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How quickly do we learn from conceptual models? 

ABSTRACT 

In organizations, conceptual models are used for understanding domain concepts. Learning the 

domain from models is crucial for the analysis and design of information systems that are 

intended to support the domain. Past research has proposed theories to structure conceptual 

models in order to improve learning. It has, however, never been investigated how quickly 

domain knowledge is acquired when using theory-guided conceptual models. Based on 

theoretical arguments, we hypothesize that theory-guided conceptual models expedite the initial 

stages of learning. Using the REA ontology pattern as an example of theoretical guidance, we 

show in a laboratory experiment how an eye-tracking procedure can be used to investigate the 

effect of using theory-guided models on the speed of learning. Whereas our experiment shows 

positive effects on both outcome and speed of learning in the initial stages of learning, the real 

contribution of our paper is methodological, i.e. an eye-tracking procedure to observe the process 

of learning from conceptual models. 
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INTRODUCTION 

A conceptual model describes a domain conceptualization that represents an abstraction of the 

domain for some purpose. In science, conceptual models are used to guide research by providing 

a visual representation of constructs or variables and their theorized relationships. In information 

systems engineering, the main purpose of conceptual models is sharing the domain knowledge 

that is required for systems analysis and design (Hoffer, Prescott, & McFadden, 2008). 

Conceptual models created using techniques and languages like Entity Relationship Modelling 

(ERM), Unified Modeling Language (UML), Event-Driven Process Chains (EPC), and Business 

Process Model and Notation (BPMN), are developed by analysts to foster shared domain 

understanding with the other stakeholders in systems development (Maass, Storey, & Kowatsch, 

2011). These other stakeholders (e.g. future system users, system architects, project leaders) 

acquire domain knowledge by comprehending and interpreting the models developed by the 

analysts. In other words, they learn the domain from the model. 
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To improve learning from conceptual models, theories have been proposed that offer 

guidance on how to structure conceptual models. By structuring a conceptual model, we mean 

deciding how to use a modelling language or technique to represent domain concepts, 

relationships and constraints (i.e. choice of abstract syntax reflecting particular semantics) and/or 

how to present the model (i.e. choice of concrete syntax and, in case of a diagrammatic 

representation, choice of layout).  

Predictions of improved learning using theory-guided conceptual models have been 

empirically demonstrated and explained using various theories of cognition (Bera, Burton-Jones, 

& Wand, 2011). Empirical studies have measured the acquisition of domain knowledge from 

using models by measuring model users’ understanding of the model. Such measurement 

typically involves evaluating users’ answers to semantic comprehension questions (i.e. assessing 

factual domain knowledge) (Khatri, Vessey, Ramesh, Clay, & Park, 2006). Whereas the focus of 

most of the research on theory-guided conceptual models was on the outcome of learning, in this 

paper we focus on the speed of learning. We define speed of learning as the rate at which domain 

knowledge is acquired.  

A focus on speed of learning requires approaching learning from conceptual models as a 

process. A few studies have attempted to gain insights into the process of learning from models 

by means of perception-based measures requiring subjects to express their perception of the 

model’s ease (or difficulty) of understanding or usefulness (Burton-Jones & Meso, 2008; Figl, 

Mendling, & Strembeck, 2013). Other studies have approximated speed of learning as the time 

taken to perform understanding-related tasks (Bodart et al., 2001; Mendling, Strembeck, & 

Recker, 2012). Both types of measurement are taken after having users interacting with models 

and as such they provide only indirect insights into the process of learning. 

As the speed of learning from a conceptual model has not been adequately measured 

before, we propose a way of observing and measuring the process of learning using an eye-

tracking procedure. We further propose how to evaluate the effect on speed of learning from 

models when theory-guided conceptual models are used. Hence, the research questions 

addressed in this paper are: 

(1) How to measure the speed of learning from conceptual models using eye-tracking?  
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(2) How to use eye-tracking to investigate whether conceptual models structured in a 

particular way expedite learning? 

To demonstrate our proposed eye-tracking procedure, we conduct an empirical study using the 

REA ontology pattern (Dunn, Cherrington, & Hollander, 2005) as an example of theoretical 

guideline for structuring a conceptual model. Poels et al. (2011) showed that users of Entity 

Relationship Diagrams (ERDs) constructed using the REA ontology pattern acquire a more 

accurate understanding of policies governing business processes. In a follow-up study, Poels 

(2011) showed that such ERDs were also perceived as easier to interpret by users that are 

novices in modeling. However, these studies did not investigate the speed of learning from the 

models. Hence it is known whether learning from such models is also faster. 

We emphasize that the intended contribution of our paper is the proposed procedure to 

observe and measure the process of learning. Although we develop theoretical arguments for 

effects on speed of learning from theory-guided conceptual models, we do not generalize the 

results of our empirical study on structuring models using the REA ontology pattern to other 

types of theory-guided models. 

The paper is structured as follows: In the Background section, we introduce our 

terminology of ‘good representation’ and ‘poor representation’ models, depending on whether 

theoretical guidance for structuring conceptual models was used. We also present our theory-

based hypotheses for the effects of ‘good representation’ models on the outcome and speed of 

learning. Further, we review how past research has measured learning from conceptual models. 

Then in the Eye Tracking section, we present our proposed procedure for observing and 

measuring the process of learning from conceptual models. This procedure is demonstrated in the 

Empirical Study section by comparing learning from models that follow or do not follow the 

REA ontology pattern. The second to last section discusses our findings and their implications 

for research and practice. The final section is the conclusion. 

BACKGROUND 

Good and Poor Representation Models 

Several theories have been proposed that offer guidance for structuring conceptual models. 

Examples of such theories include the theory of ontological expressiveness (Wand & Weber, 
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1993), the Unified Foundational Ontology (Guizzardi, 2005), and the Physics of Notations 

(Moody, 2009). For instance, the theory of ontological expressiveness states that models are 

ontologically unclear if they contain instances of modelling language constructs that represent 

optional properties (Wand & Weber, 2017). Based on the theory, a prediction can be made that a 

model, for example an ERD, that shows optional attributes and relationships (i.e. using zero 

cardinalities) suffers from ontological clarity, hence will impede understanding of the domain 

represented through the model.  

To explain in general why structuring of conceptual models affects learning, we refer to 

Cognitive Fit Theory (CFT) (Shaft & Vessey, 2006; Vessey, 1991). Figure 1 shows how we 

apply this theory to theory-based structuring of conceptual models. 

 

Figure 1: Effect of theory-based structuring of conceptual models in terms of cognitive fit  

To perform a task requiring human information processing, humans create a mental 

representation of the task solution in their working memory (i.e. mental representation of Task 

Solution boxes in Figure 1) (Vessey, 1991). Problem-solving involves two distinct activities that 

need to be performed simultaneously to perform the task well - one related to the understanding 

of the task (i.e. what information is required for task resolution?) and the other related to the 

understanding of the application domain to which the task is performed (i.e. where and how to 

get the information required for task resolution?) (Vessey, 1991). CFT suggests that a good 

mental representation of the task solution is created if the mental representation of the task (i.e. 

mental representation of the Task boxes in Figure 1) and mental representation of the application 
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domain (i.e. mental representation of the Application Domain boxes in Figure 1) emphasize the 

same type of information (i.e. a situation of cognitive fit) (Vessey, 1991). Cognitive fit is highly 

relevant as the better the mental representation of the task solution, the better the task 

performance. 

CFT has been used extensively in empirical studies on conceptual modeling (Bera, 

Burton-Jones, & Wand, 2014; Bera & Evermann, 2014; Bodart, Patel, Sim, & Weber, 2001; 

Burton-Jones & Meso, 2008; Evermann & Wand, 2006; Gemino & Wand, 2005; Shanks, 

Tansley, & Weber, 2004). Tasks considered in such studies relate to understanding a domain as 

modelled (i.e. learning a domain from a model). For instance, a task may involve using the 

conceptual model to verify the truth about some statement about the domain. In this context, 

understanding which information is required to evaluate the statement and retrieving that 

information from the model are two activities to be performed for task resolution. For a task that 

requires domain understanding, cognitive fit depends on the quality of the mental representation 

of the application domain (i.e. whether the information required for task resolution can be easily 

and accurately inferred from the conceptual model). If model users experience difficulties in 

comprehending and interpreting a conceptual model, then they face a situation known as 

cognitive overload (Mayer & Moreno, 2003). In this situation, individuals are faced with a task 

that demands more from their cognitive resources (such as working memory) than they can 

sustain.  

The focus of much of the empirical research in conceptual modelling is to demonstrate 

that a particular structuring of conceptual models eases model comprehension and interpretation 

such that a good mental representation of the application domain is created (i.e. the Good mental 

representation of the Application Domain box in the left-hand side of Figure 1), resulting in 

cognitive fit and better task performance than when using models structured differently (i.e., the 

Poor mental representation of the Application Domain box in the right-hand side of Figure 1) 

(e.g. Bera, Burton-Jones, & Wand, 2014). In the remainder of this paper we refer to such theory-

guided models as good representation models and contrast them with poor representation 

models, which are not structured following a particular theory-based guideline. 
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Hypothesis Development 

Past studies (e.g. Khatri et al. (2006) and Burton-Jones et al. (2009)) suggest that good 

representation models result in better performance in tasks related to domain understanding 

compared to bad representation models. Theory-guided structuring of conceptual models thus 

affects the outcome of learning, i.e. the extent to which domain knowledge was acquired. Past 

studies have, however, not approached learning from conceptual models as a process. What these 

studies have in common is that the effect of using a good representation model on domain 

understanding has been measured only after the exposure to the model, i.e. after the tasks have 

been performed. This means that a dynamic view of domain knowledge acquisition by means of 

conceptual models is absent in the past research.  

Learning is, however, not instantaneous. In cognitive psychology research, it has been 

demonstrated that items are better learned when they are repeated sequentially with time 

intervals (Pavlik & Anderson, 2005) rather than presented all at once (Challis, 1993). This 

phenomenon is called the spacing effect. The theory of encoding variability (Young & Bellezza, 

1982) is often used to explain why learning is enhanced when spacing is provided. As per this 

theory, the more spaced two items are, the more likely it is that they will be encoded in learners’ 

mind differently and this encoding variability facilitates in providing more context and thus 

provides more retrieval cues (Richardson, 1973). Hence, referring to the CFT conceptual 

framework, when users get engaging tasks that require them to be exposed repeatedly to a model, 

then their mental representation of the application domain gets affected (i.e. the spacing effect) 

and so does the mental representation required for task solution, i.e. users understand the domain 

better and perform the tasks better. Repeated exposure to the model will thus eventually result in 

a situation of cognitive fit, regardless whether a good or poor representation model is used.  

Based on CFT, we thus hypothesize that the use of a good representation model will lead 

to an initial advantage in learning from a conceptual model. In later phases of model use, it is 

plausible that any initial difference in learning from good and poor representation models will 

fade away. We thus formulate the first set of hypotheses related to the outcome of learning.
1
 

                                                 

1
 Note that these and the next set of hypotheses are not readily testable as they require further operationalization, 

which is done in the Empirical Study section. 
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H1: In the initial stages of model use, the extent to which domain knowledge is acquired 

from using a good representation model is higher than from a poor representation model. 

H2: In the later stages of model use, the extent to which domain knowledge is acquired 

from using a good representation model is not different than from a poor representation 

model. 

In cognitive psychology, learning speed is defined as the number of trials required for a learner 

to reach a state that enables recall or recognition of the learned material – the less trials, the 

faster the learning (Sandvik, 2013). Consistent with hypotheses 1 and 2, we hypothesize that 

related to the speed of learning, the use of a good representation model leads to an initial 

advantage only. We refer to the concept of learning curve to suggest how the speed of learning 

changes over time. The learning curve is a depiction of learning in a temporal setting where 

incremental learning improvements occur over a period of time (Linton & Walsh, 2013). Based 

on CFT, we expect that in the initial stages of model use, learning is faster using a good 

representation model as the theory-guided structuring will make the domain concepts that need 

to be understood for task resolution easier to locate and/or easier to interpret. In terms of the 

learning curve this means that we expect a steeper (or shorter) learning curve with the good 

representation model.
2
 With repeated exposure of the models (i.e. the spacing effect), at a certain 

point of time, we expect that also users of poor representation models will be able to internalize 

the locations and interpretations of the modelled domain concepts that are needed for task 

resolution. Hence, after a while, in later stages of model use, users of poor representation models 

will catch up with the learning (i.e. the learning curves of good and poor representation models 

converge). Accordingly, we formulate a second set of hypotheses related to speed of learning 

from conceptual models. 

H3: In the initial stages of model use, the rate at which domain knowledge is acquired 

from using a good representation model is higher than from a poor representation model. 

                                                 
2 A steep or short learning curve does not indicate a difficult initial learning process as common language use of the 

phrase ‘steep learning curve’ usually seems to imply. On the contrary, a shallow or long learning curve indicates a 
more difficult initial learning process, which is what we expect when using a poor representation model. 
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H4: In the later stages of model use, the rate at which domain knowledge is acquired 

from using a good representation model is not different than from a poor representation 

model. 

Measuring Learning from Conceptual Models 

In past conceptual modeling studies, subjects were required to answer questions about the 

domain that is represented in a model in order to assess their learning from the model. Khatri et 

al. (2006) differentiate semantic comprehension questions (e.g. must an X always be related to 

an Y?) from syntactic comprehension questions (e.g. what are the attributes of X?). While 

syntactic comprehension questions merely assess the user’s comprehension of the model 

(depending on the user’s knowledge of the used syntax), semantic comprehension questions 

require a deep engagement with the model and require an interpretation of the model’s content in 

terms of domain concepts. Answering the latter type of questions requires knowledge of the 

semantics of the language or technique used to create the model.  

A comprehension task does not allow for direct observation of the cognitive process of 

learning from models. To examine directly the underlying cognitive process of readers during 

learning from conceptual models, we propose the use of eye-tracking, which is a process-tracing 

technique. Another process-tracing technique that has been used before in empirical research 

with conceptual models is verbal protocol analysis (Burton-Jones & Meso, 2006), which requires 

subjects to verbalize their thought processes while performing tasks with the model. Another 

alternative to get direct observations of cognitive processing is the use of NeuroIS data collection 

techniques for measuring either central nervous system signals (e.g. PET, DMS, TDCS, EEG, 

fMRI and fNIRS for measuring brain activity) or instruments like electrocardiogram (heart beat), 

galvanometer (skin response), electromyography (facial muscular movement) and oculometry 

(pupil dilation) for measuring peripheral nervous system signals (Muller-Putz, Riedl, & 

Wriessnegger, 2015; Riedl & Léger, 2016; vom Brocke & Liang, 2014). 

Compared to eye-tracking, verbal protocol analysis is a more intrusive process-tracing 

technique. Furthermore, coding verbal protocol data is challenging, prone to error, and requires 

subjective interpretation (Burton-Jones & Meso, 2006). To investigate the mental processes of 

humans, self-reporting is insufficient as people are often unable and/or unwilling to self-report 

(Dimoka, Pavlou, & Davis, 2011). NeuroIS methods on the other hand provide a viable 
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alternative to eye-tracking but are costly in terms of equipment and effort to apply (Riedl & 

Léger, 2016). Therefore, we developed an eye-tracking procedure to observe and measure the 

process of learning. 

EYE TRACKING 

To address our research questions, we developed an eye-tracking procedure. The specific choice 

for using eye-tracking is that we are interested in what a user looks at when performing a task 

that requires understanding a domain as modelled and whether viewing patterns are different 

between the use of good and poor representation models. According to the eye-mind relationship 

(Petrusel, Mendling, & Reijers, 2017), we can only accurately perceive something when we pay 

attention to it, meaning fixate it with our eyes and focus our minds on it. Eye-tracking is capable 

of detecting when we focus on and pay attention to specific model areas and when we integrate 

information from different model areas. Its strength is in objectively, accurately, and 

unobtrusively observing the cognitive process in terms of attention to information elements and 

integration of information elements. With eye-tracking we can observe whether a user effectively 

pays attention to the parts of the model that are relevant for performing some task.  

For the type of task to be performed we choose for semantic comprehension questions. 

This task requires a user to deeply engage with the model and make a conscious effort to 

understand the modelled domain concepts in order to locate and interpret the relevant 

information required for answering the questions. Our eye-tracking procedure for observing 

learning from conceptual models thus combines eye-tracking measurements (explained in the 

next sub-section) with performance data of a semantic comprehension task, which allows 

measuring both the outcome of learning and the speed of learning. Furthermore, by collecting 

eye-tracking measurements and performance data at regular intervals during the execution of the 

semantic comprehension task (e.g. after every x questions - see Empirical Study section for the 

operationalization used with the REA ontology pattern), we can observe the process of learning 

and compare the outcome and speed of learning between alternative models. 

Eye-Tracking Measurements 

Eye-tracking offers a window into how individuals read and scan information that is displayed to 

them (Rayner, 1998). During decision-making tasks where users view information relevant to the 

decision, eye movements reveal the distribution of attention (Glaholt & Reingold, 2011). By 
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relating eye movements with decision-making data, one can obtain a picture of the decision-

making process.  

Two common eye movement observations are: eye fixations and eye saccades (Sharif & 

Maletic, 2010). Eye movements are made up of short bursts of stationary visual display termed 

fixations and are filled up with rapid and continuous movements termed saccades (Jacob, 1995). 

During fixations, eyes remain almost motionless, whereas saccades are movements from one 

fixation to another. A typical fixation lasts approximately 200-300 milliseconds and is generally 

understood to indicate where a viewer’s attention is directed (Rayner, 1998).  

When eyes fixate on a certain area, the brain starts to process the visual information 

received from the eyes (Rayner, 1998). Using eye-tracking it is possible to identify how much 

time a user has spent on a specific area of the model (referred to as the Area Of Interest (AOI)) 

and how quickly a user views a particular AOI. Especially the latter aspect is of interest for 

addressing our research questions. Lai et al. (2013) analyzed eye-tracking research in the 

education domain. They found that most educational research on eye tracking focuses on how 

users process information and that temporal metrics are the most commonly used eye tracking 

measures. Hence for our study, a relevant eye-tracking metric is the Time for First Fixation 

(TFF) (Poole & Ball, 2006). This metric indicates how quickly a user converges his/her eyes on a 

specific AOI in the model. The TFF is usually measured starting from the time a user is exposed 

to the model. 

Figure 2 provides a fragment of an example ERD where TFF is measured with reference 

to an AOI termed CFO - a dotted rectangle created around the entity “CFO” including the 

cardinality that specifies to how many “CFO” instances an “Acquire Loan” instance is minimally 

and maximally related via an “authorized by” relationship. Consider that a user is exposed to 

Figure 2 at time t0. Consider also that this user needs to evaluate the semantic comprehension 

question “Is it possible to acquire a loan without the authorization of a CFO?” (question 6 in our 

study, see Appendix B). To answer this question, the user needs to locate the “CFO” entity 

(possibly after first locating the “Acquire Loan” entity and next following the direction indicated 

by the “authorized by” relationship, although other reading sequences are possible) and interpret 

the cardinality specification within the CFO AOI. If the user’s eyes fixate (i.e. eyes remain 

stationary for a minimum amount of time, e.g. 200 milliseconds) at any place inside the CFO 
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AOI, then the eye-tracker detects a fixation inside this AOI. The hollow dot and full dot in 

Figure 2 are examples of fixations within the CFO AOI. If the full dot in Figure 2 presents the 

first fixation within this AOI since the model was shown, and this fixation occurs at time t1, then 

TFF for the CFO AOI is t1 – t0. For the example question, a second AOI is drawn around the 

“Acquire Loan” entity. If the first fixation within this AOI occurs at time t2 (which may be 

sooner or later than t1), then t1 – t0 and t2 – t0 are the TFFs to consider for answering the example 

question. Should the user’s eyes fixate again on one of these AOI’s (e.g., the hollow dot in the 

CFO AOI), then this time is not taken into account for TFF. 

The shorter the TFFs for all AOIs relevant to answering a semantic comprehension 

question, the better a user was in locating and interpreting the relevant domain information for 

answering the question. If we observe at a certain moment during a semantic comprehension task 

(e.g. after x questions) lower TFFs for question x + 1 when using model A than when using 

model B, then less trials to locate relevant model elements were needed with model A (i.e. 

less/shorter saccades and possibly less/shorter fixations outside the AOIs relevant to question x + 

1), signifying better recall or recognition of the learned material. Lower TFF values with model 

A than with model B thus indicate a higher rate of acquiring domain knowledge till that moment 

in the learning process. In other words, the TFF values indicate that at that moment in the 

learning process the learning curve when using model A is steeper than when using model B. 

Shorter TFFs thus indicate a higher speed of learning.  

 

Figure 2. Example of fixations within the CFO AOI 



   

 12 

EMPIRICAL STUDY 

The empirical study that we present in this section aims at demonstrating how the eye-tracking 

procedure described in the previous section can be used to measure the speed of learning from 

conceptual models, and also how it can be investigated whether, as hypothesized (see the 

Hypothesis Development sub-section), good representation models expedite learning of domain 

concepts, at least in the initial stages of model use. For this demonstration, we use the REA 

ontology pattern (Dunn et al., 2005) as an example of a theory-derived guideline for structuring 

conceptual models. By applying the REA ontology pattern to ERDs we obtain good 

representation REA models. We also explain how we develop poor representation REA models 

as ERDs that do not follow the REA ontology pattern. We then use our eye-tracking procedure to 

compare the outcome and speed of learning from both types of model. 

Structuring Conceptual Models: The REA Ontology Pattern 

The REA ontology is a theory for conceptual modelling originating in a semantic data model for 

accounting. This semantic model conceptualizes different real business domain situations related 

to economic exchange (e.g. selling, buying, renting, employing) using a common conceptual 

structure of three ontological categories: resources, events, and agents (McCarthy, 1982). The 

model was developed inductively by investigating massive amounts of transactional data, in 

which recurring sequences of resource-event-agent constellations were discovered (McCarthy, 

1982). Later, the model was formalized as an ontology and was grounded in business process 

and value chain theories (Geerts & McCarthy, 2002).  

The core concepts and relationships of the REA ontology have been specified as an 

ontology pattern (Ruy, Guizzardi, Falbo, Reginato, & Santos, 2017), called the REA ontology 

pattern, which can be represented using a template for ERDs that has a predefined layout for 

positioning domain concepts classified according to the REA ontological categories (Dunn et al., 

2005). The predefined REA ontology pattern layout is one where resources, events, and agents 

are positioned in left, central, and right diagram regions respectively, such that the events that 

determine the essential ‘give’ and ‘take’ nature of the economic exchange form a central axis 

connecting the exchanged resources indirectly with the agents that exchange them. This layout 

possesses a number of properties that correspond well with principles from aesthetics-based 

computing research which, when adhered to, reduce the chance of cognitive overload (Petre, 
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2006; Purchase, 2014; Ware, Purchase, Colpoys, & McGill, 2002) (see Table 1). The REA 

ontology pattern (layout) thus serves as a guideline for structuring conceptual models as to obtain 

cognitive fit and creating, what we call in the paper, good representation REA models. Figure 3 

shows the good representation REA model used in our study.  

 

Figure 3. Good representation REA model used in the study 

To instantiate the poor representation REA model needed for our study, we broke the 

conventional arrangement of the REA ontology pattern layout. To do so we deliberately violated 

the principles of aesthetics-based computing research. As there could be many ways of violating 

the principles, we focus on three perceptual segregation principles – proximity, symmetry, and 

orientation (Bennett, Ryall, Spalteholz, & Gooch, 2007). These principles are based on the idea 

that objects or figures can be memorable if they are differentiated from the background. Table 1 

explains how we created the poor representation REA model used in the study (Figure 4). By not 

adhering to the REA ontology pattern, we expect that users of the poor representation REA 

model face a higher chance of suffering from cognitive overload. It is likely that their mental 

representation of the task solution is of lower quality than that of good representation REA 

model users, which according to the CFT conceptual framework will result in worse 
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performance, i.e. a lower learning outcome and a more shallow (or long) learning curve (as we 

elaborated in the Hypothesis Development sub-section). However, as argued before, with 

repeated exposure to the models, the positive effect on learning from a good representation 

model will fade away and the learning curves of both groups will converge. Hence, we expect 

that the use of a good representation REA model has a positive effect on learning in the initial 

stages of model use only. 

It is important to note that the information content of the models shown in Figures 3 and 

4 is the same, implying that the models are informationally equivalent (Gemino & Wand, 2005).  

Only the arrangement of the model elements has changed. This means that the same set of 

semantic comprehension questions could be used for both models, allowing for a direct 

comparison of the outcome and speed of learning from the models. 

Table 1: Principles of aesthetics-based computing  

Concept Details Effect on cognitive overload 

Symmetry Graph-based layouts where elements are 

placed more symmetrically have been 

found to be easier to read. The symmetry 

that can be observed in the good 

representation REA model (i.e. a spatial 

organization where elements on the left 

are resources, elements at the middle are 

events, and elements on the right are 

agents) is broken in the poor 

representation REA model by 

positioning the elements in the diagram 

without any particular order. 

The fixed position of REA 

ontological categories provides visual 

cues that help in identifying 

resources, events, agents, and their 

relationships. When these visual cues 

are missing then model users will 

have a higher chance of suffering 

from cognitive overload. 

Use of 

locality 

(proximity) 

When graphical elements that are 

logically related to each other are placed 

in close proximity, then it is easier to 

understand their connection. In the good 

representation REA model, all resource-

event-agent constellations (i.e. which 

agent exchanges which resources with 

which other agent?) are modelled by 

entities located close to each other. 

Furthermore, these related entities are 

placed as rows in the diagram (as best as 

possible). In the poor representation 

REA model, we broke this row-oriented 

By locating entities of resource-

event-agent constellations in close 

proximity to each other, as ‘rows’ on 

the diagram, users are presented this 

information in perceptually and 

cognitively manageable chunks. 

These users will have less chance of 

cognitive overload when compared to 

users of the poor representation REA 

model, where the components of 

these constellations are spread out 

across the diagram. 
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arrangement of the resource-event-agent 

constellations. 

 

Reading 

direction 

(orientation) 

A good layout directs the reading of the 

elements in the model. In the good 

representation REA model, reading is 

directed from the middle where the 

events (as the ontological core of the 

transaction) are located to the right 

where the participating agents are found 

and to the left where the affected 

resources are found. But as the 

characteristic spatial organization of the 

REA ontology pattern no longer exists in 

the poor representation REA model, no 

particular reading direction is suggested. 

The reading direction provides a 

visual cue for easily locating related 

resources, events, and agents. The 

absence of this cue affects cognitive 

overload negatively.  

 

 

 

Figure 4. Poor representation REA model used in the study 
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Operational Hypotheses 

After choosing the theory-based guideline (i.e. REA ontology pattern), creating the models to be 

used in the study, and defining the measures for our dependent variables (i.e. number of correctly 

answered semantic comprehension questions for outcome of learning and TFF for speed of 

learning), we can now introduce the testable hypotheses: 

H1: In the initial stages of model use, the number of correctly answered semantic 

comprehension questions when using the good representation REA model is higher than 

when using the poor representation REA model. 

H2: In the later stages of model use, the number of correctly answered semantic 

comprehension questions when using the good representation REA model is not different 

from when using the poor representation REA model. 

H3: In the initial stages of model use, the TFF when using the good representation REA 

model is lower than when using the poor representation REA model. 

H4: In the later stages of model use, the TFF when using the good representation REA 

model is not different than when using the poor representation REA model. 

What remains to be operationalized is the meaning of ‘initial’ and ‘later’ stages of model use. 

We show in the Results sub-section that this operationalization is robust with respect to the 

chosen interval of measuring our dependent variables. 

Experimental design 

The study had a 1 x 2 between-subjects design where subjects were randomly assigned to one of 

two groups: good representation REA model and poor representation REA model. Forty-four 

graduate students (22 in each group) from a US university who enrolled in a graduate business 

analytics course over two terms participated in the study. For participation, these students 

received 2% of the course grade. We chose these students as study subjects as they learnt the 

basic concepts of conceptual modeling using ERDs. During the course, they were also 

introduced to the REA ontology, however, without showing them ERDs that followed the REA 

ontology pattern. Thus, when the subjects are provided with the ERDs used in the experiment 

(Figures 3 and 4), they are expected to have the required knowledge to be able to interpret the 

semantics of the model and thus perform a semantic comprehension task. We chose deliberately 
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for working with a relatively simple debt financing conceptual model constructed around a single 

business transaction (i.e. acquiring and repaying loans). A simple model combined with a large 

number of questions ensured that that the same AOIs had to be revisited many times, allowing us 

to assess learning. 

Each subject was placed in front of a computer fitted with an eye-tracker Tobii X2 60. At 

first, subjects’ eyes were calibrated and validated (a standard procedure for eye-tracking) by 

asking them to follow a series of dots on the screen. After this procedure, the subjects accessed a 

web-based questionnaire to assess their familiarity with modeling and their knowledge of debt 

financing. Following this, they were shown a comprehension question (stage 1) and then the 

ERD depending on the group they belonged to (either good representation REA model or poor 

representation REA model) (stage 2). Once the subjects viewed the ERD carefully, they clicked 

on to the next screen to answer the question (stage 3). Subjects could click the back button to 

view the ERD again and then proceed to answer the question. A subject need not go back to 

stage 1 from stage 2 as the question is repeated in stage 3. Therefore, a subject  can go back and 

forth only between stages 2 and 3. The model (stage 2) and the question (stage 3) were 

intentionally separated so that accurate eye measurement of subjects focusing on the model can 

be obtained. Appendix A shows the three stages for the good representation REA model with a 

specific semantic comprehension question example. The subjects were exposed to a set of 20 

semantic comprehension questions, where for each question the 3-stage procedure explained 

before was repeated. The high number of questions asked for a relatively simple model ensured 

that the subjects get familiarized with the model after repeated exposure and thus the speed of 

learning from the model can be tracked across different phases of the experiment. 

As investigating our research questions requires comparing learning at different phases of 

model use, we intentionally maintained the same level of difficulty of the semantic 

comprehension questions throughout the study. If compared to the initial stages, questions at the 

later stages of the study are easier or more difficult to answer, then an observed evolution in task 

performance and TFF measurements cannot be solely attributed to the type of the model used. 

Hence, we pilot-tested the questions with 5 PhD students with excellent knowledge of English 

from a European university who were familiar with the REA ontology. Based on their feedback 

on the clarity and difficulty level of the questions, some questions were modified for the study. 

Appendix B shows the final list of questions that we used (in the order shown). 
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Results 

As a preliminary note we state that in all statistical tests reported in this sub-section (Tables 2, 3, 

and 4) and Appendix E (Table E.1), the data is normally distributed for both groups and there is 

homogeneity of variance as assessed by Levene's Test for Equality of Variances. In all tables, 

‘Good’ refers to the use of a good representation REA model and ‘Poor’ refers to the use of a 

poor representation REA model. 

Before testing the hypotheses, it is important to verify the effectiveness of the 

randomization. Different levels of prior knowledge of the domain and familiarity with the 

modelling technique might affect subjects’ performance. Therefore, subjects’ prior domain 

knowledge and modelling familiarity was checked (see Appendix B for the measurement 

instrument used). Table 2 shows that the scores are not significantly different between the two 

groups.  

Table 2.  Analysis of the modeling familiarity and domain knowledge of the subjects 

Groups Modeling familiarity 

Mean (SD) 

t- statistics Domain knowledge 

Mean (SD) 

t- statistics 

Good 4.68 (0.90) t = 0.16, p = 0.43 3.89 (1.14) t = 0.62, p = 0.27 

Poor 4.64 (0.95) 3.62 (1.72) 

Scores are on Likert scales ranging from 1 (lowest level of knowledge/familiarity) to 7 (highest level of 

knowledge/familiarity) 

Two types of analyses are done in this study, one with the task performance data (i.e. correctness 

scores) and the other with the eye movement data (i.e. TFF values) registered for answering each 

question. To distinguish between initial and later stages of model use, the twenty questions are 

divided into four phases where each phase consists of answering 5 questions. Thus, in the first 

phase subjects answer questions 1 to 5 and in the last phase they answer questions 16 to 20. To 

decrease the likelihood that this particular phasing decision has an impact on the results, we 

repeated all reported analyses for other groupings of questions. Appendix C shows that a similar 

pattern of results is obtained if questions were grouped per 2 or 3 (i.e. 7 phases) or per 4 (i.e. 5 

phases). 

To test the first set of hypotheses related to the outcome of learning, the analysis is done 

separately for each of the four phases. The sum of correct answers in each phase is compared 

between the two groups (Table 3). For example, the mean sum of correct answers on the first 
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five questions is 4.45 for the good representation REA model group. The corresponding number 

for the poor representation REA model group is 3.91. Independent sample t-tests show that the 

mean differences between the two groups are significant in the first two phases but are not 

significant in the last two phases. Hence, based on these results we can accept hypotheses H1 and 

H2. 

Table 3.  Task Performance Analysis  

Groups Phase 1 (Q1-Q5) 

Sum (SD) 

t- statistics Phase 2 (Q6-Q10) 

Sum (SD) 

t- statistics 

Good 4.45 (0.59) t = 2.24, p = 0.01* 4.68 (0.57) t = 1.89, p = 0.03* 

Poor 3.91 (0.97) 4.23 (0.97) 

Groups Phase 3 (Q11-Q15) 

Sum (SD) 

t- statistics Phase 4 (Q16-Q20) 

Sum (SD) 

t- statistics 

Good 4.50 (0.74) t = 1.37, p = 0.09 4.59 (0.50) t = 1.13, p = 0.13 

Poor 4.18 (0.79) 4.36 (0.79) 

* p < 0.05 

When all the questions are combined, the difference in mean sums of correct answers between 

the two groups is significant (i.e. the good representation REA model group performed better 

than the poor representation REA model group, t = 3.18, p = 0.001). A possible reason could be 

that, although the difference in mean sums of correct answers between the two groups is not 

statistically significant in the later phases, the values are still higher for the good representation 

REA model group. The following graph (Figure 5) demonstrates this where the mean sum of 

correct responses of both groups is plotted over the four phases. It can be noted that the gap 

between the two lines narrowed over the four phases, indicating that the advantage of working 

with the good representation REA model fades away after prolonged exposure to the model. 
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Figure 5. Comparison of task performance between good representation REA model users (solid 

line) and poor representation REA model users (dotted line). The maximum correct answer is 5 

as each phase has 5 (Yes/No) questions. 

To perform the TFF analysis (for testing hypotheses 3 and 4 related to the speed of learning), the 

models are divided into AOIs related to entities (along with the cardinalities as these cardinalities 

are also needed to answer the questions). These AOIs are of exact same size in both models. To 

answer a question, a subject must refer to specific AOIs in the model. Each question has two 

AOIs (except the 20
th

 question which has 3). The list of AOIs is provided along with the 

questions in Appendix B. For example, to answer the first question “Is it possible to acquire a 

loan from places other than a bank?”, subjects need to refer to the AOIs “Acquire Loan” and 

“Bank”. The time it takes to look at these AOIs for the first time after the model is exposed (i.e. 

when a user moves from stage 1 to stage 2) is the TFF for these AOIs. If a subject navigates to 

the answer screen (i.e. moving from stage 2 to stage 3) without viewing the AOI and then comes 

back to view the AOI (i.e. moving back from stage 3 to stage 2) then the TFF is long as the entire 

duration since the model was exposed for the first time (i.e. moving from stage 1 to stage 2) till 

the subject has a fixation in the AOI is calculated as TFF. For each subject, the TFF values for 

the AOIs relevant to each question were registered.  

The TFF analysis requires calculating the average TFF for each phase. To understand 

how the average TFF for the first phase is calculated, consider the AOIs “Acquire Loan” and 

“Bank” for the first question. For the good representation REA model group, the TFF averaged 

over all subjects is 1.92 seconds for the “Acquire Loan” AOI and 4.46 seconds for the “Bank” 
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AOI. For the poor representation REA model group these values are 4.66 seconds and 5.61 

seconds respectively. Now, the average TFF for the 10 AOIs (2 for each question and for the first 

five questions) is calculated. This comes to 2.29 seconds for the good representation REA model 

group and 3.90 seconds for the poor representation REA model group. Similar averages were 

calculated for the other three phases and are compared in Table 4. It is found that for each phase 

the average TFF was lower for those in the good representation REA model group than those in 

the poor representation REA model group. This allows accepting H3 but not H4. 

Table 4.  Time for First Fixation Analysis  

Groups Phase 1 (Q1-Q5) 

Mean in sec. (SD) 

t- statistics Phase 2 (Q6-Q10) 

Mean in sec. (SD) 

t- statistics 

Good 2.29 (0.45) t = 5.41, p = 

0.00* 

2.03 (0.68) t = 3.92, p = 0.00* 

Poor 3.90 (0.66) 3.03 (0.89) 

Groups Phase 3 (Q11-Q15) 

Mean in sec. (SD) 

t- statistics Phasev4 (Q16-Q20) 

Mean in sec. (SD) 

t- statistics 

Good 1.41 (0.50) t = 4.26, p = 

0.00* 

1.66 (0.60) t = 1.97, p = 0.03* 

Poor 2.35 (0.90) 2.06 (0.74) 

* p < 0.05 

Between the two groups, the overall difference on average TFF for the AOIs for all the questions 

is also significant (t= 4.29, p = 0.00). Although the mean difference between the two groups 

narrows down over the phases, the differences remain significant in all four phases. Figure 6 

demonstrates this where the average TFF of both groups is plotted over the four phases.  
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Figure 6: Comparison of time for first fixation between good representation REA model users 

(solid line) and poor representation REA model users (dotted line)  

To get additional insights, we performed three additional analyses using the collected eye-

tracking data. Appendix D shows some sample heat maps which are visual representations of 

fixation intensity using different colors (red - the largest number of fixations and green - the least 

number of fixations) (Jacob & Karn, 2003). These maps suggest that as subjects answered more 

questions, they were able to focus better on the AOIs that were necessary to answer the 

questions. Compared to the poor representation REA model group, the good representation REA 

model group initially focused better on the relevant AOIs. However, towards the end of the 

study, users of both groups were able to quickly converge their eyes on the AOIs needed to 

answer the questions.  

A second analysis we performed was visit count analysis (Table 5). Visit counts track the 

number of times a viewer goes back to the same AOI.  

Table 5.  Visit Count Analysis  

Groups Phase 1 (Q1-Q5) 

Frequency (SD) 

t- statistics Phase 2 (Q6-Q10) 

Frequency (SD) 

t- statistics 

REA 3.07 (0.78) t = 4.06, p = 

0.00* 

2.79 (0.65) t = 3.42, p = 0.01* 

Non-REA 4.08 (0.86) 3.48 (0.68) 

Groups Phase 3 (Q11-Q15) 

Mean in sec. (SD) 

t- statistics Phasev4 (Q16-Q20) 

Mean in sec. (SD) 

t- statistics 

REA 2.52 (0.55) t = 3.36, p = 

0.01* 

2.21 (0.56) t = 2.05, p = 0.04* 

Non-REA 3.21 (0.79) 2.60 (0.69) 

* p < 0.05 

The visit count analysis showed that poor representation REA model users go back to the 

relevant AOI a greater number of times than the good representation REA model users. 

However, in line with the trend depicted in Figure 6, visit counts decreased for both groups when 

moving through the phases of the task. Overall for all 20 questions, the mean visit count for the 

good representation REA model is 2.65 (0.39) and for the poor representation REA model it is 

3.34 (0.40), (p =0.00, t = 5.75). Finally, Appendix E provides similar insights based on a mouse 

click count analysis. 



   

 23 

DISCUSSION 

We recall that the goal of the empirical study was to demonstrate how to use our proposed eye-

tracking procedure to measure, apart from outcomes, the speed of learning from conceptual 

models (i.e. our first research question) and how it can be used to investigate whether a particular 

proposed way of structuring conceptual models expedite learning (i.e. our second research 

question). We first discuss the results of the empirical study, followed by a more in-depth 

discussion of how our proposed eye-tracking procedure addresses our research questions. 

Theory-based structuring of conceptual models: The REA ontology pattern 

The analyses of comprehension task accuracy (Table 3) and TFF values (Table 4) show that 

users of the good representation REA model have an initial advantage over users of the poor 

representation REA model in learning the domain from the model, both in terms of outcome and 

speed of learning. Contrary to our expectations, this advantage is persistent for speed of learning 

(i.e. rejection of H4). Although the differences in average TFF values remain significant over the 

course of the semantic comprehension task, the visual inspection of the TFF data (Figure 6), the 

heat map analysis (Appendix D), the visit count analysis and the mouse click count analysis 

(Appendix E) indicate that the advantage becomes smaller in the later stages of model exposure, 

which suggests that users of the poor representation REA model catch up with the learning (i.e. 

converging learning curves). 

The benefits of structuring conceptual models according to the REA ontology pattern 

have been investigated before (Fuller, Murthy, & Schafer, 2010; Gerard, 2005; Jones, Tsay, & 

Griggs, 2005). In particular for learning from such models, the studies of Poels et al. (2011) and 

Poels (2011) showed benefits related to more accurate understanding and easier interpretation of 

model contents. Our empirical study confirms the finding of better domain understanding if 

models are structured following the REA ontology pattern. However, the acceptance of H2 

shows that this advantage is only temporary. Furthermore, using a model that is structured 

following the REA ontology pattern not only improves domain understanding, but the learning is 

also more efficient, i.e. the REA ontology pattern structure leads to faster focusing on those 

model elements that provide the domain understanding needed to perform tasks requiring such 

understanding.  
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We believe that compared to previous studies, our study provides unique insights into the 

cognitive process of learning from models. What is different from other studies, is that we 

measure outcome and speed of learning at regular intervals during the learning exercise. We 

acknowledge that the demonstration of our eye-tracking procedure on models structured using 

the REA ontology pattern does not corroborate or falsify the general, theory-agnostic hypotheses 

on outcome and speed of learning that we developed based on CFT. Nevertheless, our empirical 

study suggests the possibility that the beneficial effects on learning of structuring conceptual 

models using theory-derived guidelines are not persistent. In other words, using theoretical 

guidelines to structure conceptual models might be advantageous when it comes to foster shared 

domain understanding amongst stakeholders in systems development, however, the benefit of 

using theory-guided models is relative. Deep engagement with the models will eventually result 

in domain understanding, regardless how the models are structured. 

The managerial implication is that using theoretical guidelines for structuring conceptual 

models that have proven to be beneficial for learning, is a good choice as learning will be faster 

and more effective, however, the benefits on the long term of such models should not be 

exaggerated. Nevertheless, for companies like IT consulting firms, which often have their 

consultants involved in information systems projects at client organizations, the benefits of 

structuring conceptual models can be substantial as time is a scarce resource and a steep learning 

curve in acquiring domain knowledge frees up time for other activities. Such companies should 

insist on using theory-based guidelines for structuring conceptual models. The implication for 

researchers is that they should also evaluate proposed theoretical guidelines for efficiency, and 

not just for effectiveness, as is usually the case now. Enabling faster learning is a quality 

dimension of conceptual models that is not to be neglected. 

Eye-tracking to observe the process of learning from models 

In a review of six studies that employed eye-tracking to investigate multimedia learning, Mayer 

(2010) finds that in all studies where a manipulation had an effect on learning outcomes it also 

had a corresponding effect on eye fixation time. Our empirical study results indirectly 

corroborate this finding as in the initial stages of learning, the good representation REA model 

users were both more efficient in locating relevant model elements and more effective in solving 

the task that depended on domain understanding.  
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What makes our eye-tracking procedure special is that we can investigate whether these 

effects are persistent. Although many studies have investigated how theory-guided conceptual 

models help in acquiring domain understanding, the impact of using a good representation model 

on domain understanding has been measured only after model exposure. For instance, studies 

like (Burton-Jones & Meso, 2008; Figl, Mendling, & Strembeck, 2013; Poels, 2011) that have 

used perception-based measures require subjects to express their perception of the model’s ease 

(or difficulty) of understanding or usefulness after task performance and as such they measure 

the process of learning only indirectly. Studies like (Bodart et al., 2001; Mendling, Strembeck, & 

Recker, 2012) that have approximated speed of learning as the time taken to perform 

understanding-related tasks include in this time also the time taken to form a mental 

representation of the task (i.e. understanding the question). Compared to time measurements, our 

eye-tracking procedure allows to observe learning more directly as it only considers the time 

taken for forming the mental representation of the application domain (i.e. understanding the 

domain as modelled) since t0 in the calculation of TFF is the moment at which the model is 

exposed to the user. 

Recently, the use of NeuroIS measurements has gained traction in IS research. 

Physiological measures such as heart rate (variability), brain activity, galvanic skin response and 

eye activity (i.e. pupil dilation and blink rate) have been proposed as indirect, real-time and 

objective measures of the cognitive processing required for understanding conceptual models 

(Weber, Sadiq, & Wang, 2018). In particular, such measurements can provide new insights into 

specific effects on cognitive load (i.e. effort of the working memory to move knowledge to long-

term memory) like the worked example effect, the split-attention effect, the expertise reversal 

effect and other effects predicted by Cognitive Load Theory (Sweller, 1988). While these 

measures may reveal the effect of theory-guided structuring of conceptual models on cognitive 

(over)load, they cannot be used to observe where a person looks at when learning from a model. 

In contrast, our eye-tracking procedure based on scan path measures (e.g. TFF, visit counts) and 

visual gaze analysis (e.g. heat maps) allows observing model viewing patterns and thus provides 

valuable insights on how users read models, which can be used to test predictions based on 

specific theory-guided structuring of models. 

For researchers, the implication is that using our eye-tracking procedure, which combines 

task performance and eye-tracking measurements, a more comprehensive evaluation of theory-
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derived guidelines for structuring conceptual models can be done. In particular, our eye-tracking 

procedure allows gaining insights into how the structuring of conceptual models, based on 

theory, helps in directing attention to those model elements that matter for acquiring the domain 

knowledge needed for the tasks to be performed using models. 

Limitations and future research 

We formulate the implications of our research with caution as we are aware of its limitations. 

First, the results of the empirical study with a model structuring following the REA ontology 

pattern cannot be generalized to theory-guided models in general. Structuring models can be 

done with respect to use of abstract syntax, concrete syntax, layout, or combinations of any of 

these. The REA ontology pattern only deals with diagrammatic layout. Hence, in our empirical 

study, two model versions were compared that were informationally equivalent. Comparing 

informationally equivalent models allows using the same comprehension task for both models. If 

theoretical guidance results in models not being informationally equivalent, then our proposed 

eye-tracking procedures is not applicable. Further research is needed to figure out how in such 

cases learning from domain models can be compared. 

Second, we acknowledge that we did not formalize the precise relationship between a 

trend in TFF values over the course of a learning task (as in Figure 6) and the learning curve. 

Figure 6 shows that during the entire comprehension task, users of the good representation model 

are able to locate the model elements relevant for answering a semantic comprehension question 

quicker than the users of the poor representation model, indicating a steeper learning curve with 

the good representation model. But it is hard to tell from our data whether (and when) the 

learning curves of the alternative models are converging. Our graph of TFF values (Figure 6) 

seems to corroborate the education literature on learning curves, as per this literature, the rate of 

learning generally slows down after initial learning (Linton & Walsh, 2013). The exact nature of 

the relationship of TFF as a measure of speed of learning and the learning curve is a topic for 

future research. 

CONCLUSION 

We presented a novel eye-tracking procedure to investigate how quickly we learn from 

conceptual models. This question has not been addressed in previous research, which did not 

approach learning from models as a process. Our procedure requires study subjects to perform a 
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relatively lengthy semantic comprehension task that requires deep engagement with a conceptual 

model. By repeatedly measuring the time for first fixation on model areas that convey the 

domain information needed to perform the task, we can observe and track learning of the domain 

and evaluate the speed of learning. By also measuring comprehension task accuracy at regular 

intervals during the course of the comprehension task, we can further control for the outcome of 

learning. 

We also reported on an empirical study in which we used our eye-tracking procedure to 

test the hypothesis that conceptual models that are structured following the REA ontology 

pattern expedite learning. Our study demonstrates that, using our research design and eye-

tracking procedure, researchers can investigate the hypothesized impact of theoretical guidelines 

for structuring models on users’ domain understanding during model use. Our experience shows 

that eye-tracking is a viable procedure to get unique insights into the process of learning from 

conceptual models. Such insights allow researchers to more comprehensively evaluate proposed 

theories and guidelines for structuring conceptual models. 
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Appendix A: Procedure for answering semantic comprehension questions in the 

experiment 

Stage 1: Subject exposed to the question 

 
Stage 2: Subject exposed to the model  

 

Stage 3: Subject provides the answer 

 

 

 

Appendix B: Semantic comprehension, domain knowledge and modeling familiarity 

No Semantic Comprehension Question AOIs (number) 

1 Is it possible to acquire a loan from places other than a bank? Acquire loan (1), Bank (2) 

2 Does a finance clerk process a loan repayment to a bank?  Repay loan (3), Finance Clerk (4) 

3 Is loan acquisition processed by a finance clerk? Acquire loan (5), Finance Clerk (6) 
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4  Does a CFO authorize a loan repayment?  CFO (7), Repay loan (8) 

5 Is a loan repayment paid to a bank? Repay Loan (9), Bank (10) 

6 
Is it possible to acquire a loan without the authorization of a 

CFO? Acquire loan (11), CFO (12) 

7 Are the loan proceeds deposited to a specific account? Acquire loan (13), Account (14) 

8 Can a bank be associated with no loan repayment? Repay loan (15), Bank (16) 

9 
Is it possible to deposit a specific loan proceed to more than 

one account? Acquire loan (17), Account (18) 

10 Can a bank be associated with no loan acquisition? Bank (19), Acquire Loan (20) 

11 
Is it possible to trace the total amount of loan repayments for a 

loan with loan number? Acquire loan (21), Repay loan (22) 

12 Is it possible to repay a loan over a period of time? Acquire loan (23), Repay loan (24) 

13 
Is it possible to repay a loan other than by using funds from an 

account? Repay loan (25), Account (26) 

14 Can an account be associated with no loan repayment?  Repay loan (27), Account (28) 

15 Is it possible to obtain more than one loan from the same bank? Acquire loan (29), Bank (30) 

16 
For a specific loan repayment, is it possible to withdraw funds 

from more than one account? Repay loan (31), Account (32) 

17 Can an account be associated with no loan acquisition?  Acquire loan (33), Account (34) 

18 Can a CFO authorize more than one loan acquisition? Acquire loan (35), CFO (36) 

19 
Can a specific repayment number have more than one loan 

number? Acquire loan (37), Repay loan (38) 

20 
Is it possible to repay a loan using funds from an account that 

was also used to deposit the loan proceeds? 
Acquire loan (39), Repay loan (40), 

Account (41) 

Questions for assessing modeling familiarity and domain knowledge 

To what extent do you know data modeling concepts (such as entities and relationships)? 

To what extent do you have experience in using data modeling concepts (such as entities and 

relationships)? 

To what extent are you familiar with the processes of obtaining and repayment of bank loans? 

To what extent do you have experience with the processes of obtaining and repayment of bank 

loans? 
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Appendix C: Data analysis for other phasings of the comprehension task 

 

Groups 

Performance 
difference 
between two 
groups 

TFF difference 
between two 
groups 

Q1-Q3 Yes Yes 

Q4-Q6 Yes Yes 

Q7-Q9 Yes Yes 

Q10-Q12 No Yes 

Q13-Q15 No Yes 

Q16-Q18 No Yes 

Q19-Q20 No No 

      

Q1-Q4 Yes Yes 

Q5-Q8 Yes Yes 

Q9-Q12 No Yes 

Q13-Q16 No Yes 

Q17-Q20 No Yes 

      

Q1-Q5 Yes Yes 

Q6-Q10 Yes Yes 

Q11-Q15 No Yes 

Q16-Q20 No Yes 

 

Note: As per the above analysis, it is difficult to pinpoint the exact question which the breaking 

point for the performance difference between the two groups is. Rather a range (Question 9- 

Question 10) is the probable point from where there is no difference in the performance between 

the two groups.  
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Appendix D: Heat map analysis (for sample heat maps) 

Question Good representation REA model group Poor representation REA model group 

5 

  

12 

  

19 
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Appendix E: Mouse click count analysis 

To formulate the hypotheses, we made an assumption that the internal representation of users 

gets modified by being exposed to an engaging task with the model (Shaft & Vessey, 2006). 

Learning takes place as this representation gets modified. If users have already created a good 

mental representation of the model, then they need not refer to the model frequently in answering 

the questions. This would be particularly true for those who used the good representation REA 

model. To check this assumption, we performed a mouse click count analysis. The Tobii eye 

tracker registered the number of times users click on a certain screen area (in this case the “back 

to the model” button- see Appendix A, stage 3). 

After viewing the model (stage 2), users continued to view the question to answer it 

(stage 3). However, as the model was not visible while answering the question
3
, users had to 

click “back to the model” in order to see the model again. This process can be repeated till users 

form a good mental representation of the model required for task solution. If users did not form a 

good mental representation of the model then they would click on “back to the model” 

repeatedly.  

Table E1 shows the resulting mouse click count analysis. The number 0.79 refers to the 

average frequency of clicking the “back to the model” button by the good representation REA 

model group for the first five questions. For example, subject 1 might have hit 3 times the back 

button for the first five questions (% hit is 0.6) and subject 2 might have hit 5 times the back 

button for the first five questions (% hit is 1.0). Thus, the average mouse click percentage for 

these two subjects is 0.8. 

Table E1.  Mouse click count on “back to the model” analysis  

Groups Phase 1 (Q1-Q5) 

Mean (SD) 

t- statistics Phase 2 (Q6-Q10) 

Mean (SD) 

t- statistics 

Good 0.79 (0.33) t = 3.06, p =0.00* 0.72 (0.20) t = 2.38, p =0.01* 

Poor 1.08 (0.30) 0.89 (0.27) 

Groups Phase 3 (Q11-Q15) 

Mean (SD) 

t- statistics Phasev4 (Q16-

Q20) 

Mean (SD) 

t- statistics 

                                                 

3
 The model and the question were intentionally separated into two different screens to get accurate eye 

movement data. If both question and model appeared in the same screen then it would have been difficult 

to track the eye movements over the model as the question will distract the user from viewing the model. 
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Good 0.62 (0.30) t = 2.01, p =0.02* 0.50 (0.20) t = 2.06, p =0.02* 

Poor 0.82 (0.35) 0.65 (0.26) 

* p < 0.05 

The analysis shows that the poor representation REA model group clicked on the “back to the 

model” button significantly more than the good representation REA model group in all phases. 

Figure E1 visually depicts this situation where the average click percentage is plotted for the two 

groups for all four phases.   

 

 

Figure E1: Comparison of mouse click count between good representation REA model users 

(solid line) and poor representation REA model users (dotted line) 

The mouse click count data indicate that initially more iterations between model and question 

were required to create a good mental representation of the model. Thus, at the beginning of the 

study, when the subjects were not familiar with the model, they need to refer to the model more 

frequently to create the mental representation of it. This was more prominent for the poor 

representation REA model group. But as the experiment progressed, the mental representation of 

the model was more stable in both groups and therefore the number of times to refer back to the 

model decreased. 
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