4me3 ChIP-seq 89.85 36408072 GSM3004535 
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ABSTRACT 

Single cell RNA sequencing methods have been increasingly used to understand cellular heterogeneity. 

Nevertheless, most of these methods suffer from one or more limitations, such as focusing only on 

polyadenylated RNA, sequencing of only the 3’ end of the transcript, an exuberant fraction of reads 

mapping to ribosomal RNA, and the unstranded nature of the sequencing data. Here, we developed a 

novel single cell strand-specific total RNA library preparation method addressing all the 

aforementioned shortcomings. Our method was validated on a microfluidics system using three 

different cancer cell lines undergoing a chemical or genetic perturbation and on two other cancer cell 

lines sorted in microplates. We demonstrate that our total RNA-seq method detects an equal or higher 

number of genes compared to classic polyA[+] RNA-seq, including novel and non-polyadenylated 

genes. The obtained RNA expression patterns also recapitulate the expected biological signal. Inherent 

to total RNA-seq, our method is also able to detect circular RNAs. Taken together, SMARTer single cell 

total RNA sequencing is very well suited for any single cell sequencing experiment in which transcript 

level information is needed beyond polyadenylated genes. 

INTRODUCTION 

To understand the complexity of life, knowledge 

of cells as fundamental units is key. Recently, 

technological advances have emerged to enable 

single cell RNA sequencing (RNA-seq). In 2009, 

Tang et al. published the first single cell RNA-seq 

protocol in which cells were picked manually and 

transcripts reverse transcribed using a polydT 

primer (1). As the throughput was low, new 

methods using early multiplexing, such as STRT-

seq and SCRB-seq, were introduced in which 

cells were pooled at an early step in the 

workflow, enabling processing of many cells in 

parallel (2–4). In contrast to these methods that 

have inherent  3’ end or 5’ end bias, Smart-seq2 

generates read coverage across the whole 

transcript expanding the spectrum of 

applications as this method can be used for 

fusion detection, single nucleotide variants 
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(SNV) analysis, and splicing, beyond typical gene 

expression profiling applications (5, 6). To 

reduce the PCR bias generated in the 

aforementioned methods, CEL-seq and MARS-

seq were introduced using linear in vitro 

transcription (IVT) instead of PCR to obtain 

enough cDNA for sequencing (7–9). Most 

recently, droplet and split-pool ligation based 

methods capturing thousands of single cells 

were developed, providing new insights in 

cellular heterogeneity and rare cell types (10–

14). The main drawback of these methods is that 

analyses are typically confined to gene 

expression of only (3’ ends of) polyadenylated 

transcripts (Table 1). More complex analyses 

with respect to alternative splicing, allele specific 

expression, mutation analysis, assembly of 

(novel) transcripts, circular RNA (circRNA) 

quantification and post-transcriptional 

regulation, require full-length and full-

transcriptome methods. Moreover, sequencing 

a large number of cells is often compromising 

sequencing depth, resulting in low coverage per 

cell and detection of only the most abundant 

transcripts (24). In contrast to these droplet 

based methods, microfluidic chip and 

flowcytometry based platforms typically capture 

fewer cells, but are able to sequence entire 

transcripts and detect a substantially higher 

number of genes per cell providing a more 

complete view of the complexity and richness of 

single cells’ transcriptomes (6, 25). Of note, most 

single cell RNA-seq studies assess only 3’ end 

polyadenylated (polyA[+]) transcripts, ignoring 

non-polyadenylated (polyA[-]) transcripts (Table 

1) (6, 12, 14). Since a substantial part of the 

human transcriptome is non-polyadenylated, 

various RNA types including circRNAs, enhancer 

RNAs, histone RNAs, and a sizable fraction of 

long non-coding RNAs (lncRNAs) are not 

quantified using these classic methods (26–28). 

In order to study polyA[-] transcripts at the single 

cell level, total RNA-seq workflows were 

developed (22, 29, 30). While in principle both 

polyA[+] and polyA[-] transcripts are converted 

into a sequencing-ready library using random 

primer mediated reverse transcription, these 

methods suffer from one or more of the 

following limitations: the strand-orientation 

information is lost and a high percentage of 

reads map to ribosomal RNA (rRNA) (Table 1). 

Therefore, new methods circumventing these 

limitations are warranted. A rRNA depletion step 

is essential as up to 95 % of the total RNA content 

in a mammalian cell consists of rRNA. Moreover, 

to discriminate sense and antisense overlapping 

transcripts, stranded sequencing is crucial; at 

least 38 % of the annotated transcripts in cancer 

cells have antisense expression (31). Here, we 

developed a novel easy to use and efficient 

single cell total RNA-seq workflow based on the 

SMARTer Stranded Total RNA-Seq Kit - Pico Input 

Mammalian  combining for the first time 

strandeness and effective removal of ribosomal 

cDNA (Table 1). We ported the method to 

Fluidigm’s C1 single cell microfluidics 

instrument, and demonstrated that the method 

works equally well on FACS sorted cells in 

microplates. In total, 458 cells from 5 different 

human cancer cell lines in 4 experiments were 

sequenced with a total sequencing depth of 

1528 million reads. Using our novel method, we 

consistently observe less than 3 % of ribosomal 

reads and we detect more than 5360 genes by at 

least four reads, including novel genes, polyA[-] 

genes and circular RNAs. 

 

METHODS 

Cell lines 

The neuroblastoma cell line NGP, used for the C1 

experiments, is a kind gift of prof. R. Versteeg 

(Amsterdam, the Netherlands). Cells were 

maintained in RPMI-1640 medium (Life 

Technologies, 52400-025) supplemented with 

10 % fetal bovine serum (PAN Biotech, P30-

3306), 1 % of L-glutamine (Life Technologies, 

15140-148) and 1 % penicillin/streptomycin (Life 

Technologies, 15160-047) (referred to as 

complete medium) at 37 °C in a 5 % CO2 

atmosphere. Short tandem repeat genotyping 

was used to validate cell line authenticity prior 

to performing the described experiments and 

mycoplasma testing was done on a monthly 

basis using the MycoAlert Mycoplasma 
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Detection Kit (Lonza, T07-318), according to 

manufacturer’s instructions. The A375 (ATCC 

CRL-1619) and Jurkat (clone E6.-1; ATCC TIB-152) 

cells, used for the FACS experiments, were 

grown in Dulbecco’s modified Eagle’s medium 

(DMEM; Millipore-Sigma, D5796) supplemented 

with 10 % Tet system approved fetal bovine 

serum (FBS) (Takara, 631106) and RPMI-1640 

medium (RPMI; Millipore-Sigma, R0883) 

supplemented with 10 % Tet system approved 

FBS, respectively. Cell lines were sub-cultured 

every two days or when they reached > 80% 

confluence (A375) or >1x106 cells/ml (Jurkat). 

Cell cycle synchronization and nutlin-3 

treatment of NGP cells 

NGP cells were synchronized using serum 

starvation prior to nutlin-3 treatment. First, cells 

were seeded at low density for 48 hours in 

complete medium. Then, cells were refreshed 

with serum-free medium for 24 hours. Finally, 

the cells were treated with either 8 μM of nutlin-

3 (Cayman Chemicals, 10004372, dissolved in 

ethanol) or vehicle. Cells were trypsinized 

(Gibco, 25300054) 24 hours post treatment and 

harvested for single cell analysis, bulk RNA 

isolation and cell cycle analysis. 

Cell cycle analysis 

Four million cells were washed with PBS (Gibco, 

14190094) and the pellet was resuspended in 

300 µl PBS. Next, 700 µl of 70 % ice-cold ethanol 

was added dropwise while vortexing to fix the 

cells. Cells were stored at -20 °C for at least 1 

hour. After incubation, cells were washed with 

PBS and the pellet was resuspended in 1 ml PBS 

containing RNAse A (Qiagen, 19101) at a final 

concentration of 0.2 mg/ml. After 1 hour 

incubation at 37 °C, propidium iodide (BD 

biosciences, 556463) was added to a final 

concentration of 40 µg/ml. Samples were loaded 

on a S3 cell sorter (Bio-Rad) and analyzed using 

the FlowJo v.10 software. 

RNA isolation and cDNA synthesis 

Total RNA was isolated using the miRNeasy mini 

kit (Qiagen, 217084) with DNA digestion on-

column according to the manufacturer’s 

instructions. RNA concentration was measured 

using spectrophotometry (Nanodrop 1000, 

Thermo Fisher Scientific). cDNA was synthesized 

using the iScript Advanced cDNA synthesis kit 

(Bio-Rad, 1708897) using 500 ng RNA as input in 

a 20 µl reaction. cDNA was diluted to 2.5 ng/µl 

with nuclease-free water prior to RT-qPCR 

measurements. 

Reverse transcription quantitative PCR 

PCR mixes containing 2.5 µl 2x SsoAdvanced 

SYBR qPCR supermix (Bio-Rad, 04887352001), 

0.25 µl each forward and reverse primer (5 µM, 

IDT), and 2 µl diluted cDNA (5 ng total RNA 

equivalents) were analyzed on the 

LightCycler480 instrument (Roche) using two 

replicates. Expression levels were normalized 

using expression data of four stable reference 

genes (SDHA, YWHAZ, TBP, HPRT1). These 

reference genes were selected based on geNorm 

analysis  with the qbase+ software v3.0 

(Biogazelle), identifying the most stable 

references genes for normalization. RT-qPCR 

data was analyzed using the qbase+ software 

v3.0 (Biogazelle). Primer sequences are available 

in Supplementary Table 1. 

FACS sorting of A375 and Jurkat cells in 

microplates 

Before sorting, cells were washed twice in 1X 

PBS buffer (DPBS without calcium chloride and 

magnesium chloride; Sigma Aldrich, D8537) and 

labelled with 7-AAD (BD Pharmingen, 51-

68981E) for live/dead differentiation and FITC-

conjugated antibody [anti-CD47 (BD 

Pharmingen, 556045) for A375 and anti-CD81 

(BD Pharmingen, 551108) for Jurkat]. After 

washing off the unbound antibodies in 1X PBS, 

cells were resuspended in BD FACS Pre-Sort 

Buffer (BD, 563503). Single cell sorting in 8-tube 

PCR strips was done using a BD FACSJazz Cell 

Sorter. A375 cells were sorted in 7 µl 1X PBS 

buffer and Jurkat cells in 8 µl lysis solution [100 

µl 10X Lysis buffer (Takara, 635013), 5 µl RNase 

Inhibitor (Takara, 635013) and 700 µl water]. 

Following sorting, tubes were sealed and 

subjected to a quick spin and immediately frozen 

on dry ice and finally stored at –80 °C until use. 
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All sorting experiments included negative 

controls (no cell in a well).   

Single cell total RNA library preparation of 

nutlin-3 treated NGP cells 

Cells were washed with PBS and pellets of 

vehicle treated cells were resuspended and 

incubated in 1 ml pre-warmed (37 °C) cell tracker 

(CellTracker Green BODIPY Dye, Thermo fisher 

Scientific, C2102) for 20 minutes at room 

temperature. After incubation, cells were 

washed in PBS and resuspended in 1 ml wash 

buffer (Fluidigm, 100-6201). An equal number of 

stained (vehicle treated) and non-stained 

(nutlin-3 treated) cells were mixed and diluted to 

300,000 cells per ml. Suspension buffer 

(Fluidigm) was added to the cells in a 3:2 ratio 

and 6 µl of this mix of was loaded on a primed C1 

Single-Cell Open App IFC (Fluidigm, 100-8134) 

designed for medium-sized cells (10-17 µm). 

Cells were captured using the ‘SMARTer single 

cell total RNA-seq’ script deposited in Script Hub 

(Fluidigm). Upon capture, cells were visualized 

using the Axio Observer Z1 (Zeiss) and a median 

multiplet rate of 34.54 % was observed over all 

experiments. These cells were excluded from 

further analyses. Sequencing libraries were 

generated using the C1 running the ‘SMARTer 

single cell total RNA-seq’ script deposited on 

Script Hub. In short, the SMARTer Stranded Total 

RNA-Seq Kit v2 - Pico Input Mammalian (Pico v2, 

total RNA, Takara, 634413) was used to 

synthesize cDNA with following modifications. 

Cells were fragmented and lysed by loading 7 µl 

of 10x reaction mix [2.3 µl SMART Pico Oligo Mix 

v2, 6 µl 5x first-strand buffer, 1 µl 20x C1 loading 

reagent (Fluidigm), 3 µl lysis mix (19 µl 10x lysis 

buffer, 1 µl RNAse inhibitor (40 U/µl)), 1 µl 

1/1000 diluted ERCC spikes (Ambion, 4456740), 

6.7 µl water] and incubating the cells at 85 °C for 

6 minutes (to lyse cells and fragment RNA) 

followed by 2 minutes at 10 °C. Next, 8 µl first 

strand master mix [1 µl C1 loading reagent, 4 µl 

5x first-strand buffer, 0.9 µl RNAse inhibitor (40 

U/µl), 3.5 µl SMARTScribe reverse transcriptase 

(100 U/µl), 7.9 µl SMART TSO Mix v2 (from 

Takara kit, 634413), 2.7 µl water] was loaded and 

incubated at 42 °C for 90 minutes followed by 70 

°C for 10 minutes. Finally, a PCR master mix for 

each well was made [1 µl 20x loading reagent, 2 

µl 2.4 µM forward primer (Takara, 634413), 2 µl 

2.4 µM reverse primer, 13.1 µl 1.5x PCR mix 

(1050 µl 2x SeqAmp CB buffer, 42 µl SeqAmp 

DNA polymerase, 308 µl water)] and 5 µl of each 

of these mixes was loaded in the harvest wells of 

the IFC. The samples were incubated for 1 

minute at 94 °C followed by 11 PCR cycles (30 s 

at 98 °C, 15 s at 55 °C, 30 s at 68 °C) and 2 minutes 

at 68 °C. Following this initial cDNA 

amplification, 12 wells were pooled per tube 

using 8 µl of cDNA per cell. Next steps of the 

library prep were performed according to 

manufacturer’s instructions with minor 

modifications. 13 PCR cycles were used for PCR2 

and a 1:1 ratio was used for beads cleanup after 

PCR2. Next, the samples were resuspended in 22 

µl 5 mM tris buffer (from kit) and 20 µl was used 

to perform a second beads cleanup using a 0.9:1 

ratio. Finally, the samples were resuspended in 

12 µl tris buffer and the quality was determined 

on the Fragment Analyzer (Advanced Analytical). 

Of note, the protocol can also be executed using 

the single cell specific version of the kit, released 

by Takara (SMART-Seq Stranded Kit, 634442) 

after we had completed our C1 experiments. 

Single cell polyA[+] RNA library preparation of 

nutlin-3 treated NGP cells 

Vehicle treated cells were stained with cell 

tracker as described above. An equal number of 

stained (vehicle treated) and non-stained 

(nutlin-3 treated) cells were mixed and diluted to 

300,000 cells per ml. Suspension buffer was 

added to the cells in a 3:2 ratio and 6 µl of this 

mix of was loaded on a primed C1 Single-Cell 

Auto Prep Array for mRNA Seq (Fluidigm, 100-

6041) designed for medium-sized cells (10-17 

µm). Single cell polyA[+] RNA sequencing on the 

C1 was performed using the SMART-Seq v4 Ultra 

Low Input RNA Kit for the Fluidigm C1 System 

(SMART-Seq v4, polyA[+] RNA, Takara, 635026) 

according to manufacturer’s instructions. One 

microliter of the ERCC spike-in mix was diluted in 

999 µl loading buffer to get a 1/1000 dilution of 

the ERCC spikes. One microliter of this dilution 

was added to the 20 µl lysis mix. The quality of 
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the cDNA was checked for 11 random single cells 

on the Fragment Analyzer. The concentration of 

the cells was measured using the quantifluor 

dsDNA kit (Promega, E2670) and glomax 

(Promega) according to manufacturer’s 

instructions. The samples were 1/5 diluted in C1 

harvest reagent (Fluidigm). Next, library prep 

was performed using the Nextera XT library prep 

kit (Illumina, FC-131-1096) according to 

manufacturer’s instructions, followed by quality 

control on the Fragment Analyzer.  

Single cell total RNA library preparation of FACS 

sorted A375 and Jurkat cells 

Cells were processed using the SMARTer 

Stranded Total RNA-Seq Kit v2 – Pico Input 

Mammalian (Takara, 634413) or the SMART-Seq 

Stranded Kit (Takara, 634444) reagents 

according to the manufacturer’s instructions 

with some modifications that were also 

implemented in the C1 protocol. For the SMART-

Seq Stranded Kit, the Ultra Low Input workflow 

described in the user manual was followed by 

pooling of 8 samples according to Appendix A of 

the user manual. For the SMARTer Stranded 

Total RNA-Seq Kit v2 – Pico Input Mammalian, 

the cells were also processed as described for 

the SMART-Seq Stranded Kit, but using the 

reagents specific to the SMARTer Stranded Total 

RNA-Seq Kit v2 – Pico Input Mammalian, which 

were also used for the C1 protocol.  For both kits, 

cells sorted in a lysis solution instead of 1X PBS 

were processed without addition of lysis buffer. 

Identital to the C1 protocol, the initial RNA 

shearing step was performed at 85 °C for 6 min 

and 10 and 13 PCR cycles were carried out for 

PCR1 and PCR2, respectively. 

Library sequencing 

All libraries were quantified using the KAPA 

library quantification kit (Roche) and libraries 

were diluted to 4 nM. For NGP, the polyA[+] RNA 

library and total RNA library were pooled in a 1/4 

ratio and 1.5 pM of the pooled library was single-

end sequenced on a NextSeq 500 (Illumina) with 

a read length of 75 bp and a total sequencing 

read depth of 274 million reads, combining 

single cell polyA[+] and total RNA libraries to 

prevent inter-run bias. A median sequencing 

read depth of 0.81 and 3.67 million reads per cell 

was reached for the single cell polyA[+] and total 

RNA libraries, respectively. In addition, 1.3 pM of 

the total RNA library was also sequenced in 2x75 

paired-end sequencing run mode on the 

NextSeq 500, yielding 327 million reads and a 

median sequencing read depth of and 4.04 

million per cell. The fastq data is deposited in 

GEO (GSE119984). A375 and Jurkat total RNA 

libraries were pooled and 1.2 pM of the pooled 

library was sequenced in 2x75 paired-end run 

mode on the NextSeq 500, yielding 41 million 

reads. FASTQ data is deposited in GEO 

(GSE130578). 

Sequencing data quality control 

While single-end sequencing libraries do not 

require pre-trimming, the paired-end libraries 

were trimmed using cutadapt (v.1.16) (32) to 

remove 3 nucleotides of the 5’ end of read 2. To 

assess the quality of the data, the reads were 

mapped using STAR (v.2.5.3) (33) on the hg38 

genome including the full ribosomal DNA (45S, 

5.8S and 5S) and mitochondrial DNA sequences. 

The parameters of STAR were set to retain only 

primary mapping reads, meaning that for multi-

mapping reads only the best scoring location is 

retained. Using SAMtools (v1.6) (34), reads 

mapping to the different nuclear chromosomes, 

mitochondrial DNA and rRNA were extracted 

and annotated as exonic, intronic or intergenic. 

In contrast to the unstranded nature of polyA[+] 

Smart-seq v4 data, the total RNA SMARTer-seq 

data is stranded and processed accordingly 

(unless explicitely mentioned). Gene body 

coverage was calculated using the full Ensembl 

(v91) (35) transcriptome. The coverage per 

percentile was calculated, followed by a loess 

regression fit. 

Quantification of Ensembl and LNCipedia genes 

Genes were quantified by Kallisto (v.0.43.1) (36) 

using both Ensembl (v.91) (35) extended with 

the ERCC spike sequences and LNCipedia (v.5.0) 

(37). The strandedness of the total RNA-seq 

reads was considered by running the –rf-
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stranded mode and omitted for unstranded 

analysis of the data. Subsampling 1 million reads 

(polyA[+] RNA libraries) or 1, 4 or 8 million reads 

(total RNA libraries) was performed by seqTK 

(v.1.2) followed by Kallisto quantification. 

Further processing was done with R (v.3.5.1) 

making use of tidyverse (v.1.2.1). To measure 

the biological signal we first performed 

differential expression analysis between the 

treatment groups using DESeq2 (v.1.20.0) (38) in 

combination with Zinger (v.0.1.0) (39). To 

identify enriched gene sets a fsgea (v.1.6.0) 

analysis was performed, calculating enrichment 

for the hallmark gene sets retrieved from 

MSigDB (v.6.2). 

Circular RNA detection 

CircRNAs were detected using the deeper 

sequenced paired-end sequencing data. 

Trim_galore (v.0.4.1) was used to trim adaptor 

sequences, perform quality filtering and remove 

3 nucleotides from the 5’ end of read 2. 

Subsequently, reads from all samples were 

combined, adding originating sample names to 

read names for later splitting of data. The 

combined data was used for circRNA detection 

using find_circ (v.1) (40) using the reads2sample 

(find_circ.py -r) option to allow circRNA 

detection on the combined dataset while 

dividing out the contribution from each sample 

in the output. Only circRNAs with unique 

mapping on both anchors were accepted. 

Human genome hg19 was used for circRNA 

analysis. CircRNAs were annotated with host 

gene names from RefSeq (release 75) and 

circBase IDs from circbase.org. The Database for 

Annotation, Visualisation and Integrated 

Discovery (DAVID, v.6.8) (41, 42) was used for 

Gene Ontology (GO) analysis for the circRNA 

host genes using biological processes (BP) and 

molecular function (MF). P-value < 0.05 was 

used for statistical significance. 

Single cell transcriptome assembly 

A transcriptome per cell was created by 

combining STAR (v.2.5.3) and Stringtie (v.1.3.0) 

(43), using the deeper sequenced paired-end 

sequencing data. The parameters of Stringtie 

were set to require a coverage of 1. These single 

cell transcriptomes were merged with the 

Ensembl (v.91) transcriptome as a reference. 

From the merged multi-cell transcriptome, only 

multi-exonic genes with a minimum length of 

200 nt were retained. To define the set of novel 

genes, genes annotated in Ensembl (35) or 

LNCipedia (v.5.0) (37) were filtered out. All genes 

in this novel multi-cell transcriptome were 

quantified using Kallisto on single-end 

subsample data (1, 4 or 8 million reads per cell). 

Table 1: Characteristics of the top ten cited single cell polyA[+] RNA-seq in Web of Science and four available single 

cell total RNA-seq methods (including our SMARTer method). 

 total RNA-
seq 

full length rRNA < 5 % stranded reference 

Drop-seq - - + - (15) 
Tang et al. - + + - (16) 
InDrop - - + - (17) 
MARS-seq - - + - (9) 
Smart-seq2 - + + - (5,18) 
CEL-seq - - + + (7) 
STRT-seq - - + + (3) 
Quartz-seq - + + - (19) 
CEL-seq2 - - + + (8) 
cytoSeq - - + - (20) 
SuPeR-seq + + + - (21) 
RamDA-seq + + - - (22) 
MATQ-seq + + NA - (23) 
SMARTer + + + +  
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Genes with an estimated count higher than 1 

were retained. 

RESULTS 

Principle of SMARTer single cell total RNA 

sequencing  

We developed a single cell total RNA-seq 

protocol for unbiased, full transcript and strand-

specific analysis of both polyadenylated and 

non-polyadenylated transcripts from 

mammalian cells. The method uses reagents 

from the SMARTer Stranded Total RNA-Seq Kit 

v2 - Pico Input Mammalian  (Pico v2, total RNA), 

a kit that is meant for low input bulk total RNA-

seq, whereby we optimized reaction volumes, 

number of PCR cycles, and duration and 

temperature of the RNA fragmentation. The 

library preparation method employs random 

primers and a template switching mechanism to 

capture full transcript fragments of both 

polyadenylated (polyA[+]) and non-

polyadenylated (polyA[-]) transcripts. Unwanted 

ribosomal cDNA is removed using probes, 

complementary to mammalian rRNA. After 

successfully porting the bulk library prep 

protocol to Fluidigm’s C1 single cell instrument, 

we assessed the performance of the single cell 

total RNA-seq protocol through three distinct 

experiments in which nutlin-3, JQ1 or 

doxycycline was used to treat NGP, SK-N-BE-2C, 

and SHSY5Y-MYCN-TR neuroblastoma cell lines, 

respectively (with vehicle treated cells as 

control) (Figure 1). In addition, we performed 

matched single cell polyA[+] RNA-seq as a 

reference using cells from the same pool. While 

all experiments were successful, we focus our 

analyses and performance assessment on the 

NGP data. In this experiment, the treated and 

control cells were processed in the same 

microfluidic chip (preventing possible chip bias), 

the highest number of cells were captured, and 

the highest sequencing depth was reached.  

SMARTer single cell total RNA sequencing yields 

high-quality data  

In single cell sequencing experiments, it is 

important to prevent or limit potential biases 

that mask true biological differences. In 

Figure 1: overview of experimental set-up. Single cell total RNA libraries of the FACS sorted cells were generated using 2 

different reagent kits (#634413, denoted with * and #634444, denoted with °). 

 

5 cell lines – 458 cells – 1528 million reads
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particular, the cell cycle state is a known 

confounder (44). Therefore, we synchronized 

the cells through serum starvation for 24 hours. 

Upon synchronization, 80.3 % of the NGP cells 

showed an arrest at the G0/G1 stage compared 

to only 53.3 % for non-synchronized NGP cells 

(Supplementary Figure 1 A-B). Subsequently, the 

synchronized NGP cells were treated for 24 

hours with vehicle or nutlin-3, the latter known 

to release TP53 from its negative regulator 

MDM2. As expected, nutlin-3 treatment resulted 

in cell cycle arrest (Supplementary Figure 1 C-D). 

To prevent possible C1 batch effects (45), vehicle 

treated NGP cells were stained and loaded 

together with the non-stained nutlin-3 treated 

cells on the same C1 chip. Based on the 

fluorescent label and the transparency of the C1 

system, vehicle and nutlin-3 treated cells were 

discriminated by fluorescence microscopy. By 

loading two C1 chips, one for polyA[+] RNA and 

one for total RNA library preparation, we 

captured 31 and 27 nutlin-3 treated versus 52 

and 37 vehicle treated single cells, respectively. 

High-quality cDNA libraries of polyA[+] and total 

RNA were generated using the SMART-Seq v4 

Ultra Low Input RNA Kit for the Fluidigm C1 

System (SMART-Seq v4, polyA[+]) and our novel 

SMARTer single cell total RNA-seq protocol, 

respectively (Supplementary Figure 1 E-F). ERCC 

spike-in molecules were added for external 

quality control in the lysis mix (Supplementary 

Figure 2). For the recovered spikes (with a 

concentration in the original mix of at least 10 

attomoles/µl), linear models were calculated 

(Supplementary Figure 3), retrieving similar R2 

values for the polyA[+] RNA and total RNA library 

preparation protocol (Supplementary Figure 4). 

The transcripts detected in the polyA[+] libraries 

were somewhat shorter compared to the total 

RNA libraries (Supplementary Figure 5). In 

addition, the total RNA-seq libraries show a 

more uniform transcript coverage 

(Supplementary Figure 6). 

As expected, a higher fraction of reads mapped 

to nuclear rRNA in the total RNA-seq libraries 

compared to the polyA[+] RNA libraries (average 

of 2.739 % [2.488, 2.990; 95 % confidence 

interval (CI)] vs. 0.031 % [0.026, 0.035; 95 % CI], 

respectively). Nevertheless, the fraction of 

nuclear rRNA is very low in the total RNA libraries 

considering the use of random priming data 

(Figure 2A), and substantially lower compared to 

the RAMDA-seq method (9.667 % rRNA [9.615, 

9.719; 95 % CI], Supplementary Figure 7). 

Furthermore, the single cell total RNA libraries 

contain more intronic (27.99 % [25.06, 30.91; 95 

% CI] vs. 11.87 % [10.14, 13.60; 95 % CI]) and 

intergenic (5.38 % [5.00, 5.76; 95 % CI] vs. 2.90 % 

[2.54, 3.26; 95 % CI]) reads originating from 

nuclear chromosomes compared to polyA[+] 

RNA libraries (Figure 2B). Non-polyadenylated 

histone genes are highly abundant in the total 

RNA libraries, while low or absent in the polyA[+] 

libraries, confirming the validity of our single cell 

total RNA-seq workflow (Supplementary Figure 

Figure 2: read distribution differs between polyA[+] and total RNA libraries. A) Percentage of reads derived from nuclear 

RNA, mitochondrial RNA and ribosomal RNA per cell quantified with STAR. B) Percentage of the reads originating from nuclear 

chromosomes derived from exonic, intronic and intergenic regions per cell quantified with STAR. C) Percentage of exonic 

reads attributed to the different biotypes per cell quantified with Kallisto. 
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8). Equal results were obtained for the SK-N-BE-

2C, and SHSY5Y-MYCN-TR cell lines 

(Supplementary Figure 9). 

SMARTer single cell total RNA sequencing 

reveals a unique set of genes 

More reads map to long intergenic RNAs 

(lincRNAs) using the single cell total RNA-seq 

protocol (2.64 % [2.523, 2.756; 95 % CI]) 

compared to polyA[+] RNA sequencing (1.67 % 

[1.489, 1.849; 95 % CI]). In addition, the single 

cell total RNA-seq protocol detects an equal or 

higher number of genes (subsampled to 1 million 

reads/cell and detected by more than 10 reads) 

covering the different biotypes, including 

lincRNAs (144 [139, 148; 95 % CI]), protein 

coding (5124 [4874, 5372; 95 % CI]) genes, and 

pseudogenes (132 [127, 137; 95 % CI]) (Figure 

2C, 3). Of note, antisense genes are the only 

biotype for which the total RNA protocol detects 

fewer genes (62 [59-64; 95 % CI]), likely because 

of the unstranded nature of the polyA[+] RNA 

libraries, which results in erroneous 

quantification of sense/antisense overlapping 

genes (Supplementary Figure 10). Considering 

both polyA[+] RNA-seq and total RNA-seq data, 

3978 different antisense-sense relationships 

with an overlap of more than 200 nucleotides 

were detected with expression of the sense or 

antisense gene in at least one cell. These loci are 

prone to erroneous quantification. 

Quantification of the stranded SMARTer data in 

an unstranded way shows that 42.1 % (median 

of 180 of the 428 detected antisense genes per 

cell) of the detected antisense genes (in 6 

random cells) are receiving counts, while they 

have zero counts when properly treated as 

stranded data; further, 10.1 % of the antisense 

genes detected in both analyses display fold 

change differences larger than 2 (Supplemental 

Figure 11). Most of these genes with fold change 

differences (87.0 %) are more abundant in the 

unstranded analysis compared to the stranded 

analysis, explained by the fact that these 

antisense genes are consuming counts from the 

sense gene. LincRNAs, antisense genes and 

pseudogenes are clearly expressed in fewer cells 

compared to protein coding genes. We 

hypothesize that low abundant genes might be 

Figure 3: total RNA libraries comprise more genes per RNA 

biotype. All genes in Ensembl v.91 were quantified on 

subsampled data (1, 4 or 8 million reads per cell). Only 

genes with at least 10 reads were included.  

 

Figure 4: gene biotype and abundance are correlated to 

fraction of expressed cells. In general, the fraction of cells 

in which a gene is expressed is related to the mean 

expression level of that gene; exceptionally, some low 

abundant genes are present in a large fraction of cells. RNA 

biotypes that are known to be more cell-type specifically 

expressed, such as lincRNAs, are expressed in fewer cells. 
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missed because of sampling bias during the 

sequencing workflow or that lincRNAs, often low 

abundant in nature, are expressed under specific 

conditions or stimuli  (Figure 4) (46). As 

expected, increasing the number of reads (up to 

4 or 8 million) in the total RNA library protocol 

results in the detection of a higher number of 

genes. We observed no saturation when 

generating 8 million reads per cell, suggesting 

that deeper sequencing could yield even more 

detected genes (Figure 3). The overlap between 

protein coding genes detected in the polyA[+] 

and total RNA libraries (subsampled for 1 million 

reads/cell and mean expression of at least 1 read 

over all cells) (Figure 5A) is high. Genes detected 

in only one of the library types are generally 

lower abundant compared to genes detected 

with both methods (Figure 5B). In contrast to 

protein coding genes, the overlap for lincRNAs 

between the methods is much smaller (Figure 

5C). Importantly, a significant fraction of the 

total RNA-seq specific lncRNAs display a high 

expression, thus possibly representing 

functionally important RNAs (Figure 5D). 

LincRNA RMRP is one of the most abundant 

lincRNAs that is solely detected by our novel 

single cell total RNA-seq workflow. This gene is 

known to be 3’ non-adenylated and is the first 

known RNA encoded by a single-copy nuclear 

gene imported into mitochondria (47, 48). As 

only a subset of the lincRNAs and antisense 

genes are currently annotated in Ensembl, we 

also quantified our libraries with the LNCipedia 

transcriptome (the most comprehensive human 

Figure 5: while most protein coding genes are commonly detected, lincRNAs appear more method specific. (A) Overlap 

between protein coding genes detected in polyA[+] (1 million reads) and total RNA (1 million reads) libraries. (B) Expression 

counts for protein coding genes detected in only polyA[+] libraries (red), only total RNA libraries (green) or both (gray). (C) 

Overlap between lncRNAs detected in polyA[+] (1 million reads) and total RNA (1 million reads) libraries. (D) Expression 

counts for lncRNAs detected in only polyA[+] libraries (red), only total RNA libraries (green) or both (gray). 

.  
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resource of both antisense and lincRNA genes, 

further referred to as lncRNAs). While the 

number of detected lncRNAs is slightly lower in 

the total RNA-seq libraries if an equal number of 

reads (1 million) is used, each library type 

contains a certain proportion of unique lncRNAs 

(Supplementary Figure 12). LNCipedia is likely 

biased towards medium-to-high abundant 

polyadenylated lncRNAs. 

SMARTer single cell total RNA sequencing 

detects circular RNAs and novel genes 

In addition to linear RNA biotypes, we tested 

whether the single cell total RNA-seq protocol is 

able to quantify circRNAs as this class of non-

coding RNAs lacks a polyA-tail and in principle 

can only be detected using unbiased total RNA-

seq. With a requirement of at least two unique 

back-spliced junction reads, 537 circRNAs were 

identified derived from 460 host genes 

(Supplementary Table 2, online available). The 

majority of the circRNAs were found in fewer 

than 3 out of 64 cells, with only 14 circRNAs 

detected in at least 4 cells. Gene Ontology 

analysis for molecular functions and biological 

processes was performed on the circRNA host 

genes from both treated and untreated cells. A 

significant enrichment of TP53 binding, TP53 

pathway, cell cycle, and chromosome 

organization suggests that the identified 

circRNAs may play a role in these biological 

functions. 

Figure 6: total RNA libraries enable assembly of single cell transcriptomes. A) Transcripts were filtered at a length of 200 

nt. The remaining transcripts have a mean length of 537 nt. B) Transcripts were required to have at least two exons. The 

remaining transcripts are on average 3.4 exons long. C) All novel genes were quantified on subsampled data (1, 4 or 8 million 

single-end reads per cell). Genes with at least 1 count were retained. D) While some novel genes are expressed in all cells, 

most novel genes are detected in only 1 cell. 

.  
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In the single cell total RNA libraries, the fraction 

of intergenic reads (relative to existing Ensembl 

and LNCipedia annotation) is high, suggesting 

that these reads originate from novel 

unannotated transcripts. To validate this 

hypothesis, we generated genome and 

transcriptome guided transcriptome assembly of 

the paired-end single cell total RNA-seq data 

resulting in 5360 novel, multi-exonic genes. The 

novel transcripts have a median length of 317 

nucleotides (Figure 6A) and consist on average of 

more than 3 exons (Figure 6B). Quantification of 

this novel transcriptome using the single-end 

data subsampled at 1 million reads per cell 

resulted in a median number of 59 novel genes 

per cell [55 - 63; 95 % CI] (Figure 6C). Of note, 

most novel genes are expressed in only one cell 

(Figure 6D). 

SMARTer single cell total RNA profiles reflect 

the biological signal 

To assess whether the single cell total RNA-seq 

protocol is also able to reveal known biological 

signal, we performed differential expression 

analysis using DESeq2 combined with the Zinger 

method coping with zero inflated data. Based on 

the ranking obtained by the DESeq2 test statistic, 

gene set enrichment analysis using the hallmark 

gene sets was performed. Firstly, the same gene 

sets are significantly enriched in both library 

preparation protocols (Figure 7A); secondly, 

TP53 target genes are - as expected - the most 

significantly enriched gene set (Figure 7B), 

confirming that the biological signal is 

recapitulated through single cell total RNA-seq 

analyses. 

SMARTer single cell total RNA sequencing of 

FACS sorted cells in microplates  

To demonstrate that our novel single cell total 

RNA seq method also efficiently works on FACS 

sorted cells in microplates, we processed A375 

and Jurkat sorted cells. In parallel, Takara’s single 

cell purposed SMART-Seq Stranded Kit (used in 

all our previous experiments) was also tested on 

these cells (Figure 1). Equally low amounts of 

ribosomal cDNA were sequenced using both 

reagent kits, i.e. 1.46 % [0.77, 2,15; 95 % CI] and 

0.66 % [0.48, 0.85; 95 % CI] for the A375 cells and 

1.17 % [1.05, 1.29; 95 % CI] and 0.94 % [0.80, 

1.09; 95 % CI] for the Jurkat cells (Figure 8, 

Supplemental Figure 13). Similar to the total RNA 

seq libraries generated on the C1 system, we 

analysed the number of reads assigned to intron, 

exon and intergenic regions and the read 

fraction for all RNA biotypes. The microplate 

sorted single cell data was very comparable to 

the C1 data (Figure 8, Supplemental Figure 13). 

 

DISCUSSION 

In this study, we developed a single cell total 

RNA-seq method to sequence full transcripts 

from single cells in an essentially unbiased 

manner. To demonstrate the performance of the 

method, we applied single cell total RNA-seq in 

four experiments on five different cancer cell 

Figure 7: pathway analysis for polyA[+] RNA and total RNA libraries is similar. A) Gene set enrichment analysis for all 

hallmark pathways resulted in the same significant (padj < 0.05) pathway predictions. B) The TP53 pathway is, as expected, 

enriched in both library prep methods.  
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lines, of which three undergoing a specific 

perturbation. In parallel, we also performed 

single cell polyA[+] RNA-seq on three cell lines  

using the well-established Smart-seq v4 method 

Figure 8: mean read distributions are similar for total RNA sequencing libraries generated on C1 or in microplates. A) Mean 

percentage of reads derived from nuclear RNA, mitochondrial RNA and ribosomal RNA quantified with STAR. Single cell total 

RNA libraries of the FACS sorted cells were generated using 2 different reagent kits (#634413, denoted with * and #634444, 

denoted with °). B) Mean percentage of reads originating from nuclear chromosomes derived from exonic, intronic and 

intergenic regions quantified with STAR. C) Mean percentage of exonic reads attributed to the different RNA biotypes 

quantified with Kallisto. 
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(6, 18). As in any genomics study, the 

experimental set-up may suffer from 

confounding factors, such as variations in cell 

cycle states of the cells and batch effects of 

single cell capture and sequencing, masking real 

biological differences. In two of the four 

experiments, we carefully controlled all these 

experimental biases. The cell cycle bias was 

minimized by cell cycle synchronization using 

serum starvation. We also avoided potential cell 

selection bias by capturing differentially labeled 

treated and untreated cells on the same chip (44, 

45). Finally, sequencing bias was minimized by 

sequencing both polyA[+] and total RNA libraries 

on the same Illumina flow cells.  

The single cell total RNA-seq method has some 

distinctive advantages compared to other 

methods. First, in any total RNA-seq library, 

depletion of rRNA is essential as this makes up 

the bulk of the total RNA mass. Depletion of 

rRNA from single cells prior to cDNA synthesis is 

technically very difficult. Here, we used 

ribosomal cDNA specific removal probes, 

resulting in less than 3 % of ribosomal reads per 

single cell library. This highly efficient rRNA 

depletion step is a major improvement 

compared to RAMDA-seq, where 10-35 % of the 

reads map to rRNA (22). Second, given the 

stranded nature of the single cell total RNA 

sequencing data, quantification of antisense 

genes is accurate, which is not possible when 

using unstranded data. In contrast to the three 

existing single cell total RNA-seq methods, our 

method uniquely combines these two features 

that are highly desirable for total RNA-

sequencing (22, 29, 30). Third, as expected, our 

single cell total RNA libraries contain 

substantially more intronic reads compared to 

polyA[+] RNA libraries (49, 50). Such intronic 

reads can be used to detect changes in nascent 

transcription, whereby the difference in exonic 

and intronic reads provides insights in post-

transcriptional regulation (51). As such, we 

believe that our method may be particularly well 

suited for “RNA velocity analysis” of single cells 

(52). Fourth, the single cell total RNA-seq 

workflow presented in this paper detects 

relatively more protein coding genes, 

pseudogenes, lincRNAs and miscellaneous RNA 

(miscRNA) compared to single cell polyA[+] RNA 

libraries, when corrected for equal sequencing 

depth. While the number of detected genes 

increases with sequencing depth, there seems to 

be no plateau yet at 8 million reads, suggesting 

that further increasing the sequencing depth, 

could enable low abundant gene detection. 

Fifth, our method also detects non-

polyadenylated RNA molecules, such as histone 

genes, lncRNAs and circRNAs. In the NGP 

dataset, 537 circRNAs were detected using reads 

with evidence for back splicing. In order to 

detect more circRNAs in an individual cell, a 

higher sequencing depth is required or libraries 

should be enriched for circRNAs by selectively 

removing linear RNA by exonuclease treatment 

prior to library prep and sequencing (28, 29). 

Sixth, the data enables reference guided 

transcriptome assembly, resulting in the 

detection of 5360 novel genes. Finally, 

differential gene expression analysis and gene 

set enrichment of NGP cells treated with nutlin-

3 confirmed activation of the TP53 pathway at 

the transcriptional level.  

One limitation of the implementation of the 

single cell total RNA library preparation method 

on the C1 instrument is the relatively low 

throughput, as maximally 96 cells are 

simultaneously captured. In contrast, current 

droplet based single cell methods capture 

thousands of individual cells, but these systems 

are limited to 3’ end sequencing of 

polyadenylated RNA, preventing quantification 

of splice variants and non-polyadenylated 

transcripts. To enable the analysis of higher cell 

numbers, we demonstrated that the method 

works equally well on FACS sorted cells in 

microplates. By using FACS sorted cells the 

throughput can be increased and no specialized 

devices, such as the C1, are required. Finally, an 

advantage of our total RNA-seq protocol on both 

C1 and in microplates is that single-end 

sequencing is sufficient while more expensive 

paired-end sequencing is required for most 

droplet-based methods. We advice to use the 

single cell total RNA-seq method rather than 

polyA[+] methods if it is desired to study non-
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polyadenylated RNA molecules such as lncRNAs 

or circRNAs, if stranded-specific data is a must 

and if full transcript sequencing is priority (e.g. 

analysis of alternative splicing, RNA editing or 

somatic mutations). 

 

AVAILABILITY 

The SMARTer single cell total RNA sequencing 

script is deposited in Script Hub (Fluidigm). 
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 SUPPLEMENTARY METHODS  

Cell lines 

The MYCN shRNA doxycycline inducible cell line SHSY5Y-MYCN-TR is a kind gift of prof. R. Versteeg 

(Amsterdam, the Netherlands). The neuroblastoma cell line SK-N-BE-2C is a kind gift of prof. John 

Lunec (Newcastle, United Kingdom). Cells were maintained in RPMI-1640 medium (Life Technologies, 

52400-025) supplemented with 10 % fetal bovine serum, 1 % of L-glutamine (Life Technologies, 15140-

148) and 1 % penicillin/streptomycin (Life Technologies, 15160-047) (referred to as complete medium) 

at 37 °C in a 5 % CO2 atmosphere. Short tandem repeat (STR) genotyping was used to validate cell line 

authenticity prior to performing the described experiments and mycoplasma testing was done on a 

monthly basis using the MycoAlert Mycoplasma Detection Kit (Lonza, T07-318), according to 

manufacturer’s instructions. 

Cell cycle synchronization and chemical or genetic perturbation of SK-N-BE-2C and SHSY5Y-MYCN-

TR cells 

SHSY5Y-MYCN-TR cells were seeded in a T75 culture flask in complete medium. After 24 hour, cells 

were refreshed with complete medium with either 1 µg/ml doxycycline (sigma Aldrich, D9891-1G, 

dissolved in ethanol) or vehicle. SK-N-BE-2C cells were synchronized as described for NGP cells. 24 

hour after serum starvation, SK-N-BE-2C cells were treated with either 1 μM of JQ1 (PBS Bioscience, 

27402, dissolved in DMSO) or vehicle.  Cells were trypsinized 24 hour post treatment and harvested 

for single cell analysis and bulk RNA isolation. 

Single cell total RNA sequencing of  SHSY5Y-MYCN-TR and SK-N-BE-2C cells 

Doxycycline treated SHSY5Y-MYCN-TR cells were stained with 4 µM cell tracker as described for NGP 

cells. An equal number of stained (doxycycline treated) and non-stained (vehicle treated) cells were 

mixed and diluted to 300,000 cells per ml. Suspension buffer (Fluidigm, 100-6201) was added to the 

cells in a 7:3 ratio and 6 µl was loaded on a primed C1 Single-Cell Open App IFC (Fluidigm, 100-8134) 

designed for medium-sized cells (10-17 µm). Cells were captured and cDNA synthesized as described 

for the NGP cells with minor modifications. The reagents of the SMARTer Stranded Total RNA-Seq Kit 

v1 - Pico Input Mammalian (Pico v1, Takara, 635007) were used. The lysis and fragmentation were 

performed by incubating the cells for 3 minutes at 94 °C and 2 minutes at 10 °C and by using 9 instead 

of 11 PCR cycles in PCR1. Following the initial cDNA amplification, all cells were pooled in a tube using 

4 µl of cDNA per cell. Next steps of the library prep were performed according to manufacturer’s 

instructions with minor modifications. 500 µl of 80 % ethanol was used to wash the beads. 15 PCR 

cycles were used for PCR2. Library quality was determined on the Bioanalyzer (Agilent).  

JQ1 treated cells were stained with cell tracker as described for NGP cells. An equal number of stained 

(JQ1 treated) and non-stained (vehicle treated) cells were mixed and diluted to 300,000 cells per ml. 

Suspension buffer was added to the cells in a 8:2 ratio and 6 µl of this mix was loaded on a primed C1 

Single-Cell Open App IFC designed for medium-sized cells (10-17 µm). Cells were captured and cDNA 

synthesized as described for the SHSY5Y-MYCN-TR cells by using the reagents of the SMARTer 

Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Takara, 634413). One microliter of the ERCC 

spike-in mix (Ambion, 4456740) was diluted in 999 µl loading buffer to get a 1/1000 dilution of the 

ERCC spikes. One microliter of this dilution was added to the 20 µl lysis mix. Following the initial cDNA 

amplification, all cells were pooled in a tube using 5 µl of cDNA per cell. Library prep was performed 

as described for SHSY5Y-MYCN-TR cells.  

Single cell polyA[+] RNA sequencing of treated SHSY5Y-MYCN-TR and SK-N-BE-2C cells 
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Doxycycline treated SHSY5Y-MYCN-TR cells were diluted to 300,000 cells per ml. Suspension buffer 

was added to the cells in a 7:3 ratio and 6 µl of this mix of was loaded on a primed C1 Single-Cell Auto 

Prep Array for mRNA Seq (Fluidigm, 100-6041) designed for medium-sized cells (10-17 µm) (separate 

IFC for treated and untreated cells). Single cell polyA[+] RNA-sequencing was performed on the C1 

using the SMART-Seq v1 Ultra Low Input RNA Kit for the Fluidigm C1 System (Takara, 634833) 

according to manufacturer’s instructions. ArrayControl RNA spikes (Ambion, AM1780) were added as 

described in the manual. The concentration was measured using the quantifluor dsDNA kit (Promega, 

E2670) and glomax (Promega) according to manufacturer’s instructions. The samples were 1/3 diluted 

in C1 harvest reagent (Fluidigm). Next, library preparation was performed using the Nextera XT library 

prep kit (Illumina, FC-131-1096) according to manufacturer’s instructions, followed by quality control 

on the Bioanalyzer.  

JQ1 treated cells were stained with cell tracker as described for NGP cells. An equal number of stained 

(JQ1 treated) and non-stained (DMSO treated) cells were mixed and diluted to 300,000 cells per ml. 

Suspension buffer was added to the cells in a 7:2 ratio and 6 µl of this mix of was loaded on a primed 

C1 Single-Cell Auto Prep Array for mRNA Seq designed for medium-sized cells (10-17 µm). Single cell 

polyA[+] RNA-sequencing on the C1 was performed using the SMART-Seq v1 Ultra Low Input RNA Kit 

for the Fluidigm C1 System (Takara) according to manufacturer’s instructions. One microliter of the 

ERCC spike-in mix was diluted in 999 µl loading buffer to get a 1/1000 dilution of the ERCC spikes. One 

microliter of this dilution was added to the 20 µl lysis mix. The quality of the cDNA was checked for 11 

random single cells on the Bioanalyzer. The concentration was measured using the qubit dsDNA HS kit 

(Invitrogen) according to manufacturer’s instructions. The samples were 1/4 diluted in C1 harvest 

reagent. Next, library preparation was performed using the Nextera XT library prep kit according to 

manufacturer’s instructions, followed by quality control on the Bioanalyzer.  

Library sequencing 

For SHSY5Y-MYCN-TR, the polyA[+] and total RNA libraries were quantified using the KAPA library 

quantification kit (Roche). 1.5 pM of the total RNA library was paired-end sequenced on a NextSeq 

500 (Illumina) with a read length of 36 bp and a total sequencing read depth of 347 million reads. 

For the polyA[+] library, 1.2 pM of the library was paired-end sequenced on a NextSeq 500 with a read 

length of 75 bp and a total sequencing read depth of 250 million reads. 

For SK-N-BE-2C, the polyA[+] and total RNA libraries were quantified using the KAPA library 

quantification kit (Roche) and libraries were diluted to 4 nM. The polyA[+] RNA library and total RNA 

library were pooled in a 1/2 ratio. 1.3 pM of the pooled library was single-end sequenced on a NextSeq 

500 (Illumina) with a read length of 75 bp and a total sequencing read depth of 289 million reads, 

combining single cell polyA[+] and total RNA libraries to prevent inter-run bias.  

Sequencing data quality control 

The paired-end sequencing output of the SHSY5Y-MYCN-TR cells were trimmed using cutadapt (v.1.16) 

(1) to remove 3 nucleotides of the 5’ end of read 1. Remark that this changed to read 2 for the NGP 

version of the protocol. The SK-N-BE-2C libraries were single-end sequenced, so no trimming was 

needed. For both experiments, the quality of the data was assessed by mapping the reads using STAR 

(v.2.5.3) (2) on the hg38 genome including the full ribosomal DNA (45S, 5.8S and 5S) and mitochondrial 

DNA sequences. The parameters of STAR were set to retain only primary mapping reads. Using 

SAMtools (v.1.6) (3), reads mapping to the different nuclear chromosomes, mitochondrial DNA and 

rRNA were extracted and annotated as exonic, intronic or intergenic. Genes were quantified by Kallisto 

(v.0.43.1) (4) using both Ensembl (v.91) (5) extended with the ERCC spike sequences and LNCipedia 
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(v.5.0) (6). The strandedness of the total RNA-seq reads was taken into account by running the –rf-

stranded mode. 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1: cell cycle profiles for NGP cells maintained in RPMI-1640 medium supplemented with 10 % serum 

(A) or 0 % serum (B) for 24 hours. Cell cycle profiles for NGP cells maintained in 0 % serum for 24 hours and treated with 

vehicle (C) or nutlin-3 (D) for 24 hours. Fragment analyzer profiles of a NGP total RNA library (E) and polyA[+] RNA library 

(F). 
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Supplementary Figure 2: the percentage of reads mapped on ERCC spikes is higher in the total RNA libraries compared to 

polyA[+] RNA libraries. 

 

Supplementary Figure 3: linear modeling of ERCC spike abundance demonstrates quantitative performance. 
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Supplementary Figure 4: the coefficients of determination obtained through linear regression of ERCC spikes are equal 
for polyA[+] and total RNA libraries. 

Supplementary Figure 5: the length distributions differ between polyA[+] RNA transcripts (red) and total RNA 
transcripts (green) per cell. PolyA[+] RNA libraries typically result in the detection of shorter transcripts. 
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Supplementary Figure 6: the gene body coverage differs slightly between polyA[+] RNA libraries (red) and total RNA 

libraries (green). Equal gene body coverage would result in 1 % read fraction along the entire gene body. Both library types 

show some bias towards the 3’ and 5’ end. 

 

Supplementary Figure 7: the QC results for RAMDA-seq libraries show higher rRNA percentages. A) Percentage of reads 

derived from nuclear RNA, mitochondrial RNA and ribosomal RNA per cell quantified with STAR. B) Percentage of reads 

originating from nuclear chromosomes derived from exonic, intronic and intergenic regions per cell quantified with STAR. 

C) Percentage of exonic reads attributed to the different biotypes per cell quantified with Kallisto. 
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Supplementary Figure 8: TPM expression of histone genes, typically non-polyadenylated, shows that total RNA libraries 

(green) efficiently capture non-polyadenylated transcripts. 
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Supplementary Figure 9: the QC results for total RNA libraries of SHSY5Y-MYCN-TR and SK-N-BE-2C cells are similar to 

NGP cells. A) Percentage of reads derived from nuclear RNA, mitochondrial RNA and ribosomal RNA per cell quantified with 

STAR. B) Percentage of reads originating from nuclear chromosomes derived from exonic, intronic and intergenic regions 

per cell quantified with STAR. C) Percentage of exonic reads attributed to the different biotypes per cell quantified with 

Kallisto. 
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Supplementary Figure 10: IGV visualisation of sense-antisense gene pairs for polyA[+] RNA. The reads mapping on the 

sense (red) and antisense (blue) strand can not be unambigously assigned to the MIF gene as the data is unstranded. While 

the counts will be partially mis-assigned to the MIF-AS1 gene, the reads clearly have the splice pattern of only the MIF gene. 

 

Supplementary Figure 11: Quantification in stranded and unstranded analysis mode of SMARTer total RNA seq data on 

antisense genes in six randomly selected cells demonstrates substantial misquantification of antisense genes in 

unstranded mode.  

 



Results 

144 
 

 

 

 

Supplementary Figure 12: by using the LNCipedia transcriptome for quantification, a higher number of lncRNAs was 

discovered. (A) Number of LNCipedia genes detected in subsampled data (1, 4 and 8 million reads per cell). The proportions 

are equal compared to Ensembl lncRNAs overlap. (B) Overlap between lncRNAs detected in polyA[+] and total RNA libraries. 

(C) Expression counts for lncRNAs detected in only polyA[+] RNA libraries (red), only total RNA libraries (green) or both (gray). 
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Supplementary Figure 13: SMARTer single cell total RNA sequencing works well on FACS sorted cells in microplates. Both 

reagents kits have similar performance (#634413, denoted with * and #634444, denoted with °; see Materials and Methods). 

A) Percentage of reads derived from nuclear RNA, mitochondrial RNA and ribosomal RNA per cell quantified with STAR. B) 

Percentage of reads originating from nuclear chromosomes derived from exonic, intronic and intergenic regions per cell 

quantified with STAR. C) Percentage of exonic reads attributed to the different biotypes per cell quantified with Kallisto. 
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SUPPLEMENTARY TABLES 

 

CDKN1A_F CCTCATCCCGTGTTCTCCTTT 

CDKN1A_R GTACCACCCAGCGGACAAGT 

BAX_F GATGCGTCCACCAAGAAGCT 

BAX_R CGGCCCCAGTTGAAGTTG 

BBC3_F CCTGGAGGGTCCTGTACAATCT 

BBC3_R GCACCTAATTGGGCTCCATCT 

SDHA_F TGGGAACAAGAGGGCATCTG 

SDHA_R CCACCACTGCATCAAATTCATG 

TBP_F CACGAACCACGGCACTGATT 

TBP_R TTTTCTTGCTGCCAGTCTGGAC 

YWHAZ_F ACTTTTGGTACATTGTGGCTTCAA 

YWHAZ_R CCGCCAGGACAAACCAGTAT 

HPRT1_F TGACACTGGCAAAACAATGCA 

HPRT1_R GGTCCTTTTCACCAGCAAGCT 

 

 

 

 

 

 

 

 

 

Supplementary Table 1: RT-qPCR primer sequences. 
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ABSTRACT 

Technological advances in transcriptome sequencing of single cells has provided an unprecedented 

view on tissue composition and cellular heterogeneity. While several studies have compared different 

single cell RNA sequencing methods with respect to data quality and their ability to distinguish cellular  

subpopulations, none of these comparative studies investigated the heterogeneity of the cellular 

transcriptional response upon a chemical perturbation. In this study, we evaluated the transcriptional 

response of NGP neuroblastoma cells upon nutlin-3 treatment using the C1, ddSeq and Chromium 

single cell systems. These systems and library preparation methods are representative for the wide 

variety of platforms, ranging from microfluids chips to droplet-based systems and from full transcript 

sequencing to 3’ end sequencing. In parallel, we used bulk RNA-seq for molecular characterization of 

the transcriptional response. Two complementary metrics to evaluate performance were applied: the 

first is the number and identification of differentially expressed genes as robustly assessed by two 

statistical models, and the second is enrichment analysis of biological signals, which is independent of 

sample size or number of cells evaluated. Where relevant, we downsampled sequencing library size, 

selected cell subpopulations based on specific RNA abundance features, or created pseudobulk 

samples to make the data more comparable. While the C1 detects the highest number of genes per 

cell and better resembles bulk RNA-seq, the Chromium identifies most differentially expressed genes, 

albeit still substantially fewer than bulk RNA-seq. Gene set enrichment analyses reveals that detection 

of the most abundant genes in single cell RNA-seq experiments is sufficient for molecular phenotyping. 

Finally, single cell RNA-seq reveals a heterogeneous response of NGP cells upon nutlin-3 treatment, 

pinpointing putative late-responders or resistant cells, hidden in bulk RNA-seq experiments. 

INTRODUCTION 

Almost a decade ago, the first single cell RNA-seq 

study was published, in which cells were 

manually isolated and polyadenylated 

transcripts were captured using oligo(dT) reverse 

transcription primers (1). Since then, various 

single cell RNA-seq methods and devices have 

emerged, unveiling an unanticipated cellular 

heterogeneity underestimated or masked 

through bulk cell population gene expression 

profiles. As such, single cell RNA-seq enabled the 

identification of subtle differences among cells 

and the detection of rare (novel) subpopulations. 

This has led to revolutionary discoveries in 

several research fields, including cancer (2, 3) 
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and development (4–6). The first automated 

single cell isolation devices used flow cytometry 

or microfluidic chips and could only capture a 

hundred cells. Most RNA library preparation 

protocols for these systems provide full gene 

body read coverage, enabling mutation and 

splice isoform analysis on top of standard gene 

abundance profiling (7–10). Using these 

methods, single cells can be visualized to remove 

cell doublets and select cells of interest. Later, 

commercially available and custom made 

droplet-based methods, such as Chromium, 

ddsSeq and InDrop, were developed, increasing 

the throughput to thousands of cells and 

reducing the cost per cell considerably (11–15). 

One disadvantage is that these methods typically 

sequence the 3’ or 5’ end of a transcript, limiting 

the analyses to gene expression profiling. 

Further, these droplet-based methods only 

quantify the most abundant genes, excluding for 

instance the detection of medium to low 

abundant mRNAs and the majority of long non-

coding RNAs (lncRNAs). Consequently, lower 

complexity RNA libraries are generated using 

these droplet-based methods, resulting in more 

PCR bias. Fortunately, this bias can largely be 

reduced through unique molecular indices 

(UMI), incorporated in the to-be-sequenced 

molecules in droplet-based systems (14–17). 

Also, virtually all these initial single cell RNA-seq 

methods only capture polyadenylated 

transcripts, ignoring the vast non-

polyadenylated part of the transcriptome, 

representing roughly two third of the entire 

transcriptome. Since flow cytometry and 

microfluidic chip based methods are mostly open 

systems, single cell total RNA-seq protocols were 

recently custom developed enabling the 

sequencing of both polyadenylated as well as 

non-polyadenylated transcripts (18–20). The 

extensive advances in the single cell RNA-seq 

technologies raise the question which method to 

use for a given application. While several studies 

compared single cell RNA-seq methods in terms 

of data quality, costs, reproducibility, and the 

ability to discriminate subpopulations, our study 

focuses on the added value of three single-cell 

RNA-seq technologies for differential gene 

expression analysis and revealing putative 

transcriptional heterogeneity (21–25). 

Therefore, cell cycle synchronized NGP 

neuroblastoma cells were treated with the TP53 

activator nutlin-3, whose transcriptional effects 

are well characterized in bulk, resulting in 

activation of the TP53 pathway and 

consequently in cell cycle arrest and apoptosis 

(26, 27). Single cell RNA-seq of this well-

characterized model system has been performed 

using three commercially available single cell 

devices, i.e. the microfluidic chip-based C1 

(Fluidigm) and the droplet-based ddSeq (Bio-

Rad, Illumina) and Chromium (10X Genomics), 

single cell RNA-seq platforms, representing a 

range of throughputs from 96, 300 or more than 

10,000 cells per condition, respectively. As a 

reference, the same experiment was also 

performed using bulk RNA-seq of ten replicates. 

We revealed that despite the lower number of 

differentially expressed genes detected in single 

cell RNA-seq experiments compared to bulk 

population analysis, the biological signal can be 

faithfully recognized through gene set 

enrichment analysis for all single cell devices. 

Furthermore, we show that single cell 

transcriptome analyses reveal a certain degree 

of cellular heterogeneity in response to nutlin-3 

treatment, possible pinpointing late-responders 

or resistant cells, hidden in bulk RNA-seq 

experiments. 

 

METHODS 

Cell lines 

The neuroblastoma cell line NGP is a kind gift of 

prof. R. Versteeg (Amsterdam, the Netherlands). 

Cells were maintained in RPMI-1640 medium 

(Life Technologies, 52400-025) supplemented 

with 10 % fetal bovine serum (PAN Biotech, P30-

3306), 1 % of L-glutamine (Life Technologies, 

15140-148) and 1 % penicillin/streptomycin (Life 

Technologies, 15160-047) (referred to as 

complete medium) at 37 °C in a 5 % CO2 

atmosphere. Short tandem repeat genotyping 

was used to validate cell line authenticity prior to 



Results 

151 
 

performing the described experiments and 

verification of absence of mycoplasma was done 

on a monthly basis using the MycoAlert 

Mycoplasma Detection Kit (Lonza, T07-318), 

according to manufacturer’s instructions. 

Cell cycle synchronization and nutlin-3 

treatment of NGP cells 

NGP cell cycle synchronization, nutlin-3 

treatment and cell cycle analysis were 

performed as previously described by Verboom 

et al (20). 

RNA isolation, cDNA synthesis and reverse 

transcription quantitative PCR 

RNA was isolated, cDNA synthesized and RT qPCR 

performed as described by Verboom et al (20). 

Bulk RNA library preparation of NGP cells 

The RNA of ten biological replicates of NGP cells 

treated with either nutlin-3 or vehicle, without 

serum starvation was extracted using the RNeasy 

mini kit. The RNA concentration was measured 

using spectrophotometry (Nanodrop 1000) and 

quality ascertained using the fragment analyzer 

(Advanced Analytical). 100 ng of total RNA was 

used as input for the TruSeq stranded mRNA 

library prep kit (Illumina, 20020594), according 

to manufacturer’s instructions.  

Single cell RNA library preparation of C1 
isolated NGP cells 

Sequencing data of single cells isolated with the 

C1 were previously generated and used here (20) 

[GEO: GSE119984].  

Single cell RNA library preparation of ddSeq 

isolated NGP cells 

Single cell RNA-seq on the ddSeq system (Bio-

Rad) was performed using the SureCell WTA 3’ 

library prep kit (Illumina, 20014279) according to 

manufacturer’s instructions with minor 

modifications. Four samples were prepared: (1) 

nutlin-3 treated cells with external RNA controls 

consortium (ERCC) spikes diluted to 1/1000 

(N704 index), (2) nutlin-3 treated cells with ERCC 

spikes diluted to 1/10,000 (N705 index), (3) 

vehicle treated cells with ERCC spikes diluted to 

1/1000 (N706 index) and (4) vehicle treated cells 

with ERCC spikes diluted to 1/10,000 (N707 

index). Cells were diluted to 5000 cells/µl and 

ERCC spikes were diluted to 1/500 and 1/5000. 

Cells and ERCC spikes were mixed 1:1 resulting in 

a final concentration of 2500 cells/µl and a 

dilution of 1/1000 and 1/10,000 for the ERCC 

spikes, respectively. After library preparation, 

the quality of the RNA libraries was confirmed on 

the Bioanalyzer (Agilent). 

Single cell RNA library preparation of Chromium 

isolated NGP cells 

Single cell RNA-seq on the Chromium system 

(10X Genomics) was performed for nutlin-3 (SI-

GA-8E index) and vehicle (SI-GA-8D index) 

treated NGP cells using the GemCode Single Cell 

3’ Gel Bead and Library Kit (V2 chemistry, 10X 

Genomics, PN-120237, PN-120236, PN-120262) 

according to manufacturer’s instructions with 

minor modifications. Cells were centrifuged at 4 

°C at 400 g and resuspended in PBS + 0.04 % BSA 

to yield an estimated concentration of 1000 

cells/µl. 3.5 µl of the cell suspension was used to 

obtain a cell recovery of about 2000 cells per 

sample. Per sample, 2.5 µl of an 1/10 dilution of 

ERCC spikes was added to the mastermix. After 

library preparation, the quality of the RNA 

libraries was confirmed on the Bioanalyzer. 

Library sequencing 

Bulk RNA libraries were quantified using KAPA 

library quantification kit (Roche) and diluted to 4 

nM. 1.2 pM of the RNA library was paired-end 

sequenced on a NextSeq 500 (Illumina) with a 

read length of 75 bp. The C1 RNA libraries were 

quantified using the KAPA library quantification 

kit and libraries were diluted to 4 nM. 1.5 pM of 

the library was single-end sequenced on a 

NextSeq 500 (Illumina) with a read length of 75 

bp. The ddSeq RNA libraries were quantified 

using the Qubit dsDNA HS kit (Thermo Fischer 

Scientific, Q32854) and libraries were diluted to 
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2 nM. 3 pM of the library was paired-end 

sequenced on a NextSeq 500 with a read length 

of 68 and 75 bp and a custom sequencing primer 

included in the SureCell WTA 3’ library prep kit. 

The Chromium RNA libraries were quantified 

using the KAPA library quantification kit and 

libraries were diluted to 4 nM. 1.2 pM of the 

library was paired-end sequenced twice on a 

NextSeq 500 with a read length of 26 and 98 bp. 

Data analysis of the bulk RNA sequencing data 

Raw fastq files were processed with Kallisto 

(v.0.43.1) (28) using Ensembl (v.91) annotation 

(29) . 

Data analysis of the C1 RNA sequencing data 

To assess the quality of the data, the reads were 

mapped using STAR (v.2.5.3) (30) on the hg38 

genome including the full ribosomal DNA (45S, 

5.8S and 5S) and mitochondrial DNA sequences. 

The STAR  parameters were set to retain only 

primary mapping reads, meaning that for multi-

mapping reads only the best scoring location is 

retained. Genes were quantified by Kallisto 

(v.0.43.1) (28) using Ensembl (v.91) (29) 

annotation supplemented with the ERCC spike-in 

RNA sequences.  

Data analysis of the ddSeq RNA sequencing data 

To analyze the ddSeq data, ddSeeker, a custom 

pipeline based on the Drop-seq Core 

Computational Protocol (version 2.0.0 -9/28/18), 

was used (31). ddSeeker.py was run on paired-

end gzipped fastq files with default parameters 

using Python (v.3.6.4), pysam (v.0.14) and 

Biopython (v.1.71). First, fastq files were 

converted to unaligned BAM files using Picard 

FastqToSam. These BAM files were subsequently 

tagged with both cell (XC) and molecular (XM) 

barcodes using 

TagBamWithReadSequenceExtended. Next, 

these tagged BAM files were filtered to remove 

reads below the base quality threshold (XQ) and 

to remove erroneous barcodes (XE). The SMART 

adapter that can occur at the 5’ end of the read 

was trimmed using TrimStartingSequence and 

polyA tails were trimmed using PolyATrimmer. 

Next, the trimmed and filtered BAM files were 

converted to fastq files and were used for 

subsequent alignment. Reads were aligned using 

STAR (v.2.6.0) (30) and Ensembl (v.91) (29) 

annotation and the BAM file was sorted by query 

name using SortSam (Picard). The sorted 

alignment files and the unaligned (tagged) BAM 

files were then merged to recover BAM tags, lost 

during alignment (MergeBamAlignment from 

Picard). TagReadWithGeneFunction provides 

three tags for each read (gene name, gene strand 

and gene function) required to create a digital 

expression matrix. This cell matrix contains two 

subpopulations of cells, one cell population with 

many genes and reads and one with few genes 

and reads per cell. As the cell population with 

few genes and reads does not recapitulate 

biological signal, these needed to be removed. 

The average number of genes per cell (5045) 

clearly separated the two subpopulations, 

therefore, only cells with more than 5045 genes 

were retained 

(MIN_NUM_GENES_PER_CELL=5045). 

Furthermore, only genes with at least 2 read 

counts were retained. The matrices for 1/1000 

and 1/10,000 diluted ERCC spikes were merged. 

Data analysis of the Chromium RNA sequencing 

data 

Demultiplexing of the raw sequencing data was 

done by 10x Cell Ranger (v.2.0.2) software 

‘cellranger mkfastq’ which wraps Illumina's 

bcl2fastq. The fastq files obtained after 

demultiplexing were used as input for ‘cellranger 

count’, which aligns the reads to the hg38 human 

reference genome using STAR (30) using Ensembl 

(v.91) (29) annotation and collapses to UMI 

counts. This was extended with mapping to ERCC 

spike-in RNA sequences, generating two 

separate matrices. Aggregation of samples to 

one dataset was done using ‘cellranger aggr’. The 

gene and ERCC count matrices were merged and 

only cells containing ERCC spikes were retained. 
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Quality control and filtering of the single cell 

sequencing data 

Quality assessment and further filtering were 

done in R (v.3.5.0) using Seurat (v.2.3.4) (32) and 

Scater (v.1.8.0) (33) as described by Lun et al. 

(34). For the C1 dataset, only genes with at least 

5 counts were retained, as described previously 

(35). To retain a similar fraction of genes for the 

other two single cell devices, genes in at least 17 

and 20 cells were retained for ddSeq and 

Chromium, respectively. The cyclone function of 

the scran (v.1.8.4) package was used to 

determine the cell cycle stage of the cells.  

Differential analysis of the single cell 

sequencing data using PIM and EdgeR-Zinger 

For testing differential gene expression (DGE) 

between the nutlin-3 and vehicle treated cells, 

edgeR in combination with Zinger for the single 

cell experiments (36, 37) and probabilistic index 

models (PIM) (38) were used. Zinger calculates 

weights from zero-inflated negative binomial 

models, which is used by edgeR to fit a weighted 

generalized linear model (GLM) with negative 

binomial distribution. The PIM is a distribution-

free regression model that models the 

probabilistic index (PI) as a function of the 

treatment factor (38). If there is a strong 

evidence that a gene is DE, then the estimated PI 

becomes close to 1 (if the gene expression is 

higher in the nutlin-3 group) or 0 (if lower in the 

nutlin-3 group). Under the null hypothesis (no 

DE), the estimated PI is expected to be 0.5, 

indicating that there is a 50% chance that the 

expression of the gene in a randomly selected 

cell from the nutlin-3 group is lower than that of 

a randomly selected cell from the vehicle group 

(and vice versa).  

Ranking of cells based on TP53 pathway 

Cells were ranked based the total count for TP53 

pathway genes (39). In particular, cells were 

ranked according to the sum of log-CPM for 116 

TP53 pathway genes (39). Ranks were then 

compared between the treatment and control 

group and significance was determined using the 

Wilcoxon rank sum test. 

Gene set enrichment analysis 

Genes were ranked according to their log fold 

change in decreasing order and used as input for 

a preranked gene set enrichment analysis (GSEA) 

(40). The C2 (curated gene sets) gene sets were 

Figure 1: overview of the experimental set-up. Synchronized NGP cells were treated with either nutlin-3 or vehicle and single 

cell RNA-seq was performed using the C1, ddSeq and Chromium device. In parallel, bulk RNA-seq of 10 replicates of NGP cells 

treated with nutlin-3 and vehicle was carried out. Each dataset was analyzed with the appropriate pipeline.  

 

NGP 24h

0 % FCS RPMI

nutlin-3 vehicle

C1
76 cells

ddSeq
192 cells

Chromium
6387 cells

Kallisto ddSeeker Cell Ranger

2 x 10 
samples

vehiclenutlin-3

Kallisto



Results 

154 
 

used to identify significantly enriched gene sets 

(q<0.05) in the datasets. 

 

RESULTS 

Experimental design  

To compare single cell polyA[+] RNA-seq data 

generated with the C1 (Fluidigm), ddSeq (Bio-

Rad/Illumina) and Chromium (10x Genomics), 

the same cellular perturbation experiment was 

evaluated on all three devices. Additionally, the 

same experiment was also performed in bulk for 

ten replicates to contrast with the single cell 

RNA-seq results (Figure 1). Since cell cycle status 

may be a confounder in single cell experiments, 

cell cycle synchronization by serum starvation of 

NGP neuroblastoma cells was carried out for all 

single cell experiments, but not for the bulk 

experiment, prior treatment, resulting in an 

arrest in the G0/G1 phase (Supplementary Figure 

1A). Next, NGP cells were treated with nutlin-3 or 

vehicle (ethanol). Nutlin-3 is a TP53 activator by 

inhibiting the interaction between TP53 and its 

negative regulator MDM2, resulting in an 

activation of the TP53 pathway and 

consequently in cell cycle arrest and apoptosis 

(1). The effect of nutlin-3 treatment was 

confirmed using bulk RT-qPCR by a 28-fold 

upregulation of CDKN1A, a known TP53 target 

gene (Supplementary Figure 1B). ERCC spike-in 

RNA was added in all single cell experiments, but 

not in the bulk RNA-seq experiment.  

Quality control and filtering of sequencing data 

All three single cell methods generated high 

quality libraries as confirmed by Bioanalyzer or 

Fragment Analyzer (Supplementary Figure 1C). 

Single cell RNA-seq data differ amongst others in 

the generated read structure, as ddSeq and 

Chromium reads for instance contain UMIs, 

while this is not the case for C1 reads. Therefore, 

each device has its own pipeline to analyze the 

data, although all reads, including those 

generated with the bulk RNA-seq protocol, were 

mapped against Ensembl v91, making the data 

comparable (Figure 1). For C1, the number of 

single cells was determined visually and 83 of the 

96 capture sites contained single cells without 

visible debris. In contrast, single cells isolated 

with ddSeq and Chromium cannot be visualized 

and the number of single cells is determined by 

the computational pipeline, resulting in 260 and 

7514 single cells for ddSeq and Chromium, 

respectively. No ERCC spikes were detected in 7 

out of the 7514 Chromium isolated cells and 

these cells were removed from further analysis. 

To filter out low quality cell data, all cells with a 

log-transformed number of reads or genes more 

than three times the median absolute deviation 

(MAD) below the log-transformed median were 

removed from further analysis, since transcripts 

are likely not efficiently captured in these cells 

(2). Similarly, cells above this cutoff were also 

removed, as these data may be derived from cell 

doublets. Since we added ERCC spike-in 

molecules in all three single cell experiments, the 

same MAD cutoff was used to remove low 

quality cells and cell doublets based on the 

percentage of ERCC spike-in reads per cell. 

Finally, 76, 192 and 6387 single cells were 

retained for the C1, ddSeq and Chromium, 

respectively (Table 1, Figure 1). Besides low-

quality cells, also genes that are only expressed 

in a few cells were removed. Due to the 

differences in throughput, the selected cutoff 

differs depending on the device and ~58 % of the 

genes were maintained by retaining only genes 

expressed in at least 5 (16,921 genes), 17 (12,753 

genes) and 20 (15,307 genes) cells for the C1, 

ddSeq and Chromium, respectively. For the bulk 

experiment, genes expressed in fewer than three 

 library size number of genes ERCC spikes (%) remaining cells 

C1 0 0 7 76 
ddSeq 28 36 6 192 
Chromium 360 211 822 6387 

Table 1: overview of the number of cells removed based on library size, number of genes and percentage ERCC spikes 

per cell. 
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samples were removed, retaining 33,700 genes. 

In general, the average gene expression 

correlation among the platforms was high. As 

expected, the correlation between ddSeq and 

Chromium was slightly higher (r=0.84), 

compared to each of these methods with the C1 

(ddSeq: r=0.77, Chromium: r=0.78) as ddSeq and 

Chromium generate sequencing libraries in a 

similar way (supplementary Figure 2A). 

Furthermore, the average gene expression over 

all cells in the C1 dataset correlates best with 

bulk (r=0.83) (supplementary Figure 2B), with 

both methods sequencing full transcripts.  

The C1 has the highest gene detection 

sensitivity 

After filtering, an average of 0.71 million, 3780 

and 9466 reads were retained per cell, resulting 

in the detection of on average 7621, 1487 and 

2220 genes per cell for the C1, ddSeq and  

Chromium, respectively, demonstrating that the 

C1 has the highest sensitivity (Figure 2A-B). Of 

note, 0.1 %, 1.5 % and 16.8 % of the reads were 

respectively attributed to ERCC spikes. Single cell 

RNA-seq experiments suffer from a lot of missing 

data points (dropouts) that can be either 

biological or technical. For C1, 54.96 % of the 

values are dropouts, while this is much higher for 

ddSeq (88.34 %) and Chromium (85.50 %). PCA 

plots show a separation between nutlin-3 and 

vehicle treated cells for all single cell devices. 

While the distinction is clear for ddSeq, there is 

more overlap between treated and untreated 

cells for the C1 and Chromium (Supplementary 

Figure 3A). In general, genes that are low 

abundant are detected in a few cells, while more 

abundant genes are expressed in a higher 

fraction of cells (Figure 2C). Both ddSeq and 

Chromium display a tighter curve compared to 

the C1, probably due to the higher number of 

cells and removal of amplification bias by UMIs. 

Furthermore, ddSeq and Chromium data contain 

more genes that are expressed in only a few cells 

compared to C1, where genes are generally 

detected in a higher fraction of cells (Figure 2C). 

Comparing the genes detected with bulk RNA-

seq to these detected using single cell RNA-seq 

revealed a large overlap, although, some of the 

genes are only detected by one of the devices 

(Figure 3A). In general, genes detected by all 

platforms have a higher expression compared to 

genes detected by only one device (Figure 3 B-D).  
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Figure 2: number of counts and genes detected per device. Boxplots depicting the number of counts (A) and genes (B) 
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16.3 % and 7.2 % of all reads map on the top 25 

expressed genes for the C1 and ddSeq, 

respectively, while this number is higher for 

Chromium (29.6 %), highlighting the lower library 

complexity of Chromium libraries. The top 25 

abundant genes contain many ribosomal and 

mitochondrial genes (Supplementary Figure 3B). 

Overlap shows that the top 25 genes expressed 

genes differ per platform (Supplementary Figure 

3C).  

Bulk experiments detect most differential 

expressed genes, while Chromium most 

enriched gene sets 

As the number of differentially expressed genes 

in part depends on the statistical tool, we 
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Figure 3: each platform detects a unique set of genes. (A) Overlap between detected genes using bulk RNA-seq, C1, ddSeq 

and Chromium. Cumulative expression plots of genes detected with all single cell devices or with only C1 (B), ddSeq (C) or 

Chromium (D). 
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performed both EdgeR in combination with 

Zinger as well as probabilistic index model (PIM) 

analysis and retained high-confident genes that 

are called significantly differentially expressed 

between nutlin-3 and vehicle treated NGP cells 

with both tools (3–5). In a comparison study, 

EdgeR was shown to be one of the better tools 

for single cell differential gene expression 

analysis and PIM is a new tool, developed 

specifically for differential gene expression 

analysis of single cells (Assafa et al., manuscript 

in preparation) (3). Genes were called 

significantly differentially expressed by EdgeR if 

FDR < 0.05 and absolute log fold change > 1, 

while genes are significantly differentially 

expressed with PIM if adjusted p-value < 0.05 

and PI < 0.4 (downregulated) or PI > 0.6 

(upregulated). For bulk, C1, ddSeq and 

Chromium, 7010, 40, 28 and 88 significantly 

differentially expressed genes were identified, 

respectively (Supplementary Table 1). By only 

including genes that are detected by all four 

platforms, the number of differentially 

expressed genes in the bulk dataset drastically 

dropped to 1665, while only little differences 

were noticed for C1 (36 genes), ddSeq (28 genes) 

and Chromium (86 genes), in line with the fact 

that many genes are only detected in the bulk 

experiment. Most differentially expressed genes 

in the single cell datasets overlap with those 

detected in the bulk dataset, however, some 

genes are uniquely differentially expressed in 

only one of the datasets (Figure 4A). Genes that 

are differentially expressed in only one of the 

single cell datasets are mostly borderline in 

significance and effect sizes (Supplementary 

Figure 4). Interestingly, although more genes are 

significantly differentially expressed in the bulk 

dataset compared to the single cell datasets, 

GSEA analysis shows that Chromium identifies 

more significantly (q-value <0.05) positively 

enriched gene sets, demonstrating that 

biological signal can be effectively captured with 

only the most abundant genes (Supplementary 

Table 1, Figure 4B). Of note, several TP53 gene 

sets pop up in all positively enriched gene sets, 

while cell cycle gene sets are common in the 

negatively enriched gene sets, validating the 

effect of nutlin-3 on the TP53 pathway and the 

cell cycle arrest in nutlin-3 treated cells for all 

datasets. Furthermore, ranking cells according to 

the expression of 116 TP53 activated genes 

shows that these genes are significantly higher 

expressed (p-value < 0.01) in nutlin-3 treated 

cells compared to vehicle treated cells for all 

devices, showing that these all recapitulate 

biological signal (Figure 4C). Of note, the bulk 

experiment has the clearest separation between 

treated and untreated cells, but this may be in 

part due to the fact that TP53 target genes were 

defined based on bulk gene expression profiles 

(6).  

Single cell RNA sequencing reveals a 

heterogeneous response upon nutlin-3 

treatment and uncovers hidden biological 

signals 

To get a first view on the heterogeneity of the 

response of NGP cells on nutlin-3 treatment, the 

expression of CDKN1A, a known TP53 target, was 

determined for the three single cell and he bulk 

RNA-seq experiments. While CDKN1A is 

significantly upregulated in all datasets upon 

nutlin-3 treatment, there is a remarkable 

heterogeneity of CDKN1A expression in the 

single cell datasets (Figure 5A). To understand 

the differences between cells with a low and high 

expression of CDKN1A, nutlin-3 treated cells with 

CDKN1A expression in the lowest quartile were 

compared to cells with expression in the highest 

quartile. To have a sufficiently large number of 

cells in each group, this analysis was only done 

for the Chromium dataset. A total of 83 genes 

were significantly differentially expressed, of 

which 76 overlapped with the set of genes 

significantly differentially expressed between 

nutlin-3 and vehicle treated cells in the full 

Chromium dataset (Supplementary Table 1). In 

addition, 93 of the 103 significantly positively 

enriched gene sets overlap with those of the full 

Chromium dataset (Figure 5B, Supplementary 

Table 1). These results demonstrate that the 

same signals can be detected between vehicle 

and nutlin-3 treated cells and between nutlin-3 

treated cells with low and high CDKN1A 

expression.  
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As the cell cycle can be a major confounder in 

single cell experiments masking putative 

biological effects, cells in the G1 phase of the cell 

cycle were selected based on the expression of a 

G1 cell cycle signature in the Chromium data set. 

Doing so, 105 genes were significantly 

differentially expressed, of which 80 overlapped 

with the differentially expressed genes of the full 

Chromium dataset (Supplementary Table 1). As 

we detected slightly more (105 instead of 88) 

differentially expressed genes between nutlin-3 

and vehicle treated cells in the G1 phase 

compared to the full dataset, these differentially 

expressed genes might have been masked by cell 

cycle effects in the full dataset. Several genes 

that are downregulated in the G1 cells, but not in 

the full dataset, including UBE2C and PCLAF, are 

known to be repressed by TP53 and also 

downregulated in the bulk RNA-seq dataset (7, 

8). Likewise, several genes that are upregulated 

in the G1 cells only, including DDIT4 and KRT17, 

are known to be induced by TP53 and also 

upregulated in the bulk RNA-seq dataset, 

showing that biologically interesting targets are 

identified in RNA-seq data from single cells in the 

same cell cycle phase (9, 10). Interestingly, 

PTTG1 is significantly differentially expressed in 

G1 cells, but not in the full Chromium, nor the 

bulk dataset, and known to be repressed by TP53 

(11). Additionally, 87 of the 100 significantly 

positively enriched gene sets overlap with those 

of the full dataset (Figure 5B). One gene set 

(CONCANNON_APOPTOSIS_BY_EPOXOMICIN_U

P, NES= 1.80,  FDR = 0.03) containing genes 

upregulated because of apoptosis was only 

enriched in the G1 cells, showing the relevance 

of signals that are only detected in the G1 cells 

and not in the full dataset. 

Finally, as mentioned above, single cell 

experiments are characterized by a high dropout 

rate. To determine the differences between 

nutlin-3 and vehicle treated cells without 

detectable expression of CDKN1A, such (so-

called CDKN1A null) cells were selected for each 

treatment arm. A total of 71 genes were 

significantly differentially expressed, of which 68 

overlapped with the full set (Supplementary 

Table 1. In contrast, only 21 of the 73 significantly 

positively enriched gene sets overlap with those 

of the full dataset, depicting that nutlin-3 and 

vehicle treated cells without detectable 

expression of CDKN1A behave differently 

Figure 5: differences between cells with varying CDKN1A expression. (A) CDKN1A expression in the bulk and single cell RNA-

seq datasets. (B) Heatmap of significantly positively (q-value <0.05) enriched gene sets after GSEA for the C2-curated gene 

sets for each platform. Gene sets are color-coded according to their normalized enrichment score (NES). (C) Overlap between 

significantly positively enriched gene sets for the three cellular subgroups and full Chromium dataset.  
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compared to all nutlin-3 and vehicle treated cells 

in the full dataset.  

Overlap of the positively enriched gene sets of 

the three subsets and the full dataset confirms 

that nutlin-3 treated cells with low or high 

expression of CKDN1A and vehicle and nutlin-3 

treated cells in the G1 phase resemble the 

vehicle and nutlin-3 treated cells in the full 

dataset, while cells without expression of 

CDKN1A in both groups are different (Figure 5C). 

Pseudobulk data resembles real bulk data 

better than single cell data 

To understand the differences between bulk 

RNA-seq and single cell RNA-seq patterns better, 

pseudobulk data from the single cell data were 

created by pooling and averaging subsets of 

single cells. Chromium data were pooled in ten 

pseudosamples per treatment arm, resulting in 

the same sample size as the bulk data. Chromium 

was taken as an example as this dataset contains 

the highest number of cells. To make the data 

even more comparable, the bulk library size was 

downsampled to obtain the same number of 

reads for the single cell and bulk dataset 

summarized over all (pseudo)samples. Originally, 

the bulk library size was 4.8 times larger 

compared to the single cell library size. After 

downsampling, the total number of reads in each 

experiment was 70.2 million, with a mean of 3.5 

million reads per (pseudo)sample (Figure 6A). 

Only genes expressed in at least 3 samples were 

retained in both datasets. The correlation 

between the average gene expression in the 

downsampled bulk and pseudobulk dataset was 

higher (r=0.83) compared to the correlation in 

the original bulk and single cell dataset (r=0.69)  

(Supplementary Figures 2 and 5A). As expected, 

fewer genes (26,845 instead of 33,700) and 

fewer significantly differentially expressed genes 

(5277 instead of 7010) were detected in the 

downsampled bulk dataset compared to the 

original bulk dataset, due to the lower 

sequencing depth (Supplementary Table 1). Of 

these differentially expressed genes, the large 

majority (5105, 96.74 %) overlapped with the 

differentially expressed genes of the original bulk 

dataset. For the pseudobulk dataset, almost 10-

fold more genes (810 instead of 88) were 

significantly differentially expressed compared 

to the original single cell dataset. Of note, this 
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Figure 6: downsampling of bulk and pseudobulkification of single cell data. (A) After downsampling of the bulk data and 

generating pseudobulk data from the Chromium single cell RNA-seq data, the mean number of reads per (pseudo)sample is 

3.5 million. (B) Heatmap of significantly positively (q-value <0.05) enriched gene sets after GSEA for the C2 curated gene sets 

for the original and downsampled bulk and pseudobulk Chromium datasets. (C) Boxplots depicting the TP53 activity score per 

cell, whereby ranking was based on the expression of 116 TP53 target genes.  
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number is still considerably lower compared to 

bulk at equal sequencing depth. The higher 

number of differentially expressed genes in the 

pseudobulk dataset compared to the original 

single cell dataset is probably owing to the 

reduction in noise after pooling. 519 of the 810 

significantly differentially expressed genes in the 

pseudobulk dataset overlap with the 

differentially expressed genes of the 

downsampled bulk dataset. Furthermore, 125 

and 97 significantly positively enriched datasets 

were identified for the pseudobulk and 

downsampled bulk dataset, respectively. With 

42 of the 97 positively enriched gene sets in the 

pseudobulk dataset overlapping with those of 

the downsampled bulk, and only 18 of the 94 

positively enriched gene sets overlapping in the 

original single cell data and the bulk data, it is 

clear that the pseudobulk data better resembles 

the bulk data (Figure 6B, supplementary Figure 

5B). Furthermore, ranking cells according to the 

expression of 116 activated TP53 genes shows 

that these genes are significantly higher 

expressed (p-value < 0.01) in nutlin-3 treated 

cells compared to vehicle treated cells for both 

the downsampled bulk and pseudobulk dataset, 

showing that these continue to recapitulate 

biological signal. Interestingly, there is a clearer 

separation for the pseudobulk dataset compared 

to the original single cell dataset (Figure 4C, 6C). 

To determine the effect of the sequencing depth 

on single cell experiments, the total library size 

of the Chromium dataset was downsampled to 

the library size of the C1 dataset, since the library 

size over all cells was only 1.17 times higher for 

Chromium compared to the C1, downsampling 

gave similar results as the original experiment 

(Supplementary Figure 5C-D).  

 

DISCUSSION 

Over the last years, several single cell RNA-seq 

methods emerged, whereby the number of 

single cells analyzed in a single experiment 

drastically increased from a few up to tens of 

thousands of single cells. While several studies 

attempted to compare these single cell RNA-seq 

methods, most studies focused on the quality of 

the generated data and their ability to 

distinguish cellular subpopulations (1–5). 

Furthermore, the more recent ddSeq instrument 

was included in only one comparative study (2). 

Here, we evaluated for the first time three 

commercially available single cell devices, i.e. C1, 

ddSeq and Chromium, to study transcriptional 

heterogeneity upon a chemical perturbation and 

to contrast it with a bulk cell population 

response. To this purpose, NGP neuroblastoma 

cells were treated with the TP53 activator nutlin-

3 or vehicle as negative control followed by 

single cell RNA-seq using the C1, ddSeq and 

Chromium. Since the cell cycle state is a known 

confounder of single cell experiments, this effect 

was minimized by synchronizing cells prior to 

treatment. To further characterize the results of 

the single cell experiments, bulk RNA-seq was 

performed in parallel on the same model system 

in ten biological replicates. We showed that the 

highest gene detection rate and lowest number 

of droupouts were obtained by the C1 device, 

confirming that this platform has the highest 

detection sensitivity, which may  partially be 

explained by the higher sequencing depth (5). 

Downsampling read depth to an equal number of 

reads per cells for all three devices should be 

carried out to effectively confirm that the C1 

displays the highest sensitivity, independent of 

sequencing depth. In addition, the overlap 

between the detected genes in the bulk and 

single cell datasets was the highest for the C1 

with an overlap of more than 50 %, which is 

slightly higher than reported previously (5). 

Possible explanations for this difference are 

sequencing depth and the applied bulk library 

prep method. The C1 average gene expression 

levels correlated better with bulk gene 

expression data compared to ddSeq and 

Chromium, owing to the higher sequencing 

depth and higher transcriptome complexity of 

the C1 cDNA libraries. In contrast, correlation of 

average gene expression among the single cell 

devices revealed a slightly better correlation 

between the ddSeq and Chromium, in line with 

their similarity in terms of RNA-seq library 

preparation. The correlation between C1 and 
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Chromium was the lowest, as previously 

reported (5, 6). The gene expression profiles of 

the ddSeq and Chromium seem less noisy 

compared to the C1, owing to the higher number 

of isolated single cells and the use of UMIs. It has 

been reported that technical noise can be 

reduced by 50 % using the UMI enabled counting 

of cDNA molecules (7, 8). Although a large 

overlap in the genes quantified with the three 

single cell devices was seen, each device also 

detected some unique genes. It has been 

previously reported that unique C1 genes do not 

have 3’ ends that are difficult to capture, 

preventing their detection by 3’ end sequencing 

technologies such as the ddSeq and Chromium. 

Hence, the large set of unique C1 genes results 

from higher C1 mRNA capture efficiency (1, 5). In 

our attempt to make the devices somewhat 

comparable, ERCC spike-in RNA molecules were 

added to all three single cell experiments. Of 

note, ERCC spikes are generally not added to 

droplet-based experiments, since these spikes-in 

molecules are added to every droplet and 

consequently also amplified and sequenced in 

droplets without cells, increasing the sequencing 

costs considerably (1). Due to the lack of 

guidelines for droplet-based experiments, too 

many reads (17 %) in our Chromium dataset 

mapped to ERCC spikes, consequently losing 

endogenous reads and indicating that lower 

amounts of ERCC spikes should be added in 

future experiments. Apart from being used as 

workflow control, ERCC spike-in molecules can 

also be used for normalization, although that use 

is still under debate (9–11).  

To test the ability to identify differentially 

expressed genes upon nutlin-3 treatment in 

single cell RNA-seq datasets, two different 

statistical methods were used, i.e. EdgeR in 

combination with Zinger, and PIM. As differential 

gene expression analysis tools typically vary in 

the number of genes called as differentially 

expressed, we here continued with the 

intersection of both tools to conservatively 

identify truly differentially expressed genes (12). 

The largest number of differentially expressed 

genes was detected in the Chromium dataset, in 

line with the observation that more genes are 

called differentially expressed with increasing 

number of single cells (5, 12). Although many 

more genes were differentially expressed in the 

bulk dataset, the biological signal is faithfully 

recapitulated in the tested single cell datasets as 

strong enrichment of several TP53 gene sets was 

present in all datasets. This result suggests that 

detecting the most abundant genes (through 

single cell RNA-seq data) is sufficient for pathway 

activity analysis. Of note, single cell datasets also 

reveal some unique enrichment signals, of which 

the relevance should be determined by further 

investigation. 

To characterize the effect of nutlin-3 treatment 

at the single cell level, three cell subpopulations 

from the full Chromium dataset were selected 

based on their cell cycle stage and TP53 

transcriptional target gene CDKN1A expression 

levels, and compared with the entire cell 

population. This subpopulation analyses were 

only performed for the large Chromium dataset 

in order to have a sufficient number of cells per 

subset. In order to avoid cell cycle effects as 

much as possible, nutlin-3 and vehicle treated 

cells in the G1 phase were selected in the first 

subset. Although a large fraction of the 

differentially expressed genes in the G1 cells 

overlapped with the full dataset, more 

significantly differentially expressed genes were 

detected in the G1 cells, possibly hidden by cell 

cycle effects in the full dataset. Many of these 

genes are known to be regulated by TP53, 

showing the utility of subpopulation analysis by 

and the relevance of the genes differentially 

expressed in cells in the G1 phase. This type of 

subpopulation analysis could in principle be 

extended to the other cell cycles stages. In a 

second subset, differential gene expression 

analysis and gene set enrichment analysis on 

nutlin-3 treated cells with low or high expression 

of CDKN1A revealed that these subsets resemble 

vehicle and nutlin-3 treated cells from the full 

dataset. This indicates that treated cells with low 

expression of CDKN1A are similar to vehicle 

treated cells and may thus represent cells that 

react in a later stage to nutlin-3 or show primary 
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resistance. To further investigate this intriguing 

observation, time-course experiments should be 

set up to reveal if CDKN1A is upregulated in a 

larger fraction of cells at later timepoints, in line 

with a delayed nutlin-3 response. In the third 

subset, nutlin-3 and vehicle treated cells without 

CDKN1A expression were compared. Few 

enriched gene sets overlapped between this 

subpopulation analysis and the full dataset, 

indicating that the cells that do not express 

CDKN1A in nutlin-3 and vehicle treated cells are 

not representative for the whole population of 

nutlin-3 and vehicle treated cells. Again, it might 

be that some of the nutlin-3 treated cells without 

CDKN1A expression react at a later timepoint or 

are resistant, whereby these cells resemble 

vehicle treated cells. Consequently, fewer 

differences are noticeable between the nutlin-3 

treated cells and vehicle treated cells without 

CDKN1A expression compared to the full dataset. 

On the other hand, gene set enrichment analysis 

revealed that TP53 pathways are positively 

enriched in this subset, indicating that some of 

these cells do react on nutlin-3. In these cells, 

CDKN1A may not be detected due to the high 

dropout rates, typically seen in single cell 

experiments. Although these analyses gave first 

insights in the heterogeneous response of NGP 

cells on nutlin-3 treatment, more in depth 

analyses are required to better understand the 

observations. Amongst others, our results should 

be confirmed by performing similar analyses 

with other bona fide TP53 targets, such as PUMA 

and BAX. Of note, due to the relatively low 

detection sensitivity, BAX cannot be used for 

such a confirmatory analysis as it is completely 

missing in the data. These analyses should also 

be repeated using the C1 and ddSeq datasets, 

although this may not be robust as only a few 

cells per subset will be retained. 

Since single cell and bulk RNA-seq experiments 

differ at several points, such as the library prep 

method, the sequencing depth, and the ‘sample’ 

size, we set up an additional analysis in which we 

attempted to cancel out these differences. To 

account for the sample size, several Chromium 

cell data were pooled to create 10 pseudobulk 

samples for each condition. In addition, the bulk 

dataset was downsampled to obtain the same 

number of reads as the single cell RNA seq 

dataset. Correlation analysis between the gene 

expression profiles of the pseudobulk and bulk 

samples depicted a higher correlation compared 

to the correlation between the bulk and the 

Chromium single cell dataset, validating that the 

pseudobulk data resembles the bulk data. More 

genes were differentially expressed upon 

pooling, likely because of a reduction in 

measurement noise, which is typically high in 

single cell experiments (7, 13). Still, the number 

of differentially expressed genes is lower 

compared to the bulk dataset, owing to the 

marked higher detection sensitivity of bulk RNA-

seq methods. In addition, to make the single cell 

datasets more comparable, the library size of the 

Chromium dataset was subsampled to the library 

size of the C1 dataset to obtain equal library sizes 

over all cells. As there was only a small difference 

in library size, the subsampled data gave similar 

results. Due to the higher number of cells in the 

Chromium dataset, the average number of reads 

per cell is much lower for Chromium compared 

to C1. Therefore, future subsampling of reads to 

obtain an equal number of reads per cell should 

be performed. This will also reveal if the C1 is still 

the most sensitive method, despite the 

reduction in sequencing depth per cell. 

In conclusion, we evaluated for the first time 

three commercial single cell RNA-seq devices in 

terms of their ability to characterize a cellular 

perturbation system. We revealed that despite 

the lower number of differentially expressed 

genes in single cell RNA-seq experiments 

compared to bulk RNA-seq experiments, the 

biological signal can faithfully detected through 

gene set enrichment analysis for all single cell 

devices. We also showed that single cell RNA-seq 

analyses reveal transcriptional heterogeneity in 

response to nutlin-3 treatment and may help to 

identify potentially late-responders or resistant 

cells that are hidden in bulk RNA-seq 

experiments. 
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Supplementary Figure 1: cell cycles profiles and technical validation of the single cell RNA libraries. (A) Cell cycle profiles of 

parental cells (up) and nutlin-3 treated cells (down). (B) RT-qPCR validation of TP53 target gene CDKN1A expression levels. 

Barplot shows the mean expression for the three single cell experiments. Bars represent the standard error of measurement 

(SEM). (C) Fragment Analyzer profile for C1 RNA libraries (left), Bioanalyzer profiles for ddSeq (middle) and Chromium (right). 
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Supplementary Figure 2: gene expression correlation plots show high correlation between the devices. (A) Smoothscatter 
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Supplementary Figure 4: violin plots for significantly differentially expressed genes in all or only one of the datasets. (A) 

Expression of ENSG00000124762 (CDKN1A), significantly differentially expressed in all datasets. (B) Expression of 

ENSG00000004700 (RECQL), uniquely significantly differentially expressed in the bulk data. (C) Expression of ENSG00000160752 
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significantly differentially expressed in the ddSeq dataset. (E) Expression of ENSG00000156976 (EIF4A2), uniquely significantly 
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Supplementary Figure 5: pseudobulk data resembles true bulk data. (A) Smoothscatter plot showing the correlation in gene 
expression between the pseudobulk and downsampled bulk dataset. (B) Overlap of significantly positively (q-value < 0.05) 
gene sets in the pseudobulk and downsampled bulk dataset and the original bulk and Chromium dataset. (C) Smoothscatter 
plot showing the correlation in gene expression between the C1 and downsampled Chromium dataset. (D) Overlap of 
significantly positively (q-value < 0.05) gene sets in the C1 and downsampled Chromium dataset. 
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Supplementary Table 1: number of significantly differentially expressed genes determined by EdgeR and PIM. EdgeR is 
used in combination with Zinger for the single cell RNA sequencing datasets. FDR: false discovery rate; LFC: log fold change;  
PIM: probabilistic index model; p.adj: p.adjusted; PI: probabilistic index. 
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T-ALL is a haematological cancer resulting from the malignant transformation of immature T-cells. 

Advances in NGS technologies broadened our understanding of the genetic basis of T-ALL and enabled 

further genetic dissection of T-ALL through detection of novel key driver genes and delineation of 

distinct molecular T-ALL subgroups (1, 2). Despite the advances in our knowledge about the genetic 

basis and the increasing survival rates of T-ALL cases, the prognosis of adult patients remains poor, 

with 20 % of the pediatric and 40 % of the adult T-ALL patients still suffering from relapse, hinting to 

the need for further refinement of the molecular basis of T-ALL and exploit this knowledge to develop 

more effective and targeted therapies (3, 4). Over the past years, it became clear that genetic 

alterations in the non-coding part of the genome, which comprises the largest fraction of the genome 

and has been seen as ‘junk DNA’ for a long time, plays major roles in the development of diseases and 

is just starting to be explored (5). Extensive advances in NGS methods revealed that CNVs and base 

pair variants in cancer cells often occur in regulatory elements or non-coding genes (6, 7). One class of 

these non-coding genes are the lncRNAs, for which it is now widely accepted that they can exert 

important functions and when perturbed, can be implicated in cancer development. A few studies 

investigated lncRNA expression in the context of T-ALL, but the number of functionally annotated 

lncRNAs in T-ALL development remains very limited with only two studies reporting on LUNAR1 and 

NALT1 (8–10). By microarray profiling of a large T-ALL patient cohort, Wallaert et al. defined a subgroup 

specific lncRNA expression profile, demonstrating that lncRNAs can be used to delineate cancer 

subtypes, as shown for other cancer entities such as breast cancer (11, 12). Cao Thi Ngoc et al. focused 

on the TAL-R subgroup and revealed 57 lncRNAs that are directly regulated by TAL1, of which some 

are absent during T-cell development, hinting to a potential role as ectopically expressed oncogenic 

lncRNAs (13). During my PhD, I generated a unique and comprehensive dataset in the T-ALL field by 

combining for the first time polyA[+] and total RNA-seq of an in vitro TLX1 knockdown system and a 

large primary T-ALL cohort. This dataset was extended with ATAC-seq as well as H3K4me3, H3K4me1, 

H3K27ac and TLX1 ChIP-seq, enabling to detect TLX1 regulated/TLX subgroup specific and super-

enhancer associated lncRNAs. Some of these lncRNAs are potentially oncogenic, marking them as 

highly interesting targets for further in-depth characterization (Paper 1, Figure 15). Since this is a 

comprehensive dataset containing unexplored features, I wrote a data descriptor with detailed 

information about the data quality, the specifications of the methods and the bioinformatics pipelines 

applied in order to make the data available and re-usable for the research community (Paper 2, Figure 

15).  

For this first part, I used bulk transcriptome profiles resulting in average expression levels across a cell 

population. However, at that time, the first single cell devices were emerging, and single cell methods 

revealed that bulk average expression profiles can hamper the detection of true biological effects and 

hide cellular heterogeneity. Since the utility and richness of single cell data arouse my interest, I 

focused on the optimization of single cell RNA-seq technologies in the second part of my PhD. At that 

time, the methods that existed only captured polyadenylated transcripts. Therefore, I developed a new 

single cell total RNA-seq protocol enabling to capture both polyadenylated and non-polyadenylated 

transcripts at the single cell level by combining for the first time strandedness and effective removal 

of ribosomal cDNA (Paper 3, Figure 15). During my PhD mandate, the number of single cell sequencing 

methods and devices expanded quickly, whereby the number of single cells that can be isolated in a 

single experiment increased from a few to more than 10,000 single cells (14–16). Therefore, I 

eventually evaluated three commercial single cell devices (C1, ddSeq and Chromium) with respect to 

data quality and the ability to detect differentially expressed genes and revealed that single cell data 

can detect biological signal faithfully through gene set enrichment analysis and may help to identify 

potentially late-responders or resistant cells upon compound treatment (Paper 4, Figure 15). 
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4.1. Investigating the TLX1 lncRNAome in T-ALL 

TLX1 is a driver oncogene in T-ALL development and is ectopically expressed in 5-10 % of pediatric and 

30 % of adult T-ALL patients, resulting in an arrest at the early cortical stage of T-cell development (17–

19). The long latency of TLX1 positive T-ALL development in mice, indicated that TLX1 overexpression 

is not sufficient for T-cell transformation and that cooperating genetic alterations are required to fully 

transform progenitor T-cells to leukemic blasts (20, 21). To identify these cooperating events, TLX1 

positive T-ALL has already been studied extensively in terms of protein-coding genes and revealed 

secondary mutations and/or deletions in WT1, PHF6, PTEN, PTPN2 and BCL11B and NUP214-ABL1 and 

a high frequency of NOTCH1 mutations. However, the role of lncRNAs in this TLX1 positive T-ALL 

remained unexplored (22–27). Therefore, I investigated the role of lncRNAs in this T-ALL subgroup by 

uniquely combining polyA[+] and total RNA-seq of a primary T-ALL cohort and the TLX1 positive ALL-

SIL cell line upon TLX1 knockdown.  

To obtain a knockdown of TLX1, electroporation of two TLX1 targeting siRNAs and one control siRNA 

was used. In the course of my PhD research, I optimized new transfection methods to further increase 

the transfection efficiency and reduce the cell death. Therefore, we now typically use a nucleofector 

in the lab, where the voltage, number of pulses and duration of the pulses can be adapted depending 

on the cell type to obtain an efficient knockdown with low cell death. Furthermore, we are currently 

exploring photoporation as this method allows to specifically select cells that have taken up the siRNA. 

This method uses transient permeabilisation of the cell membrane by laser irradiation of gold particles 

that adsorb to the membrane. After irradiation, the photothermal effects of these gold nanoparticles 

transiently make pores in the cell membrane, enabling entrance of macromolecules such as siRNAs 

(28). Transcriptome profiling upon TLX1 knockdown revealed both polyadenylated and non-

polyadenylated lncRNAs regulated by TLX1. In a next step, I further interrogated these candidates using 

in-house generated TLX1 ChIP-seq data to identify those lncRNAs directly bound by TLX1. Amongst 

those, I identified NEAT1 and MALAT1, two well-known lncRNAs involved in cancer, and in my dataset 

shown to be downregulated upon TLX1 knockdown. To determine if these two lncRNAs also have 

important roles in the development of TLX1 positive T-ALL, knockdown experiments of these lncRNAs 

in the TLX1 positive T-ALL cell line ALL-SIL should be carried out.  

Unexpectedly, I revealed an opposite regulation of protein-coding genes and lncRNAs by TLX1, which 

had not been described previously. The majority of the identified TLX1 downstream lncRNAs are shown 

to be activated by TLX1, while most protein-coding genes are repressed. Intrigued by this novel finding, 

I performed motif analysis to identify co-factors that may explain the opposite regulation of lncRNAs 

and protein-coding genes by TLX1. However, since the same motifs were enriched, this could not 

explain the difference. Another approach that could be followed to further explore potential 

differential regulation and is currently explored by the host lab, is the use of BioID in combination with 

dCas9. Here, dCas9 is ligated to a biotin ligase and guided to the TSS of the gene of interest. 

Subsequently, co-factors in close proximity are biotinylated, after which these can be isolated and 

identified by mass spectrometry (29). Using this approach for the top downregulated lncRNAs and top 

upregulated protein-coding genes could reveal different co-factors involved in the regulation of these 

genes (30). This opposite regulation of lncRNAs and protein-coding genes made us hypothesize that 

TLX1 can activate a subset of lncRNAs, which are possibly involved in the negative regulation of TLX1 

regulated protein-coding genes, a hypothesis that requires further investigation. This can be studied 

by transcriptome profiling after knockdown of a selected lncRNA to identify if the expression of some 
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protein-coding genes increases. If this is the case, close proximity between the lncRNA and protein-

coding gene can be confirmed using 3C sequencing.  

By integrating H3K27ac ChIP-seq data, super-enhancer associated lncRNAs were identified. Some of 

those super-enhancer associated lncRNAs probably act in cis as their expression is significantly 

correlated with the expression of neighboring genes. To reveal if this is the case, knockdown 

experiments of the lncRNA should have an effect on the expression of the neighboring genes, while 

upregulation of the gene should have no effect. In contrast, to reveal if some of these lncRNAs also 

work in trans, the effect of random integration of these candidates should be investigated (31). These 

interactions can then further be explored using 3C or 4C sequencing experiments. Besides TLX1 

knockdown in ALL-SIL lymphoblasts, I also performed treatment with JQ1 and evaluated transcriptional 

response upon drug exposure. JQ1 is a bromodomain and extra-terminal motif (BET) inhibitor causing 

depletion of amongst others BRD4, known to be enriched on enhancers and to recruit RNAPII for eRNA 

production (32, 33). Since 50 TLX1 regulated lncRNAs are also significantly downregulated upon JQ1 

treatment, the latter known to downregulate eRNA transcription, I hypothesize that some of these 

lncRNAs may act as eRNAs (34, 35). These eRNAs can be determined using my dataset as these are 

characterized by open chromatin (ATAC-seq peak), H3K27ac peaks and a high H3K4me1/H3K4me3 

ratio (36, 37). Since most eRNAs lack a polyA tail, the epigenetic marks can be integrated with the total 

RNA-seq dataset to identify these eRNAs. However, eRNAs are often low abundant and unstable, 

making it difficult to identify them using classic total RNA-seq protocols (37, 38). Therefore, nascent 

RNA-seq methods such as global run-on sequencing (GRO-seq), precision run-on sequencing (PRO-seq) 

and BruUV-seq, should be performed as an additional layer, enabling to detect nascent RNAs before 

these are degraded (39–43). 

4.2. Identification of subgroup specific and possibly oncogenic lncRNAs 

Besides TLX1 regulated lncRNAs, I aimed to verify TLX1/3 linked lncRNA signatures in primary T-ALLs 

as TLX1 and TLX3 induce T-ALL in a similar way and are associated with a similar gene expression profile 

(44). Similar as to the in vitro knockdown system, I identified TLX subgroup specific lncRNAs and 

lncRNAs associated with super-enhancers. Of interest, I integrated CD34+ T-cell data to identify 

potential oncogenic lncRNAs and identified a set of 144 lncRNAs with low expression in T-cells and high 

expression in T-ALL, more specifically high in the TLX subgroup versus the other subtypes. As these 

lncRNAs are potentially oncogenic, they can serve as new potential targets for T-ALL therapy 

development. However, I used CD34+ cells cultured on OP9 stromal cells expressing the NOTCH1 ligand 

DLL1, whereby only information about the lncRNA expression at that stage was obtained. Since T-ALL 

subgroups are characterized by an arrest at a specific stage of the T-cell development, further studies 

should compare the lncRNA expression profile of a specific subgroup with T-cells of the corresponding 

development stage. In my study, a lncRNA can be identified as non-oncogenic when it is expressed in 

CD34+ T-cells, while the lncRNA expression may drop at a later stage, whereby overexpression at that 

specific stage can cause transformation of T-cells and marks the lncRNA as potential oncogenic. This is 

for instance also the case for NOTCH1, which is required at the initial stage for T-cell specification, but 

drops during further development to be able to develop in the αβ lineage, whereas overexpression 

causes T-cell transformation (45). As lncRNAs can be erroneous classified as potential oncogenic based 

on expression in CD34+ T-cells, a larger T-cell subset is warranted for this analysis. Knockdown studies 

are eventually required to further validate that these lncRNAs are truly oncogenic.  
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To get a first insight into the function of the top-regulated lncRNAs, I used a guilt-by-association 

approach, in which lncRNA functions are predicted based on correlations with the expression of 

protein-coding genes. These functional predictions give a first hint into the possible cellular roles of 

the selected lncRNAs and mark them as interesting targets for further functional analysis and 

eventually as potential targets for new therapies. However, before further functional validation, it 

should be validated that the lncRNAs are truly independent transcriptional units as some lncRNAs have 

been shown to be transcriptional read-through from neighboring genes (46). To validate this, the 

H3K4me3 and H3K27ac ChIP-seq data should be extended with CAGE-seq data as this identifies 

transcription start sites (47, 48). In addition, lncRNAs are characterized by a lack of protein-coding 

potentiaI, however studies have shown that lncRNAs can contain a small ORF and can be occupied with 

ribosomes. However, occupancy with ribosomes does not ensure translation as some lncRNAs, such as 

the well-known XIST, contain an ORF and are occupied with ribosomes, but are however not translated, 

underscoring that ribosome occupancy is not sufficient for translation (49). On contrast, some other 

lncRNAs that contain an ORF and are occupied by ribosomes, generate short peptides. These were 

previously not detected as most prediction algorithms discard ORFs with less than 100 amino acids and 

these peptides are often low abundant and lost during sample preparation for mass spectrometry (50–

52). A large study using tandem mass spectrometry revealed that 8 % of the lncRNAs are translated in 

small peptides and consequently mis-assigned as non-coding (52, 53). Therefore, it may be interesting 

to validate with mass spectrometry that the lncRNAs that I identified are really non-coding and not 

translated in small peptides.  

4.3. Functional characterization of the identified TLX1 regulated and TLX subgroup specific 
lncRNAs requires further investigation 

From the large dataset I generated, multiple lncRNAs were marked as interesting targets for further 

in-depth characterization. Therefore, I prioritized five lncRNAs: lnc-DAD1-2 was selected as this lncRNA 

is located in the TRCα locus and might consequently be involved in TCR rearrangements and T-cell 

development; lnc-THADA-1 and lnc-PTPN2 as these are respectively located nearby ZFP36L2 and 

PTPN2, two known T-ALL tumor suppressor genes and RP11-973H7.4 and FOXP4-AS as these were 

identified as potentially oncogenic and TLX subgroup specific. Unfortunately, knockdown of these 

lncRNAs by LNAs seemed to be challenging in our hands as by testing ten LNAs per lncRNA, I only 

obtained sufficient knockdown for lnc-DAD1-2 with 3 LNAs, while the expression of the other lncRNAs 

was barely affected upon transfection. Further optimization of the electroporation conditions did not 

result in better knockdown efficiencies. Although knockdown of lncDAD1-2 had no effect on 

proliferation and apoptosis in T-ALL cell lines, knockdown of the lncRNA in T-cells resulted in an 

increase in double positive T-cells, hinting to a role in T-cell development. This was further confirmed 

by 4C-seq, since I was able to show that lncDAD1-2 interacts with the TCRδ locus. Unfortunately, I was 

not able to validate the phenotype in T-cells in a second replicate.  

Although I was not able to obtain knockdown for the other prioritized lncRNAs at that time, these 

remain highly interesting targets that should be further characterized. New and more efficient 

methods have now been developed and can be used in a second attempt to obtain knockdown of these 

lncRNAs. Recent studies show promising results for the knockdown of lncRNAs using the CRISPR 

technology. Using the original CRISPR technology for lncRNAs is challenging, since lncRNAs often 

overlap with enhancer regions or protein-coding genes whereby the effect can be due to a deletion in 

the enhancer or protein-coding gene or due to deletion of the lncRNA (54). To circumvent this, CRISPRi 

can be used, where an inactive CAS9 (dCas9) is bound to a repressor domain, such as KRAB, and is 
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guided to the promotor of a lncRNA by the guide RNA (gRNA) to silence the lncRNA (55, 56). Since this 

results in variable knockdown efficiencies, a recent study has shown that combining KRAB with the 

repressor domain of MeCP2 (dCas9-KRAB-MeCP2) results in considerably increased gene repression 

(57). Likewise, attaching an activator, such as VP64, to dCas9 can be used for the overexpression of 

lncRNAs (58, 59). Besides targeting specific lncRNAs, CRISPRi and CRISPRa screens can be setup to 

obtain a knockdown or overexpression of thousands of lncRNAs in parallel and to identify potential 

functions (31, 60). More recently, also methods combining CRISPR screens with single cell RNA-seq, 

such as CRISPR droplet sequencing (crop-seq) and Perturb-seq were developed, allowing to detect the 

effect of the perturbation at the single cell level. By performing bulk read-out, 50 % reduction of 

expression of a gene can mean that the gene has halve of its expression in all cells or that there is a 

100 % reduction in halve of the cells. This information is lost by bulk sequencing, underscoring the 

need to investigate the effect of perturbations at the single cell level (61–63).  

Besides the CRISPR technology, siPools have also been developed, in which 60 siRNAs are combined at 

low concentrations, resulting in undetectable off-targets effects (64). Since siRNAs mainly work in the 

cytoplasm, knowing the localization of the lncRNAs is helpful to decide if it is useful to use these siPools. 

However, it has been shown that the RISC machinery of the siRNA is also present in the nucleus and 

able to efficiently degrade nuclear RNAs (65, 66). RNA-FISH or RNAscope, based on binding of 

fluorescently labeled probes, or cell fractionation experiments can be carried out to determine the 

localization of the lncRNA (67). In addition, defining the cellular localization of a lncRNA can also give 

a first hint towards possible functions as lncRNAs involved in the regulation of gene expression are 

more likely to be expressed in the nucleus, while lncRNAs involved in the regulation of translation or 

miRNA sequestration are more commonly expressed in the cytoplasm (68). Further insights in the 

function of a lncRNA can be acquired by determining the interaction partners of the lncRNA. As 

discussed in section 1.2.3, lncRNAs often bind with chromatin to remodel their structure and binding 

of the lncRNA with chromatin can be revealed using chromatin isolation by RNA purification (ChIRP), 

capture hybridization analysis of RNA targets (CHART) or RNA antisense purification (RAP), all using 

biotinylated antisense DNA oligonucleotides to capture and isolate lncRNA-chromatin interactions 

(69–71). ChIRP and CHART can also be used to identify binding of proteins by western blot analysis or 

by combining it with mass spectrometry as lncRNAs often serve as a scaffold, decoy or guide for 

proteins (69, 71). Domain specific ChIRP (dChIRP) enables to identify functional domains required for 

chromatin binding and enables to identify interactions with DNA, RNA and proteins by means of RT-

qPCR, high-throughput sequencing and Western blot or mass spectrometry, respectively (72).   

Validation of lncRNAs in vivo has been challenging as lncRNAs are generally less conserved compared 

to protein-coding genes, which limits the use of animal models to study these lncRNAs (73, 74). It has 

been shown that 81 % of the lncRNAs are primate-specific and that conserved lncRNAs often only 

display a short conserved region (75). For zebrafish for instance, it has been shown that only 29 

lincRNAs show detectable sequence conservation with human lincRNAs (76). To solve this problem, 

the human transcript can be overexpressed in a model system or xenografts can be used by implanting 

human cell lines after knockdown or overexpression of the lncRNA in the model system (77, 78). 

 

4.4. Sharing data accelerates scientific breakthroughs  

Previously, researchers were reluctant to share data as experiments are time-consuming and 

expensive, thus researchers wanted to take full advantage of the generated data by publishing multiple 
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papers using the same dataset. Over the last years, the scientific community is moving to more 

openness as this accelerates research and new breakthroughs, allows to investigate larger sample 

cohorts by combining public datasets, and paves a way for new collaborations. Besides sharing, data 

should also be clearly annotated and methods described in detail to allow other researchers to re-use 

the data. I generated a unique and comprehensive dataset in the T-ALL field by combining polyA[+] as 

well as total RNA-seq of a large T-ALL cohort and TLX1 knockdown system, extended with epigenetic 

layers through ATAC-seq and ChIP-seq. As I only investigated the role of lncRNAs, with a focus on the 

TLX subgroup, my dataset contains extensive unexplored information. Hence, I wrote a data descriptor 

providing detailed information about the methods and analyses performed, enabling other 

researchers to further explore this comprehensive dataset to further unravel the complex biology of 

T-ALL in general and TLX1 in particular. 

In this PhD thesis, I only investigated TLX1 specific lncRNAs and differences in lncRNA expression 

between the TLX subgroup and the other subgroups, whereby my dataset remains to be explored for 

plenty of other analyses. First, this dataset can be further used to reveal the lncRNA expression profile 

of the other subgroups, although it should be noted that the HOXA subgroup is underrepresented (13 

immature, 17 TLX, 23 TAL-R and 7 HOXA patients). Of interest, this analysis has previously been 

scrutinized in the lab by Wallaert et al. using microarray profiling of the same T-ALL cohort. Comparing 

this dataset with my RNA-seq dataset is complicated as only a few of the probes on the microarray are 

also defined as lncRNA in Ensembl (11). In contrast to microarray based profiling, RNA-seq has the 

advantage to detect all lncRNAs in an unbiased way and enables to detect new lncRNAs as no probes 

are required. Second, I only investigated lncRNAs, leaving the opportunity to study other biotypes. 

Third, I have generated total RNA-seq data containing reads mapping to immature/unspliced RNA 

(introns), allowing to further exploit this type of data to differentiate transcriptional vs post-

transcriptional regulation (79). Finally, the total RNA-seq data can be used to detect circRNAs as these 

circRNAs lack a polyA tail and have been shown to play a role in cancer development. circRNA PVT1 for 

example sponges miRNA-497, which normally represses the anti-apoptotic protein BCL2, resulting in 

the inhibition of apoptosis and induction of proliferation in lung cancer (80). As a follow-up on the 

paper, I tried to investigate subgroup specific or TLX1 regulated circRNAs in my dataset using 

CircExplorer, but unfortunately identified only a few differentially expressed circRNAs. Since these 

circRNAs are mostly low abundant, deeper sequencing will probably be needed or circRNAs should be 

enriched by selectively removing linear RNA by exonuclease treatment prior to library prep and 

sequencing (81, 82). 

In conclusion, by providing a detailed description of the methods and analyses performed in the data 

descriptor, I believe that other researchers can re-use this dataset to further unravel the complexity of 

T-ALL. This dataset can be further explored in term of other biotypes, other subgroups and post-

transcriptional regulatory analyses can be carried out. Although I believe that re-using this dataset will 

be beneficial to further unravel the complexity of T-ALL, it should be noted that the data is generated 

using bulk experiments and will consequently hide heterogeneity and some biological effects by 

generating average expression profiles. Mutation analysis of diagnosis and relapse samples of T-ALL 

patients revealed that some of the mutations identified at relapse were already present in a minor 

clone at diagnosis, while other mutations were only detected at relapse. Since relapse can result from 

a subclone that is resistant to therapy and further expands, the detection of these subclones is 

important (26, 83, 84). It has recently been shown that some of these subclones only consist of 1 % of 

all cells and these are consequently missed by bulk sequencing, underscoring the need to perform 

single cell sequencing. To further unravel the clonal evolution of T-ALL and to obtain an in-depth view 
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on the heterogeneity of T-ALL at diagnosis and during treatment, large single cell studies are warranted 

(85). In addition, single cell RNA sequencing studies are required to investigate the heterogeneous 

response of single cells on a treatment to identify potential resistan cells. As single cell sequencing 

methods were starting to emerge at the start of my PhD, I optimized the single cell technology in the 

lab as a second part of my PhD, to be able to use this technology in future studies in the lab. 

4.5. Deciphering the non-polyadenylated fraction of the transcriptome at the single cell level 

In 2012, the first commercial single cell sequencing device, the C1, had just been released by Fluidigm. 

Before, individual cells were picked manually or FACS sorted resulting in labor intensive protocols 

requiring expertise and technical noise due to multiple pipetting steps. The release of the Fluidigm C1 

single cell autoprep system enabled to automatically isolate up to 96 single cells in a microfluidic chip 

and synthesize cDNA in the same chip. This reduced the technical noise owing to human handling and 

increased the sensitivity as it has been shown that reaction efficiencies increase in lower reaction 

volumes (86–91). Since then, the number of single cell sequencing methods and devices expanded 

quickly and new methods now enable to capture tens of thousands of single cells in an experiment and 

to significantly reduce the cost per single cell (14–16). However, almost all of the currently existing 

methods focus on sequencing of the ends of polyadenylated transcripts. Since these represent only 1-

5 % of the total RNA present in each cell, the non-polyadenylated fraction of the transcriptome, 

including eRNAs, a considerable fraction of the lncRNAs and all circRNAs, remains unexplored (14, 82, 

92–95). To detect non-polyadenylated RNAs, three workflows –SUPeR-seq, RamDA-seq and MATQ-

seq– for single cell total RNA-seq have recently been developed. Unfortunately, these methods suffer 

from either an unstranded nature of the protocol or results in a high fraction of ribosomal reads (96–

98). Retaining strand information is warranted to assign reads to the correct gene as a considerable 

fraction of the genes overlap on opposite strands (99). In addition, a rRNA depletion step is essential 

as up to 95 % of the total RNA content in a mammalian cell consists of rRNA. Since none of the single 

cell total RNA-seq methods combined these desirable features at the start of my thesis, I developed a 

new single cell total RNA-seq method that meets these requirements. I have introduced the protocol 

for the C1 and for FACS sorted cells using Fluidigm script builder as the C1 and FACS are, in contrast to 

the frequently used droplet-based methods, open and flexible systems for which users can easily adapt 

and develop protocols. I showed that the method generates an average of only 3 % ribosomal reads 

and retains strand information. Furthermore, my method permits to detect relatively more protein-

coding genes, pseudogenes, lincRNAs and miscellaneous RNA (miscRNA) compared to single cell 

polyA[+] RNA libraries, when corrected for equal sequencing depth. By further increasing the 

sequencing depth up to 8 million reads, no plateau is reached, showing the high transcriptome 

complexity of the libraries. Besides these known gene classes, also novel genes (not annotated in 

Ensembl and LNCipedia) were identified. As expected for total RNA libraries, more intronic reads were 

present compared to polyA[+] libraries. The exon-intron ratio can be used for the analysis of post-

transcriptional regulation or RNA velocity analysis (100–102). The latter allows to predict a cell’s future 

state on a timescale of hours based on the balance between spliced and non-spliced transcripts. This 

is possible as an increase of transcription first results in a concomitant increase of non-spliced pre-

mRNA expression followed by an increase of mature spliced mRNA expression and the other way 

around for a transcriptional drop. Therefore, the balance between non-spliced and spliced transcripts 

provides an indication for the future state of mature mRNA in a cell (103). Moreover, these introns can 

be used to perform intron based expression analysis to identify the variance in pre-mRNA expression, 

which reflects the effect of transcriptional bursting (98). Besides single cell total RNA-seq, single 

nucleus RNA-seq also detects a higher proportion of intronic reads compared to whole cell preparation 

methods owing to the unprocessed RNA in the nucleus. Therefore, snRNA-seq can also be used for the 

abovementioned analyses (104). Finally, I also detected 537 circRNAs of which 14 were detected in at 
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least 4 out of 64 cells. To detect more circRNAs in multiple single cells, total RNA libraries should be 

sequenced deeper or enriched for circRNAs by selective removal of linear RNA by exonuclease 

treatment prior to library prep and sequencing (81, 82).  

Since single cell experiments are confounded by several types of biases, including cell cycle, chip and 

sequencing bias, I eliminated as many as possible of these biases. Cell cycle is the major confounder of 

single cell experiments and can hide true biological effects. Therefore, I reduced cell cycle bias by 

performing cell cycle synchronization by serum starvation. Bulk cell cycle analysis after serum 

starvation demonstrated that 80.3 % of the cells were arrested in the G0/G1 phase. As this analysis 

was done in bulk, I was not able to define the cell cycle stage of each cell separately. In order to do so, 

fluorescence ubiquitination-based cell cycle indicator (FUCCI) can be used whereby cells are stained 

according to their cell cycle stage. This is based on the fact that CTD1 is highly expressed in the G1 

phase and subsequently ubiquitinated, while geminin is highly expressed during the S, M and G2 phase. 

By transducing cells with fluorescently labeled CTD1 and geminin, each cell’s individual cell cycle phase 

can be determined (105). After sequencing, the cell cycle phase per cell can also be determined 

bioinformatically based on cell cycle stage specific gene expression patterns. To further eliminate the 

effect of cell cycle, bioinformatics tools, such as the single-cell latent variable model (scLVM), can be 

applied during data analysis (106). In addition, chip bias can be introduced by analyzing single cells of 

treated and untreated cells on different chips. Therefore, I stained the treated cells to be able to 

process treated and untreated cells on one chip and to visually distinguish them after cell capture. 

Finally, sequencing bias can be introduced by sequencing samples on different runs. As I wanted to 

compare my single cell total RNA-seq protocol with the standard single cell polyA[+] protocol, I 

sequenced both libraries in one sequencing run. 

Despite many advantages, my method also has some limitations. First, the throughput is low as only 

up to 96 cells can be captured on a C1 microfluidic chip. Moreover, the cell capture rate of the C1 

depends on the cell type as some cell types (e.g. leukemic cells) are very motile and can move through 

the channels resulting in multiple cells per capture site. To partially solve the throughput problem, I 

showed that the single cell total RNA-seq C1 protocol also works for FACS sorted cells, enabling to sort 

cells in 384 well plates. Although this increases the throughput, it is still low compared to the droplet-

based systems where tens of thousands of cells can be captured, but which are less flexible to adapt. 

Second, the C1 suffers from a high cell doublet rate, further reducing the number of truly single cells 

per chip (107). For the three experiments that were performed, I observed at least one cell in 609 of 

the 672 capture sites (7 chips) with a mean multiplet rate of 34.54 %. However, the C1 chip has the 

important advantage that cells can be visualized using a microscope to exclude these multiplets from 

further analysis, which is not possible for droplet-based systems. However, stacked cells (i.e. cells on 

top of each other) cannot be identified as two cells since they seem to be one cell (108). To get an 

accurate estimate of the doublet rate of specific devices, mixed mouse-human experiments are 

typically carried out by counting the number of cells that contain a considerable fraction of human as 

well as mouse transcripts or by using two cell types that can be genetically distinguished (107). Also 

bioinformatics tools have been developed to remove these doublets in silico (109, 110). Finally, three 

chips for the C1 exist, depending on the size of the cells: small (5-10 µM), medium (10-17 µm), and 

large (17-25 µm) chips. Therefore, heterogeneous cell populations consisting of cells with different cell 

sizes cannot be fully captured using the C1 (111). Nevertheless, this problem can be solved using FACS 

sorted cells as I demonstrated that my novel total RNA single cell method works equally well on FACS 

sorted cells. Furthermore, this has the advantage that cells of interest can be sorted based on known 

surface markers and that cell doublets and debris are removed. In addition, rare cells can be enriched 

using FACS sorting, for which it has been shown to have only minor effect on gene expression profiles 

(112).  
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In contrast to the typically used single cell polyA[+] methods, the developed single cell total RNA-seq 

method in my PhD thesis enables to quantify non-polyadenylated genes, although small RNAs, 

including microRNAs and tRNAs will remain undetected. To detect these small RNAs, other methods 

for single cell small RNA-seq have recently been developed (113). As single cell small, polyA[+] and 

total RNA-seq methods each detect a unique set of the transcriptome, these layers should ideally be 

combined to get a more complete view of a cell’s transcriptome (114). Combining small and mRNA-

seq is possible by first isolating the polyadenylated transcripts with an oligo dT primer followed by 

small RNA-seq on the supernatants fraction, in which the small RNAs are still present. This combination 

can be used to validate microRNA targets as changes of microRNA expression can have influences on 

the expression of hundreds of mRNAs (115). 

4.6. The hurdles to get a complete view of a single cell’s transcriptome are device dependent 

Since the number of single cell sequencing devices and library prep methods has increased 

substantially over the last years, I compared three -C1, ddSeq and Chromium- commercial available 

single cell devices, representative for the wide variety of platforms, ranging from microfluidic chips to 

droplet-based systems and from full transcript sequencing to 3’ end sequencing. The C1 uses 

microfluidic channels and pressure-controlled valves, in which 96 cells can be isolated and processed 

in nanoliter volume reaction chambers. In contrast, ddSeq and Chromium are droplet-based devices 

that capture ~300 and tens of thousands of cells per well, respectively. To compare these three devices, 

I treated NGP neuroblastoma cells with nutlin-3 and performed single cell polyA[+] RNA-seq on these 

samples with each of the three devices. Cell synchronization was carried out to reduce the cell cycle 

bias and ERCC spike-in RNA molecules were added in all three experiments. These ERCC spikes are 92 

synthetic RNA molecules that have a bacterial sequence composition in order not to interfere with the 

human sequences. These spikes differ in length, GC content and abundance and are used in bulk 

experiments to measure accuracy and sensitivity (116). In 2012, these ERCC spikes were for the first 

time used in a single cell experiment and can be used for normalization (117). Of note, ERCC spikes are 

mostly not added in droplet-based experiments since these are added to every droplet and 

consequently also sequenced in droplets without cells, increasing the sequencing costs considerably 

(118). However, we have added ERCC spikes to all three experiments to make them comparable. In 

order to remove batch effects, nutlin-3 treated NGP cells were stained with a cell tracker dye in the C1 

experiment, enabling to process treated and untreated cells on one chip. In contrast, for the ddSeq 

and Chromium, treated and untreated cells were isolated in different wells of the chip, resulting in 

possible small batch effects. In future experiments, these batch effects could be reduced by ‘cell 

hashing’ where oligo coupled antibodies against ubiquitously expressed surface markers are used, 

enabling to distinguish cell types that are processed together and to identify multiplets as each cell 

type has another oligo (119). Furthermore, cell hashing can be used to distinguish low-quality cells 

from ambient (extracellular) RNA as the antibodies will only bind in droplets containing real single cells. 

Of note, cell hashing requires a deeper sequencing coverage to be able to sequence and detect the 

oligos bound to the antibodies (119, 120). 

As a first step in the comparison of these devices, low-quality cell data needed to be removed. 

Therefore, I removed all cells that have a log number of genes or reads more than three times the 

median absolute deviation (MAD) below the median value as the mRNA of these cells has not 

efficiently been captured. Also, cells with a number of reads or genes above this cutoff were removed 

as these may be cell doublets. In addition, cells with a number of ERCC spikes above or below three 

times the MAD are also removed as this indicates a too low or high endogenous mRNA content, 

respectively. In such low-quality cells, the endogenous mRNA is less efficiently captured, thus ERCC 

spikes will be preferentially reverse transcribed, amplified and sequenced. The opposite is true for cell 
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doublets, where relatively speaking too much endogenous mRNA is captured (121–123). However, it 

should be noted that these filters may remove specific subpopulations in heterogeneous cell 

populations as some cells may effectively contain less or more mRNA (121–123). To further remove 

low-quality data, cells with a high mitochondrial RNA content are typically removed, as dying cells with 

impaired cellular membranes are known to result in more mitochondrial reads (107, 124). Using this 

filter should be done carefully as some cell types such as heart cells have a high mitochondrial content 

and should not be removed (124). Moreover, particular treatments, such as the TP53 activator nutlin-

3, result in apoptosis, which can lead to a high fraction of mitochondrial reads. 

All single cell devices, including also the C1, ddSeq and Chromium that I evaluated, have a certain 

number of challenges in common, some more than others. The first challenge is that all the developed 

technologies suffer from technical noise due to the low input volumes. This low input requires several 

PCR cycles resulting in amplification bias, which can only partially be removed using UMIs, since these 

UMIs are random sequences that tag each unique mRNA molecule. My data revealed a noisier gene 

expression pattern for the C1 compared to ddSeq and Chromium. This can partially be explained by 

the lower throughput and by the fact that C1 library prep methods do not integrate UMIs, resulting in 

a higher amplification bias compared to ddSeq and Chromium that include UMIs (125–128). A second 

challenge is that only 10 – 40  % of transcripts are typically captured per single cell (107, 114, 129, 130). 

This subsampling of transcripts has a major effect on the interpretation of single cell transcriptome 

profiles as single cell RNA-seq does not comprise a full picture of a cell’s transcriptome. The most 

abundant genes will be detected in almost all cells, while medium expressed genes will only be 

detected in some cells implying that these are rare, while true low abundant transcripts will probably 

not be detected. Therefore, care should be taken to draw conclusions and results should be validated 

using single molecule FISH (smFISH). smFISH uses a set of fluorescent labeled probes to bind on target 

RNA, enabling quantification and localization of single RNA molecules in individual cells (131, 132). 

Nevertheless, based on the gene expression profiles of multiple cells, we can obtain insights in cellular 

heterogeneity and subpopulations (125). In line with the literature, I showed that using the C1, more 

transcripts per cell can be captured compared to the ddSeq and Chromium and that C1 gene expression 

data better correlates with bulk gene expression data, due to the higher sequencing depth and higher 

transcriptome complexity of the C1 cDNA libraries. Of note, it has been shown that even after 

subsampling, the sensitivity of SMART-seq protocol that I used on the C1 is still higher compared to for 

instance Chromium, showing that the SMART-seq method used on the C1 has a higher mRNA capture 

efficiency (107). By subsampling my single cell datasets, I will validate if the C1 still has the highest 

sensitivity. Furthermore, I revealed that correlation of average gene expression patterns among the 

single cell devices was slightly better between ddSeq and Chromium, in line with their similarity in 

terms of RNA-seq library preparation. The third challenge is that many dropouts are generated due to 

technical limitations associated with the low input volumes whereby some transcripts are not captured 

(107, 133, 134). These zero-values for a gene can be both biological or technical in origin. Biological 

dropouts are zero-values for genes that are simply not expressed. These genes can be expressed in 

some cells, but not in other cells due to heterogeneity or transcriptional bursts (108, 127, 134). In 

contrast, technical dropouts are zero-values for genes that are expressed, but not detected due to the 

low capture efficiency of low abundant genes (108, 127, 134). In line with the higher sensitivity of the 

C1, less dropouts (55 %) were detected in the C1 dataset compared to the ddSeq (88 %) and Chromium 

(86 %) dataset, due to the higher RT efficiency and higher number of reads that are typically generated 

for this low-throughput method. Several tools have been developed to take into account these dropout 

events (130, 135, 136).  

As discussed above, each single cell RNA-seq method has its own strengths and weaknesses, which 

should be taken into account to select the optimal method for a specific application. The device one 
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should use depends on the available equipment, the number of required single cells, the sequencing 

coverage, the sample availability and the research question. To investigate embryo development, only 

a hundred of cells are sufficient to identify the critical steps during development, while more cells are 

needed to study transcriptional heterogeneity (120, 137). To unravel heterogeneity, one can first do a 

shallow sequencing experiment on the Chromium with many cells. If the results are of interest, a more 

in-depth analysis can be done on fewer cells with a deeper and more complete transcriptome coverage 

(120). Tools exist to calculate the required number of cells based on the number of subpopulations 

one expects, the fraction of cells that belong to the rarest subpopulation and the number of cells 

wanted per subpopulation (120). Since the throughput of single cell devices differs, the number of 

required cells will have a direct influence on the choice of the device. A low coverage is sufficient to 

capture heterogeneity since the expression of high abundant genes is sufficient to discriminate cell 

types, while deeper sequencing is required to study transcriptional heterogeneity of low abundant 

genes (125, 138). Moreover, deeper sequencing is required for full length methods to perform splicing 

and mutation analysis (139, 140). Dr. Hadfield and colleagues have generated a web portal to collect 

single cell quality data of the scientific community with information about the cell type, sequencing 

depth and number of genes detected, providing some evidence for the number of reads  that are 

warranted for your specific question and cell type (http://10xqc.com)(120). The device of choice also 

depends on the material used. For precious clinical samples with few cells, devices with a high cell 

capture efficiency are warranted in order not to lose too much material (125). Furthermore, the price 

can play a role in choosing a device. The C1 is expensive due to the expensive chips and commercial 

kits. However, the price of this type of experiments can be reduced using nanoliter dispensing robots 

decreasing the volumes needed and consequently the price (139, 140).  

4.7. Single cell RNA sequencing reveals transcriptional heterogeneity and hidden biological 
signals 

Besides data quality, I also evaluated the three single cell devices with respect to transcriptional 

heterogeneity and their ability to detect differentially expressed genes, which is unique since other 

comparative studies compared single cell methods with a focus on data quality, costs, reproducibility, 

and the ability to discriminate subpopulations (86, 104, 117, 118, 128). One recent study also evaluated 

the ability of the C1 and Chromium to detect differentially expressed genes, however did not use a 

model system upon chemical perturbation (107). Furthermore, this study only used Limma Voom to 

detect differentially expressed genes, while I combined PIM and EdgeR with Zinger to identify truly 

differentially expressed genes, since it has been shown that the number of genes called as differentially 

expressed varies among tools (141). The largest number of genes was identified as differentially 

expressed using Chromium, in line with the other study and the observation that more genes are called 

differentially expressed with increasing numbers of single cells (107, 142). Although the number of 

differentially expressed genes in the single cell datasets is much lower compared to the bulk dataset, 

a strong enrichment of TP53 gene sets was identified in all datasets, showing that capturing only the 

most abundant genes is sufficient to recapitulate the biological signal. Of note, only a small overlap in 

enriched gene sets between the bulk and single cell datasets was identified, in line with a previous 

study (107). This discrepancy might be partially explained by the fact that in contrast to the single cell 

experiments, no cell cycle synchronization was performed for the bulk experiment. Further in-depth 

investigation should reveal the relevance of the unique enriched signals in the single cell datasets. 

Removing the cell cycle effect by only investigating cells in the G1 cell cycle phase revealed that more 

genes are differentially expressed compared to the full dataset, showing that these might be hidden 

by cell cycle effects in the full dataset. Furthermore, enrichment of TP53 regulated genes underlines 

the relevance of the genes only differentially expressed in G1 cells. To validate these results, the 

analysis should be repeated for cells in other cell cycle phases. In addition, this analysis has only been 

http://10xqc.com/
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carried out for the Chromium dataset as this is the largest dataset and repeating these analyses for the 

C1 and ddSeq dataset might not be robust as only a few cells per cell cycle phase will be retained. 

However, this issue can be partially solved by pre-selecting cells in a specific cell cycle stage by FACS 

sorting prior to single cell isolation. Furthermore, for the C1 the high-throughput chip, in which 800 

single cells can be captured, can be used in future experiments, increasing throughput considerably. 

Of interest, comparing nutlin-3 treated cells with low and high expression of the TP53 target CDKN1A 

and nutlin-3 and vehicle treated cells without expression of CDKN1A enabled to detect potential late-

responders and resistant cells, an intriguing finding that requires further in-depth investigation. This 

analysis should also be validated using other TP53 target genes. Selecting these target genes is 

complicated by the fact that only the most abundant genes are detected in single cell experiments, 

excluding for instance BAX as candidate. Finally, I showed that pseudobulk data, generated by merging 

single cell profiles, reconstitute the bulk data. 

4.8. Limitations of the current methods drive the development of new single cell sequencing 
methods 

Over the past decade, multiple single cell RNA-seq methods have been developed with increasing 

numbers of cells that can be processed, from a few cells to tens of thousands of cells in a single 

experiment (129, 143, 144). Although this also resulted in a drop of the costs of a single cell sequencing 

experiment, sequencing thousands of single cells remains costly (119). Furthermore, only 10 – 40  % 

of transcripts are typically captured per single cell, missing information to obtain a complete view of a 

cellular transcriptome (107, 114, 129, 130). Therefore, further evolution in the single cell RNA-seq 

methods is warranted to capture more transcripts and to further reduce the costs. As most high-

throughput single cell RNA-seq methods currently require paired-end sequencing, costs could be 

reduced by developing methods that only need single-end sequencing (145). To increase the transcript 

capture rate, cell lysis and RT steps need to be further optimized (87, 146).  

A major drawback of current single cell RNA-seq methods is the lack of spatial information that is 

embedded in the tissue of origin (89). One of the first efforts to retain spatial information was the use 

of smFISH, which combines spatial organization with copy number variations by using fluorescent 

probes. This method does not need pre-amplification, but is limited by the number of colors that can 

be visualized and can consequently only be used for the quantification of a handful of targets (132, 

147, 148). Sequential FISH (seqFISH) and multiplexed error robust FISH (MERFISH) circumvent this 

limitation by including sequential rounds of labeling and imaging, enabling an unlimited number of 

transcripts to be visualized. However, this is only possible for known markers (147–149). To obtain the 

whole transcriptome and retain the spatial information in a single cell, fluorescent in situ sequencing 

(FISSEQ) has been developed. In FISSEQ, RNA is reverse transcribed and amplified in fixed cells,  

followed by cDNA sequencing by the ‘sequencing by ligation’ approach, providing detailed spatial 

information of the transcripts (150–152). Further improvements will be needed to get better coverage 

and longer reads and to increase the sensitivity (151, 153). A limitation of the current single cell whole 

transcript methods, which can be used for mutation and splicing analysis, is that these are limited to a 

few hundred cells. Therefore, single-cell isoform RNA-Seq (ScISOr-Seq) has been developed enabling 

to sequence full length transcripts of thousands of cells using long-read sequencing. Furthermore, 3’ 

end RNA-seq of the same cells can be carried out in parallel. First, single cells are captured and labeled 

using Chromium followed by dividing the pool of cells in two populations, one part for the 3’ end 

counting for gene expression profiling and one part for the long read sequencing, used for isoform 

identification using Pacific Biosciences (PacBio) or Oxford Nanopore sequencing instrument (154). 

Numerous single cell sequencing methods have been developed and optimized over the last decade, 

enabling to sequence tens of thousands of single cells. However, all currently existing single cell 
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sequencing methods are end-point experiments, eliminating the possibility to further follow-up these 

cells over time. Furthermore, due to the increase of single cell analysis research articles, numerous 

single cell sequencing datasets are publicly available. To make the data also easily available and 

interpretable for biologists, often lacking skills to analyze these complex datasets, several tools with a 

user-friendly interface have been developed. The single-cell analysis pipeline (ASAP) allows to load 

single cell sequencing data and to perform subsequent analysis steps such as filtering and 

normalization. Afterwards, results can be visualized making them easily interpretable (155). Panglao 

DB is another tool that contains hundreds of mouse and human single cell data analyzed with the same 

pipeline allowing analysis, visualization and interpretation of the data (156).  

4.9. Unraveling tumor heterogeneity by single cell RNA sequencing can have major clinical 
implications 

Over the last decades, cancer research has been focusing on the detection of genetic alterations in 

cancer specific genes and their therapeutic targeting. While this enabled the development and 

application of precision oncology treatments for some tumor types, a large fraction of the patients 

acquires therapy resistance by circumventing the mechanisms of action (157, 158). This resistance can 

be due to a specific subpopulation that has primary resistance or develops resistance to the therapy 

(158). Despite advances in NGS and computational methods on bulk tumor tissue, with the ability to 

detect subpopulations, single cell RNA-seq methods are required to get a full view of the complexity 

of the tumor, i.e. its clonal subpopulations, stromal cells and infiltrating immune cells (158–160).  

Single cell sequencing offers great benefits for cancer research. First, identifying the cells of origin can 

significantly contribute to early tumor detection (158, 161). Second, identification of a pre-malignant 

disease state and consequently providing early treatment can improve patient survival (158, 162). 

Identifying such a pre-malignant stage is difficult  as the CNVs and SNVs are only present in a few cells 

at the initial stage and missed performing bulk RNA-seq underscoring the need to perform single cell 

sequencing (158). Identifying this pre-malignant state contributes to the prediction of tumor 

progression and decision of the treatment (158, 163). Third, despite the fact that the primary tumor is 

mostly investigated, more research is needed to characterize intra-tumor heterogeneity as 

characterization of the different subpopulations is important to give the right combination of drugs 

that can target all these populations. Finally, comparing primary and metastatic cells enables 

phylogenetic analysis to determine how the tumor evolved in a metastatic tumor. Single cell RNA-seq 

can unravel the transcriptional changes a cell undergoes to emerge from a cancer cell to a migrating 

cancer cell and can contribute to the identification of new therapeutic targets (158).  

Nowadays, most single cell sequencing methods still start from fresh material, limiting the applications 

as tumors are often flash-frozen or preserved formalin-fixed paraffin-embedded (FFPE). This often 

results in membrane rupture, although nuclear membranes are shown to retain intact (164, 165). 

Therefore, new methods that can use FFPE material or cells that have been frozen as input have been 

developed (166). These methods isolate nuclei instead of whole cells as nuclei are more resistant to 

the stress during freeze-thawing and FFPE preserving (165, 167, 168). For FFPE material, intact nuclei 

can be isolated and DNA that has been disrupted can be repaired by adding DNA repair enzymes which 

can subsequently be used for CNV analyses, resulting in similar results as for fresh material (166). Also 

methods to perform snRNA-seq of frozen cells show a high concordance between nuclei  and whole 

cell derived transcriptomes and detect more intronic reads as compared to whole cell derived methods 

(104, 165, 167, 168). A drawback of snRNA-seq is that sorting based on surface markers is not possible 

(168). In order to be able to store cells without influencing their gene expression profile, it has recently 

been shown that cells can be fixed using aldehyde or alcohol and enables to store cells for several 

weeks. The sensitivity, doublet rate and gene expression profile obtained are similar as to fresh cells 
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enabling to store cells and process them at later timepoints (158, 169, 170). This is preferable for 

clinical samples that often need to be shipped because sample collection and sample processing often 

occur at different locations (145). Since invasive biopsies are needed to isolate cells from tumors, single 

CTC sequencing has gained interest over the last years. CTCs are cells from the primary tumor, shed in 

the blood stream which indicates the presence of metastasis. These CTCs can be isolated in a non-

invasive way and can be used for follow-up of tumor progression and treatment. As only a few CTCs 

per 10 ml blood are present, methods to enrich for these CTCs are warranted. These can be isolated 

from blood using the epithelial cell adhesion molecule (EpCam) marker, which is a  tumor-specific 

surface maker expressed on epithelial tumor cells while absent on most blood cells. In contrast, CD45 

is only expressed on most blood cells and can be used for negative selection. Isolation of CTCs based 

on these markers has the disadvantage that EpCam negative CTCs are missed (164, 171). In contrast, 

the DepArray system uses fluorescent markers where CTCs can be isolated based on specific markers 

of the tumor type, whereby also EpCam negative CTCs can be isolated (172). These methods are biased 

as they are based on known markers or EpCam expression. To capture CTCs in an unbiased way, 

nanofabricated filters were developed as CTCs are in general larger than normal blood cells (164, 173). 

New enrichment methods are still warranted, to more efficiently enrich for these rare, valuable CTCs. 

4.10. Conclusions 

In conclusion, I identified a set of TLX1 regulated and TLX subgroup specific lncRNAs, of which some 

are potentially oncogenic, marking them as highly interesting targets for further in-depth 

characterization. Since the T-ALL dataset I generated contains unexplored features, I wrote a data 

descriptor with detailed information about the methods and bioinformatics pipelines applied to make 

the data re-usable for the research community, enabling to further unravel the complex biology of T-

ALL. Furthermore, I developed a single cell total RNA-seq protocol that for the first time combines 

strandedness and effective removal of ribosomal cDNA and enables the detection of both 

polyadenylated and non-polyadenylated transcripts, including lncRNAs, circRNAs and novel genes. 

Finally, I evaluated three commercial single cell devices (C1, ddSeq and Chromium) with respect to 

data quality and the ability to detect differentially expressed genes and revealed that single cell data 

can detect biological signal faithfully through gene set enrichment analysis and may help to identify 

potentially late-responders or resistant cells upon compound treatment.  
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een ‘tandem’ hebben we samen veel single cell experimenten gedaan; bedankt om enthousiast te 

blijven, ondanks de vele tegenslagen en mij te motiveren als ik een dipje had! Bedankt Laura, om last 

minute nog mijn voorblad te maken. Ook mijn paranimfen, Eva en Lisa, wil ik bedanken voor al de 

praktische zaken, maar zeker ook voor de talloze ontspannende momenten en motiverende woorden.  

Elke reden was goed om te klinken met een goed glas cava! 

Lieve eetclub-vriendinnen, bedankt voor de maandelijkse gezellige etentjes, om mij even te laten 

ontspannen tijdens drukke periodes. Na de drukke verbouwingen in combinatie met mijn doctoraat 

heb ik vanaf nu weer meer tijd om samen op pad te gaan, beginnend met ons vriendinnenweekend. 

Graag wil ik ook Lisa bedanken, om er steeds te zijn, om klaar te staan met de juiste woorden of snel 

een dessertje binnen te steken om mij te motiveren! Een grote dankjewel ook aan mijn ouders en zus. 

Bedankt om ‘even’ wat huishoudelijke taken over te nemen, om te blijven helpen verbouwen, ondanks 

dat ik boven aan het schrijven was, en om mij te steunen tijdens mijn doctoraat.  

Bedankt aan al de CMGG collega’s voor de vier fantastische jaren, jullie zorgden ervoor dat ik steeds 

met heel veel plezier kwam werken en met een grote glimlach zal terug denken aan deze periode! 
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Versteeg R, Boeva V, Schleiermacher G, van Nes J, Mesdagh P, Vanhauwaert S, Schulte 

JH,Westermann F, Molenaar JJ, De Preter K, Speleman F (2018). TBX2 is a neuroblastoma core 

regulatory circuitry component enhancing MYCN/FOXM1 reactivation of DREAM targets. Nature 

communications 9(1):4866. 

 

Grants 

BOF grant: Epigenetic re-activation of T-ALL tumor suppressors under control of TLX1 driven 

enhancer RNAs. October 1, 2017, Belgium. 

BOF grant: Epigenetic re-activation of T-ALL tumor suppressors under control of TLX1 driven 

enhancer RNAs. October 1, 2015, Belgium. 

 

Oral presentations 

Verboom K. The TLX1 oncogene modulates the enhancer RNA landscape in T-ALL. Course and 

master classes on molecular aspects of hematological disorders. June 20-21, 2017, Rotterdam, 

Netherlands. 

Verboom K. The TLX1 oncogene modulates the enhancer RNA landscape in T-ALL. fTALES: 

Cancer an old dog with new tricks. March 6-7, 2017, Leuven, Belgium. 

Verboom K. The T-ALL oncogene TLX1 controls enhancer lncRNA expression. f-TALES: Light on 

the dark side of the genome . September 15, 2016, Ghent, Belgium. 

Verboom K. Dissecting the NOTCH1 driven transcriptional landscape in T-cell acute 

lymphoblastic leukemia at single cell level. Oncopoint. March 2, 2016, Ghent, Belgium. 

Verboom K. Single cell RNA sequencing at CRIG. Single cell workshop. January 19, 2016, Ghent, 

Belgium. 

 

Poster presentations 

Verboom K, Everaert C, Bolduc N, Livak JK, Yigit N, Rombaut D, Anckaert J, Venø MT, Kjems J, 

Speleman F, Mestdagh P and Vandesompele J. SMARTer single cell total RNA sequencing. 

Keystone Symposia: Single cell biology. January 13-17, 2019, Breckenridge, USA. 

Verboom K, Everaert C, Bolduc N, Livak JK, yigit N, Rombaut D, Anckaert J, Venø MT, Kjems J, 

Speleman F, Mestdagh P and Vandesompele J. SMARTer single cell total RNA sequencing. 

CRIG’s single cell mini-symposium. December 5, 2018, Gent, Belgium. 

Verboom K, Van Loocke W, Vandesompele J, Vandamme N, Berx G, Saeys Y, Martnes L, Van 

Vlierberghe P, Speleman F and Durinck K. The TLX1 oncogene modulates the enhancer RNA 

landscape in T-ALL. Chromatin architecture and chromosome organization. March 24-27, 

2018, Whistler, Canada. 

Verboom K, Van Loocke W, Vandesompele J, Van Vlierberghe P, Speleman F and Durinck K. A 

comprehensive inventory of TLX1 controlled long non-coding RNAs in T-cell acute 
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lymphoblastic leukemia. Keystone Symposia: The epigenome in development and disease. 

February 16, 2018, Gent, Belgium.  

Verboom K, Durinck K, De Decker M, Van Loocke W, Matthijssens F, Soulier J-J, De Laat W, 

Taghon T, Van Vlierberge P and Speleman F. The TLX1 oncogene modulates the enhancer RNA 

landscape in T-ALL. T-ALL workshop. March 17-19, 2017, Leuven, Belgium. 

Verboom K, Durinck K, De Decker M,Van Loocke W, Matthijssens F, Soulier J-J, De Laat W, 

Taghon T, Van Vlierberge P and Speleman F. The TLX1 oncogene modulates the enhancer RNA 

landscape in T-ALL. fTALES: Cancer an old dog with new tricks. March 6-7, 2017, Leuven, 

Belgium. 

Verboom K, Durinck K, Van Loocke W, Matthijssens F, Van de Walle I, Wallaert A, Volders  P-J, 

Van Roy N, Benoit Y, Poppe B, Rondou P, Mestdagh P, Vandesompele J, De laat W, Soulier J-J, 

Taghon T, Van Vlierberge P and Speleman F. The T-ALL oncogene TLX1 controls enhancer 

lncRNA expression. BeSHG: The epigenome in development and disease. February 17, 2017, 

Louvain-La-Neuve, Belgium. 

Verboom K, Durinck K, Van Loocke W, Matthijssens F, Van de Walle I, Wallaert A, Volders  P-J, 

Van Roy N, Benoit Y, Poppe B, Rondou P, Mestdagh P, Vandesompele J, De laat W, Soulier J-J, 

Taghon T, Van Vlierberge P and Speleman F. The T-ALL oncogene TLX1 controls enhancer 

lncRNA expression. Keystone Symposia: Noncoding RNAs: from disease to targeted 

therapeutics. February 5-9, 2017, Banff, Canada. 

Verboom K, Durinck K, Yigit N, Everaert C, Cannoodt R, Van Vlierberghe P, Vandesompele J and 

Speleman F. Dissecting the NOTCH1 driven transcriptional landscape in T-cell acute 

lymphoblastic leukemia at single cell level. Single cell biology 2016. March 8-10, 2016, 

Hinxton, UK. 

 

Conferences 

• BeSHG: Precision medicine, March 15, 2019, Luik, Belgium 

• Keystone Symposia: Single cell biology. January 13-19, 2019, Breckenridge, USA. 

• CRIG’s single cell mini-symposium. December 5, 2018, Ghent, Belgium. 

• Keystone Symposia: Chromatin architecture and chromosome organization. March 24-
27, 2018, Whistler, Canada. 

• BeSHG: The epigenome in development and disease. February 16, 2018, Gent, 
Belgium. 

• Course and master classes on molecular aspects of hematological disorders. June 20-
21, 2017, Rotterdam, Netherlands. 

• Enhancer structure and function. April 19-21, 2017, Bordeaux, France. 

• Zebrafish cancer modelling: state of the art and novel tools. March 20, 2017, Gent, 
Belgium. 

• T-ALL workshop. March 17-19, 2017, Leuven, Belgium. 

• Oncopoint. March 15, 2017, Ghent, Belgium 

• f-TALES: Cancer an old dog with new tricks. March 6-7, 2017, Leuven, Belgium. 

• BeSHG. February 17, 2017, Louvain-La-Neuve, Belgium. 

• Keystone Symposia: Noncoding RNAs: from disease to targeted therapeutics. February 
5-9, 2017, Banff, Canada. 

• Hallmarks of cancer. December 11-13, 2016, Ghent, Belgium. 
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• f-TALES: Light on the dark side of the genome. September 15-16, 2016, Ghent, 
Belgium. 

• Course and master classes on molecular aspects of hematological disorders. June 7-8, 
2016, Rotterdam, Netherlands. 

• Single cell biology. March 8-10, 2016, Hinxton, UK. 

• Oncopoint. March 2, 2016, Ghent, Belgium 

• Keystone Symposia: Noncoding RNAs in health and disease/ Enhancer malfunctions in 
cancer, February 21-24, 2016, Santa Fe, USA. 

• Genome engineering and synthetic biology: second edition, January 28-29, 2016, 
Ghent, Belgium. 

 

Student Guidance 

Baptiste Oosterlinck (September 2017 – June 2018). Master thesis, master in science in 

biomedicine engineering (Ghent University, Faculty of bioscience engineering). Studie van 

enhancer RNA’s in de ontwikkeling van T-cel acute lymfoblastische leukemie. Promotor: 

Speleman F, Durinck K, De Vos W, mentor: Verboom K. 

Tom Coucke (2017). Z-line paper, bachelor of Medicine (Ghent University, Faculty of Medicine 

and health sciences). Gamma secretase inhibitor combinatietherapieën in de behandeling 

van T-cel acute lymfoblastische leukemie. Promotor: Speleman F, mentor: Verboom K. 

Celine Haegeman (2017). Z-line paper, bachelor of Medicine (Ghent University, Faculty of 

Medicine and health sciences). Gamma secretase inhibitor combinatietherapieën in de 

behandeling van T-cel acute lymfoblastische leukemie. Promotor: Speleman F, mentor: 

Verboom K. 

Astrid Rycx (2016). Z-line paper, bachelor of Medicine (Ghent University, Faculty of Medicine 

and health sciences). CRISPR: een nieuwe revolutionaire techniek voor gentherapie: het 

voorbeeld van β-thalassemie. Promotor: Speleman F, mentor: Verboom K. 

James Schelfaut (2016). Z-line paper, bachelor of Medicine (Ghent University, Faculty of 

Medicine and health sciences). CRISPR: een nieuwe revolutionaire techniek voor 

gentherapie: het voorbeeld van β-thalassemie. Promotor: Speleman F, mentor: Verboom K. 

 

 



 

 
 

 

 

 

 

 

 

 

 

 


