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Abstract

Purpose: Bayesian multilevel models are increasingly used to overcome the limitations of

frequentist approaches in the analysis of complex structured data. This paper introduces

Bayesian multilevel modelling for the specific analysis of speech data, using the brms

package developed in R. Method: In this tutorial, we provide a practical introduction to

Bayesian multilevel modelling, by reanalysing a phonetic dataset containing formant (F1 and

F2) values for five vowels of Standard Indonesian (ISO 639-3:ind), as spoken by eight

speakers (four females), with several repetitions of each vowel. Results: We first give an

introductory overview of the Bayesian framework and multilevel modelling. We then show

how Bayesian multilevel models can be fitted using the probabilistic programming language

Stan and the R package brms, which provides an intuitive formula syntax. Conclusions:

Through this tutorial, we demonstrate some of the advantages of the Bayesian framework for

statistical modelling and provide a detailed case study, with complete source code for full

reproducibility of the analyses (https://osf.io/dpzcb/).

Keywords: Bayesian data analysis, multilevel models, mixed models, brms, Stan
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1 Introduction

The last decade has witnessed noticeable changes in the way experimental data are

analysed in phonetics, psycholinguistics, and speech sciences in general. In particular, there

has been a shift from analysis of variance (ANOVA) to linear mixed models, also known as

hierarchical models or multilevel models (MLMs), spurred by the spreading use of

data-oriented programming languages such as R (R Core Team, 2017), and by the

enthusiasm of its active and ever growing community. This shift has been further sustained

by the current transition in data analysis in social sciences, with researchers evolving from a

widely criticised point-hypothesis mechanical testing (e.g., Bakan, 1966; Gigerenzer, Krauss,

& Vitouch, 2004; Kline, 2004; Lambdin, 2012; Trafimow et al., 2018) to an approach that

emphasises parameter estimation, model comparison, and continuous model expansion (e.g.,

Cumming, 2012, 2014; Gelman & Hill, 2007; Gelman et al., 2013; Kruschke, 2015; Kruschke

& Liddell, 2017a, 2017b; McElreath, 2016).

MLMs offer great flexibility in the sense that they can model statistical phenomena

that occur on different levels. This is done by fitting models that include both constant and

varying effects (sometimes referred to as fixed and random effects). Among other advantages,

this makes it possible to generalise the results to unobserved levels of the groups existing in

the data (e.g., stimulus or participant, Janssen, 2012). The multilevel strategy can be

especially useful when dealing with repeated measurements (e.g., when measurements are

nested into participants) or with unequal sample sizes, and more generally, when handling

complex dependency structures in the data. Such complexities are frequently found in the

kind of experimental designs used in speech science studies, for which MLMs are therefore

particularly well suited.

The standard MLM is usually fitted in a frequentist framework, with the lme4 package

(Bates, Mächler, Bolker, & Walker, 2015) in R (R Core Team, 2017). However, when one

tries to include the maximal varying effect structure, this kind of model tends either not to

converge, or to give aberrant estimations of the correlation between varying effects (e.g.,
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Bates, Kliegl, Vasishth, & Baayen, 2015)1. Yet, fitting the maximal varying effect structure

has been explicitly recommended (e.g., Barr, Levy, Scheepers, & Tily, 2013). In contrast, the

maximal varying effect structure can generally be fitted in a Bayesian framework (Bates et

al., 2015; Eager & Roy, 2017; Nicenboim & Vasishth, 2016; Sorensen, Hohenstein, &

Vasishth, 2016).

Another advantage of Bayesian statistical modelling is that it fits the way researchers

intuitively understand statistical results. Widespread misinterpretations of frequentist

statistics (like p-values and confidence intervals) are often attributable to the wrong

interpretation of these statistics as resulting from a Bayesian analysis (e.g., Dienes, 2011;

Gigerenzer et al., 2004; Hoekstra, Morey, Rouder, & Wagenmakers, 2014; Kruschke &

Liddell, 2017a; Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2015). However, the

intuitive nature of the Bayesian approach might arguably be hidden by the predominance of

frequentist teaching in undergraduate statistical courses.

Moreover, the Bayesian approach offers a natural solution to the problem of multiple

comparisons, when the situation is adequately modelled in a multilevel framework (Gelman,

Hill, & Yajima, 2012; Scott & Berger, 2010), and allows a priori knowledge to be

incorporated in data analysis via the prior distribution. The latter feature is particularily

relevant when dealing with contraint parameters or for the purpose of incorporating expert

knowledge.

The aim of the current paper is to introduce Bayesian multilevel models, and to

provide an accessible and illustrated hands-on tutorial for analysing typical phonetic data.

This paper will be structured in two main parts. First, we will briefly introduce the Bayesian

approach to data analysis and the multilevel modelling strategy. Second, we will illustrate

how Bayesian MLMs can be implemented in R by using the brms package (Bürkner, 2017b)

to reanalyse a dataset from McCloy (2014) available in the phonR package (McCloy, 2016).

1In this context, the maximal varying effect structure means that any potential source of systematic

influence should be explicitly modelled, by adding appropriate varying effects.
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We will fit Bayesian MLMs of increasing complexity, going step by step, providing

explanatory figures and making use of the tools available in the brms package for model

checking and model comparison. We will then compare the results obtained in a Bayesian

framework using brms with the results obtained using frequentist MLMs fitted with lme4.

Throughout the paper, we will also provide comments and recommendations about the

feasability and the relevance of such analysis for the researcher in speech sciences.

1.1 Bayesian data analysis

The Bayesian approach to data analysis differs from the frequentist one in that each

parameter of the model is considered as a random variable (contrary to the frequentist

approach which considers parameter values as unknown and fixed quantities), and by the

explicit use of probability to model the uncertainty (Gelman et al., 2013). The two

approaches also differ in their conception of what probability is. In the Bayesian framework,

probability refers to the experience of uncertainty, while in the frequentist framework it

refers to the limit of a relative frequency (i.e., the relative frequency of an event when the

number of trials approaches infinity). A direct consequence of these two differences is that

Bayesian data analysis allows researchers to discuss the probability of a parameter (or a

vector of parameters) θ, given a set of data y:

p(θ|y) = p(y|θ)p(θ)
p(y)

Using this equation (known as Bayes’ theorem), a probability distribution p(θ|y) can

be derived (called the posterior distribution), that reflects knowledge about the parameter,

given the data and the prior information. This distribution is the goal of any Bayesian

analysis and contains all the information needed for inference.

The term p(θ) corresponds to the prior distribution, which specifies the prior

information about the parameters (i.e., what is known about θ before observing the data) as

a probability distribution. The left hand of the numerator p(y|θ) represents the likelihood,
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also called the sampling distribution or generative model, and is the function through which

the data affect the posterior distribution. The likelihood function indicates how likely the

data are to appear, for each possible value of θ.

Finally, p(y) is called the marginal likelihood. It is meant to normalise the posterior

distribution, that is, to scale it in the “probability world”. It gives the “probability of the

data”, summing over all values of θ and is described by p(y) = ∑
θ p(θ)p(y|θ) for discrete

parameters, and by p(y) =
∫
p(θ)p(y|θ)dθ in the case of continuous parameters.

All this pieced together shows that the result of a Bayesian analysis, namely the

posterior distribution p(θ|y), is given by the product of the information contained in the data

(i.e., the likelihood) and the information available before observing the data (i.e., the prior).

This constitutes the crucial principle of Bayesian inference, which can be seen as an updating

mechanism (as detailed for instance in Kruschke & Liddell, 2017a). To sum up, Bayes’

theorem allows a prior state of knowledge to be updated to a posterior state of knowledge,

which represents a compromise between the prior knowledge and the empirical evidence.

The process of Bayesian analysis usually involves three steps that begin with setting up

a probability model for all the entities at hand, then computing the posterior distribution,

and finally evaluating the fit and the relevance of the model (Gelman et al., 2013). In the

context of linear regression, for instance, the first step would require to specify a likelihood

function for the data and a prior distribution for each parameter of interest (e.g., the

intercept or the slope). We will go through these three steps in more details in the

application section, but we will first give a brief overview of the multilevel modelling strategy.

1.2 Multilevel modelling

MLMs can be considered as “multilevel” for at least two reasons. First, an MLM can

generally be conceived as a regression model in which the parameters are themselves

modelled as outcomes of another regression model. The parameters of this second-level

regression are known as hyperparameters, and are also estimated from the data (Gelman &
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Hill, 2007). Second, the multilevel structure can arise from the data itself, for instance when

one tries to model the second-language speech intelligibility of a child, who is considered

within a particular class, itself considered within a particular school. In such cases, the

hierarchical structure of the data itself calls for hierarchical modelling. In both conceptions,

the number of levels that can be handled by MLMs is virtually unlimited (McElreath, 2016).

When we use the term multilevel in the following, we will refer to the structure of the model,

rather than to the structure of the data, as non-nested data can also be modelled in a

multilevel framework.

As briefly mentioned earlier, MLMs offer several advantages compared to single-level

regression models, as they can handle the dependency between units of analysis from the

same group (e.g., several observations from the same participant). In other words, they can

account for the fact that, for instance, several observations are not independent, as they

relate to the same participant. This is achieved by partitioning the total variance into

variation due to the groups (level-2) and to the individual (level-1). As a result, such models

provide an estimation of the variance component for the second level (i.e., the variability of

the participant-specific estimates) or higher levels, which can inform us about the

generalisability of the findings (Janssen, 2012; McElreath, 2016).

Multilevel modelling allows both fixed and random effects to be incorporated. However,

as pointed out by Gelman (2005), we can find at least five different (and sometimes

contradictory) ways of defining the meaning of the terms fixed and random effects. Moreover,

Gelman and Hill (2007) remarked that what is usually called a fixed effect can generally be

conceived as a random effect with a null variance. In order to use a consistent vocabulary,

we follow the recommendations of Gelman and Hill (2007) and avoid these terms. We

instead use the more explicit terms constant and varying to designate effects that are

constant, or that vary by groups2.

2Note that MLMs are sometimes called mixed models, as models that comprise both fixed and random

effects.
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A question one is frequently faced with in multilevel modelling is to know which

parameters should be considered as varying, and which parameters should be considered as

constant. A practical answer is provided by McElreath (2016), who states that “any batch of

parameters with exchangeable index values can be and probably should be pooled”. For

instance, if we are interested in the categorisation of native versus non-native phonemes and

if for each phoneme in each category there are multiple audio stimuli (e.g., multiple

repetitions of the same phoneme), and if we do not have any reason to think that, for each

phoneme, audio stimuli may differ in intelligibility in any systematic way, then repetitions of

the same phoneme should be pooled together. The essential feature of this strategy is that

exchangeability of the lower units (i.e., the multiple repetitions of the same phoneme) is

achieved by conditioning on indicator variables (i.e., the phonemes) that represent groupings

in the population (Gelman et al., 2013).

To sum up, multilevel models are useful as soon as there are predictors at different

levels of variation (Gelman et al., 2013). One important aspect is that this

varying-coefficients approach allows each subgroup to have a different mean outcome level,

while still estimating the global mean outcome level. In an MLM, these two estimations

inform each other in a way that leads to the phenomenon of shrinkage, that will be discussed

in more detail below (see section 2.3).

As an illustration, we will build an MLM starting from the ordinary linear regression

model, and trying to predict an outcome yi (e.g., second-language (L2) speech-intelligibility)

by a linear combination of an intercept α and a slope β that quantifies the influence of a

predictor xi (e.g., the number of lessons received in this second language):

yi ∼ Normal(µi, σe)

µi = α + βxi

This notation is strictly equivalent to the (maybe more usual) following notation:
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yi = α + βxi + εi

εi ∼ Normal(0, σe)

We prefer to use the first notation as it generalises better to more complex models, as

we will see later. In Bayesian terms, these two lines describe the likelihood of the model,

which is the assumption made about the generative process from which the data is issued.

We make the assumption that the outcomes yi are normally distributed around a mean µi

with some error σe. This is equivalent to saying that the errors are normally distributed

around 0, as illustrated by the above equivalence. Then, we can extend this model to the

following multilevel model, adding a varying intercept:

yi ∼ Normal(µi, σe)

µi = αj[i] + βxi

αj ∼ Normal(α, σα)

where we use the notation αj[i] to indicate that each group j (e.g., class) is given a

unique intercept, issued from a Gaussian distribution centered on α, the grand intercept3,

meaning that there might be different mean scores for each class. From this notation we can

see that in addition to the residual standard deviation σe, we are now estimating one more

variance component σα, which is the standard deviation of the distribution of varying

intercepts. We can interpret the variation of the parameter α between groups j by

considering the intra-class correlation (ICC) σ2
α/(σ2

α + σ2
e), which goes to 0, if the grouping

conveys no information, and to 1, if all observations in a group are identical (Gelman & Hill,

2007, p. 258).

The third line is called a prior distribution in the Bayesian framework. This prior

distribution describes the population of intercepts, thus modelling the dependency between
3Acknowledging that these individual intercepts can also be seen as adjustments to the grand intercept α,

that are specific to group j.
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these parameters.

Following the same strategy, we can add a varying slope, allowed to vary according to

the group j:

yi ∼ Normal(µi, σe)

µi = αj[i] + βj[i]xi

αj ∼ Normal(α, σα)

βj ∼ Normal(β, σβ)

Indicating that the effect of the number of lessons on L2 speech intelligibility is allowed

to differ from one class to another (i.e., the effect of the number of lessons might be more

beneficial to some classes than others). These varying slopes are assigned a prior distribution

centered on the grand slope β, and with standard deviation σβ.

In this introductory section, we have presented the foundations of Bayesian analysis

and multilevel modelling. Bayes’ theorem allows prior knowledge about parameters to be

updated according to the information conveyed by the data, while MLMs allow complex

dependency structures to be modelled. We now move to a detailed case study in order to

illustrate these concepts.
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Box 1. Where are my random effects ?

In the Bayesian framework, every unknown quantity is considered as a random variable

that we can describe using probability distributions. As a consequence, there is no such

thing as a "fixed effect" or a "random effects distribution" in a Bayesian framework.

However, these semantic quarrels disappear when we write down the model.

Suppose we have a dependent continuous variable y and a dichotomic categorical

predictor x (assumed to be contrast-coded). Let yij denote the score of the ith

participant in the jth condition. We can write a "mixed effects" model (as containing

both fixed and random effects) as follows:

yij = α + αi + βxj + eij, eij ∼ Normal(0, σ2
e), αi ∼ Normal(0, σ2

u)

Where the terms α and β represent the "fixed effects" and denote the overall mean

response and the condition difference in response, respectively. In addition, eij are

random errors assumed to be normally distributed with unknown variance σ2
e , and

αi’s are individual specific random effects normally distributed in the population with

unknown variance σ2
a.

We can rewrite this model to make apparent that the so-called "random effects distri-

bution" can actually be considered a prior distribution (from a Bayesian standpoint),

since by definition, distributions on unknown quantities are considered as priors:

yij ∼ Normal(µij, σ2
e)

µij = αi + βxj

αi ∼ Normal(α, σ2
α)

where the parameters of this prior are learned from the data. As we have seen, the

same mathematical entity can be conceived either as a "random effects distribution" or

as a prior distribution, depending on the framework.
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1.3 Software programs

Sorensen et al. (2016) provided a detailed and accessible introduction to Bayesian

MLMs (BMLMs) applied to linguistics, using the probabilistic language Stan (Stan

Development Team, 2016). However, discovering BMLMs and the Stan language all at once

might seem a little overwhelming, as Stan can be difficult to learn for users that are not

experienced with programming languages. As an alternative, we introduce the brms package

(Bürkner, 2017b), that implements BMLMs in R, using Stan under the hood, with an

lme4-like syntax. Hence, the syntax required by brms will not surprise the researcher

familiar with lme4, as models of the following form:

yi ∼ Normal(µi, σe)

µi = α + αsubject[i] + βxi

are specified in brms (as in lme4) with: y ~ 1 + x + (1|subject). In addition to

linear regression models, brms allows generalised linear and non-linear multilevel models to

be fitted, and comes with a great variety of distribution and link functions. For instance,

brms allows fitting robust linear regression models, or modelling dichotomous and categorical

outcomes using logistic and ordinal regression models. The flexibility of brms also allows for

distributional models (i.e., models that include simultaneous predictions of all response

parameters), Gaussian processes or non-linear models to be fitted, among others. More

information about the diversity of models that can be fitted with brms and their

implementation is provided in Bürkner (2017b) and Bürkner (2017a).

2 Application example

To illustrate the use of BMLMs, we reanalysed a dataset from McCloy (2014), available

in the phonR package (McCloy, 2016). This dataset contains formant (F1 and F2) values for

five vowels of Standard Indonesian (ISO 639-3:ind), as spoken by eight speakers (four
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females), with approximately 45 repetitions of each vowel. The research question we

investigated here is the effect of gender on vowel production variability.

2.1 Data pre-processing

Our research question was about the different amount of variability in the respective

vowel productions of male and female speakers, due to cognitive or social differences. To

answer this question, we first needed to get rid of the differences in vowel production that

are due to physiological differences between males and females (e.g., shorter vocal tract

length for females). More generally, we needed to eliminate the inter-individual differences

due to physiological characteristics in our groups of participants. For that purpose, we first

applied the Watt & Fabricius formant normalisation technique (Watt & Fabricius, 2002).

The principle of this method is to calculate for each speaker a “centre of gravity” S in the

F1/F2 plane, from the formant values of point vowels [i, a , u], and to express the formant

values of each observation as ratios of the value of S for that formant.

Then, for each vowel and participant, we computed the Euclidean distance between

each observation and the centre of gravity of the whole set of observations in the F1-F2

plane for that participant and that vowel. The data obtained by this process are illustrated

in Figure 1, and a sample of the final dataset can be found in Table 1.

2.2 Constant effect of gender on vowel production variability

We then built a first model with constant effects only and vague priors on α and β, the

intercept and the slope. We contrast-coded gender (f = -0.5, m = 0.5). Our dependent

variable was therefore the distance from each individual vowel centre of gravity, which we

will refer to as formant distance in the following. The formal model can be expressed as:
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distancei ∼ Normal(µi, σe)

µi = α + β × genderi

α ∼ Normal(0, 10)

β ∼ Normal(0, 10)

σe ∼ HalfCauchy(10)

where the first two lines of the model describe the likelihood and the linear model4.

The next three lines define the prior distribution for each parameter of the model, where α

and β are given a vague (weakly informative) Gaussian prior centered on 0, and the residual

variation is given a Half-Cauchy prior (Gelman, 2006; Polson & Scott, 2012), thus restricting

the range of possible values to positive ones. As depicted in Figure 2, the Normal(0, 10)

prior is weakly informative in the sense that it grants a relative high weight to α and β

values, between -25 and 25. This corresponds to very large (given the scale of our data)

values for, respectively, the mean distance value α, and the mean difference between males

and females β. The HalfCauchy(10) prior placed on σe also allows very large values of σe, as

represented in the right panel of Figure 2.

These priors can be specified in numerous ways (see ?set_prior for more details),

among which the following:

prior1 <- c(

prior(normal(0, 10), class = Intercept),

prior(normal(0, 10), class = b, coef = gender),

prior(cauchy(0, 10), class = sigma)

)

4Note that –for the sake of simplicity– throughout this tutorial we use a Normal likelihood, but other

(better) alternatives would include using skew-normal or log-normal models, which are implemented in brms

with the skew_normal and lognormal families. We provide examples in the supplementary materials.
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where a prior can be defined over a class of parameters (e.g., for all variance

components, using the sd class) or for a specific one, for instance as above by specifying the

coefficient (coef) to which the prior corresponds (here the slope of the constant effect of

gender).

The model can be fitted with brms with the following command:

library(brms)

bmod1 <- brm(

distance ~ gender,

data = indo, family = gaussian(),

prior = prior1,

warmup = 2000, iter = 5000

)

where distance is the distance from the centre of gravity. The iter argument serves

to specify the total number of iterations of the Markov Chain Monte Carlo (MCMC)

algorithm, and the warmup argument specifies the number of iterations that are run at the

beginning of the process to “calibrate” the MCMC, so that only iter - warmup iterations

are retained in the end to approximate the shape of the posterior distribution (for more

details, see McElreath, 2016).

Figure 3 depicts the estimations of this first model for the intercept α, the slope β, and

the residual standard deviation σe. The left part of the plot shows histograms of draws taken

from the posterior distribution, and from which several summaries can be computed (e.g.,

mean, mode, quantiles). The right part of Figure 3 shows the behaviour of the two

simulations (i.e., the two chains) used to approximate the posterior distribution, where the

x-axis represents the number of iterations and the y-axis the value of the parameter. This

plot reveals one important aspect of the simulations that should be checked, known as
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mixing. A chain is considered well mixed if it explores many different values for the target

parameters and does not stay in the same region of the parameter space. This feature can be

evaluated by checking that these plots, usually referred to as trace plots, show random

scatter around a mean value (they look like a “fat hairy caterpillar”).

library(tidyverse)

bmod1 %>%

plot(

combo = c("hist", "trace"), widths = c(1, 1.5),

theme = theme_bw(base_size = 10)

)

The estimations obtained for this first model are summarised in Table 2, which

includes the mean, the standard error (SE), and the lower and upper bounds of the 95%

credible interval (CrI)5 of the posterior distribution for each parameter. As gender was

contrast-coded before the analysis (f = -0.5, m = 0.5), the intercept α corresponds to the

grand mean of the formant distance over all participants and has its mean around 0.16. The

estimate of the slope (β = -0.04) suggests that females are more variable than males in the

way they pronounce vowels, while the 95% CrI can be interpreted in a way that there is a

0.95 probability that the value of the intercept lies in the [-0.05, -0.03] interval.

The Rhat value corresponds to the potential scale reduction factor R̂ (Gelman & Rubin,

1992), that provides information about the convergence of the algorithm. This index can be

conceived as equivalent to the F-ratio in ANOVA. It compares the between-chains variability

(i.e., the extent to which different chains differ one from each other) to the within-chain

variability (i.e., how widely a chain explores the parameter space), and, as such, gives an
5Where a credible interval is the Bayesian analogue of a classical confidence interval, except that probability

statements can be made based upon it (e.g., “given the data and our prior assumptions, there is a 0.95

probability that this interval encompasses the population value θ”).
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index of the convergence of the chains. An overly large between-chains variance (as compared

to the within-chain variability) would be a sign that chain-specific characteristics, like the

starting value of the algorithm, have a strong influence on the final result. Ideally, the value

of Rhat should be close to 1, and should not exceed 1.1. Otherwise, one might consider

running more iterations or defining stronger priors (Bürkner, 2017b; Gelman et al., 2013).

2.3 Varying intercept model

The first model can be improved by taking into account the dependency between vowel

formant measures for each participant. This is handled in MLMs by specifying unique

intercepts αsubject[i] and by assigning them a common prior distribution. This strategy

corresponds to the following by-subject varying-intercept model, bmod2:

distancei ∼ Normal(µi, σe)

µi = α + αsubject[i] + β × genderi

αsubject ∼ Normal(0, σsubject)

α ∼ Normal(0, 10)

β ∼ Normal(0, 10)

σsubject ∼ HalfCauchy(10)

σe ∼ HalfCauchy(10)

This model can be fitted with brms with the following command (where we specify the

HalfCauchy prior on σsubject by applying it on parameters of class sd):

prior2 <- c(

prior(normal(0, 10), class = Intercept),

prior(normal(0, 10), class = b, coef = gender),

prior(cauchy(0, 10), class = sd),

prior(cauchy(0, 10), class = sigma)
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)

bmod2 <- brm(

distance ~ gender + (1|subj),

data = indo, family = gaussian(),

prior = prior2,

warmup = 2000, iter = 10000

)

As described in the first part of the present paper, we now have two sources of

variation in the model: the standard deviation of the residuals σe and the standard deviation

of the by-subject varying intercepts σsubject. The latter represents the standard deviation of

the population of varying intercepts, and is also learned from the data. It means that the

estimation of each unique intercept will inform the estimation of the population of intercepts,

which, in return, will inform the estimation of the other intercepts. We call this sharing of

information between groups the partial pooling strategy, in comparison with the no pooling

strategy, where each intercept is estimated independently, and with the complete pooling

strategy, in which all intercepts are given the same value (Gelman & Hill, 2007; Gelman et

al., 2013; McElreath, 2016). This is one of the most essential features of MLMs, and what

leads to better estimations than single-level regression models for repeated measurements or

unbalanced sample sizes. This pooling of information is made apparent through the

phenomenon of shrinkage, which is illustrated in Figure 4, and later on, in Figure 6.

Figure 4 shows the posterior distribution as estimated by this second model for each

participant, in relation to the raw mean of its category (i.e., females or males), represented

by the vertical dashed lines. We can see for instance that participants M02 and F09 have

smaller average distance than the means of their groups, while participants M03 and F08

have larger ones. The arrows represent the amount of shrinkage, that is, the deviation

between the mean in the raw data (represented by a cross underneath each density) and the
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estimated mean of the posterior distribution (represented by the peak of the arrow). As

shown in Figure 4, this shrinkage is always directed toward the mean of the considered group

(i.e., females or males) and the amount of shrinkage is determined by the deviation of the

individual mean from its group mean. This mechanism acts like a safeguard against

overfitting, preventing the model from overly trusting each individual datum.

The marginal posterior distribution of each parameter obtained with bmod2 is

summarised in Table 3, where the Rhat values close to 1 suggest that the model has

converged. We see that the estimates of α and β are similar to the estimates of the first

model, except that the SE is now slightly larger. This result might seem surprising at first

sight, as we expected to improve the first model by adding a by-subject varying intercept. In

fact, it reveals an underestimation of the SE when using the first model. Indeed, the first

model assumes independence of observations, which is violated in our case. This highlights

the general need for careful consideration of the model’s assumptions when interpreting its

estimations. The first model seemingly gives highly certain estimates, but these estimations

are only valid in the “independence of observations” world (see also the distinction between

the small world and the large world in McElreath, 2016). Moreover, estimating an intercept

by subject (as in the second model) increases the precision of estimation, but it also makes

the average estimation less certain, thus resulting in a larger SE.

This model (bmod2), however, is still not adequate to describe the data, as the

dependency between repetitions of each vowel is not taken into account. In bmod3, we added

a by-vowel varying intercept, thus also allowing each vowel to have a different general level of

variability.
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distancei ∼ Normal(µi, σe)

µi = α + αsubject[i] + αvowel[i] + β × genderi

αsubj ∼ Normal(0, σsubject)

αvowel ∼ Normal(0, σvowel)

α ∼ Normal(0, 10)

β ∼ Normal(0, 10)

σe ∼ HalfCauchy(10)

σsubject ∼ HalfCauchy(10)

σvowel ∼ HalfCauchy(10)

This model can be fitted with brms with the following command:

prior3 <- c(

prior(normal(0, 10), class = Intercept),

prior(normal(0, 10), class = b, coef = gender),

prior(cauchy(0, 10), class = sd),

prior(cauchy(0, 10), class = sigma)

)

bmod3 <- brm(

distance ~ gender + (1|subj) + (1|vowel),

data = indo, family = gaussian(),

prior = prior3,

warmup = 2000, iter = 10000

)

where the same Half-Cauchy is specified for the two varying intercepts, by applying it
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directly to the sd class.

The marginal posterior distribution of each parameter is summarised in Table 4. We

can compute the intra-class correlation (ICC, see section 1.2) to estimate the relative

variability associated with each varying effect: ICCsubject is equal to 0.03 and ICCvowel is

equal to 0.42. The rather high ICC for vowels suggests that observations are highly correlated

within each vowel, thus stressing the relevance of allocating a unique intercept by vowel6.

2.4 Including a correlation between varying intercept and varying slope

One can legitimately question the assumption that the differences between male and

female productions are identical for each vowel. To explore this issue, we thus added a

varying slope for the effect of gender, allowing it to vary by vowel. Moreover, we can exploit

the correlation between the baseline level of variability by vowel, and the amplitude of the

difference between males and females in pronouncing them. For instance, we can observe

that the pronunciation of /a/ is more variable in general. We might want to know whether

females tend to pronounce vowels that are situated at a specific location in the F1-F2 plane

with less variability than males. In other words, we might be interested in knowing whether

the effect of gender is correlated with the baseline level of variability. This is equivalent to

investigating the dependency, or the correlation between the varying intercepts and the

varying slopes. We thus estimated this correlation by modelling αvowel and βvowel as issued

from the same multivariate normal distribution (a multivariate normal distribution is a

generalisation of the usual normal distribution to more than one dimension), centered on 0

and with some covariance matrix S, as specified on the third line of the following model:

6But please note that we do not mean to suggest that the varying intercept for subjects should be removed

because its ICC is low.
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distancei ∼ Normal(µi, σe)

µi = α + αsubject[i] + αvowel[i] + (β + βvowel[i])× genderiαvowel

βvowel

 ∼ MVNormal
(0

0

 ,S
)

S =

 σ2
αvowel

σαvowel
σβvowelρ

σαvowel
σβvowelρ σ2

βvowel


αsubject ∼ Normal(0, σsubject)

α ∼ Normal(0, 10)

β ∼ Normal(0, 10)

σe ∼ HalfCauchy(10)

σαvowel
∼ HalfCauchy(10)

σβvowel
∼ HalfCauchy(10)

σsubject ∼ HalfCauchy(10)

R ∼ LKJcorr(2)

where R is the correlation matrix R =

1 ρ

ρ 1

 and ρ is the correlation between

intercepts and slopes, used in the computation of S. This matrix is given the

LKJ-Correlation prior (Lewandowski, Kurowicka, & Joe, 2009) with a parameter ζ (zeta)

that controls the strength of the correlation7. When ζ = 1, the prior distribution on the

correlation is uniform between −1 and 1. When ζ > 1, the prior distribution is peaked

around a zero correlation, while lower values of ζ (0 < ζ < 1) allocate more weight to

extreme values (i.e., close to -1 and 1) of ρ (see Figure 5).

7The LKJ prior is the default prior for correlation matrices in brms.
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prior4 <- c(

prior(normal(0, 10), class = Intercept),

prior(normal(0, 10), class = b, coef = gender),

prior(cauchy(0, 10), class = sd),

prior(cauchy(0, 10), class = sigma),

prior(lkj(2), class = cor)

)

bmod4 <- brm(

distance ~ gender + (1|subj) + (1 + gender|vowel),

data = indo, family = gaussian(),

prior = prior4,

warmup = 2000, iter = 10000

)

Estimates of this model are summarised in Table 5. This summary reveals a negative

correlation between the intercepts and slopes for vowels, meaning that vowels with a large

“baseline level of variability” (i.e., with a large average distance value) tend to be

pronounced with more variability by females than by males. However, we notice that this

model’s estimation of β is even more uncertain than that of the previous models, as shown

by the associated standard error and the width of the credible interval.

Figure 6 illustrates the negative correlation between the by-vowel intercepts and the

by-vowel slopes, meaning that vowels that tend to have higher “baseline variability” (i.e.,

/e/, /o/, /a/), tend to show a stronger effect of gender. This figure also illustrates the

amount of shrinkage, here in the parameter space. We can see that the partial pooling

estimate is shrunk somewhere between the no pooling estimate and the complete pooling

estimate (i.e., the grand mean). This illustrates again the mechanism by which MLMs

balance the risk of overfitting and underfitting (McElreath, 2016).
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2.5 Varying intercept and varying slope model, interaction between subject

and vowel

So far, we modelled varying effects of subjects and vowels. In this study, these varying

factors were crossed, meaning that every subject had to pronounce every vowel. Let us now

imagine a situation in which Subject 4 systematically mispronounced the /i/ vowel. This

would be a source of systematic variation over replicates which is not considered in the

model (bmod4), because this model can only adjust parameters for either vowel or

participant, but not for a specific vowel for a specific participant.

In building the next model, we added a varying intercept for the interaction between

subject and vowel, that is, we created an index variable that allocates a unique value at each

crossing of the two variables (e.g., Subject1-vowel/a/, Subject1-vowel/i/, etc.), resulting in 8

× 5 = 40 intercepts to be estimated (for a review of multilevel modeling in various

experimental designs, see Judd, Westfall, & Kenny, 2017). This varying intercept for the

interaction between subject and vowel represents the systematic variation associated with a

specific subject pronouncing a specific vowel. This model can be written as follows, for any

observation i:
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distancei ∼ Normal(µi, σe)

µi = α + αsubject[i] + αvowel[i] + αsubject:vowel[i] + (β + βvowel[i])× genderiαvowel

βvowel

 ∼ MVNormal
(0

0

 ,S
)

S =

 σ2
αvowel

σαvowel
σβvowelρ

σαvowel
σβvowelρ σ2

βvowel


αsubject ∼ Normal(0, σsubject)

αsubject:vowel ∼ Normal(0, σsubject:vowel)

α ∼ Normal(0, 10)

β ∼ Normal(0, 10)

σe ∼ HalfCauchy(10)

σsubject ∼ HalfCauchy(10)

σsubject:vowel ∼ HalfCauchy(10)

σαvowel
∼ HalfCauchy(10)

σβvowel
∼ HalfCauchy(10)

R ∼ LKJcorr(2)

This model can be fitted with the following command:

prior5 <- c(

prior(normal(0, 10), class = Intercept),

prior(normal(0, 10), class = b, coef = gender),

prior(cauchy(0, 10), class = sd),

prior(cauchy(0, 10), class = sigma),

prior(lkj(2), class = cor)
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)

bmod5 <- brm(

distance ~ gender + (1|subj) + (1 + gender|vowel) + (1|subj:vowel),

data = indo, family = gaussian(),

prior = prior5,

warmup = 2000, iter = 10000

)

Estimates of this model are summarised in Table 6. From this table, we first notice

that the more varying effects we add, the more the model is uncertain about the estimation

of α and β, which can be explained in the same way as in section 2.2. Second, we see the

opposite pattern for σe, the residuals standard deviation, which has decreased by a

considerable amount compared to the first model, indicating a better fit.

3 Model comparison

Once we have built a set of models, we need to know which model is the more accurate

and should be used to draw conclusions. It might be a little tricky to select the model that

has the better absolute fit on the actual data (using for instance R2), as this model will not

necessarily perform as well on new data. Instead, we might want to choose the model that

has the best predictive abilities, that is, the model that performs the best when it comes to

predicting data that have not yet been observed. We call this ability the out-of-sample

predictive performance of the model (McElreath, 2016). When additional data is not

available, cross-validation techniques can be used to obtain an approximation of the model’s

predictive abilities, among which the Bayesian leave-one-out-cross-validation (LOO-CV,

Vehtari, Gelman, & Gabry, 2017). Another useful tool, and asymptotically equivalent to the

LOO-CV, is the Watanabe Akaike Information Criterion (WAIC, Watanabe, 2010), which

can be conceived as a generalisation of the Akaike Information Criterion (AIC, Akaike,
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1974)8.

Both WAIC and LOO-CV indexes are easily computed in brms with the WAIC and the

LOO functions, where n models can be compared with the following call: LOO(model1,

model2, ..., modeln). These functions also provide an estimate of the uncertainty

associated with these indexes (in the form of a SE), as well as a difference score ∆LOOIC,

which is computed by taking the difference between each pair of information criteria. The

WAIC and the LOO functions also provide a SE for these delta values (∆SE). A comparison of

the five models we fitted can be found in Table 7.

We see from Table 7 that bmod5 (i.e., the last model) is performing much better than

the other models, as it has the lower LOOIC. We then based our conclusions (see last

section) on the estimations of this model. We also notice that each addition to the initial

model brought improvement in terms of predictive accuracy, as the set of models is ordered

from the first to the last model. This should not be taken as a general rule though, as

successive additions made to an original model could also lead to overfitting, corresponding

to a situation in which the model is over-specified in regards to the data, which makes the

model good to explain the data at hand, but very bad to predict non-observed data. In such

cases, information criteria and indexes that rely exclusively on goodness-of-fit (such as R2)

would point to different conclusions.

4 Comparison of brms and lme4 estimations

Figure 7 illustrates the comparison of brms (Bayesian approach) and lme4 (frequentist

approach) estimates for the last model (bmod5), fitted in lme4 with the following command.

8More details on model comparison using cross-validation techniques can be found in Nicenboim and

Vasishth (2016). See also Gelman, Hwang, and Vehtari (2014) for a complete comparison of information

criteria.
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lmer_model <- lmer(

distance ~ gender + (1|subj) + (1 + gender|vowel) + (1|subj:vowel),

REML = FALSE, data = indo

)

Densities represent the posterior distribution as estimated by brms along with 95%

credible intervals, while the crosses underneath represent the maximum likelihood estimate

(MLE) from lme4 along with 95% confidence intervals, obtained with parametric

bootstrapping.

We can see that the estimations of brms and lme4 are for the most part very similar.

The differences we observe for σαvowel
and σβvowel

might be explained by the skewness of the

posterior distribution. Indeed, in these cases (i.e., when the distribution is not symmetric),

the mode of the distribution would better coincide with the lme4 estimate. This figure also

illustrates a limitation of frequentist MLMs that we discussed in the first part of the current

paper. If we look closely at the estimates of lme4, we can notice that the MLE for the

correlation ρ is at its boundary, as ρ = −1. This might be interpreted in (at least) two ways.

The first interpretation is what Eager and Roy (2017) call the parsimonious convergence

hypothesis (PCH) and consists in saying that this aberrant estimation is caused by the

over-specification of the random structure (e.g., Bates et al., 2015). In other words, this

would correspond to a model that contains too many varying effects to be “supported” by a

certain dataset (but this does not mean that with more data, this model would not be a

correct model). However, the PCH has been questioned by Eager and Roy (2017), who have

shown that under conditions of unbalanced datasets, non-linear models fitted with lme4

provided more prediction errors than Bayesian models fitted with Stan. The second

interpretation considers failures of convergence as a problem of frequentist MLMs per se,

which is resolved in the Bayesian framework by using weakly informative priors (i.e., the

LKJ prior) for the correlation between varying effects (e.g., Eager & Roy, 2017; Nicenboim &

Vasishth, 2016), and by using the full posterior for inference.
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One feature of the Bayesian MLM in this kind of situation is to provide an estimate of

the correlation that incorporates the uncertainty caused by the weak amount of data (i.e., by

widening the posterior distribution). Thus, the brms estimate of the correlation coefficient

has its posterior mean at ρ = −0.433, but this estimate comes with a huge uncertainty, as

expressed by the width of the credible interval (95% CrI = [−0.946, 0.454]).

5 Inference and conclusions

Regarding our initial question, which was to know whether there is a gender effect on

vowel production variability in standard Indonesian, we can base our conclusions on several

parameters and indices. However, the discrepancies between the different models we fitted

deserve some discussion first. As already pointed out previously, if we had based our

conclusions on the results of the first model (i.e., the model with constant effects only), we

would have confidently concluded on a positive effect of gender. However, when we included

the appropriate error terms in the model to account for repeated measurements by subject

and by vowel, as well as for the by-vowel specific effect of gender, the large variability of this

effect among vowels lead the model to adjust its estimation of β, resulting in more

uncertainty about it. The last model then estimated a value of β = -0.04 with quite a large

uncertainty (95% CrI = [-0.10, 0.02]), and considering 0 as well as some positive values as

credible. This result alone makes it difficult to reach any definitive conclusion concerning the

presence or absence of a gender effect on the variability of vowels pronunciation in

Indonesian, and should be considered (at best) as suggestive.

Nevertheless, it is useful to recall that in the Bayesian framework, the results of our

analysis is a (posterior) probability distribution which can be, as such, summarised in

multiple ways. This distribution is plotted in Figure 8, which also shows the mean and the

95% CrI, as well as the proportion of the distribution below and above a particular value9.

This figure reveals that 94.1% of the distribution is below 0, which can be interpreted as
9We compare the distribution with 0 here, but it should be noted that this comparison could be made

with whatever value.
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suggesting that there is a 0.94 probability that males have a lower mean formant distance

than females (recall that female was coded as -0.5 and male as 0.5), given the data at hand,

and the model.

This quantity can be easily computed from the posterior samples:

post <- posterior_samples(bmod5) # extracting posterior samples

mean(post$b_gender < 0) # computing p(beta<0)

## [1] 0.940625

Of course, this estimate can (and should) be refined using more data from several

experiments, with more speakers. In this line, it should be pointed out that brms can easily

be used to extend the multilevel strategy to meta-analyses (e.g., Bürkner, Williams,

Simmons, & Woolley, 2017; Williams & Bürkner, 2017). Its flexibility makes it possible to fit

multilevel hierarchical Bayesian models at two, three, or more levels, enabling researchers to

model the heterogeneity between studies as well as dependencies between experiments of the

same study, or between studies carried out by the same research team. Such a modelling

strategy is usually equivalent to the ordinary frequentist random-effect meta-analysis models,

while offering all the benefits inherent to the Bayesian approach.

Another useful source of information comes from the examination of effects sizes. One

of the most used criteria is Cohen’s d standardized effect size, that expresses the difference

between two groups in terms of their pooled standard deviation:

Cohen’s d = µ1 − µ2

σpooled
= µ1 − µ2√

σ2
1+σ2

2
2

However, as the total variance is partitioned into multiple sources of variation in

MLMs, there is no unique way of computing a standardised effect size. While several

approaches have been suggested (e.g., dividing the mean difference by the standard deviation

of the residuals), the more consensual one involves taking into account all of the variance
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sources of the model (Hedges, 2007). One such index is called the δt (where the t stands for

“total”), and is given by the estimated difference between group means, divided by the

square root of the sum of all variance components:

δt = β√
σ2
subject + σ2

subject:vowel + σ2
αvowel

+ σ2
βvowel

+ σ2

As this effect size is dependent on the parameters estimated by the model, one can

derive a probability distribution for this index as well. This is easily done in R, computing it

from the posterior samples:

delta_t <-

# extracting posterior samples from bmod5

posterior_samples(bmod5, pars = c("^b_", "sd_", "sigma") ) %>%

# taking the square of each variance component

mutate_at(.vars = 3:7, .funs = funs(.^2) ) %>%

# dividing the slope estimate by the square root of the sum of

# all variance components

mutate(delta = b_gender / sqrt(rowSums(.[3:7]) ) )

This distribution is plotted in Figure 9, and reveals the large uncertainty associated

with the estimation of δt.

In the same fashion, undirected effect sizes (e.g., R2) can be computed directly from

the posterior samples, or included in the model specification as a parameter of the model, in

a way that at each iteration of the MCMC, a value of the effect size is sampled, resulting in

an estimation of its full posterior distribution (see for instance Gelman & Pardoe, 2006 for

measures of explained variance in MLMs and Marsman, Waldorp, Dablander, and

Wagenmakers (2017) for calculations in ANOVA designs). A Bayesian version of the R2 is

also available in brms using the bayes_R2 method, for which the calculations are based on

Gelman, Goodrich, Gabry, and Ali (2017).
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bayes_R2(bmod5)

## Estimate Est.Error 2.5%ile 97.5%ile

## R2 0.295614 0.01589917 0.2635006 0.3262617

In brief, we found a weak effect of gender on vowel production variability in Indonesian

(β = -0.04, 95% CrI = [-0.10, 0.02], δt = -0.34, 95% CrI = [−0.78, 0.11]), this effect being

associated with a large uncertainty (as expressed by the width of the credible interval). This

result seems to show that females tend to pronounce vowels with more variability than males,

while the variation observed across vowels (as suggested by σβvowel
) suggests that there might

exist substantial inter-vowel variability, that should be subsequently properly studied. A

follow-up analysis specifically designed to test the effect of gender on each vowel should help

better describe inter-vowel variability (we give an example of such an analysis in the

supplementary materials).

To sum up, we hope that this introductive tutorial has helped the reader to understand

the foundational ideas of Bayesian MLMs, and to appreciate how straightforward the

interpretation of the results is. Moreover, we hope to have demonstrated that although

Bayesian data analysis may still sometimes (wrongfully) sound difficult to grasp and to use,

the development of recent tools like brms helps to build and fit Bayesian MLMs in an

intuitive way. We believe that this shift in practice will allow more reliable statistical

inferences to be drawn from empirical research.

6 Supplementary materials

Supplementary materials, reproducible code and figures are available at: osf.io/dpzcb.

A lot of useful packages have been used for the writing of this paper, among which the

papaja and knitr packages for writing and formatting (Aust & Barth, 2017; Xie, 2015), the

ggplot2, viridis, ellipse, BEST, and ggridges packages for plotting (Garnier, 2017;

Kruschke & Meredith, 2017; Murdoch & Chow, 2013; Wickham, 2009; Wilke, 2017), as well

osf.io/dpzcb
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as the tidyverse and broom packages for code writing and formatting (Robinson, 2017;

Wickham, 2017).

Acknowledgements

We thank Brice Beffara for helpful comments on a previous version of this manuscript,

as well as Shravan Vasishth and one anonymous reviewer for insightful suggestions during

the review process.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19 (6), 716–723. https://doi.org/10.1109/tac.1974.1100705

Aust, F., & Barth, M. (2017). papaja: Create APA manuscripts with R Markdown.

Retrieved from https://github.com/crsh/papaja

Bakan, D. (1966). The test of significance in psychological research. Psychological Bulletin,

66 (6), 423–437. https://doi.org/10.1037/h0020412

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for

confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language,

68 (3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001

Bates, D., Kliegl, R., Vasishth, S., & Baayen, R. H. (2015). Parsimonious mixed models.

Retrieved from https://arxiv.org/pdf/1506.04967.pdf

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models

using lme4. Journal of Statistical Software, 67 (1), 1–48.

https://doi.org/10.18637/jss.v067.i01

Bürkner, P.-C. (2017a). Advanced bayesian multilevel modeling with the R package brms.

https://doi.org/10.1109/tac.1974.1100705
https://github.com/crsh/papaja
https://doi.org/10.1037/h0020412
https://doi.org/10.1016/j.jml.2012.11.001
https://arxiv.org/pdf/1506.04967.pdf
https://doi.org/10.18637/jss.v067.i01


INTRODUCING BRMS 35

Retrieved from https://arxiv.org/pdf/1705.11123

Bürkner, P.-C. (2017b). brms: An R package for bayesian multilevel models using Stan.

Journal of Statistical Software, 80 (1), 1–28. https://doi.org/10.18637/jss.v080.i01

Bürkner, P.-C., Williams, D. R., Simmons, T. C., & Woolley, J. D. (2017). Intranasal

oxytocin may improve high-level social cognition in schizophrenia, but not social

cognition or neurocognition in general: A multilevel Bayesian meta-analysis.

Schizophrenia Bulletin, 43 (6), 1291–1303. https://doi.org/10.1093/schbul/sbx053

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals,

and meta-analysis. New York: Routledge.

Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25 (1), 7–29.

https://doi.org/10.1177/0956797613504966

Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives

on Psychological Science, 6 (3), 274–290. https://doi.org/10.1177/1745691611406920

Eager, C., & Roy, J. (2017). Mixed effects models are sometimes terrible. Retrieved from

https://arxiv.org/pdf/1701.04858.pdf

Garnier, S. (2017). viridis: Default color maps from ’matplotlib’. Retrieved from

https://CRAN.R-project.org/package=viridis

Gelman, A. (2005). Analysis of variance — why it is more important than ever. The Annals

of Statistics, 33 (1), 1–53. https://doi.org/10.1214/009053604000001048

Gelman, A. (2006). Prior distributions for variance parameter in hierarchical models.

Bayesian Analysis, 1 (3), 515–534. https://doi.org/10.1214/06-ba117a

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical

https://arxiv.org/pdf/1705.11123
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.1093/schbul/sbx053
https://doi.org/10.1177/0956797613504966
https://doi.org/10.1177/1745691611406920
https://arxiv.org/pdf/1701.04858.pdf
https://CRAN.R-project.org/package=viridis
https://doi.org/10.1214/009053604000001048
https://doi.org/10.1214/06-ba117a


INTRODUCING BRMS 36

models. Cambridge University Press, New York.

Gelman, A., & Pardoe, I. (2006). Bayesian measures of explained variance and pooling in

multilevel (hierarchical) models. Technometrics, 48 (2), 241–251.

https://doi.org/10.1198/004017005000000517

Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simuation Using Multiple

Sequences. Statistical Science, 7 (4), 457–472. https://doi.org/10.1214/ss/1177011136

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).

Bayesian data analysis, third edition. CRC Press.

Gelman, A., Goodrich, B., Gabry, J., & Ali, I. (2017). R-squared for Bayesian regression

models. Retrieved from

https://github.com/jgabry/bayes_R2/blob/master/bayes_R2.pdf

Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don’t have to worry about

multiple comparisons. Journal of Research on Educational Effectiveness, 5, 189–211.

https://doi.org/10.1080/19345747.2011.618213

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria

for Bayesian models. Statistics and Computing, 24 (6), 997–1016.

https://doi.org/10.1007/s11222-013-9416-2

Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The null ritual: What you always wanted

to know about significance testing but were afraid to ask. The Sage Handbook of

Methodology for the Social Sciences, 391–408.

https://doi.org/10.4135/9781412986311.n21

Hedges, L. V. (2007). Effect sizes in cluster-randomized designs. Journal of Educational and

Behavioral Statistics, 32 (4), 341–370. https://doi.org/10.3102/1076998606298043

Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E.-J. (2014). Robust

https://doi.org/10.1198/004017005000000517
https://doi.org/10.1214/ss/1177011136
https://github.com/jgabry/bayes_R2/blob/master/bayes_R2.pdf
https://doi.org/10.1080/19345747.2011.618213
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.4135/9781412986311.n21
https://doi.org/10.3102/1076998606298043


INTRODUCING BRMS 37

misinterpretation of confidence intervals. Psychonomic Bulletin & Review, 21 (5),

1157–1164. https://doi.org/10.3758/s13423-013-0572-3

Janssen, D. P. (2012). Twice random, once mixed: Applying mixed models to simultaneously

analyze random effects of language and participants. Behavior Research Methods,

44 (1), 232–247. https://doi.org/10.3758/s13428-011-0145-1

Judd, C. M., Westfall, J., & Kenny, D. A. (2017). Experiments with more than one random

factor: Designs, analytic models, and statistical power. Annual Review of Psychology,

68, 601–625. https://doi.org/10.1146/annurev-psych-122414-033702

Kline, R. (2004). Beyond significance testing: Reforming data analysis methods in behavioral

research. (pp. 61–91). Washington, DC: APA Book.

https://doi.org/10.1037/10693-003

Kruschke, J. K. (2015). Doing Bayesian data analysis, Second Edition: A tutorial with R,

JAGS, and Stan. Burlington, MA: Academic Press / Elsevier.

Kruschke, J. K., & Liddell, T. M. (2017a). Bayesian data analysis for newcomers.

Psychonomic Bulletin & Review, 1–23. https://doi.org/10.3758/s13423-017-1272-1

Kruschke, J. K., & Liddell, T. M. (2017b). The Bayesian new statistics: Hypothesis testing,

estimation, meta-analysis, and power analysis from a Bayesian perspective.

Psychonomic Bulletin & Review, 1–29. https://doi.org/10.3758/s13423-016-1221-4

Kruschke, J. K., & Meredith, M. (2017). BEST: Bayesian estimation supersedes the t-test.

Retrieved from https://CRAN.R-project.org/package=BEST

Lambdin, C. (2012). Significance tests as sorcery: Science is empirical–significance tests are

not. Theory & Psychology, 22 (1), 67–90. https://doi.org/10.1177/0959354311429854

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices

based on vines and extended onion method. Journal of Multivariate Analysis, 100 (9),

https://doi.org/10.3758/s13423-013-0572-3
https://doi.org/10.3758/s13428-011-0145-1
https://doi.org/10.1146/annurev-psych-122414-033702
https://doi.org/10.1037/10693-003
https://doi.org/10.3758/s13423-017-1272-1
https://doi.org/10.3758/s13423-016-1221-4
https://CRAN.R-project.org/package=BEST
https://doi.org/10.1177/0959354311429854


INTRODUCING BRMS 38

1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008

Marsman, M., Waldorp, L., Dablander, F., & Wagenmakers, E.-J. (2017). Bayesian

estimation of explained variance in ANOVA designs. Retrieved from

http://maartenmarsman.com/wp-content/uploads/2017/04/MarsmanEtAl_R2.pdf

McCloy, D. R. (2014). Phonetic effects of morphological structure in Indonesian vowel

reduction. In Proceedings of meetings on acoustics (Vol. 12, pp. 1–14).

https://doi.org/10.1121/1.4870068

McCloy, D. R. (2016). phonR: Tools for phoneticians and phonologists. Retrieved from

https://cran.r-project.org/web/packages/phonR/

McElreath, R. (2016). Statistical Rethinking. Chapman; Hall/CRC.

Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E.-J. (2015). The

fallacy of placing confidence in confidence intervals. Psychonomic Bulletin & Review,

23, 103–123. https://doi.org/10.3758/s13423-015-0947-8

Murdoch, D., & Chow, E. D. (2013). ellipse: Functions for drawing ellipses and ellipse-like

confidence regions. Retrieved from https://CRAN.R-project.org/package=ellipse

Nicenboim, B., & Vasishth, S. (2016). Statistical methods for linguistic research:

Foundational Ideas – Part II. Language and Linguistics Compass, 10 (11), 591–613.

https://doi.org/10.1111/lnc3.12207

Polson, N. G., & Scott, J. G. (2012). On the half-cauchy prior for a global scale parameter.

Bayesian Analysis, 7 (4), 887–902. https://doi.org/10.1214/12-BA730

R Core Team. (2017). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from

https://www.R-project.org/

Robinson, D. (2017). broom: Convert statistical analysis objects into tidy data frames.

https://doi.org/10.1016/j.jmva.2009.04.008
http://maartenmarsman.com/wp-content/uploads/2017/04/MarsmanEtAl_R2.pdf
https://doi.org/10.1121/1.4870068
https://cran.r-project.org/web/packages/phonR/
https://doi.org/10.3758/s13423-015-0947-8
https://CRAN.R-project.org/package=ellipse
https://doi.org/10.1111/lnc3.12207
https://doi.org/10.1214/12-BA730
https://www.R-project.org/


INTRODUCING BRMS 39

Retrieved from https://CRAN.R-project.org/package=broom

Scott, J. G., & Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in

the variable-selection problem. The Annals of Statistics, 38 (5), 2587–2619.

https://doi.org/10.1214/10-AOS792

Sorensen, T., Hohenstein, S., & Vasishth, S. (2016). Bayesian linear mixed models using

Stan: A tutorial for psychologists, linguists, and cognitive scientists. The Quantitative

Methods for Psychology, 12 (3), 175–200. https://doi.org/10.20982/tqmp.12.3.p175

Stan Development Team. (2016). Stan modeling language users guide and reference manual.

Retrieved from http://mc-stan.org

Trafimow, D., Amrhein, V., Areshenkoff, C. N., Barrera-Causil, C. J., Beh, E. J., Bilgiç, Y.

K., . . . Marmolejo-Ramos, F. (2018). Manipulating the alpha level cannot cure

significance testing. Frontiers in Psychology, 9.

https://doi.org/10.3389/fpsyg.2018.00699

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using

leave-one-out cross-validation and WAIC. Statistics and Computing, 27 (5), 1413–1432.

https://doi.org/10.1007/s11222-016-9696-4

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely

applicable information criterion in singular learning theory. Journal of Machine

Learning Research, 11, 3571–3594.

Watt, D., & Fabricius, A. (2002). Evaluation of a technique for improving the mapping of

multiple speakers’ vowel spaces in the F1~F2 plane. Leeds Working Papers in

Linguistics and Phonetics, 9 (9), 159–173.

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.

https://CRAN.R-project.org/package=broom
https://doi.org/10.1214/10-AOS792
https://doi.org/10.20982/tqmp.12.3.p175
http://mc-stan.org
https://doi.org/10.3389/fpsyg.2018.00699
https://doi.org/10.1007/s11222-016-9696-4


INTRODUCING BRMS 40

Retrieved from http://ggplot2.org

Wickham, H. (2017). tidyverse: Easily install and load ’tidyverse’ packages. Retrieved from

https://CRAN.R-project.org/package=tidyverse

Wilke, C. O. (2017). ggridges: Ridgeline plots in ’ggplot2’. Retrieved from

https://CRAN.R-project.org/package=ggridges

Williams, D. R., & Bürkner, P.-C. (2017). Psychoneuroendocrinology Effects of intranasal

oxytocin on symptoms of schizophrenia: A multivariate Bayesian meta-analysis.

Psychoneuroendocrinology, 75, 141–151.

https://doi.org/10.1016/j.psyneuen.2016.10.013

Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Boca Raton, Florida:

Chapman; Hall/CRC. Retrieved from https://yihui.name/knitr/

http://ggplot2.org
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=ggridges
https://doi.org/10.1016/j.psyneuen.2016.10.013
https://yihui.name/knitr/


INTRODUCING BRMS 41

Table 1

Ten randomly picked rows from the data.

subj gender vowel f1 f2 f1norm f2norm distance repetition

M02 m /e/ 534 1724 1.143 1.113 0.118 7

F09 f /i/ 468 2401 0.943 1.447 0.223 16

F04 f /a/ 885 1413 1.636 0.804 0.223 12

M01 m /a/ 671 1262 1.615 0.823 0.176 25

F04 f /a/ 700 1951 1.294 1.109 0.237 36

F04 f /e/ 614 2100 1.135 1.194 0.070 42

M04 m /i/ 338 2163 0.803 1.432 0.040 16

F04 f /o/ 649 1357 1.200 0.772 0.154 12

M04 m /a/ 524 1573 1.245 1.041 0.146 20

M02 m /u/ 411 762 0.879 0.492 0.134 25
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Table 2

Posterior mean, standard error, 95% credible interval and R̂

statistic for each parameter of the constant effect model bmod1.

parameter mean SE lower bound upper bound Rhat

α 0.163 0.002 0.159 0.168 1.000

β -0.042 0.005 -0.051 -0.033 1.000

σe 0.098 0.002 0.095 0.102 1.000
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Table 3

Posterior mean, standard error, 95% credible interval and R̂

statistic for each parameter of model bmod2 with a varying

intercept by subject.

parameter mean SE lower bound upper bound Rhat

α 0.163 0.006 0.150 0.176 1.001

β -0.042 0.013 -0.068 -0.017 1.001

σsubject 0.016 0.008 0.006 0.035 1.000

σe 0.098 0.002 0.095 0.101 1.000
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Table 4

Posterior mean, standard error, 95% credible interval and R̂

statistic for each parameter of model bmod3 with a varying

intercept by subject and by vowel.

parameter mean SE lower bound upper bound Rhat

α 0.164 0.040 0.086 0.244 1.000

β -0.042 0.013 -0.069 -0.014 1.000

σsubject 0.017 0.008 0.007 0.036 1.000

σvowel 0.075 0.048 0.031 0.196 1.000

σe 0.088 0.002 0.085 0.091 1.000
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Table 5

Posterior mean, standard error, 95% credible interval and R̂

statistic for each parameter of model bmod4 with a varying

intercept and varying slope by vowel.

parameter mean SE lower bound upper bound Rhat

α 0.164 0.036 0.096 0.237 1.001

β -0.042 0.030 -0.099 0.016 1.000

σsubject 0.016 0.008 0.007 0.036 1.000

σαvowel
0.067 0.043 0.029 0.171 1.000

σβvowel
0.052 0.031 0.022 0.132 1.000

ρ -0.497 0.356 -0.951 0.371 1.001

σe 0.086 0.001 0.084 0.089 1.000
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Table 6

Posterior mean, standard error, 95% credible interval and R̂

statistic for each parameter of model bmod5 with a varying

intercept and a varying slope by vowel and a varying intercept for

the interaction between subject and vowel.

parameter mean SE lower bound upper bound Rhat

α 0.163 0.038 0.087 0.236 1.000

β -0.042 0.030 -0.100 0.018 1.000

σsubject 0.012 0.009 0.001 0.033 1.000

σsubject:vowel 0.024 0.005 0.016 0.034 1.000

σαvowel
0.070 0.046 0.029 0.183 1.000

σβvowel
0.050 0.038 0.013 0.144 1.000

ρ -0.433 0.380 -0.946 0.454 1.000

σe 0.085 0.001 0.082 0.088 1.000



IN
T
RO

D
U
C
IN

G
BR

M
S

47

Table 7

Model comparison with LOOIC.

Model LOOIC SE ∆LOOIC ∆SE right side of the formula

bmod5 -3600.29 68.26 0.00 0.00 gender + (1 | subj) + (1 + gender | vowel) + (1 | subj:vowel)

bmod4 -3544.66 66.92 55.63 14.94 gender + (1 | subj) + (1 + gender | vowel)

bmod3 -3484.21 67.15 116.08 20.22 gender + (1 | subj) + (1 | vowel)

bmod2 -3119.41 65.32 480.88 39.50 gender + (1 | subj)

bmod1 -3103.43 66.72 496.86 40.52 gender
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Figure 1 . Euclidean distances between each observation and the centres of gravity corre-

sponding to each vowel across all participants, by gender (top row: female, bottom row:

male) and by vowel (in column), in the normalised F1-F2 plane. The grey background plots

represent the individual data collapsed for all individuals (male and female) and all vowels.

Note that, for the sake of clarity, this figure represents a unique center of gravity for each

vowel for all participants, whereas in the analysis, one center of gravity was used for each

vowel and each participant.
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Figure 2 . Prior distributions used in the first model, for α and β (left panel) and for the

residual variation σe (right panel).
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Figure 3 . Histograms of posterior samples and trace plots of the intercept, the slope for

gender and the standard deviation of the residuals of the constant effects model.
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Figure 4 . Posterior distributions by subject, as estimated by the bmod2 model. The vertical

dashed lines represent the means of the formant distances for the female and male groups.

Crosses represent the mean of the raw data, for each participant. Arrows represent the

amount of shrinkage, between the raw mean and the estimation of the model (the mean of

the posterior distribution).
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Figure 5 . Visualisation of the LKJ prior for different values of the shape parameter ζ.
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Figure 6 . Shrinkage of estimates in the parameter space, due to the pooling of information

between clusters (based on the bmod4 model). The ellipses represent the contours of the

bivariate distribution, at different degrees of confidence 0.1, 0.3, 0.5 and 0.7.
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Figure 7 . Comparison of estimations from brms and lme4. Dots represent means of posterior

distribution along with 95% CrIs, as estimated by the bmod5 model. Crosses represent

estimations of lme4 along with bootstrapped 95% CIs.
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Figure 8 . Histogram of posterior samples of the slope for gender, as estimated by the last

model.
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