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Extrusion based additive manufacturing (AM) techniques for thermoplastic materials have been developed
during the last thirty years. In order to improve limitations in mechanical, physical and thermal properties
such as strength, stiffness, toughness and heat deflection behaviour of additively manufactured products
compared to their injection moulded counterparts, short fibre filled AM materials have been introduced
more recently. To expand the possibilities of the extrusion-based AM materials even further, processing
methods for both (bio-based) composite blends and incorporation of continuous fibres into polymer matrix
has been developed such as e.g. (bio)composites and Continuous Fibre Additive Manufacturing (CFAM) [1].

CFAM combines a thermoplastic polymer matrix and a continuous fibre bundle into a well-impregnated [2]
composite material right before its deposition, forming a 3D object. This process enables the manufacturing
of complexly shaped parts that cannot be produced using traditional subtractive production technologies
and gives the possibility to tailor fibre orientation [3], which is not always possible using the classic composite
lay-up processes. These two advantages could lead to lighter, stronger and stiffer parts for use in high-end
applications. An important disadvantage of CFAM parts is their reduced strength in z-direction due to a
limited bonding between the successively printed layers. Therefore, the research also investigates the quality
of the interlayer cohesion as a function of parameters such as processing temperatures, layer thickness, road
width and printing velocity of composite samples with unidirectional fibre orientation. A qualitative
assessment of the interlayer cohesion and void morphology was performed on micrographs, showing the
samples’ cross sections perpendicular to the fibre orientation. Flexural moduli and strengths of samples
printed with different processing parameters were compared quantitatively in order to find optimal
processing parameters. This research will lead to a better understanding of the interlayer cohesion in CFAM
composites and will determine the possible added value of the technique compared to currently existing
fibre reinforced AM processes.

Parallel research on composite blends also investigated how brittleness, slow crystallization rate and poor
heat resistance of PLA blends may limit its usage in AM applications. To improve the performance of AM
processed thermoplastic parts, reinforcement with short carbon fibres [5,6] is one of the possible methods.
Another possibility to increase diffusion, layer bonding and crystallinity is annealing [5,6,7]. Within this
research, the elastomer poly(butylene adipate-co-terephthalate) (PBAT) was blended with PLA. Modulus and
impact strength of PLA/PBAT blend improved with incorporation of cloisite-15 and increased significantly
after annealing.
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