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Abstract—We present the design and numerical study of a non-
linear equalizer for optical communications based on silicon pho-
tonics and reservoir computing. The proposed equalizer leverages
the optical information processing capabilities of integrated pho-
tonic reservoirs to combat distortions both in metro links of a
few hundred kilometers and in high-speed short-reach intensity-
modulation-direct-detection links. We show nonlinear compensa-
tion in unrepeated metro links of up to 200 km that outperform
electrical feedforward equalizers based equalizers, and ultimately
any linear compensation device. For a high-speed short-reach 40-
Gb/s link based on a distributed feedback laser and an electroab-
sorptive modulator, and considering a hard decision forward error
correction limit of 0.2 X 102, we can increase the reach by almost
10 km. Our equalizer is compact (only 16 nodes) and operates in the
optical domain without the need for complex electronic DSP, mean-
ing its performance is not bandwidth constrained. The approach
is, therefore, a viable candidate even for equalization techniques
far beyond 100G optical communication links.

Index Terms—Neuromorphic computing, nonlinear equaliza-
tion, reservoir computing, silicon photonics.

I. INTRODUCTION

PTICAL technology is at the core of all modern telecom-

munication for high-speed, long-, medium- and short-
reach applications. Fiber-based technologies are pervasive in all
forms of networks from core and metro to data center and lo-
cal area networks. Moreover, industry continually strives to get
lightwave technology closer and closer to the last-mile end-user
to take advantage of the massive bandwidth, energy efficiency
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and other benefits it provides. These advantages, combined with
advances in photonics leading to cheaper network components
(lasers, modulators, optical amplifiers), place lightwave technol-
ogy at the core of today’s internet information superhighway.

The industrial push for optical communications technology
in access networks has in turn led to a surge in the demand for
various intensely connected applications such as cloud services,
video streaming and virtual reality. This strain on the end-user
networks has predictably rippled back to all parts of the optical
communication networks from metro to long haul in a race to
squeeze out every last bit of capacity.

This is, however, no trivial undertaking, as the various el-
ements constituting fiber-based lightwave networks also con-
tribute to the degradation of optical signals during generation,
transmission and reception phases [1]. In this work we propose
an approach that can be applied to combat these unwanted signal
modifications: it utilizes silicon photonics, a well-established
CMOS-compatible technology, and photonic reservoir com-
puting, a state-of-the-art brain-inspired information processing
technology.

The taxonomy of fiber optic communication impairments
consists of linear or nonlinear forms [2]. Linear impairments
include Chromatic Dispersion (CD), Polarization Mode Disper-
sion (PMD), Symbol Timing Offset and Optical filtering. Non-
linear impairments include laser phase noise, Self Phase Mod-
ulation (SPM), Cross Phase Modulation (XPM), Four Wave
Mixing (FWM) and nonlinear phase noise. In this work, as
we are studying single-wavelength communication, XPM and
FWM do not apply. Similarly, the inelastic nonlinearities of
Stimulated Brillouin Scattering (SBS) and Stimulated Raman
Scattering (SRS) are not considered in this work as they occur
at power levels that are not of interest to the telecom links under
consideration here.

Traditionally, linear imperfections in optical communication
networks have been addressed with well-known techniques:
optically, using dispersion compensation fibers and dispersion
shifted fibers, and electrically, using tapped delay line based
Feedforward Equalizers (FFEs) or Decision Feedback Equaliz-
ers (DFEs), or a combination of both.

The Kerr nonlinearity presents a fundamental limit to the
scaling up of optical communication fiber capacity. Nonlin-
earity in fibers limits the maximum allowable SNR in optical
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communication links. As a result, numerous optical and digital
nonlinearity mitigation techniques have been studied to sur-
mount this limit. Digital Backpropagation (DBP), typically im-
plemented on DSP chips, combats both linear and nonlinear im-
pairments by solving the inverse NLSE to estimate the transmit-
ted signal [3]. However, DBP is resource intensive and complex
to implement for practical applications. Nonlinear Volterra se-
ries equalizers (V-NLEs) model fiber nonlinearities as a series of
Volterra kernels which are then inverted to undo the distortions
to the transmitted signal. V-NLEs are easier to implement and
more computationally efficient than DBP, especially for intra-
channel applications [4], but are still quite resource-demanding.
Commercially, these two DSP-based nonlinear compensation
techniques dominate all other forms. Optically, nonlinearity mit-
igation has successfully been demonstrated using optical phase
conjugation (OPC), where a single optoelectronic component
is inserted in the center of the transmission line to invert the
polarity of the dispersion and nonlinearity parameters from the
first phase of the transmission [5], such that they are compen-
sated for in the 2nd part of the link. However, the placement of
the OPC node limits network design flexibility and puts restric-
tions on the expected dispersion and power evolution profiles.
Phase-conjugated twin wave (PCTW) is a more recent technique
that offers a low complexity (simpler DSP), and is an effective
solution for optical nonlinearity mitigation [6]. It is however
coupled to reduced spectral efficiency (SE) because of the extra
overhead to transmit the phase conjugated copy of the trans-
mitted signal. Another set of digital approaches for nonlinear
compensation is based on machine learning techniques. Some
popular implementations are based on Artificial Neural Net-
works (ANNS) ([7]) and Support Vector Machines (SVMs) ([8],
[9]). In [10] techniques based on nonlinear state-space based
Bayesian filtering and Gaussian Mixture Models (GMMs) are
presented. A more recent study of a photonic machine learning
implementation for signal recovery in optical communications
can be found in [11].

The advent of coherent optical communications for 100G and
beyond has further pushed the reliance on DSP technology as
these networks almost exclusively rely on the DSP for their lin-
ear and nonlinear impairment mitigation, as well as a plethora
of other receiver-side post-processing tasks. Lately, the same
DSPs (typically with some reduction in complexity) have been
used to implement various functions in IM-DD links for high-
speed short reach-applications involving PAM-4 and DMT such
as in [12] and [13]. But, as we alluded to earlier, DSPs are no-
toriously power hungry and their design complexity has been
growing steadily, especially in a bid to keep the wall plug effi-
ciency within manageable limits. As a consequence, there is a
lot of interest in solutions that seek to either entirely replace DSP
functions (DSP-less) or simplify the complexity of the task that
has to be solved by the DSP chip for both coherent and IM-DD
optical communications systems.

In this paper, we propose a novel signal equalizer to undo both
impairments in optical communication networks based on reser-
voir computing and study its performance in IM-DD links. Our
approach operates in the optical domain meaning, that it is very

fast, compact (only 16 nodes on a footprint of ~ 16 mm?) and
energy efficient. Additionally being CMOS-compatible means
that we can take advantages of CMOS mass production benefits
for scaling. Moreover it can easily be co-integrated with receiver
electronics via monolithic photonic-electronic co-integration in,
for example, a transceiver module.

The rest of this paper is structured as follows. In Section II, we
describe reservoir computing in more detail. Then, in Section III,
we explain the general simulation setup, training details and
machine learning techniques used in the study. This is followed
by a presentation and discussion of results for metro and short-
reach applications in Section IV. We provide a summary of
results and a conclusion in Section V.

II. PHOTONIC RESERVOIR COMPUTING

Reservoir Computing (RC) is a brain-inpired non-Von-
Neumann analog computing approach that relies on the infor-
mation processing capabilities of certain physical systems [14]—
[16]. Initially invented as a software technique for processing
temporal data on digital computers, reservoir computing has
evolved into a computationally versatile platform capable of
tackling a wide range of tasks. It excels at tackling tasks that in-
volve sequential data such as speech recognition and time series
prediction. A key extension to reservoir computing is imple-
menting the reservoir in hardware [17]. Examples of RC im-
plemented in mechanical systems, memristive systems, atomic
switch networks, boolean logic elements and photonics as sub-
strates can be found in [18]-[22].

The RC system consists of three basic parts: an input layer
which couples the input signal into a nonlinear dynamical sys-
tem, “’the reservoir” (i.e. the recurrent neural network, which
is kept untrained) and finally the output layer that typically
linearly combines the states of the reservoir to provide the time-
dependent output signal [17]. An illustration of this architecture
is given in Fig. 1.

The way to apply the RC approach to solve a particular task
typically takes the form of setting it up as a supervised ma-
chine learning (linear regression) problem. Known labeled data
(training examples) is used to train the weights to compute the
output (the readout) that is typically a linear combination of the
recorded signals at each reservoir node. These weights are then
stored and used to generate the output signal for future input
signal sequences. RC systems are fast to train and have shown
state-of-the-art performance on time-dependent data (such as
speech recognition, nonlinear channel equalization, robot con-
trol, time series prediction, financial forecasting, handwriting
recognition, etc.) on a range of complex tasks [17].

Experimental demonstrations of photonic reservoirs routinely
achieve state-of-the-art performance on various information
processing tasks. Implementations based on a single nonlin-
ear node with a delayed feedback architecture can be found in
[23]-[28], while integrated photonic reservoirs have been inves-
tigated experimentally and numerically in [21], [29]-[32].

Passive photonic reservoirs are a more recent invention in
which the input signal propagates through a passive linear
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Fig. 1. Layout of the photonic reservoir computing setup as is used in this work
for impairment removal. The input signal is a distorted non-return-to-zero on-
off-keying (NRZ-OOK) signal that has traversed a fiber optic link, the integrated
photonics reservoir is composed 16 nodes arranged in a swirl topology and the
reservoir states are recorded at each node with aid of a photodetector. These
states are then recorded and used to train a set of weights that represent the
readout function that generates the final output signal. Note that in the reservoir,
the numbered lightlight blue circles (n;) are the nodes in the reservoir and in
this architecture are the locations where states are combined and split, and also
serve as the input and detection points.

photonic network, i.e., one without amplification or nonlinear
elements. The required nonlinearity is introduced at the read-
out point, typically with a photodetector [23], [32]. The pho-
tonic reservoir computing equalizer in this work is based on the
passive integrated reservoir design that was introduced in [32].
Apart from simplicity from a fabrication point-of-view, a further
advantage of such a passive architecture is the reduced power
consumption, since the computation itself does not require ex-
ternal energy. As in [32], the reservoir nodes are laid out in a
swirl topology to satisfy planarity constraints of the CMOS SOI
platform while allowing for a reasonable mixing of the input
signals. Physically, the linear network part of the reservoir con-
sidered in this work is composed of delay lines made up of strip
waveguides (in actual designs there are sometimes folded into
spiral shape for compactness) interconnected by Multimode In-
terference (MMI) couplers, all well-known robust components
ubiquitous in integrated photonic circuits. Note that we define
the interconnection delay as the time it takes to for light to
propagate between any two nodes (or to travel across any delay
line). A schematic of 16-node photonic swirl reservoir is shown
in Fig. 1.

In discretized time, the passive reservoir state update equation
can be generalized as:

f[]f + 1] - Wrebf[kl] + U_jin (ﬂ:[k + 1] + ubias) (1)

where / is the input to the reservoir and w5 is a fixed scalar bias
applied to the inputs of the reservoir. For an N-node reservoir,
W.esisan N x N matrix representing the interconnections be-
tween reservoir components taking into account splitting ratios
and losses, with phases drawn from a random uniform distri-
bution on [—7, 7], U(—m, 7). W;,, is an N-dimensional column
vector whose elements are nonzero for each active input node.
These input weights are similarly chosen from U (—m, 7) [33].

Another way of looking at the system described by Eq. (1) is
that the reservoir acts as a non-linear filter which preprocesses

the data such that it gets transformed into a higher-dimensional
space, where the signals can be more easily classified using a
linear classifier. Indeed, injecting a signal in the input port of
the reservoir will result at each of the nodes in a complicated in-
terferometric mixing of copies of the input signal with different
intensities and different delays corresponding to the different
paths in the reservoir between the input and that output node.
These signals are then non-linearly coupled through the action
of the detector, which transforms complex-valued amplitudes
into real-valued intensities. By taking suitable linear combina-
tions of the signals at each node, the system can be trained in
such a way as to minimise the difference between the output
of the reservoir and the original, unperturbed bitstream at the
beginning of the link. More details about reservoir computing
can be found in [32].

Our previous work in [32] experimentally verifies that a pas-
sive integrated photonic reservoir can yield error-free perfor-
mance on the header recognition task for headers up to 3 bits in
length, as well as on a number of digital optical bit level ma-
nipulations that could be useful for various telecommunications
tasks such as parity, coding, etc.

Here, we present an equalizer implemented using an inte-
grated photonics reservoir computing (PhRC) system. Concep-
tually, the PRhC equalizer is a high-dimensional complex non-
linear filter that acts in the optical domain to undo distortions.
As the the reservoir has memory, it combines delayed versions
of the input signal (similar to a tapped filter) and additionally
performs a nonlinear transformation of the input signal (which
is necessary for creating rich nonlinear combinations of delayed
versions of the input signal) that can be used to combat distor-
tions such as those induced by SPM and CD.

The integrated PhRC equalizer will naturally benefit from the
advantages of the CMOS platform in terms of scalability and
energy efficiency. The design is flexible and can be applied to
virtually all sorts of links without limit in terms of required
bandwidth. Designing a 40 Gb/s or a 400 Gb/s equalizer is a
matter of changing the internal timescale of the reservoir (set by
the length of the delay lines); the ultimate limit lies in the readout
electronics, making the PhRC equalizer a future-proof option to
signal equalization. Once deployed, the equalizer can easily be
retrained in the field (on demand or on a schedule) to adapt to the
link conditions. The PhRC equalizer could also be deployed just
before a DSP to reduce the computational load associated with
cleaning up severely distorted signals. We will show numerical
simulations of the equalizer operating under various conditions
for realistic fibre optical links using the resulting Bit Error Error
Rate as the performance metric.

III. SIMULATION SETUP AND METHODOLOGY

We focus on designing PhRC equalizers for metro and short-
reach optical communications links. The optical communication
links were set up in VPI Transmission Maker v9.8 software. The
setup used for the metro link is given in Figure 2 while for the
high-speed short-reach links Figure 7 was used. VPI software
incorporates a wealth of validated models of transmitter and
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Fig. 2. Schematic representation of the simulation setup to generate data for
the signal equalization task. The input pseudo-random bit sequence (PRBS)
signal is modulated onto a laser signal, transmitted over a fiber link, amplified
and filtered, after which the field of the optical signal is saved to file to be used
as input to the photonic reservoir simulation model. OBPF - Optical band pass
filter.

TABLE 1
KEY PARAMETERS FOR SSMF USED IN TRANSMISSION SIMULATIONS

Parameter Value Units
Attenuation 0.2 dB/km

Dispersion Coefficient 16 x 10~ s/m?

Dispersion Slope 0.08 x 103 s/m?
Nonlinear Index 2.6 x 10720 m? /W

Core Area 80.0 x 10~ 12 m?

receiver components as well as implementations of all signal
degradation mechanisms encountered as signals traverse optical
telecom links. Standard single-mode fiber (SSMF) was used in
all cases with parameters given in Table I.

After traversing the link, the electric field of the signal was
recorded and saved offline, to be processed by the numerical
circuit level model of the passive integrated photonics reservoir.
In an experimental setup, this coupling from the fiber into the
reservoir chip could for example be achieved using fiber-to-
chip grating couplers. We should mention that, as we operate
in a single polarization (Transverse Electric (TE) in this case),
a polarization controller component is inserted just before the
reservoir chip to ensure maximum transmission. The simulation
model was built with custom time-domain circuit simulation
scripts based on the Caphe software [34]. In all cases a 4 x 4
(16-node) reservoir architecture was used to generate the states.
This number of nodes was chosen as it yields a design that is
cost-effective to produce with multi-project wafer runs, and has
achieved good performance on a number of tasks [32], as well
as the impact of other model and training parameters, on the
performance of the PhRC equalizer will further be discussed in
subsequent sections.

The states recorded from each reservoir node were trans-
formed by a receiver model to take into account various noise
contributions and bandwidth limitations . The specific model
used is for a PIN photodetector with responsivity 1.0 A and
thermal noise of 3.0 x 10~'2A/v/Hz. It has a 3rd order low pass
Bessel electrical bandpass filter (ELBF) with cut-off frequency
corresponding to 0.7 times the bit rate of the input signal. Shot
noise in the PIN photodetector was accounted for as well.

After the receiver model, the states were then collated and
used to train the readout weights using the scikit-learn library
[35]. For each run, 10,000 randomly chosen input PRBS7 bits

TABLE II
TRANSMITTER PARAMETERS FOR METRO LINK SETUP

Parameter Value Units
Laser
Emmision Wavelength 1550 nm
Modulator
Symmetry factor -1 -

Extinction Ratio 20 dB
Rise time 0.4 x bit period -

were used and the resulting states (after the receiver) were used
for training with 5-fold cross-validation to optimize the model
hyperparameters. Note that for each 1,000 bits a different ran-
dom seed was used for the PRBS signal. The regularized ridge
regression algorithm was used to train a linear readout. The re-
ported bit error rate (BER) is the average validation error across
folds. This process was repeated 8 times for different random
initializations of the link conditions and reservoir phases. For
each training run, the internal reservoir phases and the input
phases are randomly generated and fixed.

The BER was calculated using VPI based on Gaussian statis-
tics and optimization of the sampling instant. To calculate the
BER error measure used in the readout training, the received
signal is first sampled at a sampling instant (the optimal sam-
pling instant is determined by simply checking at which of the
samples the minimum error occurs).

IV. RESULTS AND DISCUSSION
A. Metro Links

In this section, we investigate the performance of the PhRC
equalizer on unrepeated fiber optic communications links in the
metro regime for fiber lengths ranging from 100 km to 250 km
for a 10 Gb/s NRZ OOK link. The setup is shown as in Figure 2.
Unless stated otherwise, in this section we assumed a launch
power of 5 mW (after the modulator). The amplifier, with a
noise figure (NF) of 4.0 (the same amplifier is used throughout
the work), is set to entirely undo the link attenuation and the
filter gets rid of out-of-band noise and is a 3rd order Bessel
filter with bandwidth 4 times the data rate. Note that this data
rate is chosen here to keep it compatible with the measurement
capability in our characterization lab but the same procedure
can be followed for higher speed links.

First, we study the influence of the node interconnection delay
time on the BER of the PhRC equalizer. The node interconnec-
tion delay is the most important parameter for passive planar
integrated photonics reservoirs as it determines the timescale at
which signals interfere within the reservoir. It is set by changing
the length on the on-chip delay lines at design time. The trans-
mitter (consisting of the pattern generator, continuous wave
(CW) laser and external Lithium Niobate modulator) parame-
ters are given in Table II. The symmetry factor is an indicator
of the chirp behaviour of the modulator and is a measure of
the imbalance of the drive-induced phase shifts in its two arms.
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Fig. 4. Error rate vs latency and fiber length for a reservoir with interconnec-
tion delay time equal to half the bit duration.

A value of -1 means ideal intensity modulation with no chirp,
meaning that the two drive voltages are equal in magnitude but
out of phase.

As seen in Figure 3, the regime of best operation of the PhRC
equalizer corresponds to an interconnection length that corre-
sponds to a delay of half the bit duration. This result demon-
strates that under these link conditions, the condition of the op-
timal interconnection delay coincides with those for the header
recognition and bit level tasks of [32]. For the rest of the discus-
sions in this section we therefore fix the interconnection length
of the reservoir to this value.

As in any causal system, the reservoir output requires a fi-
nite time before responding to the input. We therefore need to
find the delay between the input and the corresponding desired
output for which the reservoir can best solve the task. This de-
lay is termed latency in this work (we assume here that there
are no external, more rigid latency constraints to take into ac-
count). In the interconnection delay studies above (as illustrated
in Figure 3), we arbitrarily set the value of the latency to 1 bit
duration. This turns out to be a good choice: Figure 4 shows
that the latency has a significant impact on the performance of
the reservoir (more than 10 dB difference in BER for most fiber
lengths). The best latency depends on the fiber length, but is
usually close to one bit period.
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Fig. 5. Error rate vs data rate for a reservoir with interconnection delay time

equal to half the bit duration and latency 1 bit. A Hard Decision Forward Error
Correction limit (HD-FEC limit) of 0.2 x 10~2 is also shown (dashed blue
line). Error free operation is possible for all error rate values below this limit.

For all subsequent simulations in this section, we therefore
set the reservoir inter-node delay time to half the data rate and
the latency to 1 bit duration.

We then investigate the performance of this reservoir design
for equalization for links running at different data rates. The
results, given in Figure 5, show that for link lengths less than
200 km in length, the PhRC equalizer can operate at data rates
higher than the design data rate of 10 Gb/s. For example for the
100 km link, we get error rates below the FEC limit for data
rates close to 20 Gb/s. This result gives a measure of robustness
of this particular PhRC equalizer. When designing equalizers
for links with higher bit rates, the analysis would need to be
repeated to find the best operating parameters (most notably the
interconnection delay) for the equalizer.

Finally, we compare the performance of the PhRC equalizer
for a link with the launch power changed to 15 mW (from
the 5 mW of the previous simulations) to an FIR FFE filter
trained on the same amount of data. An adaptive FFE filter
with 31 taps is used (The filter goes over the training data
four times to allow for convergence). The results are shown
in Figure 6. The PhRC equalizer outperforms the FFE equalizer
with BERs over 5 orders of magnitude lower at, for example,
150 km and an order or two of magnitude lower at 200 km. The
difference in performance originates in the fact that the PhRC
equalizer is a nonlinear compensation device; it takes advantage
of the nonlinear transformation in the reservoir to better model
the distortion and outstrip the performance of the FFE filter.
In Figure 6 we also plot the cases with and without the fiber
nonlinearity.

‘We observe that at the distances under consideration, the fiber
nonlinearities are not yet deleterious, and in fact performance
for the FFE equaliser improves in some cases. While this may
seem surprising, similar effects owing to the interplay of non-
linearities and dispersion have been observed before [36]. We
do however observe that the reservoir is able to make use of
its nonlinear nature to outperform the FFE equalizer for these
links, i.e. the nonlinear compensator (the reservoir) is able to
exploit these effects to a much higher degree than the linear
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compensator (the FFE). It is also interesting that the reservoirs
performance is the same when the non-linearities are turned on
or off. Its worth mentioning that in both cases, the weights used
in the reservoir are different, which will result in the equaliser
being in a different dynamical regime. The fact that ultimately
these two reservoirs give similar performance, means that this
performance limit is determined by the properties of reservoir
computing, and not so much affected by the details of the non-
linear effects present in the channel. This is an important benefit,
because it means that the same architecture (after retraining the
weights) is very robust against variations in the details of the
underlying transmission system.

B. High-Speed Short-Reach Links

We now investigate the applicability of the PhRC equal-
izer to high-speed short-reach IM/DD applications. EAMs are
particularly suitable for high-speed short-reach communication
links as they are low-cost and compact compared to external
LiNbO3; modulators, can be designed to have relatively low
chirp (for example when compared to directly modulated DFB
lasers) and can be driven with lower driving voltage ampli-
tudes. They can additionally be monolithically integrated on the
same chip as a DFB continuous wave (CW) laser to yield a com-
pact transmitter module - so called electroabsorption modulator-
integrated distributed-feedback (EADFB) lasers. EADFB lasers
with speeds over 50 Gb/s were demonstrated in [37] and are
competitive candidates for the next beyond 400 Gb/s optical
communication links (multilane).

We set up a 40 Gb/s link using a CW DFB laser and an EAM
with parameters given in Table III. The input PRBS signal is
then propagated for distances ranging from 1 km to 25 km. Just
as in the previous section, we perform a search for the optimum
reservoir interconnection length and find that it lies somewhere
between 20% and 50% of the bit duration. We assume a latency
of 1 bit duration for the readout training phase as before.

The results for the BER obtained with the PhRC equalizer for
the different fiber lengths are given in Figure 9 and show that

TABLE III
TRANSMITTER PARAMETERS FOR HIGH-SPEED SHORT-REACH LINK SETUP

Parameter Value Units
Laser
Output Power 10 mW
Emmision Wavelength 1550 nm
EAM
Driver Voltage 2.6 \Y
Driver Bias -3 \%
EAM

Transmission characteristics (1550nm)  see Figure 8 -

Transmitter

Reservoir

Fig.7. Schematic representation of the setup used for short reach simulations.
The Mach-Zehnder Modulator of Figure 2 is replaced by an Electro-Absorptive
Modulator. The EDFA at the end of the link has also been removed.
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we can triple the reach of links from 5 km to 15 km by using
the PhRC equalizer compared to the case of no equalization.

V. CONCLUSION

In this paper, we have presented a design for an integrated
photonics reservoir equalizer that can undo imperfections in
optical communication links. We have numerically studied the
performance of this PhRC equalizer for two different types of
IM/DD links: metro and high-speed short-reach. We can reach
below the SD-FEC limit for metro links up to 200 km and we
can extend the reach for a high-speed short-reach link running
at 40 Gb/s with an EAM from 5 km to 15 km. In the future,
we expect this task will serve as an important experimental
benchmark for our integrated photonics reservoirs targeted at
optical communication tasks.

In the short run, we also plan to extend this analysis to other
IM/DD-compatible modulation formats such as DMT, duobi-
nary and DPSK. Subsequently, we will verify the performance
of the device on chips that are currently being fabricated.
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