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Abstract

Sports timetabling problems are combinatorial optimization problems which consist of creating a timetable that defines against
whom, when, and where teams play games. In the literature, sports timetabling problems have been reported featuring a wide
variety of constraints and objectives. This variety makes it challenging to identify the relevant set of papers for a given sports
timetabling problem. Moreover, the lack of a generally accepted data format makes that problem instances and their solutions are
rarely shared. Consequently, it is hard to assess algorithmic performance since solution methods are often tested on just one or
two specific instances. To mitigate these issues, this paper presents RobinX, a three-field notation to describe a sports timetabling
problem by means of the tournament format, the constraints in use, and the objective. We use this notation to classify sports
timetabling problems presented in the operations research literature during the last five decades. Moreover, RobinX contains xml-
based file templates to store problem instances and their solutions and presents an online platform that offers three useful tools.
First, a query tool assists users to select the relevant set of papers for a given timetabling problem. Second, the online platform
provides access to an xml data repository that contains real-life problem instances from different countries and sports. Finally, the
website enables users to interact with a free and open-source C++-library to read and write xml files and to validate and evaluate
encoded instances and solutions.
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1. Introduction

Creating timetables for sports competitions has been a topic
of research since the 1970s (e.g., Ball and Webster (1977)).
Ever since, academic papers about sports timetabling have in-
creased considerably in numbers and sports timetabling has
become a specialized field with its own research conferences
(Kendall et al., 2010). Figure 1 illustrates the increase in op-
erations research related sports timetabling contributions over
the last five decades. The peak in contributions around 2000 is
partially explained by the introduction of the traveling tourna-
ment problem (Easton et al. (2001)), which minimizes the total
team travel in a timetable. For this problem, substantial algo-
rithmic progress has been reported after Easton et al. (2001)
made a set of artificial benchmark instances publicly available.
Many of the other contributions read as a case study that con-
structs the timetable of a single real-life competition. This is a
complex matter due to conflicting interests of many stakehold-
ers: apart from some basic constraints, each competition has its
own requirements. For example, minimizing the occurrence of
two consecutive home games or two consecutive away games
for the same team is often key in professional competitions
(e.g., Bartsch et al. (2006); Goossens and Spieksma (2009)).
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In contrast, respecting player availability is far more impor-
tant in non-professional competitions (e.g., Schönberger et al.
(2004); Van Bulck et al. (2019)). This wide variety of objectives
and requirements makes it challenging to identify the relevant
set of papers for a given timetabling problem. Moreover, the
lack of a generally accepted data format makes that (real-life)
problem instances and their solutions are rarely shared. Con-
sequently, contributions in the literature are often tested on just
one or two specific problem instances of a particular competi-
tion. This forms one of the main obstacles in current algorith-
mic progress for solution methods since few general insights
have been gained from previous studies.

In a round-robin timetable, often imprecisely called a
schedule (for an argumentation see, e.g., Schreuder (1992);
Schönberger et al. (2004)), every team plays against every other
team a fixed number of times. Although a few contributions
have been made to organize various constraints that occur in
(single-league) round-robin timetabling, they did not result in
a generally applicable notation or file format for problem in-
stances and solutions. Bartsch et al. (2006) describe several
sports competitions by means of organizational constraints that
enforce the various competition rules imposed by the league
organizers, attractiveness constraints that make the competi-
tion thrilling over the entire season, and fairness constraints
that guarantee that the timetable does not favor any team. Ras-
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Figure 1: Sports timetabling contributions from Knust (2018) categorized ac-
cording to the year of publication.

mussen and Trick (2008) list eight common constraint classes
but do not describe what particular constraints within each class
look like. Nurmi et al. (2010) elaborate further on previous
contributions and list more than thirty popular round-robin con-
straints. Moreover, they are the first to set up a (plain text-only)
file format to store instances, and propose a set of artificial and
real-world instances together with the best solutions found so
far. This format, however, has limited utility with respect to the
ease of data manipulation and is not extensible towards several
real-world problems such as the multi-league sports timetabling
problem. Kendall et al. (2010) are the only authors to distin-
guish between different objectives.

The main contributions and outline of this paper are as fol-
lows. Section 2 formally defines the structure of multi-league
sports timetabling problems, and introduces the most common
sports timetabling terminology. As a first contribution, Sec-
tion 3 then proposes a three-field notation to describe (i) the
tournament format (ii) the constraints in use and (iii) the objec-
tive of a sports timetabling problem instance. The notation is
able to classify a wide variety of round-robin tournaments and
other competition formats. This unified notation should help re-
searchers to recognize common problem features among differ-
ent problem instances. As a second contribution, Section 4 pro-
vides a problem-driven classification of sports timetabling ap-
plications presented in the operations research literature. Based
on this classification, an interactive query tool is proposed to
assist researchers to identify all relevant papers for a given
timetabling problem. As a third contribution, Section 5 encodes
the three-field notation using xml-based file templates to store
problem instances, solutions, and objective bounds. While still
being human readable, the advantage of xml over plain text-
only file formats lies in the structured way of data storage mak-
ing it an extendable language that can easily be adjusted over
time. Another advantage of the xml files is the ability to retrieve
problem specific properties that may have been lost in the three-
field notation which operates on a higher abstraction level. To
encourage further research, we provide a C++-library to read
and write xml files and to validate and evaluate encoded in-
stances and solutions. In addition, we employ this library to en-
code over 40 different problem instance types originating from
over 15 different countries and eight different sports. All col-
lected data and several related tools are available on the website

devoted to this project (Van Bulck et al., 2018b). Conclusions
follow in Section 6.

2. Terminology

The input of a sports timetabling problem consists of a set
of time slots P, a set of teams U, and a multiset of games G.
Time slots can represent periods in time like half days or days
in the season, however, a team can never play more than one
game per time slot. If a team does not play in a time slot, it
has a bye in that time slot. To represent relations between time
slots, a time group S ⊆ P combines multiple time slots, e.g.,
all midweek time slots, into a single set. Time groups can also
represent so-called rounds that consist of a set of one or more
time slots during which a team can play at most one game. Al-
though there is a temporal relationship between time slots, si is
earlier in time than si+1, there is no such relation between time
groups. The multiset of games G consists of ordered pairs (i, j)
in which i ∈ U is the home team providing the venue where the
game is played, and j ∈ U is the away team. For convenience,
we denote with gi, j the multiplicity of the ordered pair (i, j) ∈ G,
i.e., gi, j gives the number of home games i has to play against j.
Likewise, we denote with gi the total number of games in G in-
volving team i. Similar to time groups, teams can be combined
into a team group T ⊆ U to represent an entity such as a sports
club, a strength group, or a geographical group. Team groups
are also useful to model multi-league sports timetabling prob-
lems in which a set of leagues L form a partition of the teams
U, i.e.,

⋃
l∈L Tl = U and Tl1 ∩ Tl2 = ∅ for l1 , l2, such that gi, j

is zero if i and j do not belong to the same league, and possibly
non-zero otherwise. A timetable maps each game in G to a time
slot s ∈ P such that no team plays more than one game per time
slot. Sometimes, we can also associate a cost ci, j,s with playing
game (i, j) ∈ G on time slot s ∈ P.

Tournament format. Team group T organizes a k round-robin
tournament (kRR) if gi, j + g j,i equals a constant k for each
i, j ∈ T with i , j and the difference between gi, j and g j,i

is at most one. Similarly, team group T organizes a k bipar-
tite round-robin tournament (kBRR) if the teams in T can be
partitioned into two disjoint sets V1 and V2 in such a way that
gi, j + g j,i equals a constant k if i ∈ V1 and j ∈ V2 and the dif-
ference between gi, j and g j,i is at most one, and 0 otherwise.
In any other case, we say that the team group organizes a non
round-robin tournament (NRR). A tournament is compact or
time-constrained if the number of available time slots |P| is no
more than the minimum number required to play all games in
that tournament. In a kRR with n teams, n even, the minimum
number of time slots to play all games equals k(n − 1); if n is
odd, the minimum number of time slots is kn. In a kBRR, this
number equals k times the number of teams in the largest of two
team groups, that is k max(|V1|, |V2|). A time-relaxed tourna-
ment has more time slots available than strictly needed. Table 1
gives an example of a timetable for a compact 2RR.

Symmetry structures. In a kRR with k > 1, the season is of-
ten split into k intervals, i.e., a series of consecutive time slots
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Table 1: A compact mirrored double round-robin timetable for a single league with 6 teams.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

(1,2) (2,5) (2,4) (2,3) (6,2) (2,1) (5,2) (4,2) (3,2) (2,6)
(3,4) (4,1) (1,6) (5,1) (4,5) (4,3) (1,4) (6,1) (1,5) (5,4)
(5,6) (6,3) (5,3) (6,4) (1,3) (6,5) (3,6) (3,5) (4,6) (3,1)

of length |P|/k that each contain a 1RR. We call a timetable
that follows this format phased and consider the following ad-
ditional symmetry structures (see Table 2). In the mirrored
timetable format, the opponents in each interval are identical
to the opponents of the previous interval. In the inverted sys-
tem, intervals are played in the reversed order of the previous
interval. In the English system, the opponents in the first time
slot of an interval are the same as in the last time slot of the
previous interval, and the opponents of the l-th time slot of the
interval correspond with opponents of the (l − 1)-th time slot
of the previous interval. Finally, in the French system, the op-
ponents in the last time slot of an interval correspond with the
opponents in the first time slot of the previous interval. For all
other time slots, the opponents of the l-th time slot in in an in-
terval correspond with the opponents in the (l + 1)-th time slot
of the previous interval. An overview of symmetry structures in
European top football competitions (soccer in the USA) can be
found in Goossens and Spieksma (2012).

Fairness concepts. A team has a home stand if it plays multiple
home games in a row and is on a road trip when it plays multiple
away games in a row. If a team plays a game with the same
home-away status as its previous game, no matter the number
of byes in between, we say it has a break. As an example,
team 2 in Table 1 has a home break on time slots s3 and s4
and has a home stand starting on s2 and ending on s4. When
a team first plays against team i, and immediately thereafter
against team j, we say that team i gives a carryover effect (coe)
to team j (see e.g., Russell (1980)). If we denote with ci, j the
number of carryover effects that team i gives to team j over the
entire tournament, then the carryover effect value (coe-value)
of a timetable is defined as

∑
i∈U
∑

j∈U c2
i, j. Note that the coe-

value is a cyclical concept: it also considers the carryover from
a team’s last game to its first game. For fairness reasons, it
is sometimes requested that the coe-value of a team group is
as low as possible. Indeed, if i is very strong team, one might
believe that j has an advantage since j’s opponent is more likely
to be weakened or injured. A timetable for a kRR with n teams
has a coe-value of at least kn(n − 1); a timetable that realizes
this lower bound is called coe-balanced. A weighted variant of
the carryover effect in which each c2

i, j is additionally multiplied
with weight wi, j is proposed in Guedes and Ribeiro (2011).

Timetable parameters. Finally, for a given timetable, we define
the following parameters. Please note that these parameters are
solely used to describe how constraint violations for a given
timetable should be evaluated (see Section 3.2); we do not in-
tend to use them as decision variables in a mathematical model.
First, for each team pair in U, xi, j,s is 1 if team i and j meet
in the venue of i on time slot s ∈ P, and 0 otherwise. Simi-

larly, oi, j,k is 1 if the k-th opponent of team i is team j, and 0
otherwise. The parameter hi, j,k is 1 if i and j meet for the k-th
time in the venue of i, and 0 otherwise. Parameter yi, j,s1,s2 is 1
if team i and j meet each other during time slots s1 ∈ P and
s2 ∈ P, s1 < s2, without meeting in between, and 0 otherwise.
Furthermore, let hi,s be 1 if team i plays a home game on time
slot s, and 0 otherwise. Similarly, qi,k is 1 if team i plays its
k-th game at home, and 0 otherwise. Let bi,s be 1 if team i has
a break on time slot s, and 0 otherwise. In the weighted break
minimization problem, break bi,s is additionally multiplied with
weight vi,s. Also, let ai,s1,s2 be 1 if team i starts a road trip on s1
and ends the trip on s2, and 0 otherwise. Finally, ei,s is equal to
the distance traveled by i from the venue of its previous game
to the venue of its current game if i plays a game on time slot
s, and 0 otherwise. We assume that each team is located at its
home venue before the season starts, and needs to return back
home immediately after playing its last game. Therefore, ei,s

also contains the cost of returning back home if team i plays
its last game on time slot s. For a complete overview of sports
timetabling terminology, we refer to Drexl and Knust (2007),
Kendall et al. (2010), and Rasmussen and Trick (2008).

3. Three-field notation

In the late 1970s, Graham et al. (1979) introduced a now
widely used three-field notation to distinguish between differ-
ent machine scheduling problems, in which a set of tasks has
to be sequenced and assigned to one or more machines. As
in several other disciplines, e.g., operating room planning (see
Cardoen et al. (2010)), we use the idea of ‘three-fields’ (α|β|γ)
to provide a detailed description of a sports timetabling prob-
lem. The first field, α, determines the tournament format, the
compactness of the timetable, and the required symmetry. The
second field, β, lists around 20 constraint types partitioned into
five classes that are able to model the vast majority of the con-
straints in the literature. Lastly, the γ-field refers to the ob-
jective in use. Sections 3.1 to 3.3 explain how each of these
fields describe certain properties of a single-league timetabling
problem. Next, Section 3.4 explains how to use the three-field
notation in single- and multi-league settings.

3.1. Field α: competition format

The α-field features three parameters to represent the tour-
nament format (α1), the compactness (α2), and the symmetry
properties of the timetable (α3). First, the α1 parameter denotes
a k-round-robin tournament with ‘kRR’, a k-bipartite round-
robin tournament with ‘kBRR’, and all other non-round-robin
tournaments with ‘NRR’. Second, the parameter α2 describes
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Table 2: An illustration of different symmetry schemes for the games of team 2 in Table 1.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Mirrored (1,2) (2,5) (2,4) (2,3) (6,2) (2,1) (5,2) (4,2) (3,2) (2,6)
Inverse (1,2) (2,5) (2,4) (2,3) (6,2) (2,6) (3,2) (4,2) (5,2) (2,1)
English (1,2) (2,5) (2,4) (2,3) (6,2) (2,6) (2,1) (5,2) (4,2) (3,2)
French (1,2) (2,5) (2,4) (2,3) (6,2) (5,2) (4,2) (3,2) (2,6) (2,1)

the compactness of the tournament: time-constrained tourna-
ments are denoted by the value ‘C’, time-relaxed tournaments
by the value ‘R’. Finally, the third parameter α3 denotes the
symmetry of the timetable. By default, we assume that a tour-
nament does not require any symmetry at all (‘∅’). However,
in case of a kRR or kBRR tournament with k > 1, the α3-part
considers the following symmetry structures: phased (‘P’), mir-
rored (‘M’), inverted (‘I’), English (‘E’), or French (‘F’).

3.2. Field β: constraints

Sports timetables need to satisfy a usually large set of con-
straints C, which is partitioned into hard constraints Chard and
soft constraints Csoft. Hard constraints represent fundamental
properties of the timetable that can never be violated. Soft con-
straints, in contrast, rather represent preferences that should be
satisfied whenever possible. As in high school timetabling (see
Post et al. (2012)), the validation of each constraint c ∈ C re-
sults in a vector Dc of nc integral numbers, called the devia-
tion vector Dc = [d1 d2 . . . dnc ]. If a constraint is satisfied,
all elements of its deviation vector are equal to zero. Contrar-
ily, the deviation vector of a violated constraint contains one
or more strictly positive elements. Apart from a description of
how to calculate the deviation vector, each constraint features a
cost function fc and weight wc. A violated constraint triggers a
penalty pc = wc fc(Dc), equal to a weighted mapping of its devi-
ation vector by its cost function. Our notation provides a total of
five different cost functions. To begin, the sum function simply
sums over all elements in the deviation vector (1). Similarly, the
square-sum function (2) squares the sum of the deviations, and
the sum-square function sums over all squared deviations (3).
Finally, the min function (4) and max function (5) respectively
output the smallest and largest element of the deviation vector.

f sum
c (Dc) =

∑
1≤i≤nc

di (1)

f sq−sum
c (Dc) = (

∑
1≤i≤nc

di)2 (2)

f sum−sq
c (Dc) =

∑
1≤i≤nc

d2
i (3)

f min
c (Dc) = min

1≤i≤nc
di (4)

f max
c (Dc) = max

1≤i≤nc

di (5)

The evaluation of a timetable consists in the validation of all
constraints and results in an infeasibility value and an objective
value. The infeasibility value sums over all violated hard con-
straint penalties: a timetable is feasible if and only if it has an

infeasibility value of zero. If there are soft constraints, the ob-
jective value sums over all violated soft constraint penalties; in
the absence of soft constraints, other objectives can be specified
(see Section 3.3).

The β-field categorizes the constraints from the literature into
five different constraint classes. The remainder of this section
discusses each constraint class and describes each member con-
straint together with its deviation vector. Some of these con-
straints offer a set of options, indicated using braces, to specify
different variants of the constraint. In this case, the descrip-
tion of the deviation vector always assumes that the first option
within braces is chosen. For all other options, we assume that
the reader can adapt the description accordingly. In order to re-
duce the ambiguity between constraints, some constraints also
impose restrictions on the (combination of) specified options.

3.2.1. Capacity constraints
Capacity constraints force a team to play home or away and

regulate the total number of games played by a team or team
group.

CA1 Each team in team group T plays at least kmin and at most
kmax {home games, away games, games} in time group S .
Each team in T triggers a deviation equal to the number of
home games in S less than kmin or more than kmax.
∀i ∈ T : di = max(kmin −

∑
j∈U

∑
s∈S

xi, j,s;
∑
j∈U

∑
s∈S

xi, j,s − kmax; 0)

CA2 Each team in team group T1 plays at least kmin and at most
kmax {home games, away games, games} against {teams,
each team} in team group T2 in time group S .
Ambiguity breaking with GA1: |T1| > 1 ∨ |T2| > 1.
Each team in T1 triggers a deviation equal to the number
of home games against teams in T2 in S less than kmin or
more than kmax.
∀i ∈ T1 : di = max(kmin−

∑
j∈T2

∑
s∈S

xi, j,s;
∑

j∈T2

∑
s∈S

xi, j,s−kmax; 0)

CA3 Each team in team group T1 plays at least kmin and at most
kmax {home games, away games, games} against teams in
team group T2 in each sequence of k {time slots, games}.
Each team in T1 triggers a deviation equal to the sum of
the number of home games against teams in T2 less than
kmin or more than kmax for each sequence of k time slots.

∀i ∈ T1 : di =
|P|−k+1∑

l=1
(max(kmin −

∑
j∈T2

l+k−1∑
s=l

xi, j,s;∑
j∈T2

l+k−1∑
s=l

xi, j,s − kmax; 0))

CA4 Teams in team group T1 play at least kmin and at most kmax

{home games, away games, games} against teams in team
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group T2 in {time group, each time slot of time group} S .
Ambiguity breaking with CA2: |T1| > 1.
Time group S triggers a deviation equal to the number of
games with a home team in T1 and a team in T2 less than
kmin or more than kmax.
d = max(kmin −

∑
i∈T1

∑
j∈T2

∑
s∈S

xi, j,s;
∑

i∈T1

∑
j∈T2

∑
s∈S

xi, j,s − kmax; 0)

CA5 Each team in team group T1 plays at least kmin and at most
kmax away games against a team in team group T2 when it
consecutively plays away during time group S .
Each team in T1 triggers a deviation equal to the sum of
the number of away games against teams in T2 less than
kmin or more than kmax for each sequence of away games in
S .
∀i ∈ T1 : di =

∑
s1∈S

∑
s2∈S :s2>s1

ai,s1,s2 max(kmin−
∑

j∈T2

s2∑
s3=s1

x j,i,s3 ;∑
j∈T2

s2∑
s3=s1

x j,i,s3 − kmax; 0)

Constraint CA1 is of fundamental use in sports timetabling
to model ‘place constraints’ (Rasmussen and Trick, 2008) that
forbid a team to play a home game, away game, or any game
in a given time slot. Constraint CA1 can also help to balance
the home-away status of games over time and teams. As an ex-
ample, most phased tournaments regulate the number of home
games each team plays in each interval. However, CA1 cannot
be used to limit the difference in the number of home games
played by a pair of teams, this can be accomplished by using
FA2 (see Section 3.2.4) instead. As another example, when the
home team receives ticket revenues, teams often request to play
at least a given number of home games during the most lucra-
tive time slots. Finally, CA1 can be used to model rounds, i.e.,
sets of time slots, usually weekends, during each of which a
team can play at most one game.

Constraint CA2 can model ‘top team and bottom team con-
straints’ (Rasmussen and Trick, 2008) that prohibit bottom
teams from playing all initial games against top teams. In odd-
or non-round-robin tournaments, it is not only important to con-
trol for the timing of home games, but also for the opponents.
In this regard, teams are often partitioned into different strength
groups for which limits on the number of home games against
each group are imposed. Constraint CA2 can also be used to
model a kRR or kBRR between a subset of teams, or to put
limits on the number of encounters in an NRR. Finally, CA2
can be used as a soft constraint if a kRR is preferably, but not
necessarily phased. We point out that constraint CA2 actually
generalizes constraint CA1. However, since CA1 and CA2 are
of such a fundamental use in sports timetabling (see Section 4),
a considerable amount of meaningful information would be lost
when merging these two constraints.

Constraint CA3 can restrict a team to play at most one game
in any sequence of k time slots so that this team has a guar-
anteed rest time (Suksompong, 2016) of k − 1 time slots be-
tween any two games. Depending on whether byes are im-
portant, CA3 has different modes to limit the length of home
stands and away trips. Similarly, CA3 can limit the total num-
ber of away breaks that occur when a team plays consecutively

away against two opponents from a different geographical team
group (e.g., Recalde et al. (2013)). However, CA3 should never
be used to limit the total number of breaks; instead, this can be
achieved using BR1 and BR2 (see Section 3.2.3). Finally, CA3
can model a group changing timetable in which teams are par-
titioned into g strength groups and it is required that no team
plays consecutively against a team from the same team group.
Similarly, a timetable is group balanced if no team plays more
than once against teams of the same group within g consecutive
games (Briskorn, 2009).

In contrast to CA2 and CA3 that define restrictions for each
team in T1, CA4 considers T1 as a single entity. This constraint
can therefore limit the number of games played between top
teams in the same team group. As an example, to increase
television viewership, Brazilian broadcasters request to balance
football games between top teams over certain season intervals
(see Ribeiro and Urrutia (2007b)). Constraint CA4 can also
model asynchronous tournaments (e.g., Suksompong (2016))
that allow at most one game per time slot, or ‘derby time slots’
that only allow games between teams located in the same geo-
graphical area (e.g., Larson and Johansson (2014)). However,
constraints that forbid a game between two specific teams in a
given time slot must be classified with GA1 (see Section 3.2.2).

Finally, CA5 can forbid unreasonable road trips when teams
play a series of consecutive away games without returning
home. As an example, Chilean football teams cannot play in re-
mote places during road trips (Durán et al., 2007, 2012). How-
ever, note that constraints regulating the total number of road
trips must be classified with BR4 (see Section 3.2.3).

3.2.2. Game constraints
Game constraints enforce or forbid specific assignments of a

game to time slots.

GA1 At least kmin and at most kmax games from G = {(i1, j1),
(i2, j2), . . . } take place in time group S .
Time group S triggers a deviation equal to the number of
games in G less than kmin or more than kmax.
d = min(kmin −

∑
(i, j)∈G

∑
s∈S

xi, j,s;
∑

(i, j)∈G

∑
s∈S

xi, j,s − kmax; 0)

GA2 If a team from team group T1 plays a {home game, away
game, game} against a team from team group T2 in time
group S 1, then a team from team group T3 {plays, does
not play} a {home game, away game, game} against a team
from team group T4 in time group S 2.
Time group S 2 triggers a deviation of 1 if a team in T1
plays a home game against a team in T2 in S 1 but no team
in T3 plays a home game against a team in T4 in S 2, and 0
otherwise.
d = max(min(

∑
i∈T1

∑
j∈T2

∑
s∈S 1

xi, j,s, 1) −min(
∑

k∈T3

∑
l∈T4

∑
s∈S 2

xk,l,s;

1); 0)

Constraint GA1 deals with fixed and forbidden game to
time slot assignments and is of fundamental use in sports
timetabling. Examples include the police that forbid to play
high risk games during time slots in which other major events
are planned, and broadcasters that request at least one ‘top
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game’ or ‘classic game’ in each televised time slot. Constraint
GA2 is able to model conditional requirements between games.
As an example, Chilean television broadcasters request that no
top team plays in the North when another top team plays in the
South (Durán et al., 2007). Likewise, the timetable in Nurmi
et al. (2015) must include a weekend where teams playing each
other on Friday also play each other on Saturday.

3.2.3. Break constraints
Break constraints regulate the frequency and timing of breaks

in a competition. A team has a home (away) break when it plays
two consecutive home (away) games, no matter how many byes
this team has between the two games.

BR1 Each team in team group T has {exactly, no more than} k
{home breaks, away breaks, breaks} in time group S .
Each team in T triggers a deviation equal to the difference
in the sum of home breaks in S and k.
∀i ∈ T : di = |k −

∑
s∈S

bi,shi,s|

BR2 The sum over all {home breaks, away breaks, breaks} of
teams in team group T is {exactly, no more than} k in time
group S .
Ambiguity breaking with BR1: |T | > 1 ∧ k > 0.
Team group T triggers a deviation equal to the difference
in the sum of home breaks in S and k.
d = |k −

∑
i∈T

∑
s∈S

bi,shi,s|

BR3 Each pair of teams in team group T has a difference in
{home breaks, away breaks, breaks} that is not larger than
k.
Each pair of teams in T triggers a deviation equal to the
difference in the number of home breaks more than k.
∀i, j ∈ T, i < j : di, j = max(|

∑
s∈P

bi,shi,s −
∑
s∈P

b j,sh j,s| − k, 0)

BR4 Each team in team group T has at least k road trips in time
group S .
Each team in T triggers a deviation equal to the number of
road trips in S less than k.
∀i ∈ T : di = max(k −

∑
s1∈S

∑
s2∈S :
s2>s1

ai,s1,s2 ; 0)

Breaks usually are undesired since they have an adverse im-
pact on game attendance (see Forrest and Simmons (2006)) and
they can be perceived as unfair due to the home-away effect
(e.g., Pollard and Pollard (2005)). For this reason, BR1 can for-
bid breaks at the beginning or end of the season, or can limit the
total number of breaks per team. Constraint BR2, on the other
hand, can limit the total number of breaks in a competition. Al-
ternatively, organizers may use BR3 to enforce break equitable
timetables in which all teams have the same number of breaks,
although the total number of breaks then possibly increases. In
case that the distance between the venues of each team pair is
constant, Urrutia and Ribeiro (2006) show that the minimiza-
tion of distance is equivalent with break maximization. In order
to reduce travel distance, some teams might therefore prefer to
make at least a given number of road trips. A combination of

BR4 and CA5 can handle the situation in which the composi-
tion of road trips is also important.

3.2.4. Fairness and attractiveness constraints
The following constraints increase the fairness or attractive-

ness of competitions.

FA1 Each team in team group T has a difference in played home
and away games that is not larger than k after each time
slot in S .
Each team in T triggers a deviation equal to the largest
difference in played home and away games more than k
over all time slots in S .
∀i ∈ T : di = max

s∈S
(|
∑
j∈T

∑
1≤p≤s

(xi, j,p − x j,i,p)| − k; 0)

FA2 Each pair of teams in team group T has a difference in
played {home games, away games, games} that is not
larger than k after each time slot in S .
Each pair of teams in T triggers a deviation equal to the
largest difference in played home games more than k over
all time slots in S .
∀i, j ∈ T, i < j : di, j = max

s∈S
(|
∑
t∈T

∑
1≤p≤s

(xi,t,p − x j,t,p)| − k; 0)

FA3 Each pair of teams in team group T plays each other at
home and in turn away.
Each pair of teams in team group T triggers a deviation
equal to the total number of times the two teams play con-
secutively with the same home-away assignment.

∀i, j ∈ T, i < j : di, j =
gi, j+g j,i−1∑

k=1
(1 − |hi, j,k − hi, j,k+1|)

FA4 Team group T has a {weighted coe, coe} value of at most
k.
Team group T triggers a deviation equal to the weighted
coe-value more than k.
d = max(

∑
i∈T

∑
j∈T

wi, j c2
i, j − k; 0)

FA5 The total distance traveled by all teams in team group T
during time group S is at most k.
Team group T triggers a penalty equal to the total distance
traveled more than k.
d = max(

∑
i∈T

∑
s∈S

ei,s − k; 0)

FA6 The total cost associated with all games played during time
group S is at most k.
Time group S triggers a penalty equal to the total cost
more than k.
d = max(

∑
i∈T

∑
j∈T

∑
s∈S

ci, j,sxi, j,s − k; 0)

Over the years, various metrics have been developed to in-
crease the fairness of sports timetables. As an example, Knust
and von Thaden (2006) call a timetable balanced if the dif-
ference in played home and away games for each team is at
most 1 at the end of the season. Nurmi et al. (2010) generalize
this measure to k-balancedness which requires the difference in
played home and away games to be smaller than k at any point
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in time (FA1). In phased tournaments without additional sym-
metry requirements, FA1 may also enforce (k-)balancedness at
the end of each phase. However, we use constraint CA1 to ac-
complish that a team plays a given number of home games in
a certain time group. To increase the accuracy of the competi-
tion rankings, Goossens and Spieksma (2011) call a timetable
k-ranking-balanced if, after each time slot, ‘the difference be-
tween the number of home games played by any two teams
up till then is at most k’ (FA2). Related to this, Suksompong
(2016) proposes the games-played difference index that mea-
sures ‘the minimum integer k such that at any point in the
timetable, the difference between the number of games played
by any two teams is at most k’ (FA2). In tournaments in which
some teams meet more than twice, constraint FA3 enforces that
each pair of teams meet each other at home and in turn away
(e.g., Carlsson et al. (2017)). Constraint FA4 can be used to
model a coe-balanced timetable in which the total carryover ef-
fects value is minimum. Similarly, FA5 can enforce distance
minimal timetables but can also more fairly distribute the total
travel distance among teams. Finally, FA6 limits the total cost
associated with the game assignments in a timetable. As an ex-
ample, some competitions try to minimize the distance traveled
by the fans over holiday periods (e.g., Kendall (2008); West-
phal (2014); Cocchi et al. (2018)). This is different from FA5
since we assume that fans of a team immediately return back to
the home venue of their team. Constraint FA6 can model this
by setting a cost of ci, j,s = di, j for all s ∈ S and i, j ∈ T .

3.2.5. Separation constraints
Finally, separation constraints regulate the number of time

slots between consecutive games involving the same teams and
regulate the symmetry of the timetable.

SE1 Each pair of teams in team group T has at least k {time
slots, games} between two consecutive mutual games.
Each pair of teams in T triggers a deviation equal to the
sum of the number of time slots less than k for all consec-
utive mutual games.
∀i, j ∈ T, i < j : di, j =

∑
s1∈P

∑
s1+1≤s2≤|P|

yi, j,s1,s2 max(k − (s2 −

s1); 0)

SE2 If a pair of teams in team group T meets in one time slot
of a pair of time slots in Q = {{s1, s2}, {s3, s4}, . . . }, it also
meets in the other time slot.
Each pair of time slots in Q triggers a deviation equal to
the number of pairs of teams that play in one time slot but
not in the other time slot.
∀{s1, s2} ∈ Q : d{s1,s2} =

∑
{i, j}∈T

|(xi, j,s1 + x j,i,s1 ) − (xi, j,s2 +

x j,i,s2 )|

Organizers may request that two games with the same op-
ponents are separated by at least a given number of time slots
(SE1). If a separation of at least one time slot is required, this
constraint is often called the ‘no-repeater’ constraint (Easton
et al., 2001). Another way to enforce this separation in a time-
constrained kRR with an even number of teams is to use a mir-
rored symmetry structure (α3 = ‘M’) resulting in a maximum

Table 3: Mathematical description of the different objectives functions.

Objective Symbol Calculation

Minimum (weighted) break BR
∑

i∈U

∑
s∈P

vi,sbi,s

Minimum travel TR
∑

i∈U

∑
s∈P

ei,s

Minimum cost CR
∑

i∈U

∑
j∈U\i

∑
s∈S

xi, j,sci, j,s

Minimum (weighted) coe-value CO
∑

i∈U

∑
j∈U

wi, jc2
i, j

Minimum soft constraint SC
∑

c∈Csoft

pc

achievable separation for all games (Goossens and Spieksma,
2012). Constraint SE2 can be used if a symmetry structure other
than those in the α3-field is required (see e.g., Nemhauser and
Trick (1998)), or when a symmetry structure should be modeled
as a soft constraint as it is preferred but not strictly required.

3.3. Field γ: objective

As explained in Section 3.2, every timetable has an infea-
sibility value and an objective value. Where the infeasibility
value of a timetable is completely determined by the sum of the
penalty values of violated hard constraints, the γ-field describes
how to calculate the objective value. If no objective is provided
(‘∅’), the problem reduces to a constraint satisfaction problem
in which the sole purpose is to find a timetable respecting all
hard constraints.

Similarly, the minimum break objective (BR) minimizes the
total number of breaks in the competition. In the weighted
break minimization problem, breaks are additionally weighted
(see, e.g., Durán et al. (2017)). For a 1RR timetable with an
even number of teams and no additional requirements, de Werra
(1981) proves that the minimum number of breaks equals
|U | − 2. Moreover, if the number of teams is odd or if the com-
petition is time-relaxed, Fronček and Meszka (2005) show that
a 1RR timetable exists without any breaks. If there is no need
for the timetable to be phased, the minimum number of breaks
does not increase in a kRR when k increases (e.g., Goossens
and Spieksma (2011)). Contrarily, if the timetable needs to be
phased and a minimal separation between mutual games is re-
quired, the construction of a break minimal timetable becomes
less obvious (see Zeng and Mizuno (2012)).

In many large countries, it is necessary to reduce the amount
of travel by organizing road trips where teams play a series of
consecutive away games without returning home. The mini-
mum distance objective (TR) tries to minimize the total dis-
tance traveled by all teams in the competition and can be used to
model the traveling tournament problem (Easton et al., 2001).

In several settings, we can associate a cost or revenue to play
a given game in a particular time slot. As an example, atten-
dance estimates can be used to maximize revenues. Likewise,
costs can model venue rental prices if venues are owned by
public agencies to which teams have to pay a fee if they play
a home match in that stadium (see e.g., Briskorn and Drexl
(2009a)). The minimal cost problem (CR) constructs cost-
minimal timetables (and is equivalent to the maximum revenue
problem).
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As a response to managers complaining to be disadvantaged
by the timetable because of carryover effects, Goossens and
Spieksma (2012) analyzed more than 10,000 Belgian football
games but found no evidence of unbalanced carryover effects
impacting team performance. Notwithstanding, the construc-
tion of timetables with a minimum (weighted) coe-value (CO)
remains a popular subject, even in the Belgian football compe-
tition (Goossens and Spieksma, 2009).

In contrast to the previous objectives that assume that all con-
straints are hard, the soft-constraints objective (SC) assumes
that the problem features one or more soft constraints, and min-
imizes the total penalty resulting from violated soft constraints
while still respecting all hard constraints. Note that all of the
previous objectives can be expressed in the form of constraints:
use BR2 to limit the total number of breaks, FA5 to limit the
total travel distance, FA6 to limit the total costs or guarantee
a certain revenue, and FA4 to limit the carryover effects value.
Table 3 gives an overview of the different objectives and their
mathematical description.

3.4. Delimiters
The previous sections explained how to use each field pa-

rameter in isolation but did not exemplify how to combine the
different parameters into a single meaningful string. Hereto,
Table 4 provides an overview of the different delimiters and su-
perscripts used to further annotate the three-field notation. First,
we use a vertical bar to separate the three different fields from
each other. Within each field, we then use a comma to separate
information belonging to different parameters within the same
field. If the timetabling problem features soft constraints, i.e.,
we selected the soft-constraints objective, we need a delimiter
to distinguish the soft constraints from hard constraints. If the
constraint appears both as a hard constraint and soft constraint,
we annotate its label with the letters ‘H,S’; otherwise we add
the superscript ‘H’ for hard or ‘S’ for soft.

Until now, we only explained how to use the three-field no-
tation for single-league problems. In case the problem features
multiple leagues, we first apply the notation for all leagues in-
dividually and separate the information in parentheses. If there
are inter-league constraints that cover teams in more than one
given league, the constraint label is added to the notation of
each of the given leagues. Next, we concatenate the notations
of the individual leagues by using a plus operator. To condense
information, the notation allows to join the notation of simi-
lar leagues; a superscript indicates how many different leagues
follow the format in parentheses. An overview of the three-
field notation and all its different field, parameters, and values
is given in Figure 2.

We use the three-field notation outlined in this section on
two different abstraction levels. First, Section 4 operates on the
highest level of abstraction and applies the three-field notation
to generate a classification string for various sports timetabling
problems published in the literature. Despite being compact,
the classification string may hide problem specific characteris-
tics: it does for example not distinguish between the different
constraint options indicated in braces. If a more fine-grained
description is needed, we refer the reader to Section 5 which

kRR, kBRR, NRR

C,R

∅, M, I, E, F, P

α1

α2

α3

CA1, CA2, CA3, CA4, CA5

GA1, GA2

BR1, BR2, BR3, BR4

FA1, FA2, FA3, FA4, FA5, FA6

SE1, SE2

β1

β2

β3

β4

β5

∅, BR, TR, CR, CO, SCγ1

α

β

γ

Figure 2: Overview of the three-field notation for sports timetabling.

expresses sports timetabling problems in full detail by using
xml files which structure is based on the three-field notation.

4. Classification on sports timetabling problems

To get a thorough understanding of the typical structure of
(round-robin) sports timetabling problems, Section 4.1 provides
a problem-driven classification of the sports timetabling litera-
ture. Next, Section 4.2 discusses considerations, challenges,
and trade-offs that arose during the development of the three-
field notation that had to be capable of carrying out this classi-
fication.

4.1. A problem-driven classification

Several classifications on (round-robin) sports timetabling
have previously been published in highly ranked journals.
Drexl and Knust (2007) give an excellent overview of graph-
based models for sports timetabling. Rasmussen and Trick
(2008) list important sports timetabling contributions con-
cerning break and travel optimization and clarify various
timetabling notations. Despite their substantial effort to unify
terminology, the sports timetabling notation used in the litera-
ture remains highly inconsistent. Kendall et al. (2010) give an
overview of important sports timetabling problems, methodolo-
gies, and applications. Finally, Ribeiro (2012) lists a number
of sports timetabling problems and examines different mathe-
matical formulations. Although these classification papers give
an excellent overview of sports timetabling contributions over
time, they do not enable researchers to extract detailed informa-
tion about the tournament characteristics and the constraints or
objective in use. At best, these classifications inform the reader
about the objective and one or two specific constraints. This is
problematic since the popularity of particular tournament for-
mats, constraints, and objectives remains unidentified.

To direct future research efforts towards the most common
problem instance configurations, Table 4.1 employs the three-
field notation from Section 3 to classify 61 real-life sports
timetabling problems that previously appeared in the opera-
tions research literature (based on title and abstract selection
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Table 4: Summary on the use of delimiters and superscripts in the three-field notation.

Delimiter Function Example

| Field delimiter α | β | γ
, Parameter delimiter 2RR,C,M | β | γ

CA1H,S Hard versus Soft constraint α | CA1H,S, CA2H, CA3S | SC
()l Delimiter to group the problem notation for l coherent leagues (α | β | γ)l

+ Delimiter to concatenate the notation of different coherent leagues (α | β | γ)l1 + (α | β | γ)l2

Search

RobinX | Query

RobinX 3-Field notation </> XML RepositoryQuery

www.sportscheduling.ugent.be/RobinX

Competition format Constraints in use Objective function

Alpha 1

Alpha 2

Alpha 3

1RR 2RR 3RR NRR

C R

M I E F

P ∅

Capacity

Game

Break

Fairness

Separation

ObjectiveCA1 CA2 CA3 CA4

CA5

GA1 GA2

BR1 BR2 BR3 BR4

FA1 FA2 FA3 FA4

FA5 FA6

SE1 SE2

BR TR CR

∅SCCO

Paper reference No. Slots Classification

Nemhauser and Trick (1998) 18 2RR, C, ∅ | BR1, CA1, CA2, CA3, GA1, SE2 | ∅ 

No. Teams

9
Zhang (2002) 11 18 NRR, C, ∅ | CA1, CA2, CA3, CA4 | ∅

Figure 3: Illustration of the online query tool. Users color buttons green or
red to respectively select instances that have or do not have specific parameter
values.

from (Knust, 2018)). Note that Table 4.1 gives a classifica-
tion on sports timetabling problems, rather than research pa-
pers. Consequently, if a single paper introduces multiple sports
timetabling problems, the same paper reference may appear
more than once, each time with a different three-field notation.

For each problem, a list with the specific constraints as origi-
nally described in the paper is publicly available on the website
devoted to this project (see Van Bulck et al. (2018b)). The web-
site also offers a query tool in which users can select and des-
elect problem features to get a list with all matching problems
from a database that additionally contains the classification for
several theoretical problem instances (e.g., the constrained min-
imum break problem (Rasmussen and Trick, 2007), and the
tournament scheduling problem with absences (Schauz, 2016)).
Confronted with a specific sports timetabling problem, this tool
should enable users to easily identify the most relevant part of
the literature (see Figure 3).

Figure 4 illustrates the frequency of each of the constraints
as they appear in Table 4.1. From this figure, it is apparent that
capacity constraints are by far the most popular. Also popular
is to limit the total number of breaks per team in a given set
of time slots (BR1), to limit the total number of breaks (BR2),
to forbid specific game assignments (GA1), and to require a
minimal separation between common games (SE1).

4.2. Discussion

Several considerations came to mind during the development
of the three-field notation outlined in Section 3. A first consid-
eration is related to the level of abstraction used in the constraint
formulation (for a discussion, see Kingston (2018)). Too spe-
cific constraints result in an explosion of the total number of

constraints and are likely unable to handle new instances with
slightly different requirements. Too general constraints, on the
other hand, lose their expressive power by hiding too much in-
formation so that problem specific knowledge can no longer
be exploited. In the most extreme case, one generic constraint
could be used to classify all timetabling requirements leaving
no room for ambiguity. For instance, some early high school
timetabling notations proposed specification languages that al-
lowed users to define any constraint that can be expressed via
a function or logic expression (e.g., Kingston (2001)). Despite
the inherent flexibility, these notations were not adopted by the
research community because of the high specification burden.
Related to this, a now widely accepted high school timetabling
format (xhstt) defines meetings as abstract events that need
to be assigned resources thereby considering constraints on
an event-resource level (see Post et al. (2012); Kingston et al.
(2018)). Following this approach, a game could be modeled
as an event that requires a time slot resource and two team re-
sources, one with a ‘home role’ and one with an ‘away role’.
Although our three-field notation carried over many ideas from
xhstt, such as the profound idea to express constraints in func-
tion of any arbitrary set of time slots or teams, it does not use the
idea of events and resource-based constraint formulations. The
reason is that the additional layer of abstraction would likely
transform the three-field notation into a meaningless string of
tokens that hides fundamental problem characteristics. Instead,
the formulation of constraints is based on the long list of real-
life constraints encountered during the problem classification.
In other words, our notation rather resembles the way how
practitioners tend to structure data (domain specific structure)
than how solvers treat requirements via variables and resources
(solver specific structure) (see Post et al. (2014)).

As a result of the specificity-generality trade-off, not all am-
biguity was resolved and some complicated cases exist in which
it may not be so clear how to classify a given constraint. As an
example, suppose that a top game is defined as a game between
two teams from a given set of top teams. To maximize tele-
vision viewership, it is often imposed that no top game takes
place during the first two time slots. To classify this constraint,
it is not so clear whether we should use CA2, CA4, or GA1;
whenever this occurs we advise researchers to choose the con-
straint that most closely matches the description. For example,
we recommend CA2 for the description given above. However,
we advise CA4 if the constraint is formulated in the form ‘at
most one top team can play at home against another top team in
the first and second time slot’. We advise GA1 in case a more
arbitrary set of games is involved.
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Table 5: Three-field classification of literature on sports timetabling.

Paper reference Description

Constraint satisfaction
Nemhauser and Trick (1998) 2RR, C, ∅ | BR1, CA1, CA2, CA3, GA1, SE2 | ∅
Zhang (2002) NRR, C, ∅ | CA1, CA2, CA3, CA4 | ∅
Van Voorhis (2005) NRR, R, ∅ | CA1, CA2, CA3, GA1, SE1 | ∅
Van Voorhis (2005) NRR, R, ∅ | CA1, CA2, CA3, GA1, SE1 | ∅
Kostuk and Willoughby (2012) NRR, R, ∅| BR1, CA1, CA2, CA3, CA4, GA1 | ∅
Break optimization
de Werra (1985) 1RR, C, ∅| BR3, CA2, CA3 | BR
de Werra (1985) 1RR, C, ∅| BR1, CA3, CA4 | BR
Della Croce and Oliveri (2006) 2RR, C, M | CA1,CA2, CA3, CA4| BR
Saur et al. (2012) 1RR, C, ∅ | BR1, CA1, CA2, CA3, CA4 | BR
Durán et al. (2017) 2RR, C, F| CA1, CA3 | BR
Travel optimization
Ball and Webster (1977) 2RR, R, P | GA2, CA3, | TR
Bean and Birge (1980) NRR, R, ∅ | CA1, CA3 | TR
Russell and Leung (1994) NRR, C, ∅ | CA2, CA3 | TR
Easton et al. (2001) 2RR, C, ∅ | CA3, SE1 | TR
Ribeiro and Urrutia (2007a) 2RR, C, M| CA3, SE1| TR
Bao and Trick (2010) 2RR, R, ∅ | CA3, SE1| TR
Hoshino and Kawarabayashi (2011a) 8RR, C, P| CA3, FA1, SE1| TR
Hoshino and Kawarabayashi (2011b) 2BRR, C, ∅ | CA3, SE1| TR
Bonomo et al. (2012) 2RR, C, M | BR1, CA1, CA3 | TR
Cost and revenue optimization
Durán et al. (2007) 1RR, C, ∅ | BR1, CA1, CA2, CA3, CA4, CA5, GA1, GA2 | CR
Briskorn and Drexl (2009b) 1RR, C, ∅ | BR1, BR2, CA1, CA3, CA4, GA1| CR
Fiallos et al. (2010) 2RR, C, M | BR1, CA2, CA3, CA4 | CR
Durán et al. (2012) 4RR, C, M | BR1, BR4, CA1, CA3, CA4, CA5, FA1, GA1 | CR
Carryover effects
Guedes and Ribeiro (2011) 1RR, C, ∅ | | CO
Günneç and Demir (2018) 2RR, C, M | BR1 | CO
Soft constraint
Ferland and Fleurent (1991) NRR, R, ∅ | CA1H,S, CA2H, CA3H,S, FA5S, GA2H, SE1H | SC
Schreuder (1992) 2RR, C, M | BR2S, CA1H,S, CA4S | SC
Costa (1994) NRR, R, ∅ | CA1H,S, CA2H, CA3H,S, FA5S, GA2H, SE1H | SC
Wright (1994) NRR, R, ∅ | CA1H, CA2H, CA3S, CA4H,S, FA5S, GA1H | SC
Dinitz and Froncek (2000) NRR, C, ∅ | BR1H, BR2S, CA1H, CA2H, CA3H, CA4H, SE1S | SC
Schönberger et al. (2000) 1RR, R, ∅ | CA1H, CA2H, CA3S, FA1H | SC
Fronček (2001) 2RR, C, P| BR1H, BR2H,S, CA2H, CA3H, CA4H, GA2H,S, SE2S | SC
Easton (2003) 2RR, C, ∅ | BR1H, CA1H, CA2H,S, CA3H, CA5H, SE1H | SC
Schönberger et al. (2004) 2RR, R, P| CA1H,S, CA3S | SC
Wright (2005) 4RR, R, ∅ | CA1S, CA2H,S, CA4S, FA1S, FA5S, GA1S, SE1S, SE2S | SC
Bartsch et al. (2006) 2RR, C, M | BR1H,S, BR2H, CA1H, CA3H,S, CA4H, GA1H, SE1H | SC
Bartsch et al. (2006) 2RR, C, E | BR1H, CA1H,S, CA2H, CA3S, CA4H, GA1H, SE1H | SC
Wright (2006) 2RR, C, ∅ | CA1S, CA2S, CA4S, FA2S, FA5S, GA1S | SC
Ribeiro and Urrutia (2007b) 2RR, C, M | BR1H, BR2S, CA1H, CA2H, CA4H,S, FA1H | SC
Rasmussen (2008) 3RR, C, P| BR1H,S, BR2S, CA1H, CA2H,S, CA3H, CA4S, GA1S, SE1H | SC
Goossens and Spieksma (2009) 2RR, C, M| BR1H, BR2H, CA1H,S, CA2S, CA3H,S, CA4H,S, GA1S | SC
Kyngäs and Nurmi (2009a) 4RR, C, ∅ | BR1H, BR4S, CA1H,S, CA3S, FA1S, GA1H, SE1S | SC
Kyngäs and Nurmi (2009b) NRR, R, ∅ | BR1H, BR4S, CA1H,S, CA3S, CA4H,S, FA1S, FA2S, GA1H, SE1S | SC
Knust (2010) 1RR, R, ∅ | BR2S, CA1H,S, CA2H, CA3S, FA1H, GA1H | SC
Lewis and Thompson (2011) 2RR, C, ∅ | CA1H, CA2H,S, CA3H,S, CA4H, SE1S | SC
Hausken et al. (2012) 2RR, C, P| BR1H, BR2S, CA1S, CA3S, CA4H,S, GA1H,S, SE1H | SC
Ribeiro and Urrutia (2012) 2RR, C, M | BR1H, BR2H, BR3H, CA1H, CA2H,S, CA3H, CA4H, GA1H, GA2H | SC
Nurmi et al. (2013) 3RR, R,∅ | BR2S, CA1H,S, CA2H, CA4H,S, FA2S, GA1H, SE1S | SC
Recalde et al. (2013) 2RR, C, I| BR1H,S, CA2H, CA3H,S, CA4H | SC
Larson and Johansson (2014) NRR, C, ∅ | BR2H, CA1H,S, CA2H, CA4H, FA1H, FA3H, SE2H | SC
Westphal (2014) 2RR, C, P | BR2S, CA1H,S, FA6S, GA1S | SC
Nurmi et al. (2015) 4RR, R, ∅ | BR1H, BR2S, BR4S, CA1H,S, CA3S, CA4H,S, FA1S, FA2S, FA3S, GA1S, GA2H, SE1S | SC
Kyngäs et al. (2017) NRR, R, ∅ | BR1H, BR2S, CA1H, CA2H, CA3H,S, CA4H, FA5S, GA1H, SE1H | SC
Cocchi et al. (2018) 2RR, C, M| BR1H,S, BR2S, CA1H,S, CA2H,S, CA3H, CA4H, FA1H, FA6S, GA1H,S | SC
Van Bulck et al. (2019) 2RR, R, ∅ | CA1H, CA3H,S, SE1H | SC
Multi-league
de Werra et al. (1990) (2RR,C,P | BR1H,S, BR3S, CA4H, SE1H | SC)1 + (NRR,C,∅ | BR1H,S, BR3S, CA2H, CA4H | SC)1

Della Croce et al. (1999) (1RR, R, ∅ | CA1, CA4 |∅)6

Kendall (2008) (NRR, C, ∅ | BR2H, CA1H, CA2H, CA4H,S, FA6H | SC)4

Grabau (2012) (NRR, R, ∅ | CA1, CA2, CA3, CA4, GA2 | CR)8

Burrows and Tuffley (2015) (2RR, C, M | GA2S, FA3H | SC)1 + (1RR, C, ∅ | GA2S, FA3H | SC)1

Schönberger (2017) (2RR, R, ∅ | CA1H, CA3S, CA4H | SC)3
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Figure 4: Frequency of the different constraints in real-life applications from Table 4.1. Constraint FA4 did not appear in the considered problems but is not removed
from the three-field notation to be able to handle multi-objective settings.

The list of constraints and objectives outlined in Section 3
is able to classify most real-life sports timetabling applications
published over the last five decades. Yet, as sports timetabling
is an active research domain in which new problems are regu-
larly proposed, an important question is how to adapt the frame-
work when new problem properties arise. Clearly, we want to
avoid that researchers independently decide what, for instance,
the next CA6 will be as this will likely result in an uncontrolled
explosion of the three-field notation. Neither is our intention
to classify every possible timetabling constraint as some prop-
erties might be too problem specific. Instead, we propose that
unclassifiable constraints are itemized in the problem descrip-
tion via a separate ‘other constraints’ list, and that researchers
publish these constraints on the website devoted to this project
(Van Bulck et al., 2018b). This allows the research community
to be involved in the decisions of which extensions to include.

A final consideration relates to the assumption that a game is
played in the venue of the home team. Although this assump-
tion holds for the vast round-robin timetabling contributions in
the literature, there are some real-life sports competitions that
organize games on multiple neutral venues that do not belong
to any team (e.g., McAloon et al. (1997); Urban and Russell
(2003)). Apart from the time slot assignment, the timetable
then also needs to assign a venue to each game. Note, however,
that the use of neutral venues does not necessarily implicate
that the home-away status becomes obsolete: the ‘home team’
in chess can move first, whereas the home team in baseball bats
last. Although neutral venues do not belong to the scope of the
proposed notation scheme, it can be modeled by formulating
the problem in the same way as is done in balanced tournament
design (see e.g., McAloon et al. (1997)). Within balanced tour-
nament design, we are given a set of teams U, a set of venues
V , and a set of time slots P with |P| = 2|V |. The task is then
to organize a 1RR complemented with one game per team in
such a way that each team plays twice on each venue but no
two teams meet more than once on the same venue. To classify
neutral venues, we replace the set of time slots with a new set
of time slots P′ that contains a time slot sp,v for each original
time slot p ∈ P and venue v ∈ V . This way, we automatically
assign both a venue in V and time slot in P whenever we assign
a game to a time slot in P′. In order to ensure that a team plays
at most one game in a time slot p ∈ P, it suffices to define a

constraint of type CA1 that states that a team can play at most
one game in a time group consisting of all time slots sp,v with a
venue v ∈ V . Similarly, a constraint of type CA4 can be used to
model venue capacity.

5. A unified XML-file-based data format

Constructing sports timetables is a complex matter since, as
illustrated in Section 4, real-life sports timetabling applications
are typically highly constrained. The vast amount and variety
of constraints and the lack of easily accessible benchmark prob-
lem instances induce that solution methods are often tested on
just one or two specific instances. The construction of a prob-
lem instance repository, however, is not straightforward since
there are dozens of constraints that need to be expressed in a
standardized data format. Section 5.1 outlines the criteria for
such a data format. Next, Section 5.2 proposes three xml stan-
dards for exchanging problem instances, solutions, and objec-
tive bounds in the field of sports timetabling. We use these stan-
dard to propose an instance data repository containing various
sports timetabling instances. Finally, Section 5.3 proposes sev-
eral tools and an online platform that facilitate the construction
and validation of these xml files.

5.1. Design criteria and rationale for using XML

The main intention of our data format, also called informa-
tion standard or medium, is to promote problem instance data
sharing and reuse among different users and software appli-
cations. A first criterion is therefore that the format is open,
human readable (i.e. no binary format), software and platform
independent, and flexible enough to store the majority of the
problem instances from the literature. Second, the format must
aid users to structure input data in an uncomplicated and recog-
nizable way, thereby minimizing the specification burden and
maximizing the accessibility. Therefore, it is required that the
format is methodology independent since the usage of the for-
mat should not be limited by the users’ modeling capability (see
also Chatfield et al. (2009)). Indeed, most of the timetabling
constraints are easy to express in words but are hard to enforce
within specific algorithms such as mathematical programming
or metaheuristics. Third, the implementation effort for reading
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<Instance>

<MetaData> <InstanceName>Utopia</InstanceName> </MetaData

>

<Data> <Distances/> <Costs/> </Data>

<Resources>

<TeamGroups> <teamGroup id="1" name="All teams"/> </

TeamGroups>

<Teams> <team id="1" name="Team 1" teamGroups="1"/> </

Teams>

<TimeGroups>...</TimeGroups> <Slots> ... </Slots>

</Resources>

<Structure>

<Format teamGroupIds="1">

<numberRoundRobin>2</numberRoundRobin>

<compactness>C</compactness> <symmetry>M</symmetry>

<AdditionalGames/>

</Format>

</Structure>

<Constraints>

<CapacityConstraints>

<CA1 teamGroup="1,2" min="1" max="2" mode="HOME"

timeGroup="1,2,3" cost="1" type="SOFT" function

="SUM"/>

</CapacityConstraints>

</Constraints>

<ObjectiveFunction> <Objective>SC</Objective> </

ObjectiveFunction>

</Instance>

Figure 5: Example of the instance xml format.

data must be limited. Fourth, the format must be easy to ex-
tend if new timetabling formats, constraints, or objectives are
introduced in the literature.

The extensible markup language (xml) meets all the above
design criteria. Moreover, unlike other file formats such as json,
xml has the advantage that many researchers are already famil-
iar with this format because of its popular use in many other
operations research disciplines such as high school timetabling
(Post et al., 2012), nurse rostering (Kingston et al., 2018),
multi-dimensional packing (Fekete and van der Veen, 2007),
and supply chain modeling (Chatfield et al., 2009). For an in-
troduction to xml and examples on the use of xml in operations
research, we refer to Bradley (2003). The driving motivation
behind xml is to separate data representation from data content.
This separation is enforced by providing an xml language (also
called tag set, vocabulary, document type, or standard) consist-
ing of all recognized tag- and attribute names. In addition, each
xml language is mapped out by a schema which encodes the
syntactical structure, the compulsory and optional tags, and the
allowed attribute and tag values. The main advantage of xml
over plain text-only file formats lies in the structured way of
data storage making it an extendable language that can easily
be adjusted over time. To lower the specification burden and to
increase the accessibility and recognizability, our xml standards
closely follow the structure of the three-field notation explained
in Section 3.

5.2. XML file templates and instance data repository

A first standard is used to store an instance of the problem
and is made up of six different blocks of elements: meta data,

data, resources, structure, constraints, and objective. Figure 5
shows a snippet of a fictive sports timetabling instance. To be-
gin with, a meta data block stores some descriptive information
such as the name of the instance, the name of the contributor,
and the date of creation. Next, a data block holds informa-
tion needed for the evaluation of a solution. Examples include
pairwise venue distances, cost estimations, and weights for the
weighted carryover or minimum break objective. Then, a re-
source block defines all team groups, teams, time groups, and
time slots. We hereby note that time and team groups can be
defined at the users own convenience to simplify the constraint
formulation. The last three blocks encode the three-field nota-
tion as outlined in Section 3. First, the structure block encodes
the α-field. For each team group corresponding to a league,
a tag can be defined that describes the tournament format, the
compactness of that tournament, and the symmetry structure.
For non-round-robin formats, a games tag allows the user to
enumerate additional games individually. Next, the constraints
block enumerates all the constraints that are present in the in-
stance. To enhance the compactness of the format, ‘teamGroup’
and ‘timeGroup’ attributes allow for comma-delimited lists of
respectively team and time groups. The last tag encodes the
objective in use.

A second standard is used to store solutions: a meta data tag
first stores information such as the name of the corresponding
problem instance, after which all scheduled games are enumer-
ated. Finally, a third standard stores lower bounds (all problems
are minimization problems; multiply costs with minus one for
the revenue maximization objective). The first tag in the bound
file stores meta data similarly to the solution file; the second tag
contains the actual lower bounds on the infeasibility and objec-
tive value. A fragment of a solution and bound file is shown in
Figure 6.

It is hard to assess the algorithmic performance of the var-
ious solution methods proposed in the literature for two rea-
sons. First, since no set of benchmark problem instances is
publicly available, many contributions in the literature propose
a solution method which is tested on just one or two specific
problem instances of a single competition. Second, the lack
of generally accepted open challenge problems make that al-
gorithmic progress over time is not monitored. For these rea-
sons, little algorithmic understanding is gained from previous
studies. To promote proper benchmarking, we offer a problem
instance data repository containing various xml files encoding
the majority of the problem instances published over the last
five decades. In total, the repository contains artificial and real-
world instances from over 15 different countries and eight dif-
ferent sports. For a full description of these files, we refer to
Van Bulck et al. (2018a). The repository is publicly available
(see Van Bulck et al. (2018b)) and will be continuously updated
as new instances or better solutions become available.

5.3. File generation, validation tools, and online platform
A potential drawback of the use of xml is that users may not

be familiar with markup languages. To mitigate this drawback,
we developed an online document editor that allows users to
create the xml files without directly editing any markup (see
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<Solution>

<MetaData>

<InstanceName>Utopia</InstanceName>

<SolutionName>UtupiaSol</SolutionName>

<ObjectiveValue infeasibility="0" objective="2"/>

</MetaData>

<Games>

<Game home="1" away="2" slot="1">

...

</Games>

</Solution>

<Bound>

<MetaData>

<InstanceName>Utopia</InstanceName>

<BoundName>LPRelaxation</BoundName>

<Contributor>John Doe</Contributor>

</MetaData>

<LowerBound>

<Infeasibility>0</Infeasibility>

<Objective>2</Objective>

</LowerBound>

</Bound>

Figure 6: Example of the solution xml format (left), and lower bound xml format (right).

RobinX | Validator

RobinX 3-Field notation </> XML RepositoryQuery

www.sportscheduling.ugent.be/RobinX

Instance Solution Validator

Competition format

Additional games

Find file Create new file

Copy

Instance XML:
<Structure>
   <Format teamGroupIds="1">
      <numberRoundRobin>2</numberRoundRobin>
      <compactness>c</compactness>

<AdditionalGames>
         <game team1="1" team2="2" noHome="1"/>
         <game team1="1" team2="3" noHome="0"/>

noHomeTeam 1 Team 2
1
2

1
03

1 2
1

Team group ID Number round robin Compactness Symmetry
1 1 2 C M

Figure 7: Illustration of the online web platform, step 1. Users can select xml
files from the database or create new files.

Figure 7). Furthermore, we developed an open-source C++-
library that is freely available for download (Van Bulck et al.,
2018b). This library embeds a number of parsers that were used
to encode the problem instances from the instance data reposi-
tory of Section 5.2.

In addition, the library automates the validation of the files by
performing syntactical checks on two different levels. First, an
XML Schema Definition document checks whether the struc-
ture of the document is valid, and whether all required tags
are specified. Next, the C++-library performs more advanced
checks such as the verification whether referenced resources
also have a corresponding resource tag. What is more, the
library can also evaluate solution files. If a solution respects
all hard constraints as described by the instance file, the pro-
gram returns the objective value of the solution and all violated
soft constraints. Otherwise, the program additionally returns
the infeasibility value and a list with all violated soft and hard
constraints. To facilitate the development of metaheuristics,
the software also allows to validate solutions in an incremen-
tal fashion: if a timetable slightly changes, the program will
only reevaluate the constraints affected by the change. To make
the software more accessible, the library is embedded in a user-
friendly web application. To validate solutions online, users
simply select or create an instance and solution file and sub-
sequently press the validation button. The program returns the
infeasibility and objective value, and a list of all violated con-

RobinX | Validator

RobinX 3-Field notation </> XML RepositoryQuery

www.sportscheduling.ugent.be/RobinX

Instance Solution Validator

RobinX Validator 1.0
GNU General Public License V3.0.
 
Con.         Description                                                                                          Infeas.   Obj.
 
PL1          Team 5 has 2 H-games on time slots {1,2}. Allowed range is [0,0].     0            2
PL1          Team 9 has 1 H-game on time slots {1}. Allowed range is [0,0].          1            0
 
--------------------------------------------------------------------------------------------------------------------
Infeasibility value:     1
Objective value:        2
--------------------------------------------------------------------------------------------------------------------
 

Copy
Validate

Figure 8: Illustration of the online web platform, step 2. To validate files, users
only need to press the validate button.

straints (see Figure 8).

6. Conclusion

Over the past decades, the importance of finding fair, prof-
itable, thrilling, or simply convenient timetables for sports
leagues has introduced a wide variety of new constraints and
objectives. This resulted in a proliferation of problem vari-
ants making it challenging for researchers to recognize the main
structure of problem instances. This paper therefore proposed a
three-field notation to describe (round-robin) sports timetabling
problems. We used this notation to provide a problem-driven
classification of real-life sports timetabling applications pre-
sented in the operations research literature. Moreover we pre-
sented a framework, called RobinX, to describe and exchange
sports timetabling instances and solutions. RobinX can store
nearly every constraint found in the literature and is comple-
mented with a C++-library to validate and evaluate instances
and solutions. In addition, we presented a problem instance
data repository, which is unprecedented in size, containing over
40 different instance types. We hope that the automatic val-
idation and exchange of problem instances and solutions will
eventually lead to more general algorithmic insights. As an ex-
ample, for which type of problem instances do integer program-
ming methods work better than constraint programming? What
characterizes instances on which an algorithm or decomposi-
tion method, e.g., first-break-then-schedule (Nemhauser and
Trick, 1998) or first-schedule-then-break (Trick, 2001), per-
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forms poorly? What properties make an instance hard to solve?
The structured data format of the xml files may assist future re-
search to answer these questions via meta-learning techniques
such as algorithm selection (see e.g., Smith-Miles and Lopes
(2011)) or hyper-heuristics (see e.g., Burke et al. (2013)). Sim-
ilar data sharing initiatives have revolutionized algorithmic de-
velopment in other research disciplines such as high school
timetabling (Post et al., 2012, 2014), nurse rostering (Kingston
et al., 2018), multi-dimensional packing (Fekete and van der
Veen, 2007), and supply chain modeling (Chatfield et al., 2009).
With this paper, we invite researchers to join the project and
submit their own problem instances and solutions.
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